

Handbook of Cloud Computing

Borko Furht · Armando Escalante
Editors

Handbook of Cloud
Computing

123

Editors
Borko Furht
Department of Computer and Electrical

Engineering and Computer Science
Florida Atlantic University
777 Glades Road
Boca Raton, FL 33431, USA
bfurht@fau.edu

Armando Escalante
LexisNexis
6601 Park of Commerce Boulevard
Boca Raton, FL 33487, USA
armando.escalante@lexisnexis.com

ISBN 978-1-4419-6523-3 e-ISBN 978-1-4419-6524-0
DOI 10.1007/978-1-4419-6524-0
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010934567

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Cloud computing has become a great solution for providing a flexible, on-demand,
and dynamically scalable computing infrastructure for many applications. Cloud
computing also presents a significant technology trends, and it is already obvious
that it is reshaping information technology processes and the IT marketplace.

This Handbook is a carefully edited book – contributors are 65 worldwide experts
in the field of cloud computing and their applications. The Handbook Advisory
Board, comprised of nine researchers and practitioners from academia and industry,
helped in reshaping the Handbook and selecting the right topics and creative and
knowledgeable contributors. The scope of the book includes leading-edge cloud
computing technologies, systems, and architectures; cloud computing services; and
a variety of cloud computing applications.

The Handbook comprises four parts, which consist of 26 chapters. The first part
on Technologies and Systems includes articles dealing with cloud computing tech-
nologies, storage and fault tolerant strategies in cloud computing, workflows, grid
computing technologies, and the role of networks in cloud computing.

The second part on Architectures focuses on articles on several specific architec-
tural concepts applied in cloud computing, including enterprise knowledge clouds,
high-performance computing clouds, clouds with vertical load distribution, and
peer-to-peer based clouds.

The third part on Services consists of articles on various issues relating to cloud
services, including types of services, service scalability, scientific services, and
dynamic collaborative services.

The forth part on Applications describes various cloud computing applications
from enterprise knowledge clouds, scientific and statistical computing, scientific
data management, to medical applications.

With the dramatic growth of cloud computing technologies, platforms and ser-
vices, this Handbook can be the definitive resource for persons working in this field
as researchers, scientists, programmers, engineers, and users. The book is intended
for a wide variety of people including academicians, designers, developers, edu-
cators, engineers, practitioners, researchers, and graduate students. This book can
also be beneficial for business managers, entrepreneurs, and investors. The book

v

vi Preface

can have a great potential to be adopted as a textbook in current and new courses on
Cloud Computing.

The main features of this Handbook can be summarized as:

1. The Handbook describes and evaluates the current state-of-the-art in a new field
of cloud computing.

2. It also presents current systems, services, and main players in this explosive field.
3. Contributors to the Handbook are the leading researchers from academia and

practitioners from industry.

We would like to thank the authors for their contributions. Without their expertise
and effort, this Handbook would never come to fruition. Springer editors and staff
also deserve our sincere recognition for their support throughout the project.

Boca Raton, Florida Borko Furht
Armando Escalante

Contents

Part I Technologies and Systems

1 Cloud Computing Fundamentals 3
Borko Furht

2 Cloud Computing Technologies and Applications 21
Jinzy Zhu

3 Key Enabling Technologies for Virtual Private Clouds 47
Jeffrey M. Nick, David Cohen, and Burton S. Kaliski Jr.

4 The Role of Networks in Cloud Computing 65
Geng Lin and Mac Devine

5 Data-Intensive Technologies for Cloud Computing 83
Anthony M. Middleton

6 Survey of Storage and Fault Tolerance Strategies Used
in Cloud Computing . 137
Kathleen Ericson and Shrideep Pallickara

7 Scheduling Service Oriented Workflows Inside Clouds
Using an Adaptive Agent Based Approach 159
Marc Eduard Frîncu

8 The Role of Grid Computing Technologies
in Cloud Computing . 183
David Villegas, Ivan Rodero, Liana Fong, Norman Bobroff,
Yanbin Liu, Manish Parashar, and S. Masoud Sadjadi

9 Cloudweaver: Adaptive and Data-Driven Workload
Manager for Generic Clouds . 219
Rui Li, Lei Chen, and Wen-Syan Li

vii

viii Contents

Part II Architectures

10 Enterprise Knowledge Clouds: Architecture and Technologies . . . 239
Kemal A. Delic and Jeff A. Riley

11 Integration of High-Performance Computing into Cloud
Computing Services . 255
Mladen A. Vouk, Eric Sills, and Patrick Dreher

12 Vertical Load Distribution for Cloud Computing via
Multiple Implementation Options 277
Thomas Phan and Wen-Syan Li

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 309
Xiao Liu, Dong Yuan, Gaofeng Zhang, Jinjun Chen,
and Yun Yang

Part III Services

14 Cloud Types and Services . 335
Hai Jin, Shadi Ibrahim, Tim Bell, Wei Gao, Dachuan Huang,
and Song Wu

15 Service Scalability Over the Cloud 357
Juan Cáceres, Luis M. Vaquero, Luis Rodero-Merino,
Álvaro Polo, and Juan J. Hierro

16 Scientific Services on the Cloud . 379
David Chapman, Karuna P. Joshi, Yelena Yesha, Milt Halem,
Yaacov Yesha, and Phuong Nguyen

