
الجامعة المستنصرية
كليـــــــــة العـــــلـوم
قسم علوم الحاسبات

حسن قاسم محمد/ المرحلة الثانية / البرمجة الكيانية 



Object Oriented Programming

Polymorphism



Polymorphism is a Greek word, meaning "one

name many forms". In other words, one object has

many forms or has one name with multiple

functionalities. "Poly" means many and "morph"

means forms. Polymorphism provides the ability to

a class to have multiple implementations with the

same name.

This allows us to perform a single action in different ways.



Polymorphism is 

the ability of an entity to 

take several forms. It 

allows a common data-

gathering message to be 

sent to each 

class. Polymorphism 

encourages called as 

‘extendibility’ which 

means an object or a class 

can have its uses 

extended.

ذهب

Can

عين

حية

Bank

حب



MAN is only one,
but he takes
multiple roles like

DAD
EMPLOYEE
SALESPERSON

and many more.



you have a SMARTPHONE

for communication.

The communication could be :

CALL

TEXT MESSAGE

PICTURE MESSAGE

MAIL

We can decide the correct call at runtimeSo, the goal is communication, but their approach is different.



Types of Polymorphism
POLYMORPHISM

Dynamic 
Run time

Static
Compile Time

Operator 
Overloading

Method 
Overloading

Virtual/
Overriding Method



1 Static or Compile Time Polymorphism

It is also known as Early Binding.

Method overloading is an example of Static Polymorphism.

In overloading, the method / function has a same name but

different signatures(set of parameters). It is also known as

Compile Time Polymorphism because the decision of which

method is to be called is made at compile time.



1. public class TestData
2. {
3. public int Add(int a, int b, int c)
4. {
5. return a + b + c;
6. }
7. public int Add(int a, int b)
8. {
9. return a + b;
10. }
11.}
12.class Program
13.{
14. static void Main(string[] args)
15. {
16. TestData dataClass = new TestData();
17. int add2 = dataClass.Add(45, 34, 67);
18. int add1 = dataClass.Add(23, 34);
19. }

}

same name but different signatures(set of parameters)

1 Static or Compile Time Polymorphism Example



2 Dynamic / Runtime Polymorphism

Dynamic / runtime polymorphism is also known as late binding. Here,

the method name and the method signature (number of parameters

and parameter type must be the same and may have a different

implementation). Method overriding is an example of dynamic

polymorphism.

Method overriding can be done using inheritance. With method

overriding it is possible for the base class and derived class to have

the same method name and same something. The compiler would

not be aware of the method available for overriding the functionality,

so the compiler does not throw an error at compile time. The

compiler will decide which method to call at runtime and if no

method is found then it throws an error.



public class Drawing

{

public virtual double Area()

{

return 0;

}

}

public class Circle : Drawing

{

public double Radius { get; set; }

public Circle()

{

Radius = 5;

}

public override double Area()

{

return (3.14) * Math.Pow(Radius, 2);

}

}

public class Square : Drawing

{

public double Length { get; set; }

public Square()

{

Length = 6;

}

public override double Area()

{

return Math.Pow(Length, 2);

}

}

public class Rectangle : Drawing

{

public double Height { get; set; }

public double Width { get; set; }

public Rectangle()

{

Height = 5.3;

Width = 3.4;

}

public override double Area()

{

return Height * Width;

}

}

class Program

{

static void Main(string[] args)

{

Drawing circle = new Circle();

Console.WriteLine("Area :" + circle.Area());

Drawing square = new Square();

Console.WriteLine("Area :" + square.Area());

Drawing rectangle = new Rectangle();

Console.WriteLine("Area :" + rectangle.Area());

}

} 

2 Dynamic / Runtime Polymorphism

Example



The compiler requires an Area()

method and it compiles successfully

but the right version of the Area()

method is not being determined at

compile time but determined at

runtime. Finally the overriding

methods must have the same name

and signature (number of

parameters and type), as the virtual

or abstract method defined in the

base class method and that it is

overriding in the derived class.

A method or function of the base

class is available to the child

(derived) class without the use of

the "overriding" keyword. The

compiler hides the function or

method of the base class. This

concept is known as shadowing or

method hiding.



Method overriding is an important feature of OOP that allows us to
re-write a base class function or method with a different definition.
Overriding is also known as “Dynamic polymorphism” because
overriding is resolved at runtime. Here the signature of the
method or function must be the same. In other words both
methods (base class method and child class method) have the
same name, same number and same type of parameter in the
same order with the same return type. The overridden base
method must be virtual, abstract or override.

Overriding



Overloading vs. Overriding

• Overloading deals with multiple
methods in the same class with
the same name but different
signatures

• Overloading lets you define a
similar operation in different
ways for different data

• Overriding deals with two methods,
one in a parent class and one in a
child class, that have the same
signature

• Overriding lets you define a similar
operation in different ways for
different object types



A method cannot be overridden if:

 Methods have a different return type

 Methods have a different access modifier

 Methods have a different parameter type or order

 Methods are non virtual or static

ANY DIFFERENCE



Shadowing (method hiding)

A method or function of the base class is

available to the child (derived) class

without the use of the "overriding"

keyword. The compiler hides the function

or method of the base class. This concept

is known as shadowing or method hiding.

In the shadowing or method hiding, the

child (derived) class has its own version of

the function, the same function is also

available in the base class.

1. Public class BaseClass
2. {
3. public string GetMethodOwnerName()
4. {
5. return "Base Class";
6. }
7. }
8. public class ChildClass : BaseClass
9. {
10. public new string GetMethodOwnerName()
11. {
12. return "ChildClass";
13. }
14.}

Test Code

1. static void Main(string[] args)
2. {
3. ChildClass c = new ChildClass();
4. Console.WriteLine(c.GetMethodOwnerName()

);

}

Output

If we do not use the new keyword the compiler generates the warning:


