Object Oriented Programming

OOP

Object-Oriented Programming

Object-oriented programming is a programming
methodology characterized by the following concepts:

1.Data Abstraction: problem solving via the
formulation of abstract data types (ADT's).

2.Encapsulation: the proximity of data definitions and
operation definitions.

3.Information hiding: the ability to selectively hide
implementation details of a given ADT.

4.Polymorphism: the ability to manipulate different
kinds of objects, with only one operation.

5.Inheritance: the ability of objects of one data type,
to inherit operations and data from another data
type.

6.Class - Object

Ba5|c Concepts of OOP (SYSTEM)

Polymorphism | Inheritance

OOPs

Abstraction Encapsulation
Concepts

Class Object
(dynamic Information
binding) Hiding

AbStraCt|0n The wrapping up of data and function into a single unit

Example (called class)

« Animal can be the abstraction for a
dog, tiger, horse etc. It acts as a i
super-categorical noun. Animal

« As an abstract concept it can hold all the 4

common properties and behaviors
present in different species

u
r.
Dog

Name: Pikachu
Type: Electric

Health: 70

attack()

dodge()

evolve()

Object

Class Pokemon : Pikachu

4 Attributes
K

L
4+ Methods

'

The attributes are some time called data members because they hold information.
The functions that operate on these data are sometimes called methods or member

function.

5

Characteristics/Attributes
» Make

* Model

* Number of doors

* Engine size

Actions it can perform/Methods
» Accelerate

* Stop

» Brake

e Turn

Properties
Make

Model

Color

Year

Price

Drive

Park

On_Start

On_Parked

On_Brake

lynda.c

Programming Languages

* Programming languages
allow programmers to
code software.

* The three major families
of languages are:
— Machine languages
— Assembly languages
— High-Level languages

1,0

Machine Language

Assembly Language

Procedure- Oriented

Object Oriented Programming

Machine Languages

Comprised of 1s and Os
The “native” language of a computer

Difficult to program — one misplaced 1 or O
will cause the program to fail.

Example of code:
1110100010101 111010101110
10111010110100 10100011110111

Assembly Languages

Assembly languages are a step towards easier
programming.

Assembly languages are comprised of a set of
elemental commands which are tied to a specific
Processor.

Assembly language code needs to be translated to
machine language before the computer processes it.

Example:
ADD 1001010, 1011010

High-Level Languages

* High-level languages represent a giant leap
towards easier programming.
* The syntax of HL languages is similar to
English.
* Historically, we divide HL languages into two
groups:
— Procedural languages
— Object-Oriented languages (OOP)

Procedural Languages

* Early high-level languages are typically called
procedural languages.

* Procedural languages are characterized by
sequential sets of linear commands. The focus
of such languages is on structure.

 Examples include C, COBOL, Fortran, LISP, Perl,
HTML, VBScript

 Examples of OOP languages include:
C++, Visual Basic.NET and Java. .

Main Program

i

Function-1 Function-2 Function-3
Function-4 : /
Function-5
/ \ \ J \l
Function-6 Function-7 Function-8

Fig. 1.2 Typical structure of procedural oriented programs

12

OOP Benefits

» Through inheritance, we can eliminate redundant code extend the use of existing
Classes.

 The principle of data hiding helps the programmer to build secure program that
can not be invaded by code in other parts of a programs.

* It is possible to have multiple instances of an object to co-exist without any
Interference.

* It is easy to partition the work in a project based on objects.
 Object-oriented system can be easily upgraded from small to large system.

« Message passing techniques for communication between objects makes to

Interface descriptions with external systems much simpler.
 Reusability

13

Some of the features of object oriented
programming are:

Emphasis is on data rather than procedure.
Programs are divided into what are known as objects.
Data structures are designed such that they characterize the objects.

Functions that operate on the data of an object are ties together in
the data structure.

Data is hidden and cannot be accessed by external function.
Objects may communicate with each other through function.
New data and functions can be easily added whenever necessary.
Follows bottom up approach in program design.

