
Introduction

• Encapsulation and abstraction are essential
part of C# programming.

•Mostly used for hide complex code from
unauthorized user and shows only relevant
information.

2

• Encapsulation is the process of hiding irrelevant
data from the user.

• Abstraction is just opposite of Encapsulation.

• Abstraction is mechanism to show only relevant
data to the user.

3

Access Specifier

• It defines the scope of a class member.

• A class member can be variable or function.

• In C# there are five types of access specifiers are
available:

1. Public.

2. Private.

3. Protected.

4. Internal.

5. Protected Internal.
4

Public

• The class member, that is defined as public can be
accessed by other class member that is initialized
outside the class.

• A public member can be accessed from anywhere
even outside the namespace.

5

6

Private
• The private access specifiers restrict the member variable

or function to be called outside from the parent class.

• A private function or variable cannot be called outside
from the same class. It hides its member variable and
method from other class and methods.

• However, you can store or retrieve value from private
access modifiers using get set property.

7

8

• Output will be:

Error 1: Private_Access_Specifiers.access.name’ is
inaccessible due to its protection level __

• In the example in the preivious, you cannot call
name variable outside the class because it is
declared as private.

9

Protected
• The protected access specifier hides its member

variables and functions from other classes and objects.

• Protected variable or function can only be accessed in
child class. It becomes very important while
implementing inheritance.

10

11

• Output

‘Protected_Specifier.access.name’ is inaccessible due
to its protection level

• This is because; the protected member can only be
accessed within its child class.

• You can use protected access specifiers as follow:

12

13

• The output will be:

Enter your name: Steven Clark

My name is Steven Clark

14

Internal

• The internal access specifier hides its member variables
and methods from other classes and objects, that is
resides in other namespace.

• The variable or classes that are declared with internal
can be access by any member within application. It is
the default access specifiers for a class in C#
programming.

15

16

Output :

Enter your name: Steven Clark

My name is Steven Clark

17

PROTECTED INTERNAL

• The protected internal access specifier allows
its members to be accessed in derived class,
containing class or classes within same
application.

• However, this access specifier rarely used in
C# programming but it becomes important
while implementing inheritance.

18

19

Output:

Enter your name: Steven Clark

My name is Steven Clark

20

GET & SET Modifier

• The get set accessor or modifier mostly used for
storing and retrieving value from the private field.

• The get accessor must return a value of property
type, where set accessor returns void.

• The set accessor uses an implicit parameter called
value.

21

GET & SET Modifier

• In simple words:

• The get method is used for retrieving value from
private field

• The set method is used for storing value in private
variables.

22

23

24

Output:

Enter your name: Steven Clark

My name is Steven Clark Access

25

26

1) Check Exercises
2) Solve Home Work

The File is in Profile

27

INHERITANCE

• Inheritance allows us to define a class in terms of
another class, which makes it easier to create and
maintain an application.

• This also provides an opportunity to reuse the
code functionality and speeds up implementation
time.

28

•When creating a class, instead of writing
completely new data members and member
functions, the programmer can designate
that the new class should inherit the
members of an existing class.

• This existing class is called the base class,
and the new class is referred to as the
derived class.

29

Base and Derived Classes

• A class can be derived from more than one class
or interface, which means that it can inherit data
and functions from multiple base classes or
interfaces.

• To create a derived class in C#:

- you enter the name of the class,

- followed by a colon :

- and the name of the base class.

30

Base and Derived Classes

• The syntax used in C# for creating derived classes is as
follows:

<acess-specifier> class <base_class>
{

...
}

class <derived_class> : <base_class>
{

...
}

31

Example:
Consider a base class Shape and its derived class
Rectangle:

32

33

When the code in previous slide is compiled and
executed, it produces the following result:

Total area: 35

34

Multiple Inheritance

•C# does not support multiple inheritance.

• However, you can use interfaces to
implement multiple inheritance.

The following program demonstrates this:

35

36

37

38

• When the code in previous slides is compiled and
executed, it produces the following result:

Total area: 35

Total paint cost: $ 2450

39

