
TOPICS

arrays and Lists
C

h
a

P
t

E
r

7 .1 Value types and reference types

7 .2 array Basics

7 .3 Working with Files and arrays

7 .4 Passing arrays as arguments to
Methods

7 .5 Some useful array algorithms

7 .6 advanced algorithms for Sorting and
Searching arrays

7 .7 two-Dimensional arrays

7 .8 Jagged arrays

7 .9 the List Collection

 7.1 Value Types and Reference Types

CONCEPT: The data types in C# and the .NET Framework fall into two categories:

value types and reference types.

In this chapter, you will gain more experience working with objects. Specifically, you
will work with arrays and collections, which are objects that store groups of data. Before
we go into the details of creating and working with those objects, it will be helpful for
you to understand how objects are stored in memory. In this section, we discuss the
ways that different types of objects are internally stored by the .NET Framework. As a
result, you will better understand the concepts presented in this chapter, and chapters
to come.

All the data types in C#—and the underlying .NET Framework—fall into two categories:
value types and reference types. Of the C# data types that you have used so far, the fol-
lowing are value types: int, double, decimal, and bool. (There are other value types in
addition to these, but these are the ones we focus on in this book.)

When you declare a value type variable, the compiler sets aside, or allocates, a chunk
of memory that is big enough for that variable. For example, look at the following
variable declarations:

int wholeNumber;

double realNumber;

decimal moneyNumber;

7

395

396 Chapter 7 arrays and Lists

Recall from Chapter 3 that an int uses 32 bits of memory (4 bytes), a double uses 64 bits
of memory (8 bytes), and a decimal uses 128 bits of memory (16 bytes). These declara-
tion statements cause memory to be allocated as shown in Figure 7-1.

int wholeNumber;

double realNumber;

decimal moneyNumber;

4 bytes

8 bytes

16 bytes

Figure 7-1 Memory allocated

The memory that is allocated for a value type variable is the actual location that will hold
any value that is assigned to that variable. For example, suppose we use the following
statements to assign values to the variables shown in Figure 7-1:

wholeNumber = 99;

realNumber = 123.45;

moneyNumber = 800.0m;

Figure 7-2 shows how the assigned values are stored in each variable’s memory location.

int wholeNumber;

99

double realNumber;

123.45

decimal moneyNumber;

800.0

Figure 7-2 Values assigned to the variables

As you can see from these illustrations, value types are very straightforward. When you
are working with a value type, you are using a variable that holds a piece of data.

This is different from the way that reference types work. When you are working with a
reference type, you are using two things:

• An object that is created in memory
• A variable that references the object

The object that is created in memory holds data of some sort and performs operations of some
sort. (Exactly what the data and operations are depends on what kind of object it is.) In order
to work with the object in code, you need some way to refer to it. That’s where the variable
comes in. The variable does not hold an actual piece of data with which your program will
work. Instead, it holds a special value known as a reference, which links the variable to the
object.1 When you want to work with the object, you use the variable that references it.

1A reference is similar to a memory address. It is a value that identifies the object’s memory location.

 7 .1 Value types and reference types 397

A variable that is used to reference an object is commonly called a reference variable. Ref-
erence variables can be used only to reference objects. Figure 7-3 illustrates two objects
that have been created in memory, each referenced by a variable.

Object

Reference

variable

Object

Reference

variable

Figure 7-3 two objects referenced by variables

To understand how reference variables and objects work together, think about flying a
kite. In order to fly a kite, you need a spool of string attached to it. When the kite is air-
borne, you use the spool of string to hold onto the kite and control it. This is similar to the
relationship between an object and the variable that references the object. As shown in
Figure 7-4, the object is like the kite, and the variable that references the object is like the
spool of string.

Object

Variable referencing

the object

Figure 7-4 the kite and string metaphor

Creating a reference type object typically requires the following two steps:

 1. You declare a reference variable.
 2. You create the object and associate it with the reference variable.

After you have performed these steps, you can use the reference variable to work with the
object. Let’s look at an example that you have already learned about: creating objects of
the Random class. Recall from Chapter 5 that the Random class allows your program to
generate random numbers. Here is an example of how you create an object from the
Random class:

Random rand = new Random();

Let’s look at the different parts of this statement:

• The first part of the statement, appearing on the left side of the = operator, reads
Random rand. This declares a variable named rand that can be used to reference an
object of the Random type.

• The second part of the statement, appearing on the right side of the = operator,
reads new Random(). The new operator creates an object in memory and returns a

398 Chapter 7 arrays and Lists

reference to that object. So, the expression new Random() creates an object from the
Random class and returns a reference to that object.

• The = operator assigns the reference that was returned from the new operator to the
rand variable.

After this statement executes, the rand variable references a Random object, as shown in
Figure 7-5. The rand variable can then be used to perform operations with the object,
such as generating random numbers.

Random object

rand

Figure 7-5 the rand variable referencing a Random object

 Checkpoint

 7.1 Into what two categories do the data types in C# and the underlying .NET Frame-
work fall?

 7.2 What is the difference in the way you work with value types and reference types?

 7.3 How is the relationship between an object and a reference variable similar to a kite
and a spool of string?

 7.4 Is a variable of the Random class a reference type or a value type?

 7.2 Array Basics

CONCEPT: An array allows you to store a group of items of the same data type together

in memory. Processing a large number of items in an array is usually easier

than processing a large number of items stored in separate variables.

In the programs you have written so far, you have used variables to store data in memory.
The simplest way to store a value in memory is to store it in a variable. Variables work
well in many situations, but they have limitations. For example, they can hold only one
value at a time. Consider the following variable declaration:

int number = 99;

This statement declares an int variable named number, initialized with the value 99.
Consider what happens if the following statement appears later in the program:

number = 5;

This statement assigns the value 5 to number, replacing the value 99 that was previously
stored there. Because number is an ordinary variable, it can hold only one value at a time.

Because variables hold only a single value, they can be cumbersome in programs that pro-
cess lists of data. For example, suppose you are asked to write a program that holds the
names of 50 employees. Imagine declaring 50 variables to hold all those names:

string employee1;

string employee2;

string employee3;

 7 .2 array Basics 399

and so forth . . .

string employee50

Then, imagine writing the code to process all 50 names. For example, if you wanted to
display the contents of the variables in a ListBox, you would write code such as this:

employeeListBox.Items.Add(employee1); // Display employee 1

employeeListBox.Items.Add(employee2); // Display employee 2

employeeListBox.Items.Add(employee3); // Display employee 3

and so forth . . .

employeeListBox.Items.Add(employee50); // Display employee 50

As you can see, variables are not well suited for storing and processing lists of data. Each
variable is a separate item that must be declared and individually processed.

Fortunately, you can use an array as an alternative to a group of variables. An array is an
object that can hold a group of values that are all the same data type. You can have an array
of int values, an array of double values, and array of decimal values, or an array of
string values, but you cannot store a mixture of data types in an array. Once you create an
array, you can write simple and efficient code to process the values that are stored in it.

Arrays are reference type objects. Recall from Section 7.1 that two steps are required to
create and use a reference type object:

 1. You declare a reference variable.
 2. You create the object and associate it with the reference variable.

Suppose you want to create an array that can hold int values. Here is an example of how
you might declare a reference variable for the array:

int[] numbersArray;

This statement declares a reference variable named numbersArray. Notice that this state-
ment looks like a regular int variable declaration except for the set of brackets ([]) that
appear after the keyword int. The expression int[] indicates that this variable is a refer-
ence to an int array. So, we cannot use this variable to store an int value. Rather, we can
use it to reference an int array.

The next step in the process is to create the array object and associate it with the number-
sArray variable. The following statement shows an example:

numbersArray = new int[6];

As previously mentioned, the new keyword creates an object in memory. The expression
that appears after the new keyword specifies what type of object to create. In this case, the
expression int[6] specifies that the object should be an array large enough to hold six
int values. The number inside the brackets is the array’s size declarator. It indicates the
number of values that the array should be able to hold.

The new keyword also returns a reference to the object that it creates. In the previously
shown statement, the new keyword creates an int array and returns a reference to that
array. The = operator assigns the reference to the numbersAray variable. After this state-
ment executes, the numbersArray variable will reference an int array that can hold six
values. This is shown in Figure 7-6.

numbersArray

variable
Array that can hold six int values

Figure 7-6 the numbersArray variable referencing an int array

400 Chapter 7 arrays and Lists

In the previous example, we used two statements to (1) declare a reference variable and (2)
create an array object. These two steps can be combined into one statement, as shown here:

int[] numbersArray = new int[6];

You can create arrays of any data. The following are all valid array declarations:

double[] temperatures = new double[100];

decimal[] prices = new decimal[50];

string[] nameArray = new string[1200];

An array’s size declarator must be a nonnegative integer expression. It can be a literal
value, as shown in the previous examples, or a variable. It is a preferred practice to use a
named constant as a size declarator, however. Here is an example:

const int SIZE = 6;

int[] numbersArray = new int[SIZE];

This practice can make programs easier to maintain. As you will see later in this chapter,
many array-processing techniques require you to refer to the array’s size. When you use a
named constant as an array’s size declarator, you can use the constant to refer to the size
of the array in your algorithms. If you ever need to modify the program so the array is a
different size, you need only change the value of the named constant.

Array Elements and Subscripts

The storage locations in an array are known as elements. In memory, an array’s elements
are located in consecutive memory locations. Each element in an array is assigned a unique
number known as a subscript. Subscripts are used to identify specific elements in an array.
The first element is assigned the subscript 0, the second element is assigned the subscript 1,
and so forth. For example, suppose a program has the following declarations:

const int SIZE = 5;

int[] numbersArray = new int[SIZE];

As shown in Figure 7-7, the array referenced by numbersArray has five elements. The
elements are assigned the subscripts 0–4. (Because subscript numbering starts at 0, the
subscript of the last element in an array is 1 less than the total number of elements in
the array.)

numbersArray

variable

Element

0

Element

1

Element

2

Element

3

Element

4

0 0 0 0 0

Figure 7-7 array subscripts

Array Element Default Values

Notice that Figure 7-7 shows each element of the array containing the value 0. When you
create a numeric array in C#, its elements are set to the value 0 by default.

Remember, you can create an array to hold any type of value. It is possible to create an
array of reference type objects. If you create an array of reference type objects, each ele-
ment of the array acts as a reference variable. By default, the elements of an array of refer-
ence type objects are set to the special value null. The value null indicates that a reference
variable is not set to a valid object and cannot be used for any meaningful purpose.

 7 .2 array Basics 401

Working with Array Elements

You access the individual elements in an array by using their subscripts. For example,
the following code creates an int array with five elements and assigns values to each of
its elements.

const int SIZE = 5;

int[] numbersArray = new int[SIZE];

numbersArray[0] = 20;

numbersArray[1] = 30;

numbersArray[2] = 40;

numbersArray[3] = 50;

numbersArray[4] = 60;

This code assigns the value 20 to element 0, the value 30 to element 1, and so forth.
Figure 7-8 shows the contents of the array after these statements execute.

NOTE: As you will see in Chapter 8, strings are actually reference types, so the
default value of a string array’s elements is null.

N O T E : The expression numbersArray[0] is pronounced “numbersArray
sub zero.”

numbersArray

variable

20 30 40 50 60

Element

0

Element

1

Element

2

Element

3

Element

4

Figure 7-8 Values assigned to each element

The following code shows another example. It creates a string array with three elements
and assigns strings to each of its elements.

const int SIZE = 3;

string[] names = new string[SIZE];

names[0] = "Chris";

names[1] = "Laurie";

names[2] = "Joe";

The following code sample shows how values can be assigned from TextBox controls
to array elements. Assume that an application’s form has three TextBox controls
named amount1TextBox, amount2TextBox, and amount3TextBox and that the user
has entered a numeric value into each one. The following code creates a decimal
array named amounts and assigns each of the TextBox control’s input value to an
array element.

const int SIZE = 3;

decimal[] amounts = new decimal[SIZE];

amounts[0] = decimal.Parse(amount1TextBox.Text);

amounts[1] = decimal.Parse(amount2TextBox.Text);

amounts[2] = decimal.Parse(amount3TextBox.Text);

402 Chapter 7 arrays and Lists

Let’s look at a complete program that demonstrates how to assign values to an array and then
display the values in the array. In the Chap07 folder of this book’s Student Sample Programs,
you will find a project named Display Elements. Figure 7-9 shows the application’s form.

name1TextBox

name2TextBox

name3TextBox

getNamesButton exitButton

Figure 7-9 the Display Elements application’s form

Here is the code for the getNamesButton_Click event handler:

 1 private void getNamesButton_Click(object sender, EventArgs e)

 2 {

 3 // Create an array to hold three strings.

 4 const int SIZE = 3;

 5 string[] names = new string[SIZE];

 6

 7 // Get the names.

 8 names[0] = name1TextBox.Text;

 9 names[1] = name2TextBox.Text;

10 names[2] = name3TextBox.Text;

11

12 // Display the names.

13 MessageBox.Show(names[0]);

14 MessageBox.Show(names[1]);

15 MessageBox.Show(names[2]);

16 }

Run the application, enter a name into each of the TextBox controls, and then click the
Get Names button. The following actions take place:

• In line 5, an array to hold three strings is created.
• In lines 8–10, the names that you entered into the TextBox controls are assigned to

the array elements.
• In lines 13–15, each element of the array is displayed in a message box.

The Display Elements application displays the contents of a string array. Because the
array’s elements are strings, we can pass each element directly to the MessageBox.Show
method without performing a data type conversion. If you want to pass a numeric array
element to the MessageBox.Show method, however, you will have to call the element’s
ToString method. The following code sample demonstrates:

 1 // Create an array to hold three integers.

 2 const int SIZE = 3;

 3 int[] myValues = new int[SIZE];

 4

 5 // Assign some values to the array elements.

 6 myValues[0] = 10;

 7 myValues[1] = 20;

 8 myValues[2] = 30;

 9

10 // Display the array elements.

 7 .2 array Basics 403

11 MessageBox.Show(myValues[0].ToString());

12 MessageBox.Show(myValues[1].ToString());

13 MessageBox.Show(myValues[2].ToString());

Array Initialization

When you create an array, you can optionally initialize it with a group of values. Here is
an example:

const int SIZE = 5;

int[] numbersArray = new int[SIZE] { 10, 20, 30, 40, 50 };

The series of values inside the braces and separated with commas is called an initialization

list. These values are stored in the array elements in the order they appear in the list. (The
first value, 10, is stored in numbersArray[0], the second value, 20, is stored in
numbersArray[1], and so forth.)

When you provide an initialization list, the size declarator can be left out. The compiler
determines the size of the array from the number of items in the initialization list. Here is
an example:

int[] numbersArray = new int[] { 10, 20, 30, 40, 50 };

In this example, the compiler determines that the array should have five elements because
five values appear in the initialization list.

You can also leave out the new operator and its subsequent expression when an initializa-
tion list is provided. Here is an example:

int[] numbersArray = { 10, 20, 30, 40, 50 };

Here are three separate examples that declare and initialize a string array named days.
Each of these examples results in the same array:

// Example 1

const int SIZE = 7;

string[] days = new string[SIZE] = { "Sunday", "Monday",

 "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday" };

// Example 2

string[] days = new string[] = { "Sunday", "Monday",

 "Tuesday", "Wednesday", "Thursday",

 "Friday", "Saturday" };

// Example 3

string[] days = { "Sunday", "Monday", "Tuesday",

 "Wednesday", "Thursday", "Friday",

 "Saturday" };

Using a Loop to Step through an Array

You can store a number in an int variable and then use that variable as a subscript. This
makes it possible to use a loop to step through an array, performing the same operation
on each element. For example, look at the following code sample:

1 // Create an array to hold three integers.

2 const int SIZE = 3;

3 int[] myValues = new int[SIZE];

4

5 // Assign 99 to each array element.

6 for (int index = 0; index < SIZE; index++)

7 {

8 myValues[index] = 99;

9 }

404 Chapter 7 arrays and Lists

Line 3 creates an int array named myValues with three elements. The for loop that
starts in line 6 uses an int variable named index as its counter. The index variable is
initialized with the value 0 and is incremented after each loop iteration. The loop iterates
as long as index is less than 3. So, the loop will iterate three times. As it iterates, the
index variable is assigned the values 0, 1, and 2.

Inside the loop, the statement in line 8 assigns the value 99 to an array element, using the
index variable as the subscript. This is what happens as the loop iterates:

• The first time the loop iterates, index is set to 0, so 99 is assigned to myValues[0].
• The second time the loop iterates, index is set to 1, so 99 is assigned to myValues[1].
• The third time the loop iterates, index is set to 2, so 99 is assigned to myValues[2].