14

Application of OOP

Real-time system

Simulation and modeling

Object-oriented data bases

Al and expert systems

Neural networks and parallel programming

Decision support and office automation systems
CAM/CAD systems

OOQOP environment will enable the software industry to
Improve not only the quality of software system but also Its
productivity. Object-oriented technology is certainly going
to change the way the software engineers think, analyze,
design and implement future system.

> > > » » » »

Object Oriented Programming

* Object — Unique programming entity that has methods, has attributes
and can react to events.

e Attribute — Things which describe an object; the “adjectives” of objects.

In code, usually can be identified by a “descriptive” word — Enabled,
BackColor

e Method — Things which an object can do; the “verbs” of objects. In
code, usually can be identified by an “action” like Hide, Show

Organization of data and function in OOP

Object A Object B
DATA DATA
¢ Communication ¢
- P
FUNCTION FUNCTION
DATA
FUNCTION 16

Object Oriented Programming

* Class — Provides a way to create new objects
based on a “meta-definition” of an object
(Example: The automobile class)

* Constructors — Special methods used to create
new instances of a class (Example: A Honda
Civic is an instance of the automobile class.)

Classes and Objects

* Aclass is a data type that allows programmers
to create objects. A class provides a definition DATANM
for an object, describing an object’s attributes Date-of-birth
(data) and methods (operations). Marks

OBJECTS: STUDENT

* An object is an instance of a class. With one R
class, you can have as many objects as Averfge
Display

required.

Fig. 1.5 representing an object
* Objects are the basic run time entities in an
object-oriented system. They may represent a
person, a place, a bank account, a table of

data or any item that the program has to
handle.

Technical contrast between Objects & Classes

CLASS OBJECT
Class 1s a data type Object 1s an instance of Class.
It generates OBJECTS It gives life to CLASS
Does not occupy memory [t occupies memory location.
location
[t cannot be manipulated [t can be manipulated.

because it 1s not available in
MEMOry (except static class)

Object is a class in “runtime”

Abstraction

» Abstraction is a design principle.

* |s the process of removing characteristics from something in

order to reduce it to a set of essential characteristics.

 Through the process of abstraction, a programmer hides all
but the relevant data about a class in order to reduce

complexity and increase reusability.

Abstraction

Abstraction allows programmers to represent complex
real world in the simplest manner.

It is a process of identifying the relevant qualities and
behaviors an object should possess, in other word
represent the necessary features without representing
the back ground details

You should always use abstraction to ease reusability,
and understanding for the design and enable extension.
When we design the abstract classes, we define the
framework for later extensions.

Abstraction

Classes use the concept of abstraction and are defined as a list of
abstract attributes such as size, weight, and cost,

and function operate on these attributes.

They encapsulate all the essential properties of the object that are

to be created.

The attributes are some time called data members because they
hold information. The functions that operate on these data are
sometimes called methods or member function.

22

Abstraction

* Abstraction is the “process of representing
only essential features’. That
means Abstraction doesnt show the
complexity behind features. Abstraction is
used for “Making things more general, simple”,

* Example : ATM Machine , Car

Tha malin thing
[How to drive

How tha car is
moving and how the
0
sty B (| Real Life Example of Abstraction
this information s e 2
hidden.

(Encapsulation)

httpZ/theabhinavbaba. blogspot.in

Almost everything in the world can be
represented as an object

A flower, a tree, an animal

A student, a professor

A desk, a chair, a classroom, a building

A university, a city, a country

The world, the universe

A subject such as CS, IS, Math, History, ...

An information system, financial, legal, etc..

Encapsulation

Class - - Variable

* |Incorporation into a class of data &
operations in one package

Encapsulation

* Data can only be accessed through that
package

* “Information Hiding”

The wrapping up of data and function into a single unit (called class).

The data is not accessible to the outside world, and only those functions which are
wrapped in the class can access it. These functions provide the interface between the
object’s data and the program.

This insulation of the data from direct access by the program is called data hiding or
information hiding

25

Encapsulation

* |Is the inclusion of property & method within a

class/object in which it needs to function properly.

