
Object Oriented Programming

OOP
1

Object-Oriented Programming
Object-oriented programming is a programming

methodology characterized by the following concepts:

1.Data Abstraction: problem solving via the
formulation of abstract data types (ADT's).

2.Encapsulation: the proximity of data definitions and
operation definitions.

3. Information hiding: the ability to selectively hide
implementation details of a given ADT.

4.Polymorphism: the ability to manipulate different
kinds of objects, with only one operation.

5.Inheritance: the ability of objects of one data type,
to inherit operations and data from another data
type.

6.Class - Object 2

Information
Hiding

(dynamic
binding)

Basic Concepts of OOP (SYSTEM)

3

The wrapping up of data and function into a single unit

(called class)

4

Class Pokemon : Pikachu

The attributes are some time called data members because they hold information.

The functions that operate on these data are sometimes called methods or member

function.
5

6

Programming Languages

• Programming languages
allow programmers to
code software.

• The three major families
of languages are:

– Machine languages

– Assembly languages

– High-Level languages

7

Machine Languages

• Comprised of 1s and 0s

• The “native” language of a computer

• Difficult to program – one misplaced 1 or 0
will cause the program to fail.

• Example of code:
1110100010101 111010101110

10111010110100 10100011110111

8

Assembly Languages

• Assembly languages are a step towards easier
programming.

• Assembly languages are comprised of a set of
elemental commands which are tied to a specific
processor.

• Assembly language code needs to be translated to
machine language before the computer processes it.

• Example:
ADD 1001010, 1011010

9

High-Level Languages

• High-level languages represent a giant leap
towards easier programming.

• The syntax of HL languages is similar to
English.

• Historically, we divide HL languages into two
groups:

– Procedural languages

– Object-Oriented languages (OOP)

10

Procedural Languages

• Early high-level languages are typically called
procedural languages.

• Procedural languages are characterized by
sequential sets of linear commands. The focus
of such languages is on structure.

• Examples include C, COBOL, Fortran, LISP, Perl,
HTML, VBScript

• Examples of OOP languages include:

C++, Visual Basic.NET and Java. 11

12

OOP Benefits

• Through inheritance, we can eliminate redundant code extend the use of existing

Classes.

• The principle of data hiding helps the programmer to build secure program that

can not be invaded by code in other parts of a programs.

• It is possible to have multiple instances of an object to co-exist without any

interference.

• It is easy to partition the work in a project based on objects.

• Object-oriented system can be easily upgraded from small to large system.

• Message passing techniques for communication between objects makes to

interface descriptions with external systems much simpler.

• Reusability

13

• Some of the features of object oriented
programming are:

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data structures are designed such that they characterize the objects.

• Functions that operate on the data of an object are ties together in
the data structure.

• Data is hidden and cannot be accessed by external function.

• Objects may communicate with each other through function.

• New data and functions can be easily added whenever necessary.

• Follows bottom up approach in program design.

14

Application of OOP

 Real-time system

 Simulation and modeling

 Object-oriented data bases

 AI and expert systems

 Neural networks and parallel programming

 Decision support and office automation systems

 CAM/CAD systems

OOP environment will enable the software industry to

improve not only the quality of software system but also its

productivity. Object-oriented technology is certainly going

to change the way the software engineers think, analyze,

design and implement future system.

15

Object Oriented Programming
• Object – Unique programming entity that has methods, has attributes

and can react to events.

• Attribute – Things which describe an object; the “adjectives” of objects.
In code, usually can be identified by a “descriptive” word – Enabled,
BackColor

• Method – Things which an object can do; the “verbs” of objects. In
code, usually can be identified by an “action” like Hide, Show

16

Object Oriented Programming

• Class – Provides a way to create new objects
based on a “meta-definition” of an object
(Example: The automobile class)

• Constructors – Special methods used to create
new instances of a class (Example: A Honda
Civic is an instance of the automobile class.)

17

Classes and Objects
• A class is a data type that allows programmers

to create objects. A class provides a definition
for an object, describing an object’s attributes
(data) and methods (operations).

• An object is an instance of a class. With one
class, you can have as many objects as
required.

• Objects are the basic run time entities in an
object-oriented system. They may represent a
person, a place, a bank account, a table of
data or any item that the program has to
handle.

18

Classes use the concept of abstraction and are defined as a list of

abstract attributes such as size, weight, and cost,

and function operate on these attributes.

They encapsulate all the essential properties of the object that are

to be created.

The attributes are some time called data members because they
hold information. The functions that operate on these data are
sometimes called methods or member function.

Abstraction

22

Encapsulation

• Incorporation into a class of data &
operations in one package

• Data can only be accessed through that
package

• “Information Hiding”
The wrapping up of data and function into a single unit (called class).

The data is not accessible to the outside world, and only those functions which are

wrapped in the class can access it. These functions provide the interface between the

object’s data and the program.

This insulation of the data from direct access by the program is called data hiding or

information hiding 25

Polymorphism
• Creating methods which describe the way

to do some general function (Example: The
“drive” method in the automobile class)

• Polymorphic methods can adapt to specific
types of objects.

Polymorphism, a Greek term, means the ability to take more than on form.

An operation may exhibit different behavior is different instances. For example,

consider the operation of addition. For two numbers, the operation will generate a

sum. If the operands are strings, then the operation would produce a third string by

concatenation.

The process of making an operator to exhibit different behaviors in different instances

is known as operator overloading.
28

• Dynamic Binding

• Binding refers to the linking of a procedure

call to the code to be executed in response to

the call. Dynamic binding means that the code

associated with a given procedure call is not

known until the time of the call at run time. It

is associated with polymorphism and

inheritance. A function call associated with a

polymorphic reference depends on the

dynamic type of that reference.

30

Inheritance

• Allows programmers to create new classes based on an existing
class

• Methods and attributes from the parent class are inherited by the
newly-created class

• New methods and attributes can be created in the new class, but
don’t affect the parent class’s definition

Inheritance is the process by which objects of one class acquired the
properties of objects of another classes.

• It supports the concept of hierarchical classification.

For example, the bird, ‘robin’ is a part of class ‘flying bird’ which is again a part of
the class ‘bird’.
The principal behind this sort of division is that each derived class shares
common characteristics with the class from which it is derived

31

35

UML representation

36

37