Invalid Subscripts

When working with an array, it is important that you do not use an invalid subscript.
You cannot use a subscript that is less than 0 or greater than the size of the array minus 1.
For example, suppose an array has 100 elements. The valid subscripts for the array are
the integers 0 through 99. If you try to use any value outside this range, an exception will
be thrown at runtime. The following code sample demonstrates how a loop that is not
carefully written can cause such an exception to be thrown:

1 // Create an array to hold three integers.

2 const int SIZE = 3;

3 int[] myValues = new int[SIZE];

4

5 // Will this loop cause an exception?

6 for (int index = 0; index <= SIZE; index++)

7 {

8 myValues[index] = 99;

9 }

Notice that the for loop iterates as long as index is less than or equal to 3. During the
loop’s last iteration, index is set to 3, so the statement in line 8 attempts to make an
assignment to myValues[3]. There is no element in the array with the subscript 3, so an
exception will be thrown.

The Length Property

In C#, all arrays have a Length property that is set to the number of elements in the array.
For example, consider an array created by the following statement:

double[] temperatures = new double[25];

The temperatures array’s Length property will be set to 25. If we executed the following
statement, it would display the message “The temperatures array has 25 elements.”

MessageBox.Show("The temperatures array has " +

 temperatures.Length + " elements.");

The Length property can be useful when processing the entire contents of an array with a
loop. The subscript of the last element is always 1 less than the array’s Length property.
Here is an example:

for (int index = 0; index < temperatures.Length; index++)

{

 MessageBox.Show(temperatures[index].ToString());

}

 7 .2 array Basics 405

In Tutorial 7-1, you complete an application that generates a set of random numbers
similar to those used in lotteries. The numbers will be stored in an array.

NOTE: An array’s Length property is read only, so you cannot change its value.

Tutorial 7-1:

using an array to hold a List of random Lottery numbers

In this tutorial, you complete an application that randomly generates lottery numbers.
The application’s form is shown in Figure 7-10. When the Generate Numbers button is
clicked, the application will generate five two-digit integer numbers and store them in an
array. The contents of the array will then be displayed in Label controls.

VideoNote

Tutorial 7-1:
Using an
Array to
Hold a List
of Random
Lottery
Numbers

Step 1: Start Visual Studio. Open the project named Lottery Numbers in the Chap07
folder of this book’s Student Sample Programs.

Step 2: Open the Form1 form in the Designer. Double-click the generateButton con-
trol. This will open the code editor, and you will see an empty event handler
named generateButton_Click. Complete the generateButton_Click event
handler by typing the code shown in lines 22–41 in Program 7-1. Let’s take a
closer look at the code:

Line 23: This statement declares an int constant named SIZE, set to the value
5. This is used as an array size declarator.

Line 24: This statement creates an int array named lotteryNumbers with
five elements.

Line 27: This statement creates a Random object, referenced by a variable
named rand.

Line 31: This for loop uses an int variable named index as its counter. The
index variable is initialized with the value 0 and is incremented after each loop
iteration. The loop iterates as long as index is less than lotteryNumbers.Length
(which is 5). So, the loop will iterate five times. As it iterates, the index variable
is assigned the values 0, 1, 2, 3, and 4.

Line 33: This statement gets a random number in the range of 0 through 99 and
assigns it to lotteryNumbers[index]. The first time the loop iterates, this state-
ment assigns a random number to lotteryNumbers[0]. The second time the
loop iterates, this statement assigns a random number to lotteryNumbers[1].

generateButton exitButton

fifthLabelfirstLabel

secondLabel thirdLabel fourthLabel

Figure 7-10 the Lottery Numbers application’s form

406 Chapter 7 arrays and Lists

This continues until the loop is finished. At that time, each element in the array is
assigned a random number.

Lines 37–41: These statements display the array elements in the firstLabel,
secondLabel, thirdLabel, fourthLabel, and fifthLabel controls.

Step 3: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton_Click. Complete the exitButton_Click event handler by typing
the code shown in lines 46–47 in Program 7-1.

Step 4: Save the project. Then, press on the keyboard, or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, click the Generate Numbers button. The application should display
a set of random numbers in the Label controls. Click the Generate Numbers
button several more times to see different sets of random numbers. When you
are finished, click the Exit button to exit the application.

Program 7-1 Completed code for Form1 in the Lottery Numbers application

 1 using System;

 2 using System.Collections.Generic;

 3 using System.ComponentModel;

 4 using System.Data;

 5 using System.Drawing;

 6 using System.Linq;

 7 using System.Text;

 8 using System.Threading.Tasks;

 9 using System.Windows.Forms;

10

11 namespace Lottery_Numbers

12 {

13 public partial class Form1 : Form

14 {

15 public Form1()

16 {

17 InitializeComponent();

18 }

19

20 private void generateButton_Click(object sender, EventArgs e)

21 {

22 // Create an array to hold the numbers.

23 const int SIZE = 5;

24 int[] lotteryNumbers = new int[SIZE];

25

26 // Create a Random object.

27 Random rand = new Random();

28

29 // Fill the array with random numbers, in the range

30 // of 0 through 99.

31 for (int index = 0; index < lotteryNumbers.Length; index++)

32 {

33 lotteryNumbers[index] = rand.Next(100);

34 }

35

36 // Display the array elements in the Label controls.

37 firstLabel.Text = lotteryNumbers[0].ToString();

38 secondLabel.Text = lotteryNumbers[1].ToString();

 7 .2 array Basics 407

39 thirdLabel.Text = lotteryNumbers[2].ToString();

40 fourthLabel.Text = lotteryNumbers[3].ToString();

41 fifthLabel.Text = lotteryNumbers[4].ToString();

42 }

43

44 private void exitButton_Click(object sender, EventArgs e)

45 {

46 // Close the form.

47 this.Close();

48 }

49 }

50 }

Watching for Off-by-One Errors

Because array subscripts start at 0 rather than 1, you have to be careful not to perform an
off-by-one error. An off-by-one error occurs when a loop iterates one time too many or
one time too few. For example, look at the following code sample:

1 // Create an array to hold three integers.

2 const int SIZE = 100;

3 int[] myValues = new int[SIZE];

4

5 // Assign 99 to each array element.

6 for (int index = 1; index < myValues.Length; index++)

7 {

8 myValues[index] = 99;

9 }

The intent of this code is to create an int array with 100 elements and assign the value 99
to each element; however, this code has an off-by-one error. During the loop’s execution,
the index variable is assigned the values 1 through 99 when it should be assigned the
values 0 through 99. As a result, the first element, which is at subscript 0, is skipped.

Using the foreach Loop with Arrays

C# provides a special loop that, in many circumstances, simplifies array processing. It is
known as the foreach loop. When you use the foreach loop with an array, the loop
automatically iterates once for each element in the array. For example, if you use the
foreach loop with an eight-element array, the loop will iterate eight times. Because the
foreach loop automatically knows the number of elements in an array, you do not have
to use a counter variable to control its iterations, as with a regular for loop.

The foreach loop is designed to work with a temporary, read-only variable known as the
iteration variable. Each time the foreach loop iterates, it copies an array element to the itera-
tion variable. For example, the first time the loop iterates, the iteration variable will contain
the value of element 0, the second time the loop iterates, the iteration variable will contain the
value of element 1, and so forth.

Here is the general format of the foreach loop:

foreach(Type VariableName in ArrayName)

{

 statement;

 statement;

 etc.

}

408 Chapter 7 arrays and Lists

The statements that appear inside the curly braces are the body of the loop. These are the
statements executed each time the loop iterates. As with other control structures, the curly
braces are optional if the body of the loop contains only one statement, as shown in the
following general format:

foreach(Type VariableName in ArrayName)

 statement;

Let’s take a closer look at the items appearing inside the parentheses:

• Type is the data type of the values in the array.
• VariableName is the name of the iteration variable.
• in is a keyword that must appear after the VariableName.
• ArrayName is the name of an array.

Suppose we have the following array declaration:

int[] numbers = { 3, 6, 9 };

We can use the following foreach loop to display the contents of the numbers array:

foreach (int val in numbers)

{

 MessageBox.Show(val.ToString());

}

Because the numbers array has three elements, this loop will iterate three times. The first
time it iterates, val will contain the value of numbers[0], so a message box will display
the value 3. During the second iteration, val will contain the value of numbers[1] , so a
message box will display the value 6. During the third iteration, val will contain the value
of numbers[2], so a message box will display the value 9.

The foreach Loop versus the for Loop

When you need to read the values that are stored in an array from the first element to the
last element, the foreach loop is simpler to use than the for loop. With the foreach
loop, you do not have to be concerned about the size of the array, and you do not have to
create a counter variable to hold subscripts; however, because the iteration variable is
read only, there are circumstances in which the foreach loop is not adequate. You cannot
use the foreach loop if you need to do any of the following:

• Change the contents of an array element
• Work through the array elements in reverse order
• Access some, but not all, of the array elements
• Simultaneously work with two or more arrays within the loop

In any of these circumstances, you should use the for loop to process the array.

Reassigning an Array Reference Variable

It is possible to reassign an array reference variable to a different array, as demonstrated
by the following code sample:

1 // Create an array referenced by the numbers variable.

2 int[] numbers = new int[6];

3

4 // Reassign the numbers variable to a new array.

5 numbers = new int[3];

The statement in line 2 creates a six-element int array. A reference to the array is assigned
to the numbers variable. Figure 7-11 shows how the numbers variable references the six-
element array after this statement executes.

 7 .2 array Basics 409

Then, the statement in line 5 creates a new, three-element int array. A reference to
the new array is assigned to the numbers variable. When line 5 executes, the reference
that is currently stored in the numbers variable will be replaced by a reference to the
three-element array. After this statement executes, the numbers variable will refer-
ence the three-element array instead of the six-element array. This is illustrated in
Figure 7-12.

numbers

variable
Array that can hold six int values

Figure 7-11 the numbers variable referencing a six-element array

numbers

variable
Array that can hold six int values

Array that can hold

three int values

Figure 7-12 the numbers variable referencing a three-element array

Notice in Figure 7-12 that the six-element array still exists in memory, but it is no longer
referenced by any variables. Because it is no longer referenced, it cannot be accessed.
When an object is no longer referenced, it becomes eligible for garbage collection.
Garbage collection is a process that periodically runs, removing all unreferenced objects
from memory.

 Checkpoint

 7.5 Write a statement that declares a reference variable named monthlyPay for an
array that can hold decimal values.

 7.6 Write a statement so that the monthlyPay variable from Checkpoint 7.5 references
a decimal array that can hold 12 values.

 7.7 Combine the statements from Checkpoints 7.5 and 7.6 into a single statement, and
use a named constant for a size declarator.

 7.8 Write a statement that creates an array of 3 string values referenced by a variable
named fullName. Provide an initialization list for the array using string values for
a first, middle, and last name.

 7.9 Under what circumstances should you use a for loop rather than a foreach loop
to process data stored in an array?

 7.10 What happens when an object such as an array is no longer referenced by
a variable?

410 Chapter 7 arrays and Lists

 7.3 Working with Files and Arrays

CONCEPT: For some problems, files and arrays can be used together effectively. You can

easily write a loop that saves the contents of an array to a file, and vice versa.

Some tasks may require you to save the contents of an array to a file so the data can be
used at a later time. Likewise, some situations may require you to read the data from a file
into an array. For example, suppose you have a file that contains a set of values and you
want to reverse the order of the values. One technique for doing this is to read the file’s
values into an array and then write the values in the array back to the file from the end of
the array to the beginning.

Writing an Array’s Contents to a File

Writing the contents of an array to a file is a straightforward procedure: Open the file and
use a loop to step through each element of the array, writing its contents to the file. For
example, in the Chap07 folder of the Student Sample Programs, you will find a project
named Array To File. When you click the OK button, the application writes the contents of
an int array to a file. The following code shows the Click event handler for the OK button.

 1 private void okButton_Click(object sender, EventArgs e)

 2 {

 3 try

 4 {

 5 // Create an array with some values.

 6 int[] numbers = { 10, 20, 30, 40, 50 };

 7

 8 // Declare a StreamWriter variable.

 9 StreamWriter outputFile;

10

11 // Create the file and get a StreamWriter object.

12 outputFile = File.CreateText("Values.txt");

13

14 // Write the array's contents to the file.

15 for (int index =0; index < numbers.Length; index++)

16 {

17 outputFile.WriteLine(numbers[index]);

18 }

19

20 // Close the file.

21 outputFile.Close();

22

23 // Let the user know it's done.

24 MessageBox.Show("Done");

25 }

26 catch (Exception ex)

27 {

28 // Display an error message.

29 MessageBox.Show(ex.Message);

30 }

31 }

The try-catch statement handles any file-related errors. Here is a summary of the code
inside the try block:

• Line 6 creates an int array with five elements, initialized to the values 10, 20, 30,
40, and 50.

 7 .3 Working with Files and arrays 411

• Line 9 declares a StreamWriter variable named outputFile. (You do not see it in
this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamWriter declaration in line 9.)

• Line 12 creates a file named Values.txt for writing. After this statement executes, the
outputFile variable will reference a StreamWriter object that is associated with
the file.

• Line 15 is the beginning of a for loop. The loop iterates once for each element of the
array. During the loop’s iterations, the index variable will be assigned the values 1,
2, 3, 4 and 5.

• Inside the loop, line 17 writes the array element numbers[index] to the file.
• Line 21 closes the file.
• Line 24 displays a message box letting the user know the operation is done.

Figure 7-13 shows the contents of the Values.txt file, opened in Notepad, after the OK
button has been clicked.

Figure 7-13 Contents of the Values .txt file

Reading Values from a File and
Storing Them in an Array

Reading the contents of a file into an array is also straightforward: Open the file and
use a loop to read each item from the file, storing each item in an array element. The
loop should iterate until either the array is filled or the end of the file is reached. For
example, in the Chap07 folder of the Student Sample Programs, you will find a project
named File To Array. When you click the Get Values button, the application reads val-
ues from a file named Values.txt into an int array. The contents of the array are then
displayed in a list box. The following code shows the Click event handler for the Get

Values button.

 1 private void getValuesButton_Click(object sender, EventArgs e)

 2 {

 3 try

 4 {

 5 // Create an array to hold items read from the file.

 6 const int SIZE = 5;

 7 int[] numbers = new int[SIZE];

 8

 9 // Counter variable to use in the loop

10 int index = 0;

412 Chapter 7 arrays and Lists

11

12 // Declare a StreamReader variable.

13 StreamReader inputFile;

14

15 // Open the file and get a StreamReader object.

16 inputFile = File.OpenText("Values.txt");

17

18 // Read the file's contents into the array.

19 while (index < numbers.Length && !inputFile.EndOfStream)

20 {

21 numbers[index] = int.Parse(inputFile.ReadLine());

22 index++;

23 }

24

25 // Close the file.

26 inputFile.Close();

27

28 // Display the array elements in the list box.

29 foreach (int value in numbers)

30 {

31 outputListBox.Items.Add(value);

32 }

33 }

34 catch (Exception ex)

35 {

36 // Display an error message.

37 MessageBox.Show(ex.Message);

38 }

39 }

The try-catch statement handles any file-related errors. Here is a summary of the code
inside the try block:

• Lines 6 and 7 create an int array with five elements.
• Line 10 declares an int variable named index, initialized with the value 0. This

variable will be used in a loop to hold subscript values.
• Line 13 declares a StreamReader variable named inputFile. (You do not see it in

this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamReader declaration in line 13.)

• Line 16 opens a file named Values.txt for reading. After this statement executes,
the inputFile variable references a StreamReader object that is associated with
the file.

• Line 19 is the beginning of a while loop that reads items from the file and assigns
them to elements of the numbers array. Notice that the loop tests two Boolean
expressions connected by the && operator. The first expression is index < numbers.
Length. The purpose of this expression is to prevent the loop from writing beyond
the end of the array. When the array is full, the loop stops. The second expression is
!inputFile.EndOfStream. The purpose of this expression is to prevent the loop
from reading beyond the end of the file. When there are no more values to read from
the file, the loop stops.

• Inside the loop, line 21 reads a line of text from the file, converts it to an int, and
assigns the int to numbers[index]. Then, line 22 increments index.

• Line 26 closes the file.
• The foreach loop in lines 29–32 displays the array elements in the outputListBox

control.

Figure 7-14 shows the application’s form after the Get Values button has been clicked.

 7 .4 Passing arrays as arguments to Methods 413

 7.4 Passing Arrays as Arguments to Methods

CONCEPT: An array can be passed as an argument to a method. To pass an array, you

pass the variable that references the array.