17 A Novel Market-Oriented Dynamic Collaborative Cloud
Service Platform . 407
Mohammad Mehedi Hassan and Eui-Nam Huh

Part IV Applications

18 Enterprise Knowledge Clouds: Applications and Solutions 437
Jeff A. Riley and Kemal A. Delic

19 Open Science in the Cloud: Towards a Universal Platform
for Scientific and Statistical Computing 453
Karim Chine

20 Multidimensional Environmental Data Resource Brokering
on Computational Grids and Scientific Clouds 475
Raffaele Montella, Giulio Giunta, and Giuliano Laccetti

21 HPC on Competitive Cloud Resources 493
Paolo Bientinesi, Roman Iakymchuk, and Jeff Napper

Contents ix

22 Scientific Data Management in the Cloud: A Survey of
Technologies, Approaches and Challenges 517
Sangmi Lee Pallickara, Shrideep Pallickara, and Marlon Pierce

23 Feasibility Study and Experience on Using Cloud
Infrastructure and Platform for Scientific Computing 535
Mikael Fernandus Simalango and Sangyoon Oh

24 A Cloud Computing Based Patient Centric Medical
Information System . 553
Ankur Agarwal, Nathan Henehan, Vivek Somashekarappa,
A.S. Pandya, Hari Kalva, and Borko Furht

25 Cloud@Home: A New Enhanced Computing Paradigm 575
Salvatore Distefano, Vincenzo D. Cunsolo, Antonio Puliafito,
and Marco Scarpa

26 Using Hybrid Grid/Cloud Computing Technologies for
Environmental Data Elastic Storage, Processing,
and Provisioning . 595
Raffaele Montella and Ian Foster

Index . 619

Contributors

Ankur Agarwal Department of Computer Science and Engineering, FAU,
Boca Raton, FL, USA, ankur@cse.fau.edu

Tim Bell Department of Computer Science and Software Engineering, University
of Canterbury, Christchurch, New Zealand, tim.bell@canterbury.ac.nz

Paolo Bientinesi AICES, RWTH, Aachen, Germany,
pauldj@aices.rwth-aachen.de

Norman Bobroff IBM Watson Research Center, Hawthorne, NY, USA,
bobroff@us.ibm.com

Juan Cáceres Telefónica Investigación y Desarrollo, Madrid, Spain,
caceres@tid.es

David Chapman Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County, MD, USA, dchapm2@umbc.edu

Jinjun Chen Faculty of Information and Communication Technologies,
Swinburne University of Technology, Hawthorn, Melbourne, Australia 3122,
jchen@swin.edu.au

Lei Chen Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong, leichen@cse.ust.hk

Karim Chine Cloud Era Ltd, Cambridge, UK, karim.chine@polytechnique.org

David Cohen Cloud Infrastructure Group, EMC Corporation, Cambridge, MA,
USA, david.cohen@emc.com

Vincenzo D. Cunsolo University of Messina, Contrada di Dio, S. Agata, Messina,
Italy, vdcunsolo@unime.it

Kemal A. Delic Hewlett-Packard Co., New York, NY, USA, kemal.delic@hp.com

Mac Devine IBM Corporation, Research Triangle Park, NC, USA,
wdevine@us.ibm.com

xi

xii Contributors

Salvatore Distefano University of Messina, Contrada di Dio, S. Agata, Messina,
Italy, sdistefano@unime.it

Patrick Dreher Renaissance Computing Institute, Chapel Hill, NC, 27517 USA,
dreher@renci.org

Kathleen Ericson Department of Computer Science, Colorado State University,
Fort Collins, CO, USA, ericson@cs.colostate.edu

Liana Fong IBM Watson Research Center, Hawthorne, NY, USA,
llfong@us.ibm.com

Ian Foster Argonne National Laboratory, Argonne, IL, USA; The University
of Chicago, Chicago, IL, USA, foster@anl.gov

Marc Eduard Frîncu Institute e-Austria, Blvd. Vasile Parvan No 4 300223,
Room 045B, Timisoara, Romania, mfrincu@info.uvt.ro

Borko Furht Department of Computer & Electrical Engineering and Computer
Science, Florida Atlantic University, Boca Raton, FL, USA, bfurht@fau.edu

Wei Gao Services Computing Technology and System Lab; Cluster and Grid
Computing Lab, Huazhong University of Science and Technology, Wuhan, China,
gaowei715@gmail.com

Giulio Giunta Department of Applied Science, University of Napoli Parthenope,
Napoli, Italy, giulio.giunta@uniparthenope.it

Milt Halem Computer Science and Electrical Engineering Department, University
of Maryland, Baltimore County, MD, USA, halem@umbc.edu

Mohammad Mehedi Hassan Department of Computer Engineering, Kyung Hee
University, Global Campus, South Korea, hassan@khu.ac.kr

Nathan Henehan Senior Software Developer, NACS Solutions, Oberlin, OH,
USA, nhenehan@gmail.com

Juan J. Hierro Telefónica Investigación y Desarrollo, Madrid, Spain,
jhierro@tid.es

Dachuan Huang Services Computing Technology and System Lab; Cluster and
Grid Computing Lab, Huazhong University of Science and Technology, Wuhan,
China, hdc1112@gmail.com

Eui-Nam Huh Department of Computer Engineering, Kyung Hee University,
Global Campus, South Korea, johnhuh@khu.ac.kr

Roman Iakymchuk AICES, RWTH, Aachen, Germany,
iakymchuk@aices.rwth-aachen.de

Shadi Ibrahim Services Computing Technology and System Lab; Cluster and
Grid Computing Lab, Huazhong University of Science and Technology, Wuhan,
China, shadi@hust.edu.cn

