Introduction

 Encapsulation and abstraction are essential
part of C# programming.

* Mostly used for hide complex code from
unauthorized user and shows only relevant
information.

* Encapsulation is the process of hiding irrelevant
data from the user.

e Abstraction is just opposite of Encapsulation.

* Abstraction is mechanism to show only relevant
data to the user.

Access Specifier

* |t defines the scope of a class member.
* A class member can be variable or function.

* In C# there are five types of access specifiers are
available:

1. Public.

2. Private.

3. Protected.

4. Internal.

5. Protected Internal.

Public

* The class member, that is defined as public can be
accessed by other class member that is initialized
outside the class.

* A public member can be accessed from anywhere
even outside the namespace.

using Systen:
using System.Collections.Generic:
using System.Ling:
using System. Text:
namespace Public Access Specifiers
{
class access
{
// String Variable declared as public
public string name:
// Public method
public void print()
{

h

Ls
5

"

Console. WriteLine("'nMy name 1s " + name):

class Program
static void Main(string[] args)
access ac = new access():
Console. Write("Enter your name:\t"):
/I Alccepting value in public variable that 1s outside the class
ac.name = Console.ReadlLine():
ac.print():

Console ReadLine():

Private

* The private access specifiers restrict the member variable
or function to be called outside from the parent class.

* A private function or variable cannot be called outside
from the same class. It hides its member variable and
method from other class and methods.

* However, you can store or retrieve value from private
access modifiers using get set property.

using System:

using System.Collections.Generic:
using System.Ling:

using System. Text:

namespace Private Access Specifiers

{

lass access

~= 0

// String Variable declared as private
private string name:
public void print() // public method

{

Console. WriteLine("'nMy name 1s " + name):

-

class Program

=

static void Main(string[] args)
{
access ac — new access():
Console. Write("Enter vour name:'\t"):
// raise error because of its protection level
ac.name = Console. Readl.ine():
ac.print():
Console.ReadlLine():

* Qutput will be:

Error 1: Private Access_Specifiers.access.name’ is
inaccessible due to its protection level __

* In the example in the preivious, you cannot call
name variable outside the class because it is

declared as private.

Protected

* The protected access specifier hides its member
variables and functions from other classes and objects.

* Protected variable or function can only be accessed in
child class. It becomes very important while
implementing inheritance.

10

namespace Protected Specifier

{

lass access

~= 0

// String Variable declared as protected
protected string name:
public void print()

Console. WriteLine("'\nMy name 1s " + name):

b

lass Program

~= 0

static void Main(string[| args)
d
access ac = new access();
Console. Write("Enter your name:\t"):
// raise error because of its protection level
ac.name = Console ReadLine():
ac.print():
Console.ReadLine():

11

* Output

‘Protected_Specifier.access.name’ is inaccessible due
to its protection level

* This is because; the protected member can only be
accessed within its child class.

* You can use protected access specifiers as follow:

namespace Protected Specitier

{
class access
{

// String Variable declared as protected
protected string name:

public void print()
d

b

Console. WriteLimne("'nMy name 1s " + name);

class Program : access // Inherit access class
static void Main(string|] args)
Program p = new Program():
Console. Write("Enter your name:\t");
p.name = Console.ReadLine(): // No Error!!
p.print():
Console.ReadLine():

13

* The output will be:

Enter your name: Steven Clark
My name is Steven Clark

14

Internal

* The internal access specifier hides its member variables
and methods from other classes and objects, that is
resides in other namespace.

* The variable or classes that are declared with internal
can be access by any member within application. It is
the default access specifiers for a class in C#
programming.

15

namespace Intermal Access Specifier

i

class access
13

T
/o String Variable declared as internal
internal string name;
public void print()
1

Console. WriteLine("' nMy name 1s " + name):

o

¥

class Program
]

T

static void Main(string| | args)

{
access ac — new access():
Console. Write("Enter yvour name:\t'):
/1 Accepting value 1n internal varable
ac.name = Console. Readl_ine():
ac.print():;
Console. ReadLine():

(o

Output :

Enter your name: Steven Clark
My name is Steven Clark

17

PROTECTED INTERNAL

* The protected internal access specifier allows
its members to be accessed in derived class,
containing class or classes within same
application.

* However, this access specifier rarely used in
CH# programming but it becomes important
while implementing inheritance.