Sometimes you will want to write a method that accepts an entire array as an argument
and performs an operation on the array. For example, the following code shows a method
named ShowArray. The method accepts an array of strings as an argument and displays
each element in a message box.

1 private void ShowArray(string[] strArray)

2 {

3 foreach (string str in strArray)

4 {

5 MessageBox.Show(str);

6 }

7 }

Notice in line 1 that the method has a parameter variable named strArray and that the
parameter’s data type is string[]. The expression string[] indicates that this parame-
ter variable is a reference to a string array. When you call this method, you must pass a
string array as an argument.

When you call a method and pass an array as an argument, you simply pass the variable
that references the array. The following code shows an example of how the ShowArray
method (previously shown) might be called:

1 // Create an array of strings.

2 string[] people = { "Bill", "Jill", "Phil", "Will" };

3

4 // Pass the array to the ShowArray method.

5 ShowArray(people);

Line 2 creates an array of strings named people and initializes it with four strings. Line 5
calls the ShowArray method passing the people array as an argument.

Keep in mind that arrays are always passed by reference. When you pass an array as an
argument, the thing that is passed into the parameter variable is a reference to the array.
This is illustrated in Figure 7-15. As shown in the figure, the people variable contains a
reference to an array. When the people variable is passed to the ShowArray method, the
reference to the array is passed into the strArray parameter variable. Figure 7-16 shows
that while the ShowArray method is executing, the people variable and the strArray
parameter variable reference the same array in memory.

Figure 7-14 the File To Array form

414 Chapter 7 arrays and Lists

Because arrays are always passed by reference, a method that receives an array as an argu-
ment has access to the actual array (not a copy of the array). For example, in the Chap07
folder of the Student Sample Programs, you will find a project named Array Argument.
Figure 7-17 shows the application’s form just after the user has clicked the Go button.

private void showArray(string[] strArray)

{

 foreach (string str in strArray)

 {

 MessageBox.Show(str);

 }

}

showArray(people);

Reference

"Bill" "Jill" "Phil" "Will"

Figure 7-15 an array passed as an argument

private void ShowArray(string[] strArray)

{

 foreach (string str in strArray)

 {

 MessageBox.Show(str);

 }

}

ShowArray(people);

"Bill" "Jill" "Phil" "Will"

Figure 7-16 the people and strArray variables referencing the same array

outputListBox

goButton exitButton

Figure 7-17 the Array Argument application

 7 .4 Passing arrays as arguments to Methods 415

The following code shows the Click event handler for the Go button, and a method
named SetToZero:

 1 // Click event handler for the goButton control.

 2 private void goButton_Click(object sender, EventArgs e)

 3 {

 4 // Create an int array.

 5 int[] numbers = { 1, 2, 3 };

 6

 7 // Display the array in the list box.

 8 outputListBox.Items.Add("The array's original contents:");

 9 foreach (int number in numbers)

10 {

11 outputListBox.Items.Add(number);

12 }

13

14 // Pass the array to the SetToZero method.

15 SetToZero(numbers);

16

17 // Display the array in the list box again.

18 outputListBox.Items.Add("");

19 outputListBox.Items.Add("After calling SetToZero:");

20 foreach (int number in numbers)

21 {

22 outputListBox.Items.Add(number);

23 }

24 }

25

26 // The SetToZero method accepts an int array as an

27 // argument and sets its elememts to 0.

28 private void SetToZero(int[] iArray)

29 {

30 for (int index = 0; index < iArray.Length; index++)

31 {

32 iArray[index] = 0;

33 }

34 }

Let’s take a closer look at the goButton_Click event handler:

• Line 5 creates an int array named numbers, initialized with the values 1, 2, and 3.
• Line 8 displays the string "The array's original contents:" in the outputListBox

control.
• The foreach loop in lines 9–12 displays the contents of the numbers array in the

outputListBox control. Look at Figure 7-17 and notice that the arrays values are
1, 2, and 3.

• Line 15 calls the SetToZero method, passing the numbers array as an argument.
• Line 18 displays a blank line in the outputListBox control, and line 19 displays the

string "After calling SetToZero:".
• The foreach loop in lines 9–12 displays the contents of the numbers array in the

outputListBox control. Look at Figure 7-17 and notice that the array’s values are
now 0, 0, and 0.

As you can see from Figure 7-17, the SetToZero method changed the values stored in the
numbers array. Let’s look at the SetToZero method:

• Notice in line 28 that the method accepts an int array as an argument. The param-
eter variable’s name is iArray.

416 Chapter 7 arrays and Lists

• Line 30 is the beginning of a for loop that steps through the array. As the loop
iterates, the index variable is assigned the values 0, 1, 2, and so forth. The loop
iterates as long as index is less than iArray.Length.

• The statement in line 32 assigns 0 to the array element iArray[index].

Because the iArray parameter is a reference to the array that was passed as an argument,
the statement in line 32 assigns 0 to an element of the numbers array.

Using ref and out with Array Parameters

You saw in the previous example that arrays are always passed by reference. When you
pass an array as an argument to a method, the method has direct access to the array
through its parameter variable. However, the method cannot access the original reference
variable that was used to pass the array. For example, in the Chap07 folder of the Student
Sample Programs, you will find a project named Change Array 1. Figure 7-18 shows the
application’s form just after the user has clicked the Go button. The following code shows
the Click event handler for the Go button and a method named ChangeArray:

outputListBox

goButton exitButton

Figure 7-18 the Change Array Demo 1 application

 1 private void goButton_Click(object sender, EventArgs e)

 2 {

 3 // Create an int array.

 4 int[] numbers = { 1, 2, 3 };

 5

 6 // Display the numbers array's contents.

 7 outputListBox.Items.Add("The array's original contents:");

 8 foreach (int value in numbers)

 9 {

10 outputListBox.Items.Add(value);

11 }

12

13 // Pass the numbers array to the ChangeArray method.

14 ChangeArray(numbers);

15

16 // Display the numbers array's contents.

17 outputListBox.Items.Add("After calling ChangeArray:");

18 foreach (int value in numbers)

19 {

20 outputListBox.Items.Add(value);

21 }

22 }

23

24 private void ChangeArray(int[] iArray)

 7 .4 Passing arrays as arguments to Methods 417

25 {

26 const int NEW_SIZE = 5;

27

28 // Make iArray reference a different array.

29 iArray = new int[NEW_SIZE];

30

31 // Set the new array's elements to 99.

32 for (int index = 0; index < iArray.Length; index++)

33 {

34 iArray[index] = 99;

35 }

36 }

Let’s take a closer look at the goButton_Click event handler:

• Line 4 creates an int array named numbers, initialized with the values 1, 2, and 3.
• Lines 7–11 display the array’s contents in the outputListBox control. Look at

Figure 7-18 and notice that the array’s values are 1, 2, and 3.
• Line 14 calls the ChangeArray method, passing the numbers array as an argument.
• Lines 17–21 display the contents of the numbers array in the outputListBox con-

trol after the ChangeArray method has executed. Look at Figure 7-18 and notice
that the array’s values are still 1, 2, and 3. Apparently, the method did not change
the array.

Let’s look at the ChangeArray method:

• Notice in line 24 that the method accepts an int array as an argument. The param-
eter variable’s name is iArray. Keep in mind that when we call this method in line
14, passing numbers as an argument, the iArray parameter and the numbers vari-
able reference the same array in memory.

• Line 26 declares an int constant named NEW_SIZE, set to the value 5.
• Line 29 creates a new int array in memory with five elements. A reference to the

array is assigned to the iArray parameter variable. As shown in Figure 7-19,

private void ChangeArray(int[] iArray)

{

 const int NEW_SIZE = 5;

 // Make iArray reference a different array.

 iArray = new int[NEW_SIZE];

 // Set the new array's elements to 99.

 for (int index = 0; index < iArray.Length; index++)

 {

 iArray[index] = 99;

 }

}

Five-element int array

Three-element int array

1 2 3

private void goButton_Click(object sender, EventArgs e)

{

 // Create an int array.

 int[] numbers = { 1, 2, 3 };

and so forth . . .

 ChangeArray(numbers);

and so forth . . .

}

Figure 7-19 after line 29 executes

418 Chapter 7 arrays and Lists

this causes the iArray parameter variable to no longer reference the array that
was passed as an argument. Instead, the iArray parameter references the new
array.

• The for loop in lines 32–35 assigns the value 99 to each element of array referenced
by iArray. This does not affect the numbers array.

When you use either the ref or out keywords with an array parameter, the receiving
method not only has access to the array, but it also has access to the reference variable
that was used to pass the array. For example, the Change Array 2 project, in the Chap07
folder of the Student Sample Programs, is identical to the Change Array 1 project, except
that the iArray parameter is declared with the ref keyword in the ChangeArray
method. The following code shows the Click event handler for the Go button, and the
ChangeArray method.

 1 private void goButton_Click(object sender, EventArgs e)

 2 {

 3 // Create an int array.

 4 int[] numbers = { 1, 2, 3 };

 5

 6 // Display the number array's contents.

 7 outputListBox.Items.Add("The array's original contents:");

 8 foreach (int value in numbers)

 9 {

10 outputListBox.Items.Add(value);

11 }

12

13 // Pass the number array to the ChangeArray method.

14 ChangeArray(ref numbers);

15

16 // Display the number array's contents.

17 outputListBox.Items.Add("After calling ChangeArray:");

18 foreach (int value in numbers)

19 {

20 outputListBox.Items.Add(value);

21 }

22 }

23

24 private void ChangeArray(ref int[] iArray)

25 {

26 const int NEW_SIZE = 5;

27

28 // Make iArray reference a different array.

29 iArray = new int[NEW_SIZE];

30

31 // Set the new array's elements to 99.

32 for (int index = 0; index < iArray.Length; index++)

33 {

34 iArray[index] = 99;

35 }

36 }

Notice that in line 24 the iArray parameter is declared with the ref keyword,
and in line 14 the ref keyword is used to pass numbers as an argument to the
ChangeArray method. In this code, the iArray parameter refers to the numbers
variable. Anything that is done to the iArray parameter is actually done to the
numbers variable. Figure 7-20 shows how line 29 causes the numbers variable to
reference the new five-element array.

 7 .4 Passing arrays as arguments to Methods 419

 Checkpoint

 7.11 When you pass an array as an argument, what is passed into the parameter variable?

 7.12 Does a method that receives an array as an argument have access to the actual
array or only a copy of the array?

 7.13 What is the result when you use either the ref or out keyword with an
array parameter?

private void ChangeArray(ref int[] iArray)

{

 const int NEW_SIZE = 5;

 // Make iArray reference a different array.

 iArray = new int[NEW_SIZE];

 // Set the new array's elements to 99.

 for (int index = 0; index < iArray.Length; index++)

 {

 iArray[index] = 99;

 }

}

Five-element int array

Three-element int array

1 2 3

private void goButton_Click(object sender, EventArgs e)

{

 // Create an int array.

 int[] numbers = { 1, 2, 3 };

and so forth . . .

 ChangeArray(ref numbers);

and so forth . . .

}

X

Figure 7-20 after line 29 executes in the Change Array 2 application

Figure 7-21 the Change Array 1 application

Figure 7-21 shows the application’s form just after the user has clicked the Go button.
Notice from the program’s output that after the ChangeArray method has been called,
the numbers variable references a five-element array, and each element’s value is 99.

420 Chapter 7 arrays and Lists

 7.5 Some Useful Array Algorithms

The Sequential Search

Programs commonly need to search for data that is stored in an array. Various techniques
known as search algorithms have been developed to locate a specific item in a larger
collection of data, such as an array. In this section, we discuss the simplest of all search
algorithms—the sequential search. The sequential search algorithm uses a loop to
sequentially step through an array, starting with the first element. It compares each
element with the value being searched for and stops when the value is found or the end of
the array is encountered. If the value being searched for is not in the array, the algorithm
unsuccessfully searches to the end of the array.

Let’s look at an example. In the Chap07 folder of the Student Sample Programs, you will
find a project named American Colonies. The application is a game that tests your
knowledge of U.S. history. As shown in Figure 7-22, the application’s form displays a list
of states in a ListBox control. Only one of the states shown in the ListBox was an original
American colony. You select the state that you believe was a colony and click the OK
button to see if you were correct.

selectionListBox

okButton exitButton

Figure 7-22 the American Colonies application

The following code is taken from the application. It shows a method named
SequentialSearch and the Click event handler for the OK button.

 1 // The SequentialSearch method searches a string array

 2 // for a specified value. If the value is found, its

 3 // position is returned. Otherwise, −1 is returned.

 4 private int SequentialSearch(string[] sArray, string value)

 5 {

 6 bool found = false; // Flag indicating search results

 7 int index = 0; // Used to step through the array

 8 int position = −1; // Position of value, if found

 9

10 // Search the array.

11 while (!found && index < sArray.Length)

12 {

13 if (sArray[index] == value)

14 {

15 found = true;

16 position = index;

17 }

18

19 index++;

20 }

 7 .5 Some useful array algorithms 421

21

22 // Return

23 return position;

24 }

25

26 private void okButton_Click(object sender, EventArgs e)

27 {

28 string selection; // To hold the user's selection

29

30 // Create an array with the colony names.

31 string[] colonies = { "Delaware", "Pennsylvania", "New Jersey",

32 "Georgia", "Connecticut", "Massachusetts",

33 "Maryland", "South Carolina", "New Hampshire",

34 "Virginia", "New York", "North Carolina",

35 "Rhode Island" };

36

37 if (selectionListBox.SelectedIndex != −1)

38 {

39 // Get the selected item.

40 selection = selectionListBox.SelectedItem.ToString();

41

42 // Determine if the item is in the array.

43 if (SequentialSearch(colonies, selection) != −1)

44 {

45 MessageBox.Show("Yes, that was one of the colonies.");

46 }

47 else

48 {

49 MessageBox.Show("No, that was not one of the colonies.");

50 }

51 }

52 }

The SequentialSearch method, which begins in line 4, searches a string array for a
specified value. It accepts a string array and a string search value as arguments. If
the search value is found in the array, the method returns the value’s subscript. If the
search value is not found in the array, the method returns −1. Let’s take a closer look at
the method:

• Line 6 declares a bool variable named found. The found variable is used as a flag.
Setting found to false indicates that the search value has not been found. Setting
found to true indicates that the search value has been found. Notice that found is
initialized with false.

• Line 7 declares an int variable named index that will be used to step through the
elements of the array. Notice that index is initialized with the value 0.

• Line 8 declares an int variable named position. If the search value is found in the
array, we save its subscript in the position variable. Notice that the position
variable is initialized with the value −1.

• The while loop that begins in line 11 searches the array for the specified value. It
iterates as long as found is not true and index is less than the array’s length.

• The if statement in line 13 determines whether sArray[index] is equal to value.
If this is true, then the search value has been found in the array. In that case, line 15
sets found to true, and line 16 assigns index to position.

• Line 19 increments index.
• When the loop finishes, line 23 returns the value of the position variable. If the

search value was found in the array, the position variable will contain the value’s
subscript. If the search value was not found in the array, the position variable will
still be set to −1.

422 Chapter 7 arrays and Lists

The Click event handler for the OK button begins in line 26. Let’s take a closer look at the
event handler’s code:

• Line 28 declares a string variable named selection. This variable will hold the
item that is selected from the ListBox control.

• Lines 31–35 declare a string array named colonies. The array is initialized with
the names of the U.S. colonies.

• The if statement that begins in line 37 determines whether an item has been selected
in the selectionListBox control. If an item has been selected, the following actions
take place:
• Line 40 gets the selected item and assigns it to the selection variable.
• The if statement in line 43 calls the SequentialSearch method, passing

the colonies array and the selection variable as arguments. If the value of the
selection variable is found in the colonies array, the method returns a value
other than −1, and line 45 displays a message box informing the user that
the selected item was one of the colonies. However, if the value of the selection
variable is not found in the colonies array, the method will return −1, and line
49 displays a message box informing the user that the selected item was not one
of the colonies.

Copying an Array

Because an array is an object, there is a distinction between an array and the variable that
references it. The array and the reference variable are two separate entities. This is important
to remember when you wish to copy the contents of one array to another. You might be
tempted to write something like the following code, thinking that you are copying an array:

int[] array1 = { 2, 4, 6, 8, 10 };

int[] array2 = array1; // This does not copy array1.