Contributors xiii

Hai Jin Services Computing Technology and System Lab; Cluster and Grid
Computing Lab, Huazhong University of Science and Technology, Wuhan, China,
hjin@hust.edu.cn

Karuna P. Joshi Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County, MD, USA, kjoshi1@umbc.edu

Burton S. Kaliski Jr. Office of the CTO, EMC Corporation, Hopkinton, MA,
USA, burt.kaliski@emc.com

Hari Kalva Department of Computer Science and Engineering, FAU,
Boca Raton, FL, USA, hari.kalva@fau.edu

Giuliano Laccetti Department of Mathematics and Applications, University
of Napoli Federico II, Napoli, Italy, giuliano.laccetti@unina.it

Rui Li Hong Kong University of Science and Technology, Clear Water Bay,
Hong Kong, cslr@cse.ust.hk

Wen-Syan Li SAP Technology Lab, Shanghai, China, wen-syan.li@sap.com

Geng Lin IBM Alliance, Cisco Systems, San Francisco, CA, USA,
gelin@cisco.com

Xiao Liu Faculty of Information and Communication Technologies, Swinburne
University of Technology, Hawthorn, Melbourne, Australia 3122,
xliu@groupwise.swin.edu.au

Yanbin Liu IBM Watson Research Center, Hawthorne, NY, USA,
ygliu@us.ibm.com

Anthony M. Middleton LexisNexis Risk Solutions, Boca Raton, FL, USA,
tony.middleton@lexisnexis.com

Raffaele Montella Department of Applied Science, University of Napoli
Parthenope, Napoli, Italy, raffaele.montella@uniparthenope.it

Jeff Napper Vrije Universiteit, Amsterdam, Netherlands, jnapper@cs.vu.nl

Phuong Nguyen Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County, MD, USA, phuong3@umbc.edu

Jeffrey M. Nick Office of the CTO, EMC Corporation, Hopkinton, MA, USA,
jeff.nick@emc.com

Sangyoon Oh WISE Research Lab, School of Information and Communication
Engineering, Ajou University, Suwon, South Korea, syoh@ajou.ac.kr

Shrideep Pallickara Department of Computer Science, Colorado State University,
Fort Collins, CO, USA, shrideep@cs.colostate.edu

Sangmi Lee Pallickara Department of Computer Science, Colorado State
University, Fort Collins, CO, USA, sangmi@cs.colostate.edu

xiv Contributors

A.S. Pandya Department of Computer Science and Engineering, FAU,
Boca Raton, FL, USA, pandya@fau.edu

Manish Parashar NSF CAC, Rutgers University, Piscataway, NJ, USA,
parashar@rutgers.edu

Thomas Phan Microsoft Corporation, Washington, DC, USA,
thomas.phan@acm.org

Marlon Pierce Community Grids Lab, Indiana University, Bloomington, IN,
USA, mpierce@cs.indiana.edu

Álvaro Polo Telefónica Investigación y Desarrollo, Madrid, Spain, apv@tid.es

Antonio Puliafito University of Messina, Contrada di Dio, S. Agata, Messina,
Italy, apuliafito@unime.it

Jeff A. Riley Hewlett-Packard Co., New York, NY, USA, jeff.riley@hp.com

Ivan Rodero NSF CAC, Rutgers University, Piscataway, NJ, USA,
irodero@rutgers.edu

Luis Rodero-Merino INRIA-ENS, INRIA, Lyon, France,
luis.rodero-merino@ens-lyon.fr

S. Masoud Sadjadi CIS, Florida International University, Miami, FL, USA,
sadjadi@cis.fiu.edu

Marco Scarpa University of Messina, Contrada di Dio, S. Agata, Messina, Italy,
mscarpa@unime.it

Eric Sills North Carolina State University, Raleigh, NC 27695, USA,
edsills@ncsu.edu

Mikael Fernandus Simalango WISE Research Lab, Ajou University, Suwon,
South Korea, mikael@ajou.ac.kr

Vivek Somashekarappa Armellini Inc., Palm City, FL, USA,
vsomashekar@gmail.com

Luis M. Vaquero Telefónica Investigación y Desarrollo, Madrid, Spain,
lmvg@tid.es

David Villegas CIS, Florida International University, Miami, FL, USA,
dvill013@cis.fiu.edu

Mladen A. Vouk Department of Computer Science, North Carolina State
University, Box 8206, Raleigh, NC 27695, USA, vouk@ncsu.edu

Song Wu Services Computing Technology and System Lab; Cluster and Grid
Computing Lab, Huazhong University of Science and Technology, Wuhan, China,
wusong@mail.hust.edu.cn

Contributors xv

Yun Yang Faculty of Information and Communication Technologies, Swinburne
University of Technology, Hawthorn, Melbourne, Australia 3122,
yyang@groupwise.swin.edu.au

Yelena Yesha Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County, MD, USA, yeyesha@csee.umbc.edu

Yaacov Yesha Computer Science and Electrical Engineering Department,
University of Maryland, Baltimore County, MD, USA, yayesha@umbc.edu

Dong Yuan Faculty of Information and Communication Technologies, Swinburne
University of Technology, Hawthorn, Melbourne, Australia 3122,
dyuan@groupwise.swin.edu.au

Gaofeng Zhang Faculty of Information and Communication Technologies,
Swinburne University of Technology, Hawthorn, Melbourne, Australia 3122,
gzhang@groupwise.swin.edu.au