18

namespace Protected Internal

I
[

class access
s

LY
/f String Variable declared as protected intermal
protected internal string name:
public void print()

{
b

Console. WriteLine("'nMvy name is " + name):
¥

class Program

I
L

static void Maimn(string| | args)
{
access ac = new access():
Console. Write("Enter vour name:\t"):
/P Accepting value in protected internal variable
ac.name — Console. ReadlLine():
ac.print():
Console.ReadLine():

19

Output:

Enter your name: Steven Clark
My name is Steven Clark

20

GET & SET Modifier

* The get set accessor or modifier mostly used for
storing and retrieving value from the private field.

* The get accessor must return a value of property
type, where set accessor returns void.

* The set accessor uses an implicit parameter called
value.

21

GET & SET Modifier

* In simple words:

* The get method is used for retrieving value from
private field

* The set method is used for storing value in private
variables.

22

namespace Get Set

¥
L

class access

{

// String Variable declared as private
private static string name:
public void print()

{

b

Console. WriteLine("'nMy name 1s " + name):

public string Name //Creating Name property

{

get //get method for returming value
return name;:

1

¥

set // set method for storing value 1 name field.

11a1ne — "FEIIIIE;

23

class Program
static void Mamm(string| | args)
access ac = new access():
Console. Write("Enter vour name:\t"):
/" Accepting value via Name property

ac.Name = Console. ReadlLine():
ac.print():
Console.ReadlLine():

o,

24

Output:

Enter your name: Steven Clark
My name is Steven Clark Access

25

Access Modifier Accessibility
Public Anywhere. No restrictions.
Private Only m the containing class.
Protected Within the contaming class and to the classes that
dertve from the containing class.
Internal Anywhere within the containing assembly.
Protected Internal | Anywhere withm the contaming assembly and from

within a derived class 1in any another assembly.

26

1) Check Exercises
2) Solve Home Work

The File is in Profile

INHERITANCE

* Inheritance allows us to define a class in terms of
another class, which makes it easier to create and
maintain an application.

* This also provides an opportunity to reuse the
code functionality and speeds up implementation
time.

28

* When creating a class, instead of writing
completely new data members and member
functions, the programmer can designate
that the new class should inherit the
members of an existing class.

* This existing class is called the base class,
and the new class is referred to as the
derived class.

Base and Derived Classes

* A class can be derived from more than one class
or interface, which means that it can inherit data
and functions from multiple base classes or
interfaces.

* To create a derived class in C#:
- you enter the name of the class,

- followed by a colon :
- and the name of the base class.

30

Base and Derived Classes

* The syntax used in C# for creating derived classes is as
follows:

<acess-specifier> class <base_class>

{
}

class <derived_class> : <base_class>

{
}

31

Example:

Consider a base class Shape and its derived class

Rectangle:
using Systemnl :
namespace Inheritance Application

{

class Shape

I
L

public void setWidth(int w)
\i‘i{lth = W

l}}ublic voild setHeight(int h)
lieight = h:

f}rﬂtected int width:
protected int height:

e

32

// Derived class
class Rectangle: Shape

d
public mt getArea()
{
return (width * height):
!
b
class RectangleTester
d
static void Main(string| | args)
{
Rectangle Rect = new Rectangle():
Rect.setWidth(5);
Rect.setHeight(7);
// Print the area of the object.
Console. WriteLine("Total area: {O}", Rect.getArea()):
Console.ReadKey();
!
j

33

When the code in previous slide is compiled and
executed, it produces the following result:

Total area: 35

Multiple Inheritance

* C# does not support multiple inheritance.

* However, you can use interfaces to
implement multiple inheritance.

The following program demonstrates this:

35

using System ;
namespace Inheritance Application

d
class Shape
1
public void setWidth(int w)
d
width = w;
h
public void setHeight(int h)
d
height = h;
h

protected int width;
protected int height:

36

// Base class PaintCost
public interface PaintCost

1
h

/f Derived class

class Rectangle : Shape, PaintCost
1

int getCost(int area);

public int getArea()

d
return (width = height):
H
public int getCost(int area)
d
return area * 70;
H

37

class RectangleIester

d

static void Main(string|[| args)

d
Rectangle Rect = new Rectangle();
int area;
Rect.setWidth(5):
Rect.setHeight(7);
area = Rect.getArea();

// Print the area of the object.
Console.WriteLine(" Total area: {0}", Rect.getArea());
Console.WriteLine('' Total paint cost: $ {0}",
Rect.getCost(area));

Console.ReadKey();

38

* When the code in previous slides is compiled and
executed, it produces the following result:

Total area: 35
Total paint cost: S 2450