The first statement creates an array referenced by the array1 variable. The second state-
ment assigns array1 to array2. This does not make a copy of the array referenced by
array1. Rather, it assigns the reference that is in array1 to array2. After this statement
executes, both the array1 and array2 variables will reference the same array. This type
of assignment operation is called a reference copy. Only a reference to the array object is
copied, not the contents of the array object. This is illustrated in Figure 7-23.

array1

variable

2 4 6 8 10

array2

variable

Figure 7-23 Both array1 and array2 referencing the same array

If you want to make a copy of an array, you must create the second array in memory and
then copy the individual elements of the first array to the second. This is usually best done
with a loop, such as the following:

1 const int SIZE = 5;

2 int[] firstArray = { 5, 10, 15, 20, 25 };

3 int[] secondArray = new int[SIZE];

4

 7 .5 Some useful array algorithms 423

5 for (int index = 0; index < firstArray.length; index++)

6 {

7 secondArray[index] = firstArray[index];

8 }

The loop in this code copies each element of firstArray to the corresponding element of
secondArray.

Comparing Arrays

You cannot use the == operator to compare two array reference variables and determine
whether the arrays are equal. For example, the following code appears to compare two
arrays, but in reality it does not:

 1 int[] firstArray = { 5, 10, 15, 20, 25 };

 2 int[] secondArray = { 5, 10, 15, 20, 25 };

 3

 4 if (firstArray == secondArray) // This is a mistake.

 5 {

 6 MessageBox.Show("The arrays are the same.");

 7 }

 8 else

 9 {

10 MessageBox.Show("The arrays are not the same.");

11 }

When you use the == operator with reference variables, the operator compares the
references that the variables contain, not the contents of the objects referenced by the
variables. Because the firstArray and secondArray variables in this example reference
different objects in memory, the result of the Boolean expression firstArray ==

secondArray is false, and the code reports that the arrays are not the same.

To compare the contents of two arrays, you must compare the elements of the two arrays.
For example, look at the following code:

 1 int[] firstArray = { 2, 4, 6, 8, 10 };

 2 int[] secondArray = { 2, 4, 6, 8, 10 };

 3 boolean arraysEqual = true; // Flag variable

 4 int index = 0; // To hold array subscripts

 5

 6 // First determine whether the arrays are the same size.

 7 if (firstArray.length != secondArray.length)

 8 {

 9 arraysEqual = false;

10 }

11

12 // Next determine whether the elements contain the same data.

13 while (arraysEqual && index < firstArray.length)

14 {

15 if (firstArray[index] != secondArray[index])

16 {

17 arraysEqual = false;

18 }

19 index++;

20 }

21

22 if (arraysEqual)

23 {

24 MessageBox.Show("The arrays are equal.");

25 }

26 else

424 Chapter 7 arrays and Lists

27 {

28 MessageBox.Show("The arrays are not equal.");

29 }

This code determines whether firstArray and secondArray (declared in lines 1 and 2)
contain the same values. A Boolean flag variable, arraysEqual, is declared and initialized
to true in line 3. The arraysEqual variable used to signal whether the arrays are equal.
Another variable, index, is declared and initialized to 0 in line 4. The index variable is
used in a loop to step through the arrays.

First, the if statement in line 7 determines whether the two arrays are the same length. If
they are not the same length, then the arrays cannot be equal, so the flag variable
arraysEqual is set to false in line 9. Then a while loop begins in line 13. The loop
executes as long as arraysEqual is true and the index variable is less than firstArray.
length. During each iteration, it compares a different set of corresponding elements in
the arrays. When it finds two corresponding elements that have different values, the flag
variable arraysEqual is set to false.

After the loop finishes, an if statement examines the arraysEqual variable in line
22. If the variable is true, then the arrays are equal and a message indicating so is
displayed in line 24. Otherwise, they are not equal, so a different message is displayed
in line 28.

Totaling the Values in an Array

To calculate the total of the values in a numeric array, you use a loop with an accumula-
tor variable. First, the accumulator is initialized with 0. Then, the loop steps through the
array, adding the value of each array element to the accumulator.

 1 // Create an int array.

 2 int[] units = { 2, 4, 6, 8, 10 };

 3

 4 // Declare and initialize an accumulator variable.

 5 int total = 0;

 6

 7 // Step through the array, adding each element to

 8 // the accumulator.

 9 for (int index = 0; index < units.Length; index++)

10 {

11 total += units[index];

12 }

13

14 // Display the total.

15 MessageBox.Show("The total is " + total);

Averaging the Values in an Array

The first step in calculating the average of all the values in a numeric array is to get the
total of the values. The second step is to divide the total by the number of elements in the
array. The following code shows an example:

 1 // Create an array.

 2 double[] scores = { 92.5, 81.6, 65.7, 72.8 }

 3

 4 // Declare and initialize an accumulator variable.

 5 double total = 0.0;

 6

 7 // Declare a variable to hold the average.

 7 .5 Some useful array algorithms 425

 8 double average;

 9

10 // Step through the array, adding each element to

11 // the accumulator.

12 for (int index = 0; index < scores.Length; index++)

13 {

14 total += scores[index];

15 }

16

17 // Calculate the average.

18 average = total / scores.Length;

19

20 // Display the average.

21 MessageBox.Show("The average is " + average);

When this code finishes, the average variable will contain the average of the values in the
scores array. Notice that the last statement, which divides total by scores.length, is
not inside the loop. This statement should execute only once, after the loop has finished
its iterations.

Finding the Highest and Lowest Values in an Array

Some programming tasks require you to find the highest value in a set of data. Examples
include programs that report the highest sales amount for a given time period, the highest
test score in a set of test scores, the highest temperature for a given set of days, and
so forth.

The algorithm for finding the highest value in an array works like this: You create a vari-
able to hold the highest value (the following example names this variable highest). Then,
you assign the value at element 0 to the highest variable. Next, you use a loop to step
through the rest of the array elements, beginning at element 1. Each time the loop iterates,
it compares an array element to the highest variable. If the array element is greater than
the highest variable, then the value in the array element is assigned to the highest vari-
able. When the loop finishes, the highest variable will contain the highest value in the
array. The flowchart in Figure 7-24 illustrates this logic.

The following code demonstrates this algorithm:

 1 // Create an array.

 2 int[] numbers = { 8, 1, 12, 6, 2 };

 3

 4 // Declare a variable to hold the highest value, and

 5 // initialize it with the first value in the array.

 6 int highest = numbers[0];

 7

 8 // Step through the rest of the array, beginning at

 9 // element 1. When a value greater than highest is found,

10 // assign that value to highest.

11 for (int index = 1; index < numbers.Length; index++)

12 {

13 if (numbers[index] > highest)

14 {

15 highest = numbers[index];

16 }

17 }

18

19 // Display the highest value.

20 MessageBox.Show("The highest value is " + highest);

426 Chapter 7 arrays and Lists

index < array.Length

index = 1

True

False

highest = array[0]

array[index] >

highest

True

highest = array[index]

False

index = index + 1

Figure 7-24 Flowchart for finding the highest value in an array

In some programs, you are more interested in finding the lowest value than the high-
est value in a set of data. For example, suppose you are writing a program that stores
several players’ golf scores in an array and you need to find the best score. In golf, the
lower the score the better, so you need an algorithm that finds the lowest value in
the array.

The algorithm for finding the lowest value in an array is very similar to the algorithm for
finding the highest score. It works like this: You create a variable to hold the lowest
value (the following example names this variable lowest). Then, you assign the value at
element 0 to the lowest variable. Next, you use a loop to step through the rest of the
array elements, beginning at element 1. Each time the loop iterates, it compares an array
element to the lowest variable. If the array element is less than the lowest variable,
then the value in the array element is assigned to the lowest variable. When the loop
finishes, the lowest variable contains the lowest value in the array. The flowchart in
Figure 7-25 illustrates this logic.

 7 .5 Some useful array algorithms 427

The following code demonstrates this algorithm:

 1 // Create an array.

 2 int[] numbers = { 8, 1, 12, 6, 2 };

 3

 4 // Declare a variable to hold the lowest value, and

 5 // initialize it with the first value in the array.

 6 int lowest = numbers[0];

 7

 8 // Step through the rest of the array, beginning at

 9 // element 1. When a value less than lowest is found,

10 // assign that value to lowest.

11 for (int index = 1; index < numbers.Length; index++)

12 {

13 if (numbers[index] < lowest)

14 {

15 lowest = numbers[index];

16 }

17 }

18

19 // Display the lowest value.

20 MessageBox.Show("The lowest value is " + lowest);

index <= SIZE - 1

index = 1

True

False

lowest = array[0]

array[index] <

lowest

True

lowest = array[index]

False

index = index + 1

Figure 7-25 Flowchart for finding the lowest value in an array

428 Chapter 7 arrays and Lists

Partially Filled Arrays

Sometimes you need to store a series of items in an array, but you do not know the
number of items in the series. As a result, you do not know the exact number of elements
needed for the array. One solution is to make the array large enough to hold the largest
possible number of items. This can lead to another problem, however. If the actual number
of items stored in the array is less than the number of elements, the array will be only
partially filled. When you process a partially filled array, you must process only the
elements that contain valid data items.

A partially filled array is normally used with an accompanying integer variable that
holds the number of items that are actually stored in the array. If the array is empty, then
0 is stored in this variable because there are no items in the array. Each time an item is
added to the array, the variable is incremented. When code steps through the array’s ele-
ments, the value of this variable is used instead of the array’s size to determine the
maximum subscript.

For example, in the Chap07 folder of the Student Sample Programs, you will find a pro-
ject named Partially Filled Array. When you click the Go button, the application reads up
to 100 values from a file named Values.txt and stores them in a 100-element int array. If
the file contains fewer than 100 values, the application will partially fill the array. The
contents of the array are then displayed in a list box. Figure 7-26 shows the application’s
form just after the user has clicked the Go button. The following code shows the Click
event handler for the Get Values button.

Figure 7-26 the Partially Filled Array application

 1 private void goButton_Click(object sender, EventArgs e)

 2 {

 3 try

 4 {

 5 // Create an array to hold items read from the file.

 6 const int SIZE = 100;

 7 int[] numbers = new int[SIZE];

 8

 9 // Variable to hold the number of items stored in

10 // the array

11 int count = 0;

12

13 // Declare a StreamReader variable.

14 StreamReader inputFile;

15

16 // Open the file and get a StreamReader object.

17 inputFile = File.OpenText("Values.txt");

18

19 // Read the file's contents into the array until the

 7 .5 Some useful array algorithms 429

20 // end of the file is reached, or the array is full.

21 while (!inputFile.EndOfStream && count < numbers.Length)

22 {

23 // Read the next item from the file.

24 numbers[count] = int.Parse(inputFile.ReadLine());

25

26 // Increment count.

27 count++;

28 }

29

30 // Close the file.

31 inputFile.Close();

32

33 // Display the array elements in the list box.

34 outputListBox.Items.Add("The file contains " + count +

35 " items:");

36

37 for (int index = 0; index < count; index++)

38 {

39 outputListBox.Items.Add(numbers[index]);

40 }

41 }

42 catch (Exception ex)

43 {

44 // Display an error message.

45 MessageBox.Show(ex.Message);

46 }

47 }

Let’s examine the code in detail:

• Line 3 is the beginning of a try-catch statement that handles any errors that might
result while reading data from the file.

• Line 6 declares a constant, SIZE, initialized with the value 100.
• Line 7 declares an int array named numbers using SIZE as the size declarator. As a

result, the values array has 100 elements.
• Line 11 declares an int variable named count, which holds the number of items

that are stored in the numbers array. Notice that count is initialized with 0 because
there are no values stored in the array.

• Line 14 declares a StreamReader variable named inputFile. (You do not see it in
this code sample, but the directive using System.IO; appears at the top of the file.
This is required for the StreamReader declaration in line 14.)

• Line 17 opens a file named Values.txt for reading. After this statement executes,
the inputFile variable references a StreamReader object that is associated with
the file.

• Line 21 is the beginning of a while loop that reads items from the file and assigns
them to elements of the numbers array. Notice that the loop tests two Boolean
expressions connected by the && operator. The first expression is !inputFile.
EndOfStream. The purpose of this expression is to prevent the loop from reading
beyond the end of the file. When there are no more values to read from the file, the
loop stops. The second expression is count < numbers.Length. The purpose of
this expression is to prevent the loop from writing beyond the end of the array.
When the array is full, the loop will stop.

• Inside the loop, line 24 reads a line of text from the file, converts it to an int, and
assigns the int to numbers[index].

• Then, line 27 increments the count variable. Each time a number is assigned to an
array element, the count variable is incremented. As a result, the count variable
holds the number of items that are stored in the array.

430 Chapter 7 arrays and Lists

• Line 31 closes the file.
• The for loop in lines 37–40 displays the array elements in the outputListBox con-

trol. Rather than stepping through all the elements in the array, however, the loop
steps through only the elements that contain values. Notice that the loop iterates as
long as index is less than count. Because count contains the number of items stored
in the array, the loop stops when the element containing the last valid value has
been displayed.

Now that you’ve seen several algorithms for processing the contents of an array, you
should practice writing some of them yourself. Tutorial 7-2 takes you through the process
of writing an application that reads data from a file into an int array and then determines
the highest, lowest, and average values in the array.

Tutorial 7-2:

Processing an array

In this tutorial, you complete an application that reads five test scores from a file and
stores the test scores in an array. The application displays the test scores as well as the
highest score, the lowest score, and the average score. Figure 7-27 shows the application’s
form, which has already been created for you. A set of five test scores is stored in a file
named TestScores.txt, which has also been created for you.

VideoNote

Tutorial 7-2:
Processing
an Array

Step 1: Start Visual Studio. Open the project named Test Average in the Chap07 folder
of the Student Sample Programs.

Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 7-2 at the end of this tutorial. This state-
ment is necessary because we will be using the StreamReader class, and it is
part of the System.IO namespace in the .NET Framework.

Step 3: With the code editor still open, type the comments and code for the Average
method, shown in lines 21–40 of Program 7-2. The purpose of the Average
method is to accept an int array as an argument and return the average of the
values in the array. This method uses an algorithm similar to the array averag-
ing you saw earlier in this chapter.

Step 4: Type the comments and code for the Highest method, shown in lines 42–63 of
Program 7-2. The purpose of the Highest method is to accept an int array as

highScoreLabel

lowScoreLabel

averageScoreLabel

testScoresListBox

getScoresButton exitButton

Figure 7-27 the Test Average application’s form

 7 .5 Some useful array algorithms 431

an argument and return the highest value in the array. This method uses an
algorithm similar to the algorithm that you saw earlier in this chapter for finding
the highest value in an array.

Step 5: Type the comments and code for the Lowest method, shown in lines 65–86 of
Program 7-2. The purpose of the Lowest method is to accept an int array as an
argument and return the lowest value in the array. This method uses an algo-
rithm similar to the algorithm that you saw earlier in this chapter for finding the
lowest value in an array.

Step 6: Now you create the Click event handlers for the Button controls. Switch back to
the Designer and double-click the getScoresButton control. This opens the
code editor, and you will see an empty event handler named getScoresButton_
Click. Complete the getScoresButton_Click event handler by typing the
code shown in lines 90–134 in Program 7-2. Let’s review this code:

Line 90: This is the beginning of a try-catch statement that handles any excep-
tions that are thrown while reading and processing data from the file. If an
exception occurs in the try block (lines 92–128), the program jumps to the catch
block, and line 133 displays an error message.

Lines 93–99: The following declarations appear in these lines:

• SIZE—a constant, set to 5, for the number of test scores
• scores—an int array that holds the test scores
• index—an int variable, initialized to 0, that is used in a loop to step through

the elements of the scores array
• highestScore—an int that holds the highest score
• lowestScore—an int that holds the lowest score
• averageScore—a double that holds the average score
• inputFile—a variable that references the StreamReader object that is used

to read data from the file

Line 102: After this statement executes, the TestScores.txt file will be opened
for reading, and the inputFile variable will reference a StreamReader object
that is associated with the file.

Line 105: This is the beginning of a while loop that iterates as long as the end
of the TestScores.txt file has not been reached and as long as index is less than
scores.Length. (Recall that index starts with the value 0.)

Line 107: This statement reads a line of text from the file and assigns it to the
array element scores[index].

Line 108: This statement increments the index variable.

Line 112: This statement closes the TestScores.txt file.

Lines 115—118: This foreach loop displays the contents of the scores array
in the testScoresListBox control.

Line 121: This statement calls the Highest method, passing the scores array as
an argument. The method returns the highest value in the array, which is
assigned to the highestScore variable.

Line 122: This statement calls the Lowest method, passing the scores array as
an argument. The method returns the lowest value in the array, which is assigned
to the lowestScore variable.