Jinzy Zhu IBM Cloud Computing Center, China, jinzyzhu@cn.ibm.com

About the Editors

Borko Furht is a professor and chairman of the Department of Electrical &
Computer Engineering and Computer Science at Florida Atlantic University (FAU)
in Boca Raton, Florida. He is also Director of recently formed NSF-sponsored

xvii

xviii About the Editors

Industry/University Cooperative Research Center on Advanced Knowledge
Enablement. Before joining FAU, he was a vice president of research and a senior
director of development at Modcomp (Ft. Lauderdale), a computer company of
Daimler Benz, Germany; a professor at University of Miami in Coral Gables,
Florida; and a senior researcher in the Institute Boris Kidric-Vinca, Yugoslavia.
Professor Furht received a Ph.D. degree in electrical and computer engineering
from the University of Belgrade. His current research is in multimedia systems,
video coding and compression, 3D video and image systems, wireless multimedia,
and Internet and cloud computing. He is presently Principal Investigator and Co-PI
of several multiyear, multimillion-dollar projects, including NSF PIRE project and
NSF High-Performance Computing Center. He is the author of numerous books
and articles in the areas of multimedia, computer architecture, real-time computing,
and operating systems. He is a founder and editor-in-chief of the Journal of
Multimedia Tools and Applications (Springer). He has received several technical
and publishing awards, and has consulted for many high-tech companies including
IBM, Hewlett-Packard, Xerox, General Electric, JPL, NASA, Honeywell, and
RCA. He has also served as a consultant to various colleges and universities. He
has given many invited talks, keynote lectures, seminars, and tutorials. He served
on the Board of Directors of several high-tech companies.

Armando J. Escalante is Senior Vice President and Chief Technology Officer
of Risk Solutions for the LexisNexis Group, a division of Reed Elsevier. In this
position, Escalante is responsible for technology development, information systems
and operations. Previously, Escalante was Chief Operating Officer for Seisint, a

About the Editors xix

privately owned company, which was purchased by LexisNexis in 2004. In this
position, he was responsible for Technology, Development and Operations. Prior to
2001, Escalante served as Vice President of Engineering and Operations for Diveo
Broadband Networks, where he led world-class Data Centers located in the U.S.
and Latin America. Before Diveo Broadband Networks, Escalante was VP for one
of the fastest growing divisions of Vignette Corporation, an eBusiness software
leader. Escalante earned his bachelor’s degree in electronic engineering at the USB
in Caracas, Venezuela and a master’s degree in computer science from Stevens
Institute of Technology, as well as a master’s degree in business administration
from West Coast University.

Part I
Technologies and Systems

Chapter 1
Cloud Computing Fundamentals

Borko Furht

1.1 Introduction

In the introductory chapter we define the concept of cloud computing and cloud
services, and we introduce layers and types of cloud computing. We discuss the
differences between cloud computing and cloud services. New technologies that
enabled cloud computing are presented next. We also discuss cloud computing
features, standards, and security issues. We introduce the key cloud computing plat-
forms, their vendors, and their offerings. We discuss cloud computing challenges
and the future of cloud computing.

Cloud computing can be defined as a new style of computing in which dynam-
ically scalable and often virtualized resources are provided as a services over the
Internet. Cloud computing has become a significant technology trend, and many
experts expect that cloud computing will reshape information technology (IT) pro-
cesses and the IT marketplace. With the cloud computing technology, users use
a variety of devices, including PCs, laptops, smartphones, and PDAs to access
programs, storage, and application-development platforms over the Internet, via ser-
vices offered by cloud computing providers. Advantages of the cloud computing
technology include cost savings, high availability, and easy scalability.

Figure 1.1, adapted from Voas and Zhang (2009), shows six phases of computing
paradigms, from dummy terminals/mainframes, to PCs, networking computing, to
grid and cloud computing.

In phase 1, many users shared powerful mainframes using dummy terminals.
In phase 2, stand-alone PCs became powerful enough to meet the majority of
users’ needs. In phase 3, PCs, laptops, and servers were connected together through
local networks to share resources and increase performance. In phase 4, local net-
works were connected to other local networks forming a global network such as
the Internet to utilize remote applications and resources. In phase 5, grid comput-
ing provided shared computing power and storage through a distributed computing

B. Furht (B)
Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL, USA
e-mail: bfurht@fau.edu

3B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_1, C© Springer Science+Business Media, LLC 2010

4 B. Furht

User

User

User

User

User

User

Phases

1. Mainframe
Computing

2. PC
Computing

3. Network
Computing

4. Internet
Computing

5. Grid
Computing

6. Cloud
Computing

Terminal

PC

PC

PC

PC

PC

PC

Mainframe

Server

Server

Server

Server
Internet

Grid

Cloud

Fig. 1.1 Six computing paradigms – from mainframe computing to Internet computing, to grid
computing and cloud computing (adapted from Voas and Zhang (2009))

system. In phase 6, cloud computing further provides shared resources on the
Internet in a scalable and simple way.

Comparing these six computing paradigms, it looks like that cloud computing
is a return to the original mainframe computing paradigm. However, these two
paradigms have several important differences. Mainframe computing offers finite
computing power, while cloud computing provides almost infinite power and capac-
ity. In addition, in mainframe computing dummy terminals acted as user interface
devices, while in cloud computing powerful PCs can provide local computing power
and cashing support.