 Also, enables reusability of an instant of an
already implemented class within a new class
while hiding & protecting the method and

properties from the client classes.

Encapsulation - Benefits

¢ Ensures that structural changes remain local:

+ Changing the class internals does not affect any code
outside of the class

+ Changing methods' implementation
does not reflect the clients using them

Encapsulation allows adding some logic when
accessing client's data

+ E.g. validation on modifying a property value

¢ Hiding implementation details reduces complexity
- easier maintenance

Polymorphism

* Creating methods which describe the way
to do some general function (Example: The
“drive” method in the automobile class)

* Polymorphic methods can adapt to specific
types of objects.

Polymorphism, a Greek term, means the ability to take more than on form.

An operation may exhibit different behavior is different instances. For example,
consider the operation of addition. For two numbers, the operation will generate a
sum. If the operands are strings, then the operation would produce a third string by
concatenation.

The process of making an operator to exhibit different behaviors in different instances
Is known as operator overloading.

Polymorphism

Polymorphisms is a generic term that means 'many

shapes'. More precisely Polymorphisms means the

ability to request that the same methods be performed

by a wide range of different types of things.

In OOP, polymorphisms is a technical issue and

principle.

It is achieved by using many different techniques named

method overloading, operator overloading, and method

overriding.

Shape

Draw

Circle Object

Box object

Draw (Circle)

Draw (box)

Fig. 1.7 Polvmorphism

Triangle Object

Draw (triangle)

* Dynamic Binding

* Binding refers to the linking of a procedure
call to the code to be executed In response to
the call. Dynamic binding means that the code
assoclated with a given procedure call is not
known until the time of the call at run time. It
IS associated with polymorphism and
Inheritance. A function call associated with a
polymorphic reference depends on the
dynamic type of that reference.

Inheritance

Inheritance is the process by which objects of one class acquired the
properties of objects of another classes.

Allows programmers to create new classes based on an existing
class

Methods and attributes from the parent class are inherited by the
newly-created class

New methods and attributes can be created in the new class, but
don’t affect the parent class’s definition

It supports the concept of hierarchical classification.

For example, the bird, ‘robin’ is a part of class ‘flying bird” which is again a part of
the class ‘bird’.

The principal behind this sort of division is that each derived class shares
common characteristics with the class from which it is derived

Inheritance

* Inheritance is defined as “one
class (child class) inherits or
acquire the property (members) of

1 1.7 » § sl r-nf.”
another Base or head ¢lass

Soniam
Base Class

* Example : A son have all the
properties of his grandfather and
father but he have his own unique
properties also.

httpZ/theabhinavbaba.blogspot.in

Inheritance

* Inheritance allows child classes to inherit the
characteristics of existing parent class

« Attributes (fields and properties)
 Operations (methods)

 Child class can extend the parent class
 Add new fields and methods
 Redefine methods (modify existing behavior)

A class can implement an interface by providing
implementation for all its methods

Inheritance - Example

Base class

YErson

Derived class Derived class

Employes

+Company: String
+Salary: double

+zme: String +ame: String
+Addrass: String +Address: String

50

Write a C# program which creates a class for
vehicle company with information below?.

Vehicle Name Toyota Kia Ford

Model 2020 2019 2018
Color Blue Red Black
EngineSize 4 5 8

Note: 1- All Vehicle can do Starting and Stopping. 2-Represent table information in UML form?

35

e

UML representation

Vehicle

+Name

+Model

+Color

+EngineSize

+Starting()

+Stopping()

/

Toyota

Kia

Ford

2020

2019

2018

Blue

Red

Black

4

5

8

+Starting()

+Starting()

+Starting()

+Stopping()

+Stopping()

+Stopping()

36

namespace Example

{

class Vehicle

{

string name;
string model;
string color;
int engineSize;

public void starting()

1)
public void stopping()

{

class program

{
static void main(string[] args)
{
Vehicle Toyota = new Vehicle();
¥
h

Class

Object

37