Line 123: This statement calls the Average method, passing the scores array as
an argument. The method returns the average of the values in the array, which
is assigned to the averageScore variable.

432 Chapter 7 arrays and Lists

Lines 126–128: These statements display the highest score, lowest score, and
average score.

Step 7: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton_Click. Complete the exitButton_Click event handler by typing
the code shown in lines 139–140 in Program 7-2.

Step 8: Save the project. Then, press on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the
application runs, click the Get Scores button. This should display a set of test
scores in ListBox as well as the highest, lowest, and average of the test scores, as
shown in Figure 7-28. Click the Exit button to exit the application.

Program 7-2 Completed code for Form1 in the Test Average application

 1 using System;

 2 using System.Collections.Generic;

 3 using System.ComponentModel;

 4 using System.Data;

 5 using System.Drawing;

 6 using System.Linq;

 7 using System.Text;

 8 using System.Threading.Tasks;

 9 using System.Windows.Forms;

10 using System.IO;

11

12 namespace Test_Average

13 {

14 public partial class Form1 : Form

15 {

16 public Form1()

17 {

18 InitializeComponent();

19 }

20

21 // The Average method accepts an int array argument

22 // and returns the Average of the values in the array.

23 private double Average(int[] iArray)

24 {

25 int total = 0; // Accumulator, initialized to 0

26 double average; // To hold the average

Figure 7-28 the Test Average application

 7 .5 Some useful array algorithms 433

27

28 // Step through the array, adding each element to

29 // the accumulator.

30 for (int index = 0; index < iArray.Length; index++)

31 {

32 total += iArray[index];

33 }

34

35 // Calculate the average.

36 average = (double) total / iArray.Length;

37

38 // Return the average.

39 return average;

40 }

41

42 // The Highest method accepts an int array argument

43 // and returns the highest value in that array.

44 private int Highest(int[] iArray)

45 {

46 // Declare a variable to hold the highest value, and

47 // initialize it with the first value in the array.

48 int highest = iArray[0];

49

50 // Step through the rest of the array, beginning at

51 // element 1. When a value greater than highest is found,

52 // assign that value to highest.

53 for (int index = 1; index < iArray.Length; index++)

54 {

55 if (iArray[index] > highest)

56 {

57 highest = iArray[index];

58 }

59 }

60

61 // Return the highest value.

62 return highest;

63 }

64

65 // The Lowest method accepts an int array argument

66 // and returns the lowest value in that array.

67 private int Lowest(int[] iArray)

68 {

69 // Declare a variable to hold the lowest value, and

70 // initialize it with the first value in the array.

71 int lowest = iArray[0];

72

73 // Step through the rest of the array, beginning at

74 // element 1. When a value less than lowest is found,

75 // assign that value to lowest.

76 for (int index = 1; index < iArray.Length; index++)

77 {

78 if (iArray[index] < lowest)

79 {

80 lowest = iArray[index];

81 }

82 }

83

84 // Return the lowest value.

85 return lowest;

434 Chapter 7 arrays and Lists

 86 }

 87

 88 private void getScoresButton_Click(object sender, EventArgs e)

 89 {

 90 try

 91 {

 92 // Local variables

 93 const int SIZE = 5; // Number of tests

 94 int[] scores = new int[SIZE]; // Array of test scores

 95 int index = 0; // Loop counter

 96 int highestScore; // To hold the highest score

 97 int lowestScore; // To hold the lowest score

 98 double averageScore; // To hold the average score

 99 StreamReader inputFile; // For file input

100

101 // Open the file and get a StreamReader object.

102 inputFile = File.OpenText("TestScores.txt");

103

104 // Read the test scores into the array.

105 while (!inputFile.EndOfStream && index < scores.Length)

106 {

107 scores[index] = int.Parse(inputFile.ReadLine());

108 index++;

109 }

110

111 // Close the file.

112 inputFile.Close();

113

114 // Display the test scores.

115 foreach (int value in scores)

116 {

117 testScoresListBox.Items.Add(value);

118 }

119

120 // Get the highest, lowest, and average scores.

121 highestScore = Highest(scores);

122 lowestScore = Lowest(scores);

123 averageScore = Average(scores);

124

125 // Display the values.

126 highScoreLabel.Text = highestScore.ToString();

127 lowScoreLabel.Text = lowestScore.ToString();

128 averageScoreLabel.Text = averageScore.ToString("n1");

129 }

130 catch (Exception ex)

131 {

132 // Display an error message.

133 MessageBox.Show(ex.Message);

134 }

135 }

136

137 private void exitButton_Click(object sender, EventArgs e)

138 {

139 // Close the form.

140 this.Close();

141 }

142 }

143 }

 7 .6 advanced algorithms for Sorting and Searching arrays 435

 7.6 Advanced Algorithms for Sorting
and Searching Arrays

CONCEPT: A sorting algorithm is used to arrange data into some order. A search

algorithm is a method of locating a specific item in a larger collection of

data. The selection sort and the binary search are popular sorting and

searching algorithms.

The Selection Sort Algorithm

Often the data in an array must be sorted in some order. Customer lists, for instance, are
commonly sorted in alphabetical order. Student grades might be sorted from highest to
lowest. Product codes could be sorted so all the products of the same color are stored
together. In this section, we explore how to write your own sorting algorithm. A sorting
algorithm is a technique for scanning through an array and rearranging its contents in
some specific order. The algorithm that we explore is called the selection sort.

The selection sort works like this: The smallest value in the array is located and moved to
element 0. Then the next smallest value is located and moved to element 1. This process
continues until all the elements have been placed in their proper order. Let’s see how the
selection sort works when arranging the elements of the array in Figure 7-29.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

5 7 2 8 9 1

Figure 7-29 Values in an array

The selection sort scans the array, starting at element 0, and locates the element with the
smallest value. Then, the contents of this element are swapped with the contents of ele-
ment 0. In this example, the 1 stored in element 5 is swapped with the 5 stored in element
0. After the swap, the array appears as shown in Figure 7-30.

1 7 2 8 9 5

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

Figure 7-30 Values in the array after the first swap

Then, the algorithm repeats the process, but because element 0 already contains the small-
est value in the array, it can be left out of the procedure. This time, the algorithm begins
the scan at element 1. In this example, the value in element 2 is swapped with the value in
element 1. Then, the array appears as shown in Figure 7-31.

436 Chapter 7 arrays and Lists

Once again, the process is repeated, but this time the scan begins at element 2. The
algorithm will find that element 5 contains the next smallest value. This element’s value is
swapped with that of element 2, causing the array to appear as shown in Figure 7-32.

1 2 7 8 9 5

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

Figure 7-31 Values in the array after the second swap

1 2 5 8 9 7

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

Figure 7-32 Values in the array after the third swap

Next, the scanning begins at element 3. Its value is swapped with that of element 5, caus-
ing the array to appear as shown in Figure 7-33.

1 2 5 7 9 8

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

Figure 7-33 Values in the array after the fourth swap

At this point, there are only two elements left to sort. The algorithm finds that the value
in element 5 is smaller than that of element 4, so the two are swapped. This puts the array
in its final arrangement, as shown in Figure 7-34.

1 2 5 7 8 9

These two elements were swapped.

Element 0 Element 3Element 1 Element 2 Element 4 Element 5

Figure 7-34 Values in the array after the fifth swap

 7 .6 advanced algorithms for Sorting and Searching arrays 437

Swapping Array Elements

As you saw in the description of the selection sort algorithm, certain elements
are swapped as the algorithm steps through the array. Let’s briefly discuss the
process of swapping two items in computer memory. Assume we have the following
variable declarations:

int a = 1;

int b = 9;

Suppose we want to swap the values in these variables so the variable a contains 9 and the
variable b contains 1. At first, you might think that we need only assign the variables to
each other, like this:

// ERROR! The following does NOT swap the variables.

a = b;

b = a;

To understand why this does not work, let’s step through the code. The first statement is
a = b. This causes the value 9 to be assigned to a. But, what happens to the value 1 that
was previously stored in a? Remember, when you assign a new value to a variable, the
new value replaces any value that was previously stored in the variable. So, the old value,
1, is thrown away. Then the next statement is b = a. Since the variable a contains 9, this
assigns 9 to b. After these statements execute, the variables a and b both contain the
value 9.

To successfully swap the contents of two variables, we need a third variable that can serve
as a temporary storage location:

int temp;

Then we can perform the following steps to swap the values in the variables a and b:

• Assign the value of a to temp.
• Assign the value of b to a.
• Assign the value of temp to b.

Figure 7-35 shows the contents of these variables as we perform each of these steps.
Notice that after the steps are finished, the values in a and b are swapped.

Figure 7-35 Swapping the values of a and b

1

9

?

a

b

temp

int a = 1;

int b = 9;

int temp;
temp = a;

1

9

1

a

b

temp

a = b;

9

9

1

a

b

temp

b = temp;

9

1

1

a

b

temp

2

4

1

3

438 Chapter 7 arrays and Lists

Here is the code for a Swap method that we can use to swap to int values:

1 private void Swap(ref int a, ref int b)

2 {

3 int temp = a;

4 a = b;

5 b = temp;

6 }

NOTE: It is critical that we use reference parameters in the Swap method because
the method must be able to change the values of the items that are passed to it
as arguments.

Let’s look at a complete program that demonstrates the Selection Sort algorithm. In the
Chap07 folder of the Student Sample Programs, you will find a project named Selection

Sort. Figure 7-36 shows the application’s form. On the left, you see the form in the
Designer, with the names of various controls. On the right, you see the form at run time,
after the Go button has been clicked. When you click the Go button, the following actions
take place:

• An int array is created, initialized with unsorted values.
• The contents of the array are displayed in the originalListBox control.
• The array is passed as an argument to the SelectionSort method. The method

uses the Selection Sort algorithm to sort the array.
• The contents of the array are displayed in the sortedListBox control.

Program 7-3 shows the complete code for the Selection Sort application.

goButton exitButton

originalListBox sortedListBox

Figure 7-36 the Selection Sort application’s form

Program 7-3 Complete code for Form1 in the Selection Sort application

 1 using System;

 2 using System.Collections.Generic;

 3 using System.ComponentModel;

 4 using System.Data;

 5 using System.Drawing;

 6 using System.Linq;

 7 using System.Text;

 8 using System.Threading.Tasks;

 9 using System.Windows.Forms;

10

 7 .6 advanced algorithms for Sorting and Searching arrays 439

11 namespace Selection_Sort

12 {

13 public partial class Form1 : Form

14 {

15 public Form1()

16 {

17 InitializeComponent();

18 }

19

20 // The SelectionSort method accepts an int array as an argument.

21 // It uses the Selection Sort algorithm to sort the array.

22 private void SelectionSort(int[] iArray)

23 {

24 int minIndex; // Subscript of smallest value in scanned area

25 int minValue; // Smallest value in the scanned area

26

27 // The outer loop steps through all the array elements,

28 // except the last one. The startScan variable marks the

29 // position where the scan should begin.

30 for (int startScan = 0; startScan < iArray.Length − 1; startScan++)

31 {

32 // Assume the first element in the scannable area

33 // is the smallest value.

34 minIndex = startScan;

35 minValue = iArray[startScan];

36

37 // Scan the array, starting at the 2nd element in the

38 // scannable area, looking for the smallest value.

39 for (int index = startScan + 1; index < iArray.Length; index++)

40 {

41 if (iArray[index] < minValue)

42 {

43 minValue = iArray[index];

44 minIndex = index;

45 }

46 }

47

48 // Swap the element with the smallest value with the

49 // first element in the scannable area.

50 Swap(ref iArray[minIndex], ref iArray[startScan]);

51 }

52 }

53

54 // The Swap method accepts two integer arguments, by reference,

55 // and swaps their contents.

56 private void Swap(ref int a, ref int b)

57 {

58 int temp = a;

59 a = b;

60 b = temp;

61 }

62

63 private void goButton_Click(object sender, EventArgs e)

64 {

65 // Create an array of integers.

66 int[] numbers = { 4, 6, 1, 3, 5, 2 };

67

68 // Display the array in original order.

69 foreach (int value in numbers)

70 {

71 originalListBox.Items.Add(value);

440 Chapter 7 arrays and Lists

72 }

73

74 // Sort the array.

75 SelectionSort(numbers);

76

77 // Display the array in sorted order.

78 foreach (int value in numbers)

79 {

80 sortedListBox.Items.Add(value);

81 }

82 }

83

84 private void exitButton_Click(object sender, EventArgs e)

85 {

86 // Close the form.

87 this.Close();

88 }

89 }

90 }

The Binary Search Algorithm

Previously in this chapter, we discussed the sequential search algorithm, which uses a loop
to step sequentially through an array, starting with the first element. It compares each
element with the value being searched for and stops when the value is found or the end of
the array is encountered. If the value being searched for is not in the array, the algorithm
unsuccessfully searches to the end of the array.

The advantage of the sequential search is its simplicity: It is very easy to understand and
implement. Furthermore, it does not require the data in the array to be stored in any par-
ticular order. Its disadvantage, however, is its inefficiency. If the array being searched
contains 20,000 elements, the algorithm has to look at all 20,000 elements in order to
find a value stored in the last element.

In an average case, an item is just as likely to be found near the beginning of an array as
near the end. Typically, for an array of n items, the sequential search locates an item in
n/2 attempts. If an array has 50,000 elements, the sequential search makes a comparison
with 25,000 of them in a typical case. This is assuming, of course, that the search item is
consistently found in the array. (n/2 is the average number of comparisons. The maxi-
mum number of comparisons is always n.)

When the sequential search fails to locate an item, it must make a comparison with every
element in the array. As the number of failed search attempts increases, so does the aver-
age number of comparisons. Although the sequential search algorithm is adequate for
small arrays, it should not be used on large arrays if speed is important.

The binary search is a clever algorithm that is much more efficient than the sequential
search. Its only requirement is that the values in the array must be sorted in ascending
order. Instead of testing the array’s first element, this algorithm starts with the element in
the middle. If that element happens to contain the desired value, then the search is over.
Otherwise, the value in the middle element is either greater than or less than the value
being searched for. If it is greater, then the desired value (if it is in the list) will be found
somewhere in the first half of the array. If it is less, then the desired value (again, if it is in
the list) will be found somewhere in the last half of the array. In either case, half of the
array’s elements have been eliminated from further searching.

If the desired value is not found in the middle element, the procedure is repeated for the
half of the array that potentially contains the value. For instance, if the last half of the
array is to be searched, the algorithm tests its middle element. If the desired value is not

 7 .6 advanced algorithms for Sorting and Searching arrays 441

found there, the search is narrowed to the quarter of the array that resides before or after
that element. This process continues until the value being searched for is either found or
there are no more elements to test.

Here is the pseudocode for a method that performs a binary search on an array:

Method BinarySearch(array, searchValue)

Set first to 0

Set last to the last subscript in the array

Set position to −1

Set found to false

While found is not true and first is less than or equal to last

Set middle to the subscript half way between array[first]and array[last]

If array[middle] equals searchValue

Set found to true

Set position to middle

Else If array[middle] is greater than searchValue

Set last to middle −1

Else

Set first to middle +1

End If

End While

Return position

End Method

This algorithm uses three variables to mark positions within the array: first, last, and
middle. The first and last variables mark the boundaries of the portion of the array
currently being searched. They are initialized with the subscripts of the array’s first and
last elements. The subscript of the element halfway between first and last is calculated and
stored in the middle variable. If the element in the middle of the array does not contain
the search value, the first or last variable is adjusted so that only the top or bottom half of
the array is searched during the next iteration. This cuts the portion of the array being
searched in half each time the loop fails to locate the search value.

The following C# method performs a binary search on an integer array. The first param-
eter, iArray, is searched for an occurrence of the number stored in value. If the number
is found, its array subscript is returned. Otherwise, −1 is returned, indicating the value did
not appear in the array.

 1 private int BinarySearch(int[] iArray, int value)

 2 {

 3 int first = 0; // First array element

 4 int last = iArray.Length − 1; // Last array element

 5 int middle; // Midpoint of search

 6 int position = −1; // Position of search value

 7 bool found = false; // Flag

 8

 9 // Search for the value.

10 while (!found && first <= last)

11 {

12 // Calculate the midpoint.

13 middle = (first + last) / 2;

14

15 // If value is found at midpoint . . .

16 if (iArray[middle] == value)

17 {

18 found = true;

19 position = middle;

442 Chapter 7 arrays and Lists

20 }

21 // else if value is in lower half . . .

22 else if (iArray[middle] > value)

23 {

24 last = middle − 1;

25 }

26 // else if value is in upper half . . .

27 else

28 {

29 first = middle + 1;

30 }

31 }

32

33 // Return the position of the item, or −1

34 // if it was not found.