1.1.1 Layers of Cloud Computing

Cloud computing can be viewed as a collection of services, which can be presented
as a layered cloud computing architecture, as shown in Fig. 1.2 [Jones XXXX]. The

1 Cloud Computing Fundamentals 5

Application
SaaS

Platform
PaaS

Infrastructure
IaaS

Virtualization

Servers and Storage
dSaaS

Fig. 1.2 Layered architecture
of Cloud Computing (adapted
from Jones)

services offered through cloud computing usually include IT services referred as to
SaaS (Software-as-a-Service), which is shown on top of the stack. SaaS allows users
to run applications remotely from the cloud.

Infrastructure-as-a-service (IaaS) refers to computing resources as a service.
This includes virtualized computers with guaranteed processing power and reserved
bandwidth for storage and Internet access.

Platform-as-a-Service (PaaS) is similar to IaaS, but also includes operating sys-
tems and required services for a particular application. In other words, PaaS is IaaS
with a custom software stack for the given application.

The data-Storage-as-a-Service (dSaaS) provides storage that the consumer is
used including bandwidth requirements for the storage.

An example of Platform-as-aService (PaaS) cloud computing is shown in Fig. 1.3
[“Platform as a Service,” http://www.zoho.com/creator/paas.html]. The PaaS pro-
vides Integrated Development Environment (IDE) including data security, backup
and recovery, application hosting, and scalable architecture.

According to Chappell (2008) there are three categories of cloud services, as
illustrated in Fig. 1.4. Figure 1.4a shows the cloud service SaaS, where the entire
application is running in the cloud. The client contains a simple browser to access
the application. A well-known example of SaaS is salesforce.com.

Figure 1.4b illustrates another type of cloud services, where the application runs
on the client; however it accesses useful functions and services provided in the
cloud. An example of this type of cloud services on the desktop is Apple’s iTunes.

6 B. Furht

Developers

Business
Users

IDE
Integrated Development Environment

Business
Applications

Data
Security

Backup
And

Recovery

Application
Hosting

Scalable
Infrastructure

Cloud

Fig. 1.3 The concept of Platform-as-a-Service, Zoho Creator (adapted from “Platform as a
Service,” http://www.zoho.com/creator/paas.html)

Application

Browser/
Client

Users

On-
premises

a) Software_as_a_Service

Extra
Functions

Application

Users

b) Attached Services

Platform

Application

Developers

Cloud
Platform

Application
Cloud Cloud

Fig. 1.4 The categories of cloud services (adopted from Chappell (2008))

The desktop application plays music, while the cloud service is used to purchase
a new audio and video content. An enterprise example of this cloud service is
Microsoft Exchange Hosted Services. On-premises Exchange Server is using added
services from the cloud including spam filtering, archiving, and other functions.

1 Cloud Computing Fundamentals 7

Finally, Fig. 1.4c shows a cloud platform for creating applications, which is used
by developers. The application developers create a new SaaS application using the
cloud platform.

1.1.2 Types of Cloud Computing

There are three types of cloud computing (“Cloud Computing,” Wikipedia,
http://en.wikipedia.org/wiki/Cloud_computing): (a) public cloud, (b) private cloud,
and (c) hybrid cloud, as illustrated in Fig. 1.5.

Public
External

Public
External

Cloud

Private
Internal

Hybrid

User

User

User

Public

Fig. 1.5 Three types of cloud
computing

In the public cloud (or external cloud) computing resources are dynamically pro-
visioned over the Internet via Web applications or Web services from an off-site
third-party provider. Public clouds are run by third parties, and applications from
different customers are likely to be mixed together on the cloud’s servers, storage
systems, and networks.

Private cloud (or internal cloud) refers to cloud computing on private networks.
Private clouds are built for the exclusive use of one client, providing full control
over data, security, and quality of service. Private clouds can be built and managed
by a company’s own IT organization or by a cloud provider.

A hybrid cloud environment combines multiple public and private cloud mod-
els. Hybrid clouds introduce the complexity of determining how to distribute
applications across both a public and private cloud.

8 B. Furht

1.1.3 Cloud Computing Versus Cloud Services

In this section we present two tables that show the differences and major attributes
of cloud computing versus cloud services (Jens, 2008). Cloud computing is the
IT foundation for cloud services and it consists of technologies that enable cloud
services. The key attributes of cloud computing are shown in Table 1.1.

In Key attributes of cloud services are summarized in Table 1.2 (Jens, 2008).

Table 1.1 Key Cloud Computing Attributes (adapted from Jens (2008))

Attributes Description

Infrastructure systems It includes servers, storage, and networks that can scale as
per user demand.

Application software It provides Web-based user interface, Web services APIs,
and a rich variety of configurations.

Application development and
deployment software

It supports the development and integration of cloud
application software.

System and application
management software

It supports rapid self-service provisioning and configuration
and usage monitoring.

IP networks They connect end users to the cloud and the infrastructure
components.

Table 1.2 Key Attributes of Cloud Services (adapted from Jens (2008))

Attributes Description

Offsite. Third-party provider In the cloud execution, it is assumed that third-party
provides services. There is also a possibility of in-house
cloud service delivery.

Accessed via the Internet Services are accessed via standard-based, universal network
access. It can also include security and quality-of-service
options.

Minimal or no IT skill required There is a simplified specification of requirements.
Provisioning It includes self-service requesting, near real-time

deployment, and dynamic and fine-grained scaling.
Pricing Pricing is based on usage-based capability and it is

fine-grained.
User interface User interface include browsers for a variety of devices and

with rich capabilities.
System interface System interfaces are based on Web services APIs

providing a standard framework for accessing and
integrating among cloud services.

Shared resources Resources are shared among cloud services users; however
via configuration options with the service, there is the
ability to customize.

1 Cloud Computing Fundamentals 9

1.2 Enabling Technologies

Key technologies that enabled cloud computing are described in this section; they
include virtualization, Web service and service-oriented architecture, service flows
and workflows, and Web 2.0 and mashup.

1.2.1 Virtualization

The advantage of cloud computing is the ability to virtualize and share resources
among different applications with the objective for better server utilization.
Figure 1.6 shows an example Jones]. In non-cloud computing three independent
platforms exist for three different applications running on its own server. In the
cloud, servers can be shared, or virtualized, for operating systems and applications
resulting in fewer servers (in specific example two servers).

Application

OS 1

Server X

Application

OS 2

Server Y

Application

OS 3

Server Z

Application

OS 3

Server B

Application Application

OS 1 OS 2

Hypervisor

Server A

Cloud

Fig. 1.6 An example of
virtualization: in non-cloud
computing there is a need for
three servers; in the cloud
computing, two servers are
used (adapted from Jones)

Virtualization technologies include virtual machine techniques such as VMware
and Xen, and virtual networks, such as VPN. Virtual machines provide virtual-
ized IT-infrastructures on-demand, while virtual networks support users with a
customized network environment to access cloud resources.

10 B. Furht

1.2.2 Web Service and Service Oriented Architecture

Web Services and Service Oriented Architecture (SOA) are not new concepts;
however they represent the base technologies for cloud computing. Cloud services
are typically designed as Web services, which follow industry standards including
WSDL, SOAP, and UDDI. A Service Oriented Architecture organizes and man-
ages Web services inside clouds (Vouk, 2008). A SOA also includes a set of cloud
services, which are available on various distributed platforms.

1.2.3 Service Flow and Workflows

The concept of service flow and workflow refers to an integrated view of service-
based activities provided in clouds. Workflows have become one of the important
areas of research in the field of database and information systems (Vouk, 2008).

1.2.4 Web 2.0 and Mashup

Web 2.0 is a new concept that refers to the use of Web technology and Web design to
enhance creativity, information sharing, and collaboration among users (Wang, Tao,

Portal

Mashup
Server

User
Interface

Components

Gadget
Repository

RSS
Feed Server

Cell
phone

Database
Server

Mapping
Server

Web 1.0
Server

Gadget
Server 1

Gadget
Server 2

Gadget
Server n

Web 2.0
FAT Client

.

.

.

Fig. 1.7 Cloud computing architecture uses various components at different levels (adapted from
Hutchinson and Ward (2009))

1 Cloud Computing Fundamentals 11

& Kunze, 2008). On the other hand, Mashup is a web application that combines data
from more than one source into a single integrated storage tool. Both technologies
are very beneficial for cloud computing.

Figure 1.7 shows a cloud computing architecture, adapted from Hutchinson and
Ward (2009), in which an application reuses various components. The components
in this architecture are dynamic in nature, operate in a SaaS model, and leverage
SOA. The components closer to the user are smaller in nature and more reusable.
The components in the center contain aggregate and extend services via mashup
servers and portals.Data from one service (such as addresses in a database) can be
mashed up with mapping information (such as Yahoo or Google maps) to produce
an aggregated view of the information.

1.3 Cloud Computing Features

Cloud computing brings a number of new features compared to other computing
paradigms (Wang et al., 2008; Grossman, 2009). There are briefly described in this
section.

• Scalability and on-demand services
Cloud computing provides resources and services for users on demand. The
resources are scalable over several data centers.

• User-centric interface
Cloud interfaces are location independent and can be accesses by well established
interfaces such as Web services and Internet browsers.

• Guaranteed Quality of Service (QoS)
Cloud computed can guarantee QoS for users in terms of hardware/CPU
performance, bandwidth, and memory capacity.

• Autonomous system
The cloud computing systems are autonomous systems managed transparently to
users. However, software and data inside clouds can be automatically recon-
figured and consolidated to a simple platform depending on user’s needs.

• Pricing
Cloud computing does not require up-from investment. No capital expenditure is
required. Users pay for services and capacity as they need them.

1.3.1 Cloud Computing Standards

Cloud computing standards have not been yet fully developed; however a num-
ber of existing typically lightweight, open standards have facilitated the growth

12 B. Furht

Table 1.3 Cloud computing standards (“Cloud Computing,” Wikipedia, http://en.wikipedia.org/
wiki/Cloud_computing)

Applications

Communications: HTTP, XMPP
Security: OAuth, OpenID, SSL/TLS
Syndication: Atom

Client Browsers: AJAX
Offline:’ HTML5

Implementations Virtualization: OVF
Platform Solution stacks: LAMP
Service Data: XML, JSON

Web services: REST

of cloud computing (“Cloud Computing,” Wikipedia, http://en.wikipedia.org/wiki/
Cloud_computing). Table 1.3 illustrates several of these open standards, which are
currently used in cloud computing.

1.3.2 Cloud Computing Security

One of the critical issues in implementing cloud computing is taking virtual
machines, which contain critical applications and sensitive data, to public and shared
cloud environments. Therefore, potential cloud computing users are concerned
about the following security issues (“Cloud Computing Security,” Third Brigade,
www.cloudreadysecurity.com.).

• Will the users still have the same security policy control over their applications
and services?