35 return position;

36 }

If you want to see a complete application that uses the binary search algorithm, look at
the Binary Search project, located in the Chap07 folder of the Student Sample Programs.
It loads a list of names from a file into an array and then performs a binary search to find
a specific name in the array.

 Checkpoint

 7.14 What is a search algorithm?

 7.15 What is the purpose of a sorting algorithm?

 7.16 What is the only requirement of the binary search algorithm?

 7.7 Two-Dimensional Arrays

CONCEPT: A two-dimensional array is like several identical arrays put together. It is

useful for storing multiple sets of data.

The arrays that you have studied so far are known as one-dimensional arrays. They are
called one-dimensional arrays because they can hold only one set of data. Two-dimensional
arrays, which are also called 2D arrays, can hold mu ltiple sets of data. Think of a two-
dimensional array as having rows and columns of elements, as shown in Figure 7-37. This
figure shows a two-dimensional array having three rows and four columns. Notice that
the rows are numbered 0, 1, and 2, and the columns are numbered 0, 1, 2, and 3. There is
a total of 12 elements in the array.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Figure 7-37 a two-dimensional array

 7 .7 two-Dimensional arrays 443

Two-dimensional arrays are useful for working with multiple sets of data. For example,
suppose you are designing a grade-averaging program for a teacher. The teacher has six
students, and each student takes five exams during the semester. One approach would be
to create six one-dimensional arrays, one for each student. Each of these arrays would
have five elements, one for each exam score. This approach would be cumbersome, how-
ever, because you would have to separately process each of the arrays. A better approach
would be to use a two-dimensional array with six rows (one for each student) and five
columns (one for each exam score), as shown in Figure 7-38.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Row 3

Row 4

Row 5

Column 4

This row is for student 1.

This column

contains

 scores for

exam 1.

This column

contains

 scores for

exam 2.

This column

contains

 scores for

exam 3.

This column

contains

 scores for

exam 4.

This column

contains

 scores for

exam 5.

This row is for student 2.

This row is for student 3.

This row is for student 4.

This row is for student 5.

This row is for student 6.

Figure 7-38 two-dimensional array with six rows and five columns

Declaring a Two-Dimensional Array

To declare a two-dimensional array, two size declarators are required: The first one is for
the number of rows, and the second one is for the number of columns. Here is an example
declaration of a two-dimensional array with three rows and four columns:

double[,] scores = new double[3, 4];

Notice the comma that appears inside the first set of brackets. This indicates that the scores
variable references a two-dimensional array. The numbers 3 and 4 are size declarators. The
first size declarator specifies the number of rows, and the second size declarator specifies the
number of columns. Notice that the size declarators are separated by a comma.

As with one-dimensional arrays, it is best to use named constants as the size declarators.
Here is an example:

const int ROWS = 3;

const int COLS = 4;

int[,] scores = new int[ROWS, COLS];

When processing the data in a two-dimensional array, each element has two subscripts:
one for its row and another for its column. In the scores array, the elements in row 0 are
referenced as follows:

scores[0,0]

scores[0,1]

scores[0,2]

scores[0,3]

444 Chapter 7 arrays and Lists

The elements in row 1 are referenced as follows:

scores[1,0]

scores[1,1]

scores[1,2]

scores[1,3]

And, the elements in row 2 are referenced as follows:

scores[2,0]

scores[2,1]

scores[2,2]

scores[2,3]

Figure 7-39 illustrates the array with the subscripts shown for each element.

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

scores[0,0]

scores[1,0]

scores[2,0]

scores[0,1]

scores[1,1]

scores[2,1]

scores[0,2]

scores[1,2]

scores[2,2]

scores[0,3]

scores[1,3]

scores[2,3]

Figure 7-39 Subscripts for each element of the scores array

Accessing the Elements in a Two-Dimensional Array

To access one of the elements in a two-dimensional array, you must use two subscripts.
For example, suppose we have the following declarations in a program:

const int ROWS = 5;

const int COLS = 10;

int[,] values = new int[ROWS, COLS];

The following statement assigns the number 95 to values[2,1]:

values[2,1] = 95;

Programs often use nested loops to process two-dimensional arrays. For example, the
following code assigns a random number to each element of the values array:

 1 // Create a Random object.

 2 Random rand = new Random();

 3

 4 // Create a two-dimensional int array.

 5 const int ROWS = 5;

 6 const int COLS = 10;

 7 int[,] values = new int[ROWS, COLS];

 8

 9 // Fill the array with random numbers.

10 for (int row = 0; row < ROWS; row++)

11 {

12 for (int col = 0; col < COLS; col++)

13 {

14 values[row, col] = rand.Next(100);

15 }

16 }

 7 .7 two-Dimensional arrays 445

And the following set of nested loops displays all the elements of the values array in a
ListBox control named outputListBox:

1 // Display the array contents.

2 for (int row = 0; row < ROWS; row++)

3 {

4 for (int col = 0; col < COLS; col++)

5 {

6 outputListBox.Items.Add(values[row, col].ToString());

7 }

8 }

Implicit Sizing and Initialization
of Two-Dimensional Arrays

As with a one-dimensional array, you may provide an initialization list for a two-
dimensional array. Recall that when you provide an initialization list for an array, you
cannot provide the upper subscript numbers. When initializing a two-dimensional array,
you must provide the comma to indicate the number of dimensions. The following is an
example of a two-dimensional array declaration with an initialization list:

int[,] values = { {1, 2, 3},

 {4, 5, 6},

 {7, 8, 9} };

Initialization values for each row are enclosed in their own set of braces. In this example,
the initialization values for row 0 are {1, 2, 3}, the initialization values for row 1 are
{4, 5, 6}, and the initialization values for row 2 are {7, 8, 9}. So, this statement
declares an array with three rows and three columns. The values are assigned to the
values array in the following manner:

values[0, 0] is set to 1.

values[0, 1] is set to 2.

values[0, 2] is set to 3.

values[1, 0] is set to 4.

values[1, 1] is set to 5.

values[1, 2] is set to 6.

values[2, 0] is set to 7.

values[2, 1] is set to 8.

values[2, 2] is set to 9.

Tutorial 7-3 gives you hands-on practice working with a two-dimensional array.

Tutorial 7-3:

Completing the Seating Chart application

In this tutorial, you complete the Seating Chart application. The application’s form, which
is shown in Figure 7-40, uses a PictureBox control to display an airplane seating chart
that is arranged in rows and columns. When completed, the application allows the user to
enter valid row and column numbers in the rowTextBox and colTextBox text boxes and
then click the Display Price button. The price of the selected seat will be displayed in the
priceLabel control. The following table shows the seat prices:

VideoNote

Tutorial 7-3:
Completing
the Seating
Chart
application

446 Chapter 7 arrays and Lists

Columns 0 1 2 3

Row 0 $450 $450 $450 $450

Row 1 $425 $425 $425 $425

Row 2 $400 $400 $400 $400

Row 3 $375 $375 $375 $375

Row 4 $375 $375 $375 $375

Row 5 $350 $350 $350 $350

When you write the code for the application, you will create a two-dimensional array to
hold these values.

Step 1: Start Visual Studio. Open the project named Seating Chart in the Chap07 folder
of this book’s Student Sample Programs.

Step 2: Open the Form1 form in the Designer. Double-click the displayPriceButton
control. This opens the code editor, and you will see an empty event handler
named displayPriceButton_Click. Complete the event handler by typing the
code shown in lines 22–78 in Program 7-4. Let’s take a closer look at the code:

Line 23: This statement declares two int variables, row and col, to hold the
row and column selected by the user.

Lines 26–27: These statements declare int constants named MAX_ROW and MAX_
COL, set to the values 5 and 3, respectively. These are used as array size declarators.

displayPriceButton exitButton

priceLabel

rowTextBox

colTextBox

Figure 7-40 the Seating Chart application’s form

 7 .7 two-Dimensional arrays 447

Lines 30–36: This statement creates a two-dimensional decimal array named
prices, initialized with the seat prices previously shown.

Line 39: This if statement converts the value entered into the rowTextBox
control to an int and stores the result in the row variable. If the conversion is
successful, the program continues. If the conversion fails, the program jumps to
the else clause in line 74, and then line 77 displays an error message.

Line 42: This if statement converts the value entered into the colTextBox
control to an int and stores the result in the col variable. If the conversion is
successful, the program continues. If the conversion fails, the program jumps to
the else clause in line 68, and then line 71 displays an error message.

Line 45: This if statement determines whether row is in the range of 0 through
MAX_ROW. If so, the program continues. Otherwise, the program jumps to the
else clause in line 61, and then lines 64–65 display an error message.

Line 48: This if statement determines whether col is in the range of 0 through
MAX_COL. If so, the program continues. Otherwise, the program jumps to the
else clause in line 54, and then lines 57–58 display an error message.

Lines 51–52: This statement uses row and col as subscripts to retrieve the
selected seat’s price from the prices array and then displays that value in the
priceLabel control.

Step 3: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton_Click. Complete the event handler by typing the code shown in
lines 83–84 in Program 7-4.

Step 4: Save the project. Then, press on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, experiment by entering row and column numbers for different seats
and comparing the displayed price with the table previously shown. When you
are finished, click the Exit button to end the application.

Program 7-4 Completed code for Form1 in the Seating Chart application

 1 using System;

 2 using System.Collections.Generic;

 3 using System.ComponentModel;

 4 using System.Data;

 5 using System.Drawing;

 6 using System.Linq;

 7 using System.Text;

 8 using System.Threading.Tasks;

 9 using System.Windows.Forms;

10

11 namespace Seating_Chart

12 {

13 public partial class Form1 : Form

14 {

15 public Form1()

16 {

17 InitializeComponent();

18 }

19

20 private void displayPriceButton_Click(object sender, EventArgs e)

21 {

22 // Variables for the selected row and column

448 Chapter 7 arrays and Lists

23 int row, col;

24

25 // Constants for the maximum row and column subscripts

26 const int MAX_ROW = 5;

27 const int MAX_COL = 3;

28

29 // Create an array with the seat prices.

30 decimal[,] prices = { {450m, 450m, 450m, 450m},

31 {425m, 425m, 425m, 425m},

32 {400m, 400m, 400m, 400m},

33 {375m, 375m, 375m, 375m},

34 {375m, 375m, 375m, 375m},

35 {350m, 350m, 350m, 350m}

36 };

37

38 // Get the selected row number.

39 if (int.TryParse(rowTextBox.Text, out row))

40 {

41 // Get the selected column number.

42 if (int.TryParse(colTextBox.Text, out col))

43 {

44 // Make sure the row is within range.

45 if (row >= 0 && row <= MAX_ROW)

46 {

47 // Make sure the column is within range.

48 if (col >= 0 && col <= MAX_COL)

49 {

50 // Display the selected seat's price.

51 priceLabel.Text =

52 prices[row, col].ToString("c");

53 }

54 else

55 {

56 // Error message for invalid column.

57 MessageBox.Show("Column must be 0 through " +

58 MAX_COL);

59 }

60 }

61 else

62 {

63 // Error message for invalid row.

64 MessageBox.Show("Row must be 0 through " +

65 MAX_ROW);

66 }

67 }

68 else

69 {

70 // Display an error message for noninteger column.

71 MessageBox.Show("Enter an integer for the column.");

72 }

73 }

74 else

75 {

76 // Display an error message for noninteger row.

77 MessageBox.Show("Enter an integer for the row.");

78 }

79 }

80

81 private void exitButton_Click(object sender, EventArgs e)

 7 .7 two-Dimensional arrays 449

82 {

83 // Close the form.

84 this.Close();

85 }

86 }

87 }

Summing All the Elements of a Two-Dimensional Array

To sum all the elements of a two-dimensional array, you can use a pair of nested loops to
add the contents of each element to an accumulator. The following code shows an example:

 1 const int ROWS = 3;

 2 const int COLS = 3;

 3 int[,] numbers = { {1, 2, 3, 4},

 4 {5, 6, 7, 8},

 5 {9, 10, 11, 12}

 6 };

 7

 8 int total = 0; // Accumulator, set to 0

 9

10 // Sum the array elements.

11 for (int row = 0; row < ROWS; row++)

12 {

13 for (int col = 0; col < COLS; col++)

14 {

15 total += numbers[row, col];

16 }

17 }

18 // Display the sum.

19 MessageBox.Show("The total is " + total);

Summing the Rows of a Two-Dimensional Array

Sometimes you may need to calculate the sum of each row in a two-dimensional array.
For example, suppose a two-dimensional array is used to hold a set of test scores for a set
of students. Each row in the array is a set of test scores for one student. To get the sum of
a student’s test scores (perhaps so an average may be calculated), you use a loop to add all
the elements in one row. The following code shows an example:

 1 const int ROWS = 3;

 2 const int COLS = 3;

 3 int[,] numbers = { {1, 2, 3, 4},

 4 {5, 6, 7, 8},

 5 {9, 10, 11, 12}

 6 };

 7

 8 int total; // Accumulator

 9

10 // Sum each row in the array.

11 for (int row = 0; row < ROWS; row++)

12 {

13 // Set the accumulator to 0.

14 total = 0;

15

16 // Total the row.

17 for (int col = 0; col < COLS; col++)

18 {

450 Chapter 7 arrays and Lists

19 total += numbers[row, col];

20 }

21

22 // Display the row's total.

23 MessageBox.Show("The total of row " + row +

24 " is " + total);

25 }

Summing the Columns of a Two-Dimensional Array

Sometimes you may need to calculate the sum of each column in a two-dimensional array.
For example, suppose a two-dimensional array is used to hold a set of test scores for a set
of students and you wish to calculate the class average for each of the test scores. To do
this, you calculate the average of each column in the array. This is accomplished with a set
of nested loops. The outer loop controls the column subscript, and the inner loop controls
the row subscript. The inner loop calculates the sum of a column, which is stored in an
accumulator. The following code demonstrates:

 1 const int ROWS = 3;

 2 const int COLS = 4;

 3 int[,] numbers = { {1, 2, 3, 4},

 4 {5, 6, 7, 8},

 5 {9, 10, 11, 12}

 6 };

 7

 8 int total; // Accumulator

 9

10 // Sum each column in the array.

11 for (int col = 0; col < COLS; col++)

12 {

13 // Set the accumulator to 0.

14 total = 0;

15

16 // Total the column.

17 for (int row = 0; row < ROWS; row++)

18 {

19 total += numbers[row, col];

20 }

21

22 // Display the column's total.

23 MessageBox.Show("The total of column " + col +

24 " is " + total);

25 }

 Checkpoint

 7.17 How many rows and how many columns are in the following array?

int[,] values = new decimal[200, 100];

 7.18 Write a statement that assigns the value 50 to the very last element in the values
array declared in Checkpoint 7.17.

 7.19 Write a declaration for a two-dimensional int array initialized with the following
table of data:

12 24 32 21 42

99 8 68 32 92

95 34 21 11 7

 7 .8 Jagged arrays 451

 7.8 Jagged Arrays

CONCEPT: A jagged array is similar to a two-dimensional array, but the rows in a

jagged array can have different lengths.

In a traditional two-dimensional array, each row has the same number of columns.
Mentally, we visualize a two-dimensional array as a rectangular structure. Figure 7-37,
previously shown, is an example. For this reason, two-dimensional arrays are sometimes
referred to as rectangular arrays.

A jagged array is similar to a two-dimensional array, but the rows in a jagged array
can have different numbers of columns. This is possible because a jagged array is actu-
ally an array of arrays. To be more specific, a jagged array is a one-dimensional array,
and each element of the array is also a one-dimensional array. Figure 7-41 shows an
example. In the figure, row 0 has four columns, row 1 has three columns, and row 2
has five columns.

1 2 3 4

5 6 7

8 9 10 11 12

Row 0

Row 2

Row 1

Figure 7-41 a jagged array

Because a jagged array is an array of arrays, you set it up differently than a two-dimensional
array. First you create an array, and then you create each of the arrays that are the ele-
ments of the first array. The following code shows an example of how the jagged array in
Figure 7-41 might be created and initialized.

1 // Create an array of 3 int arrays.

2 int[][] jaggedArray = new int[3][];

3

4 // Create each array that is an element

5 // of the jagged array.

6 jaggedArray[0] = new int[4] { 1, 2, 3, 4 };

7 jaggedArray[1] = new int[3] { 5, 6, 7 };

8 jaggedArray[2] = new int[5] { 8, 9, 10, 11, 12 };

Let’s take a closer look at the code:

• Line 2 declares an array named jaggedArray. Notice that the data type is int[][],
with two sets of brackets. This indicates that we are declaring an array of int arrays.
Also notice that the expression new int[3][]uses only one size declarator, specify-
ing the number of rows. The column sizes must be set individually.