• Can it be proved to the organization that the system is still secure and meets
SLAs?

• Is the system complaint and can it be proved to company’s auditors?

In traditional data centers, the common approaches to security include perime-
ter firewall, demilitarized zones, network segmentation, intrusion detection and
prevention systems, and network monitoring tools.

The security requirements for cloud computing providers begins with the same
techniques and tools as for traditional data centers, which includes the application of
a strong network security perimeter. However, physical segmentation and hardware-
based security cannot protect against attacks between virtual machines on the same
server. Cloud computing servers use the same operating systems, enterprise and
Web applications as localized virtual machines and physical servers. Therefore, an
attacker can remotely exploit vulnerabilities in these systems and applications. In
addition, co-location of multiple virtual machines increases the attack surface and
risk to MV-to-VM compromise. Intrusion detection and prevention systems need to
be able to detect malicious activity in the VM level, regardless of the location of the

1 Cloud Computing Fundamentals 13

VM within the virtualized cloud environment (“Cloud Computing Security,” Third
Brigade, www.cloudreadysecurity.com.).

In summary, the virtual environments that deploy the security mechanisms on
virtual machines including firewalls, intrusion detection and prevention, integrity
monitoring, and log inspection, will effectively make VM cloud secure and ready
for deployment.

1.4 Cloud Computing Platforms

Cloud computing has great commercial potential. According to market research firm
IDC, IT cloud services spending will grow from about $16B in 2008 to about $42B
in 2012 and to increase its share of overall IT spending from 4.2% to 8.5%.

Table 1.4 presents key players in cloud computing platforms and their key
offerings.

Table 1.4 Key Players in Cloud Computing Platforms (adapted from Lakshmanan (2009))

Company
Cloud computing
platform

Year of
launch Key offerings

Amazon. com AWS (Amazon
Web Services)

2006 Infrastructure as a service (Storage,
Computing, Message queues,
Datasets, Content distribution)

Microsoft Azure 2009 Application platform as a service
(.Net, SQL data services)

Google Google App.
Engine

2008 Web Application Platform as a
service (Python run time
environment)

IBM Blue Cloud 2008 Virtualized Blue cloud data center
Salesforce.com Force.com 2008 Proprietary 4GL Web application

framework as an on Demand
platform

Table 1.5 compares three cloud computing platforms, Amazon, Google, and
Microsoft, in terms of their capabilities to map to different development models
and scenarios (“Which Cloud Platform is Right for You?,” www.cumulux.com.).

1.4.1 Pricing

Pricing for cloud platforms and services is based on three key dimensions:
(i) storage, (ii) bandwidth, and (iii) compute.

Storage is typically measured as average daily amount of data stored in GB over
a monthly period.

14 B. Furht

Table 1.5 Cloud Computing Platforms and Different Scenarios (adapted from “Which Cloud
Platform is Right for You?,” www.cumulux.com.)

(1) Scenario On-premise application unchanged in the cloud
Characteristics Multiple red legacy, java or .NET based application
Amazon Threat the machine as another server in the data center and do the necessary

changes to configuration
Google Needs significant refactoring of application and data logic for existing Java

application
Microsoft If existing app is ASP.NET application, then re-factor data, otherwise

refactoring effort can be quite significant depending on the complexity

(2) Scenario Scalable Web application
Characteristics Moderate to high Web application with a back-end store and load balancing
Amazon Threat the machine instance as another server in the data center and do the

necessary changes to configuration. But scalability and elasticity is manual
configuration

Google Use dynamically scalable features of AppEngine and scripting technologies
to build rich applications

Microsoft Build scalable Web applications using familiar .NET technologies. Scaling
up/down purely driven by configuration.

(3) Scenario Parallel processing computational application
Characteristics Automated long running processing with little to no user interaction.
Amazon Need to configure multiple machine instances depending on the scale needed

and manage the environments.
Google Platform has minimal built-in support for building compute heavy

applications. Certain application scenarios, such as image manipulation,
are easier to develop with built-in platform features.

Microsoft With worker roles and storage features like Queues and blobs, it is easy to
build a compute heavy application that can be managed and controlled for
scalability and elasticity.

(4) Scenario Application in the cloud interacts with on-premise data
Characteristics Cloud based applications interacting with on-premise apps for managing

transactions of data
Amazon Applications in EC2 server cloud can easily be configured to interact with

applications running on premise.
Google No support from the platform to enable this scenario. Possible through each

app using intermediary store to communicate.
Microsoft From features like Service Bus to Sync platform components it is possible to

build compelling integration between the two environments.

(5) Scenario Application in the cloud interacts with on-premise application
Characteristics On-premise applications
Amazon Applications in EC2 server cloud can easily be configured to interact with

applications running on premise.
Google No support from the platform to enable this scenario. Possible through each

app using intermediary store to communicate.
Microsoft From features like Service Bus to Sync platform components it is possible to

build compelling integration between the two environments.

1 Cloud Computing Fundamentals 15

Bandwidth is measured by calculating the total amount of data transferred
in and out of platform service through transaction and batch processing.
Generally, data transfer between services within the same platform is free
in many platforms.

Compute is measured as the time units needed to run an instance, or application,
or machine to servicing requests. Table 6 compares pricing for three major
cloud computing platforms.

In summary, by analyzing the cost of cloud computing, depending on the appli-
cation characteristics the cost of deploying an application could vary based on the
selected platform. From Table 1.6, it seems that the unit pricing for three major plat-
forms is quite similar. Besides unit pricing, it is important to translate it into monthly
application development, deployments and maintenance costs.