• Line 6 creates element 0, which is an int array with four columns. The columns are
initialized with the values 1, 2, 3, and 4.

• Line 7 creates element 1, which is an int array with three columns. The columns are
initialized with the values 5, 6, and 7.

• Line 8 creates element 2, which is an int array with five columns. The columns are
initialized with the values 8, 9, 10, 11, and 12.

To access an item that is stored at a particular row and column in a jagged array, you
enclose the row and column subscripts in their own sets of brackets. For example, the

452 Chapter 7 arrays and Lists

following statement displays the value stored at row 1, column 2, of the jaggedArray
that was previously declared:

MessageBox.Show(jaggedArray[1][2].ToString());

The following statement shows another example. It assigns the value 99 to row 0, column
3, of jaggedArray:

jaggedArray[0][3] = 99;

A jagged array has a Length property that holds the number of rows, and then each row
has its own Length property. You can use a row’s Length property to determine the num-
ber of columns in that row. For example, the following set of nested loops displays all the
values stored in the jaggedArray that was previously declared:

1 for (int row = 0; row < jaggedArray.Length; row++)

2 {

3 for (int col = 0; col < jaggedArray[row].Length; col++)

4 {

5 MessageBox.Show(jaggedArray[row][col].ToString());

6 }

7 }

 Checkpoint

 7.20 Why are two-dimensional arrays sometimes referred to as rectangular arrays?

 7.21 Write a statement that declares a jagged array of int values and initialize the
columns of each row with the values in the following table of data:

2 4 6

3 5 7 9

5 9 11 17 21

 7.9 The List Collection

CONCEPT: List is a class in the .NET Framework that is similar to an array. Unlike

an array, a List object’s size is automatically adjusted to accommodate

the number of items being stored in it.

The .NET Framework provides a class named List, which can be used for storing and
retrieving items. Once you create a List object, you can think of it as a container for
holding other objects. A List object is similar to an array but offers many advantages
over an array. Here are a few:

• When you create a List object, you do not have to know the number of items that
you intend to store in it.

• A List object automatically expands as items are added to it.
• In addition to adding items to a List, you can remove items as well.
• A List object automatically shrinks as items are removed from it.

Creating a List

Here is an example of how you create a List object that can be used to hold strings:

List<string> nameList = new List<string>();

 7 .9 the List Collection 453

This statement creates a List object, referenced by the nameList variable. Notice that in
this example the word string is written inside angled brackets <> immediately after the
word List. This specifies that the List can hold objects of the string data type. If you
try to store any other type of object in this List, an error occurs.

Here is an example of how you create a List object that can be used to hold integers:

List<int> numberList = new List<int>();

This statement creates a List object, referenced by the numberList variable. Notice that
in this example the word int is written inside angled brackets <> immediately after the
word List.

Initializing a List

You can optionally initialize a List object when you declare it. Here is an example:

List<int> numberList = new List<int>() { 1, 2, 3 };

This statement creates a List object that can hold integers and initializes it with the values
1, 2, and 3. Here is an example that creates a List object to hold strings and initializes it
with three strings:

List<string> nameList = new List<string>() { "Chris",

 "Kathryn", "Bill" };

Adding Items to a List

To add items to an existing List object, you use the Add method. For example, the
f ollowing statements create a List object and add a series of strings to it:

List<string> nameList = new List<string>();

nameList.Add("Chris");

nameList.Add("Kathryn");

nameList.Add("Bill");

After these statements execute, the nameList object will hold the three strings "Chris",
"Kathryn", and "Bill".

The items that are stored in a List have a corresponding index. The index specifies
the item’s location in the List, so it is much like an array subscript. The first item
that is added to a List is stored at index 0. The next item that is added to the List is
stored at index 1, and so forth. After the previously shown statements execute,
"Chris" is stored at index 0, "Kathryn" is stored at index 1, and "Bill" is stored at
index 2.

The Count Property

A List object has a Count property that holds the number of items stored in the List.
For example, the following statement uses the Count property to display the number of
items stored in nameList:

MessageBox.Show("The List has " + nameList.Count +

 " objects stored in it.");

Assuming that nameList holds the strings "Chris", "Kathryn", and "Bill", the follow-
ing statement will be displayed in a message box:

The List has 3 objects stored in it.

454 Chapter 7 arrays and Lists

Accessing Items in a List

You can use subscript notation to access the items in a List, just as you can with an
array. For example, the following for loop displays the items in the nameList object:

for (int index = 0; index < nameList.Count; index++)

{

 MessageBox.Show(nameList[index]);

}

Notice that the loop uses the List object’s Count property in the test expression to con-
trol the number of iterations. Here is an example that reads values from a text file and
adds them to a List:

 1 // Open the Names.txt file.

 2 StreamReader inputFile = File.OpenText("Names.txt");

 3

 4 // Create a List object to hold strings.

 5 List<string> nameList = new List<string>();

 6

 7 // Read the file's contents.

 8 while (!inputFile.EndOfStream)

 9 {

10 // Read a line and add it to the List.

11 nameList.Add(inputFile.ReadLine());

12 }

Let’s take a closer look at this code:

• Line 2 opens a file named Names.txt and associates it with a StreamReader object
that is referenced by the inputFile variable.

• Line 5 creates a List object, referenced by the nameList variable. The object can
hold strings.

• The while loop that starts in line 8 iterates until the end of the file is reached.
• The statement in line 11 reads a line from the file and adds it to the nameList

object.

After this code executes, the nameList object contains all the lines that were read from
the Names.txt file.

You can also use the foreach loop to iterate over the items in a List, just as you can with
an array. Here is an example:

foreach (string str in nameList)

{

 MessageBox.Show(str);

}

Passing a List to a Method

Sometimes you will want to write a method that accepts a List as an argument and per-
forms an operation on the List. For example, the following code shows a method named
DisplayList. The method accepts a List of strings as an argument and displays each
item in List.

1 private void DisplayList(List<string> sList)

2 {

3 foreach (string str in sList)

4 {

5 MessageBox.Show(str);

6 }

7 }

 7 .9 the List Collection 455

Notice in line 1 that the method has a parameter variable named sList and that the
parameter’s data type is List<string>. The parameter variable is a reference to a
List<string> object. When you call this method, you must pass a List<string> object
as an argument.

When you call a method and pass a List<string> object as an argument, you simply
pass the variable that references the List. The following code shows an example of how
the DisplayList method (previously shown) might be called:

1 // Create a List of strings.

2 List<string> nameList = new List<string>() { "Chris",

3 "Kathryn", "Bill" };

4

5 // Pass the List to the DisplayList method.

6 DisplayList(nameList);

The statement in lines 2 and 3 creates a List containing the strings "Chris", "Kathryn",
and "Bill". Line 6 calls the DisplayList method, passing the nameList object as
an argument.

NOTE: List objects, like arrays, are always passed by reference.

Removing Items from a List

You can use the RemoveAt method to remove an item at a specific index in a List. The
following code shows an example:

1 // Create a List of strings.

2 List<string> nameList = new List<string>() { "Chris",

3 "Kathryn", "Bill" };

4

5 // Remove the item at index 0.

6 nameList.RemoveAt(0);

The statement in lines 2 and 3 creates a List containing the strings "Chris", "Kathryn",
and "Bill". Then, the statement in line 6 removes the string at index 0. After this state-
ment executes, the List contains the strings "Kathryn" and "Bill".

If you know the value of the item that you want to remove from a List, but you do not
know the item’s index, you can use the Remove method. You pass the item that you want
to remove as an argument, and the Remove method searches for that item in the List. If
the item is found, it is removed. Here is an example:

1 // Create a List of strings.

2 List<string> nameList = new List<string>() { "Chris",

3 "Kathryn", "Bill" };

4

5 // Remove "Bill" from the List.

6 nameList.Remove("Bill");

The statement in lines 2 and 3 creates a List containing the strings "Chris", "Kathryn",
and "Bill". Then, the statement in line 6 removes "Bill" from the List. After this state-
ment executes, the List contains the strings "Chris" and "Kathryn".

The Remove method returns a Boolean value indicating whether the item was actually
removed from the List. If the specified item was found in the List and removed, the
Remove method returns true. If the item was not found in the List, the Remove method

456 Chapter 7 arrays and Lists

returns false. The following code demonstrates how you can use the value returned from
the method:

1 // Create a List of strings.

2 List<string> nameList = new List<string>() { "Chris",

3 "Kathryn", "Bill" };

4

5 // Remove "Susan".

6 if (!nameList.Remove("Susan"))

7 {

8 MessageBox.Show("Susan was not found.");

9 }

The statement in lines 2 and 3 creates a List containing the strings "Chris", "Kathryn",
and "Bill". Then, the statement in line 6 attempts to remove "Susan" from the List.
The List does not contain the string "Susan", so the Remove method returns false. The
message “Susan was not found” is displayed. After this code executes, the List

 7 .9 the List Collection 457

An easy way to search for item in a List, however, is to use the IndexOf method.
The IndexOf method accepts a value as an argument, and it searches for that value in the
List. If the value is found, the method returns its index. If the value is not found, the
method returns −1. The following code shows an example:

 1 // Create a List of strings.

 2 List<string> nameList = new List<string>() { "Chris",

 3 "Kathryn", "Bill" };

 4

 5 // Search for "Kathryn".

 6 int position = nameList.IndexOf("Kathryn");

 7

 8 // Was Kathryn found in the List?

 9 if (position != −1)

10 {

11 MessageBox.Show("Kathryn was found at index " +

12 position);

13 }

14 else

15 {

16 MessageBox.Show("Kathryn was not found.");

17 }

The statement in lines 2 and 3 creates a List containing the strings "Chris", "Kathryn",
and "Bill". The statement in line 6 calls the IndexOf method to search for "Kathryn" in
the List. The value that is returned from the method is assigned to the position variable.
After this statement executes, the position variable contains the index of "Kathryn" or
−1 if "Kathryn" was not found in the List. The if statement in lines 9–17 displays one
of two possible messages, depending on whether "Kathryn" was found. (If this code were
executed, it would display the message “Kathryn was found at index 1”.)

There are two additional versions of the IndexOf method that allow you to specify the
area of the List that should be searched. The following statement shows an example of
one of these:

position = nameList.IndexOf("Diane", 2);

Notice that two arguments are passed to the IndexOf method. The first argument,
"Diane", is the item to search for. The second argument, 2 is the starting index of the
search. This specifies that the search should begin at index 2 and end at the last item in the
List. (The beginning index is included in the search. If you pass an invalid index as an
argument, an exception occurs.)

Here is an example of another version of the IndexOf method:

position = nameList.IndexOf("Diane", 2, 5);

In this example, three arguments are passed to the IndexOf method. The first argument,
"Diane", is the item to search for. The second argument, 2 is the starting index of the
search. The third argument, 5, is the ending index of the search. This specifies that the
search should begin at index 2, and end at index 5. (The beginning and ending indices
are included in the search. If either index is invalid, an exception occurs.)

NOTE: The IndexOf method performs a sequential search to locate the specified
item. If the List contains a large number of items, its performance will be slow.

In Tutorial 7-4, you will complete an application that reads the contents of a file into a
List, and then performs various operations on the List.

458 Chapter 7 arrays and Lists

Tutorial 7-4:

Completing the Test Score List application

In this tutorial, you complete the Test Score List application. The application’s form,
which is shown in Figure 7-42, has already been created for you. When you complete the
application, it will read a set of test scores from a file into a List. (The file has also been
created for you.) The test scores are displayed in the ListBox control. The average test
score is calculated and displayed, as well as the number of above-average test scores and
below-average test scores.

VideoNote

Tutorial 7-4:
Completing
the Test
Score List
Application

Step 1: Start Visual Studio. Open the project named Test Score List in the Chap07
folder of the Student Sample Programs.

Step 2: Open the Form1 form’s code in the code editor. Insert the using System.IO;
directive shown in line 10 of Program 7-5 at the end of this tutorial. This state-
ment is necessary because we will be using the StreamReader class, and it is
part of the System.IO namespace in the .NET Framework.

Step 3: With the code editor still open, type the comments and code for the ReadScores
method, shown in lines 21–44 of Program 7-5. The purpose of the ReadScores
method is to accept a List<int> object as an argument and read the contents
of the TestScores.txt file into the list.

Step 4: Type the comments and code for the DisplayScores method, shown in lines
46–54 of Program 7-5. The purpose of the DisplayScores method is to
accept a List<int> object as an argument and display its contents in the
testScoresListBox control.

Step 5: Type the comments and code for the Average method, shown in lines 56–74 of
Program 7-5. The purpose of the Average method is to accept a List<int>
object as an argument and return the average of the values in the List.

Step 6: Type the comments and code for the AboveAverage method, shown in lines
76–96 of Program 7-5. The purpose of the AboveAverage method is to accept a
List<int> object as an argument and return the number of above average
scores it contains.

Step 7: Type the comments and code for the BelowAverage method, shown in lines
98–118 of Program 7-5. The purpose of the BelowAverage method is to accept
a List<int> object as an argument and return the number of below average
scores it contains.

getScoresButton exitButton

averageLabel

aboveAverageLabel

belowAverageLabel

testScoresListBox

Figure 7-42 the Test Score List application’s form

 7 .9 the List Collection 459

Step 8: Next, you create the Click event handlers for the Button controls. Switch
back to the Designer and double-click the getScoresButton control. This
opens the code editor, and you will see an empty event handler named
getScoresButton_Click. Complete the getScoresButton_Click event
handler by typing the code shown in lines 122–145 in Program 7-5. Let’s
review this code:

Lines 122–124: These statements declare the following variables:

• averageScore—This variable is used to hold the average test score.
• numAboveAverage—This variable is used to hold the number of above-

average test scores.
• numBelowAverage—This variable is used to hold the number of below-

average test scores.

Line 127: This statement creates a List<int> object, referenced by the
scoresList variable.

Line 130: This statement calls the ReadScores method, passing the scoresList
object as an argument. After this statement executes, the scoresList object
contains the test scores that are in the TestScores.txt file.

Line 133: This statement calls the DisplayScores method, passing the
scoresList object as an argument. After this statement executes, the items in
the scoresList object are displayed in the testScoresListBox control.

Line 136: This statement calls the Average method, passing the scoresList
object as an argument. The method returns the average of the values in the
scoresList object, which is assigned to the averageScore variable.

Line 137: This statement displays the average score in the averageLabel
control.

Line 140: This statement calls the AboveAverage method, passing the
scoresList object as an argument. The method returns the number of above-
average scores in the scoresList object, which is assigned to the
numAboveAverage variable.

Line 141: This statement displays the number of above-average scores in the
aboveAverageLabel control.

Line 144: This statement calls the BelowAverage method, passing the
scoresList object as an argument. The method returns the number of below-
average scores in the scoresList object, which is assigned to the
numBelowAverage variable.

Line 145: This statement displays the number of below-average scores in the
belowAverageLabel control.

Step 9: Switch your view back to the Designer and double-click the exitButton
control. In the code editor you will see an empty event handler named
exitButton_Click. Complete the event handler by typing the code shown in
lines 150–151 in Program 7-5.

Step 10: Save the project. Then, press on the keyboard or click the Start Debugging
button () on the toolbar to compile and run the application. When the appli-
cation runs, click the Get Scores button. This should display a set of test scores
in the ListBox, as well as the average score, the number of above-average scores,
and the number of below-average scores, as shown in Figure 7-43. Click the
Exit button to exit the application.

460 Chapter 7 arrays and Lists

Program 7-5 Completed code for Form1 in the Test Scores List application

 1 using System;

 2 using System.Collections.Generic;

 3 using System.ComponentModel;

 4 using System.Data;

 5 using System.Drawing;

 6 using System.Linq;

 7 using System.Text;

 8 using System.Threading.Tasks;

 9 using System.Windows.Forms;

10 using System.IO;

11

12 namespace Test_Score_List

13 {

14 public partial class Form1 : Form

15 {

16 public Form1()

17 {

18 InitializeComponent();

19 }

20

21 // The ReadScores method reads the scores from the

22 // TestScores.txt file into the scoresList parameter.

23 private void ReadScores(List<int> scoresList)

24 {

25 try

26 {

27 // Open the TestScores.txt file.

28 StreamReader inputFile = File.OpenText("TestScores.txt");

29

30 // Read the scores into the list.

31 while (!inputFile.EndOfStream)

32 {

33 scoresList.Add(int.Parse(inputFile.ReadLine()));

34 }

35

36 // Close the file.

37 inputFile.Close();

38 }

39 catch (Exception ex)

40 {

Figure 7-43 the Test Score List application

 7 .9 the List Collection 461

41 // Display an error message.

42 MessageBox.Show(ex.Message);

43 }

44 }

45

46 // The DisplayScores method displays the contents of the

47 // scoresList parameter in the ListBox control.

48 private void DisplayScores(List<int> scoresList)

49 {

50 foreach (int score in scoresList)

51 {

52 testScoresListBox.Items.Add(score);

53 }

54 }

55

56 // The Average method returns the average of the values

57 // in the scoresList parameter.

58 private double Average(List<int> scoresList)

59 {

60 int total = 0; // Accumulator

61 double average; // To hold the average

62

63 // Calculate the total of the scores.

64 foreach (int score in scoresList)

65 {

66 total += score;

67 }

68

69 // Calculate the average of the scores.

70 average = (double)total / scoresList.Count;

71

72 // Return the average.

73 return average;

74 }

75

76 // The AboveAverage method returns the number of

77 // above average scores in scoresList.

78 private int AboveAverage(List<int> scoresList)

79 {

80 int numAbove = 0; // Accumulator

81

82 // Get the average score.

83 double avg = Average(scoresList);

84

85 // Count the number of above average scores.

86 foreach (int score in scoresList)

87 {

88 if (score > avg)

89 {

90 numAbove++;

91 }

92 }

93

94 // Return the number of above average scores.

95 return numAbove;

96 }

97

462 Chapter 7 arrays and Lists

 98 // The BelowAverage method returns the number of

 99 // below average scores in scoresList.

100 private int BelowAverage(List<int> scoresList)

101 {

102 int numBelow = 0; // Accumulator

103

104 // Get the average score.

105 double avg = Average(scoresList);

106

107 // Count the number of below average scores.

108 foreach (int score in scoresList)

109 {

110 if (score < avg)

111 {

112 numBelow++;

113 }

114 }

115

116 // Return the number of below average scores.

117 return numBelow;

118 }

119

120 private void getScoresButton_Click(object sender, EventArgs e)

121 {

122 double averageScore; // To hold the average score

123 int numAboveAverage; // Number of above average scores

124 int numBelowAverage; // Number of below average scores

125

126 // Create a List to hold the scores.

127 List<int> scoresList = new List<int>();

128

129 // Read the scores from the file into the List.

130 ReadScores(scoresList);

131

132 // Display the scores.

133 DisplayScores(scoresList);

134

135 // Display the average score.

136 averageScore = Average(scoresList);

137 averageLabel.Text = averageScore.ToString("n1");

138

139 // Display the number of above average scores.

140 numAboveAverage = AboveAverage(scoresList);

141 aboveAverageLabel.Text = numAboveAverage.ToString();

142

143 // Display the number of below average scores.

144 numBelowAverage = BelowAverage(scoresList);

145 belowAverageLabel.Text = numBelowAverage.ToString();

146 }

147

148 private void exitButton_Click(object sender, EventArgs e)

149 {

150 // Close the form.

151 this.Close();

152 }

153 }

154 }

 7 .9 the List Collection 463

 Checkpoint

 7.22 Write a statement that initializes a List with 4 values of the double data type.

 7.23 Write a statement that adds a new value to the List object created in Check-
point 7.22.

 7.24 Write a statement that clears the contents of the List object created in Check-
point 7.22.

 7.25 Is it possible to write code that performs a sequential search, binary search, selection
sort, and so forth, on a List? Why or why not?

464 Chapter 7 arrays and Lists

Key Terms

Review Questions

Multiple Choice

 1. The memory that is allocated for a __________ variable is the actual location that
will hold any value that is assigned to that variable.

a. reference type
b. general type
c. value type
d. framework type

 2. A variable that is used to reference an object is commonly called a(n) __________.

a. reference variable
b. resource variable
c. object variable
d. component variable

 3. When you want to work with an object, you use a variable that holds a special value
known as a(n) __________ to link the variable to the object.

a. union
b. reference
c. object linker
d. data coupling

 4. The __________ creates an object in memory and returns a reference to that object.

a. = operator
b. object allocator
c. reference variable
d. new operator

 5. A(n) __________ is an object that can hold a group of values that are all of the same
data type.

a. array
b. collection

Add method
array
binary search
Clear method
Count property
elements
foreach loop
garbage collection
IndexOf method
initialization list
Insert method
iteration variable
jagged array
Length property
List

new operator

off-by-one error
one-dimensional
rectangular arrays
reference
reference copy
reference types
reference variable
Remove method
RemoveAt method
search algorithms
selection sort
sequential search algorithm
size declarator
subscript
two-dimensional
value types

 review Questions 465

c. container
d. set

 6. The __________ indicates the number of values that the array should be able to
hold.

a. allocation limit
b. size declarator
c. data type
d. compiler

 7. The storage locations in an array are known as __________.

a. elements
b. sectors
c. pages
d. blocks

 8. Each element in an array is assigned a unique number known as a(n) __________.

a. element identifier
b. subscript
c. index
d. sequencer

 9. When you create an array, you can optionally initialize it with a group of values
called a(n) __________.

a. default value group
b. initialization list
c. defined set
d. value list

 10. In C#, all arrays have a __________ that is set to the number of elements in the
array.

a. Limit property
b. Size property
c. Length property
d. Maximum property

 11. A(n) __________ occurs when a loop iterates one time too many or one time too
few.

a. general error
b. logic error
c. loop count error
d. off-by-one error

 12. C# provides a special loop that, in many circumstances, simplifies array processing.
It is known as the __________.

a. for loop
b. foreach loop
c. while loop
d. do-while loop

 13. The foreach loop is designed to work with a temporary, read-only variable that is
known as the __________.

a. element variable
b. loop variable
c. index variable
d. iteration variable

466 Chapter 7 arrays and Lists

 14. __________ is a process that periodically runs, removing all unreferenced objects
from memory.

a. Systematic reallocation
b. Memory cleanup
c. Garbage collection
d. Object maintenance

 15. Various techniques known as __________ have been developed to locate a specific
item in a larger collection of data, such as an array.

a. seek functions
b. request methods
c. traversal procedures
d. search algorithms

 16. The __________ uses a loop to step through an array, starting with the first element,
searching for an item.

a. sequential search algorithm
b. top-down method
c. ascending search algorithm
d. basic search function

 17. A(n) __________ is a type of assignment operation that copies a reference to an
array and not the contents of the array.

a. object copy
b. reference copy
c. double reference
d. parallel copy

 18. The __________ is a clever algorithm that is much more efficient than the sequential
search.

a. linear search
b. bubble sort
c. binary search
d. selection sort

 19. A __________ is similar to a two-dimensional array, but the rows can have different
numbers of columns.

a. one-dimensional array
b. columnar array
c. jagged array
d. split row array

 20. The .NET Framework provides a class named __________, which can be used for
storing and retrieving items.

a. Matrix

b. Database

c. Container

d. List

True or False

1. When you are working with a value type, you are using a variable that holds a piece
of data.

2. Reference variables can be used only to reference objects.

 review Questions 467

3. Individual variables are well suited for storing and processing lists of data.

4. Arrays are reference type objects.

5. You can store a mixture of data types in an array.

6. When you create a numeric array in C#, its elements are set to the value 0 by default.

7. The subscript of the last element will always be one less than the array’s Length
property.

8. You use the == operator to compare two array reference variables and determine
whether the arrays are equal.

9. A jagged array is similar to a two-dimensional array, but the rows in a jagged array
can have different numbers of columns.

10. When you create a List object, you do not have to know the number of items that
you intend to store in it.

Short Answer

1. How much memory is allocated by the compiler when you declare a value type
variable?

2. What type of variable is needed to work with an object in code?

3. What two steps are typically required for creating a reference type object?

4. Are variables well suited for processing lists of data? Why or why not?

5. What value is returned by the Length property of an array?

6. What can cause an off-by-one error when working with an array?

7. How do you keep track of elements that contain data in a partially filled array?

8. Briefly describe the selection sort algorithm.

9. How is the binary search more efficient that the sequential search algorithm?

10. What advantages does a List have over an array?

Algorithm Workbench

1. Assume names is a variable that references an array of 20 string values. Write
a foreach loop that displays each of the elements of the array in a ListBox
control.

2. The variables numberArray1 and numberArray2 reference arrays that have
100 elements each. Write code that copies the values from numberArray1 to
numberArray2.

3. Write code for a sequential search that determines whether the value −1 is stored in
an array with a reference variable named values. The code should display a mes-
sage indicating whether the value was found.

4. Write a declaration statement that creates a two-dimensional array referenced by
a variable named grades. The array should store int values using 18 rows and
12 columns.

5. Write code that sums each column in the array in Question 4.

6. Create a List object that uses the binary search algorithm to search for the string
"A". Display a message box indicating whether the value was found.

468 Chapter 7 arrays and Lists

Programming Problems

1. Total Sales

 In the Chap07 folder of the Student Sample Programs, you will find a file named
Sales.txt. Figure 7-44 shows the file’s contents displayed in Notepad. Create an
application that reads this file’s contents into an array, displays the array’s
contents in a ListBox control, and calculates and displays the total of the array’s
values.

VideoNote

Solving the
Total Sales
Problem

Figure 7-44 the Sales .txt file

2. Sales Analysis

 Modify the application that you created in Programming Exercise 1 so it also
displays the following:

•	 The	average	of	the	values	in	the	array
•	 The	largest	value	in	the	array
•	 The	smallest	value	in	the	array

3. Charge Account Validation

 In the Chap07 folder of the Student Sample Programs, you will find a file named
ChargeAccounts.txt. The file contains a list of a company’s valid charge account
numbers. There are a total of 18 charge account numbers in the file, and each one is
a 7-digit number, such as 5658845.

 Create an application that reads the contents of the file into an array or a List. The
application should then let the user enter a charge account number. The program
should determine whether the number is valid by searching for it in the array or
List that contains the valid charge account numbers. If the number is in the array
or List, the program should display a message indicating the number is valid. If the
number is not in the array or List, the program should display a message indicating
the number is invalid.

4. Driver’s License Exam

 The local driver’s license office has asked you to create an application that grades
the written portion of the driver’s license exam. The exam has 20 multiple-choice
questions. Here are the correct answers:

 1. B 2. D 3. A 4. A 5. C

 6. A 7. B 8. A 9. C 10. D

11. B 12. C 13. D 14. A 15. D

16. C 17. C 18. B 19. D 20. A

 Programming Problems 469

 Your program should store these correct answers in an array. The program should
read the student’s answers for each of the 20 questions from a text file and store the
answers in another array. (Create your own text file to test the application.) After
the student’s answers have been read from the file, the program should display a
message indicating whether the student passed or failed the exam. (A student must
correctly answer 15 of the 20 questions to pass the exam.) It should then display the
total number of correctly answered questions, the total number of incorrectly
answered questions, and a list showing the question numbers of the incorrectly
answered questions.

5. World Series Champions

 In the Chap07 folder of the Student Sample Programs, you will find the following
files:

•	 Teams.txt—This	file	contains	a	list	of	several	Major	League	baseball	teams	in	
alphabetical order. Each team listed in the file has won the World Series at least
once.

•	 WorldSeriesWinners.txt—This	 file	contains	a	chronological	 list	of	 the	World	
Series’ winning teams from 1903 through 2012. (The first line in the file is the
name of the team that won in 1903, and the last line is the name of the team that
won in 2012. Note that the World Series was not played in 1904 or 1994.)

 Create an application that displays the contents of the Teams.txt file in a ListBox
control. When the user selects a team in the ListBox, the application should display
the number of times that team has won the World Series in the time period from
1903 through 2012.

TIP: Read the contents of the WorldSeriesWinners.txt file into a List or an array.
When the user selects a team, an algorithm should step through the list or array
counting the number of times the selected team appears.

6. Name Search

 In the Chap07 folder of the Student Sample Programs, you will find the following
files:

•	 GirlNames.txt—This	file	contains	a	list	of	the	200	most	popular	names	given	to	
girls born in the United States from 2000 through 2009.

•	 BoyNames.txt—This	file	contains	a	list	of	the	200	most	popular	names	given	to	
boys born in the United States from 2000 through 2009.

 Create an application that reads the contents of the two files into two separate
arrays or Lists. The user should be able to enter a boy’s name, a girl’s name, or
both, and the application should display messages indicating whether the names
were among the most popular.

7. Population Data

 In the Chap07 folder of the Student Sample Programs, you will find a file named
USPopulation.txt. The file contains the midyear population of the United States, in
thousands, during the years 1950 through 1990. The first line in the file contains the
population for 1950, the second line contains the population for 1951, and so forth.

 Create an application that reads the file’s contents into an array or a List. The
application should display the following data:

•	 The	average	annual	change	in	population	during	the	time	period
•	 The	year	with	the	greatest	increase	in	population	during	the	time	period
•	 The	year	with	the	least	increase	in	population	during	the	time	period

470 Chapter 7 Arrays and Lists

8. Tic-Tac-Toe Simulator

 Create an application that simulates a game of tic-tac-toe. Figure 7-45 shows an
example of the application’s form. The form shown in the figure uses eight large
Label controls to display the Xs and Os.

Figure 7-45 The Tic-Tac-Toe application

 The application should use a two-dimensional int array to simulate the game board
in memory. When the user clicks the New Game button, the application should step
through the array, storing a random number in the range of 0 through 1 in each
element. The number 0 represents the letter O, and the number 1 represents the
letter X. The form should then be updated to display the game board. The application
should display a message indicating whether player X won, player Y won, or the
game was a tie.

9. Jagged Array of Exam Scores

 Dr. Hunter teaches three sections of her Intro to Computer Science class. She has 12
students in section 1, 8 students in section 2, and 10 students in section 3. In the
Chap07 folder of the Student Sample Programs, you will find the following files:

�a�� �6�H�F�W�L�R�Q�����W�[�W�`�7�K�L�V���I�L�O�H���F�R�Q�W�D�L�Q�V���W�K�H���I�L�Q�D�O���H�[�D�P���V�F�R�U�H�V���I�R�U���H�D�F�K���V�W�X�G�H�Q�W���L�Q���V�H�F�W�L�R�Q��������
(There are 12 integer scores in the file.)

�a�� �6�H�F�W�L�R�Q�����W�[�W�`�7�K�L�V���I�L�O�H���F�R�Q�W�D�L�Q�V���W�K�H���I�L�Q�D�O���H�[�D�P���V�F�R�U�H�V���I�R�U���H�D�F�K���V�W�X�G�H�Q�W���L�Q���V�H�F�W�L�R�Q��������
(There are 8 integer scores in the file.)

�a�� �6�H�F�W�L�R�Q�����W�[�W�`�7�K�L�V���I�L�O�H���F�R�Q�W�D�L�Q�V���W�K�H���I�L�Q�D�O���H�[�D�P���V�F�R�U�H�V���I�R�U���H�D�F�K���V�W�X�G�H�Q�W���L�Q���V�H�F�W�L�R�Q��������
(There are 10 integer scores in the file.)

 Create an application that reads these three files and stores their contents in a jagged
array. The array’s first row should hold the exam scores for the students in section
1, the second row should hold the exam scores for the students in section 2, and the
third row should hold the exam scores for the students in section 3.

 The application should display each section’s exam scores in a separate ListBox
control and then use the jagged array to determine the following:

�a�� �7�K�H���D�Y�H�U�D�J�H���H�[�D�P���V�F�R�U�H���I�R�U���H�D�F�K���L�Q�G�L�Y�L�G�X�D�O���V�H�F�W�L�R�Q
�a�� �7�K�H���D�Y�H�U�D�J�H���H�[�D�P���V�F�R�U�H���I�R�U���D�O�O���W�K�H���V�W�X�G�H�Q�W�V���L�Q���W�K�H���W�K�U�H�H���V�H�F�W�L�R�Q�V
�a�� �7�K�H���K�L�J�K�H�V�W���H�[�D�P���V�F�R�U�H���D�P�R�Q�J���D�O�O���W�K�U�H�H���V�H�F�W�L�R�Q�V���D�Q�G���W�K�H���V�H�F�W�L�R�Q���Q�X�P�E�H�U���L�Q���Z�K�L�F�K��

that score was found
�a�� �7�K�H���O�R�Z�H�V�W���H�[�D�P���V�F�R�U�H���D�P�R�Q�J���D�O�O���W�K�U�H�H���V�H�F�W�L�R�Q�V���D�Q�G���W�K�H���V�H�F�W�L�R�Q���Q�X�P�E�H�U���L�Q���Z�K�L�F�K��

that score was found