Table 1.6 Pricing comparison for major cloud computing platforms (adapted from “Which Cloud
Platform is Right for You?,” www.cumulux.com.)

Resource UNIT Amazon Google Microsoft

Stored data GB per month $0.10 $0.15 $0.15
Storage transaction Per 10 K requests $0.10 $0.10
Outgoing bandwidth GB $0.10 – $0.17 $0.12 $0.15
Incoming bandwidth GB $0.10 $0.10 $0.10
Compute time Instance Hours $0.10 – $1.20 $0.10 $0.12

1.4.2 Cloud Computing Components and Their Vendors

The main elements comprising cloud computing platforms include com-
puter hardware, storage, infrastructure, computer software, operating systems,
and platform virtualization. The leading vendors providing cloud comput-
ing components are shown in Table 1.7 (“Cloud Computing,” Wikipedia,
http://en.wikipedia.org/wiki/Cloud_computing).

Table 1.7 The leading vendors of cloud computing components

Cloud computing
components Vendors

Computer hardware Dell, HP, IBM, Sun
Storage Sun, EMC, IBM
Infrastructure Cisco, Juniper Networks, Brocade Communication
Computer software 3tera. Eucalyptus. G-Eclipse. Hadoop
Operating systems Solaris, AIX, Linux (Red Hat, Ubuntu)
Platform virtualization Citrix, VMWare, IBM, Xen, Linux KVM, Microsoft, Sun xVM

16 B. Furht

1.5 Example of Web Application Deployment

In this section we present an example how the combination of virtualization and
on of self service facilitate application deployment (Sun Microsystems, 2009). In
this example we consider a two-tier Web application deployment using cloud, as
illustrated in Fig. 1.8.

Load
Balancer

Database
MySQL

Web service
APACHE

Library

Configure Pattern

Deploy

Load
Balancer

Load
Balancer

Web service
APACHE

Database
MySQL

Appl.
Storage

Web service
APACHE

Web service
APACHE

Database
MySQL

Fig. 1.8 Example of the deployment of an application into a two-tier Web server architecture
using cloud computing (adapted from Sun Microsystems (2009))

The following steps comprise the deployment of the application:

• The developer selects a load balancer, Web server, and database server appliances
from a library of preconfigured virtual machine images.

• The developer configures each component to make a custom image. The load
balancer is configured, the Web server is populated with its static content by
uploading it to the storage cloud, and the database server appliances are populated
with dynamic content for the site.

• The developer than layers custom code into the new architecture, in this way
making the components meet specific application requirements.

• The developer chooses a pattern that takes the images for each layer and deploys
them, handling networking, security, and scalability issues.

The secure, high-availability Web application is up and running. When the appli-
cation needs to be updated, the virtual machine images can be updated, copied
across the development chain, and the entire infrastructure can be redeployed.

In this example, a standard set of components can be used to quickly deploy an
application. With this model, enterprise business needs can be met quickly, with-
out the need for the time-consuming, manual purchase, installation, cabling, and
configuration of servers, storage, and network infrastructure.

1 Cloud Computing Fundamentals 17

Small and medium enterprises were the early adopters to cloud computing.
However, there are recently a number of examples of cloud computing adoptions
in the large enterprises. Table 1.8 illustrates three examples of cloud computing use
in the large enterprises (Lakshmanan, 2009).

Table 1.8 Cloud computing examples in large enterprises

Enterprise Scenario Usage Benefits

Eli Lilly R&D High
Performance
Computing

Amazon server and
storage cluster for
drug discovery
analysis and
modeling.

Quick deployment time
at a lower cost.

New York Times Data Conversion Conversion of archival
articles (3 million)
into new data formats
using Amazon elastic
compute services.

Rapid provisioning and
higher elasticity on
the infrastructure
resources.

Pitney Bowes B2B Application Hosted model mail
printing application
for clients. Uses MS
Azure.net and SQL
services for the
hosted model option
(2009 Go live).

Flexibility at a lower
cost and new business
opportunity.

1.6 Cloud Computing Challenges

In summary, the new paradigm of cloud computing provides a number of benefits
and advantages over the previous computing paradigms and many organizations are
adopting it. However, there are still a number of challenges, which are currently
addressed by researchers and practitioners in the field (Leavitt, 2009). They are
briefly presented below.

1.6.1 Performance

The major issue in performance can be for some intensive transaction-oriented and
other data-intensive applications, in which cloud computing may lack adequate
performance. Also, users who are at a long distance from cloud providers may
experience high latency and delays.

1.6.2 Security and Privacy

Companies are still concerned about security when using cloud computing.
Customers are worried about the vulnerability to attacks, when information and

18 B. Furht

critical IT resources are outside the firewall. The solution for security assumes that
that cloud computing providers follow standard security practices, as described in
Section 1.3.2.

1.6.3 Control

Some IT departments are concerned because cloud computing providers have a
full control of the platforms. Cloud computing providers typically do not design
platforms for specific companies and their business practices.

1.6.4 Bandwidth Costs

With cloud computing, companies can save money on hardware and software; how-
ever they could incur higher network bandwidth charges. Bandwidth cost may be
low for smaller Internet-based applications, which are not data intensive, but could
significantly grow for data-intensive applications.

1.6.5 Reliability

Cloud computing still does not always offer round-the-clock reliability. There were
cases where cloud computing services suffered a few-hours outages.

In the future, we can expect more cloud computing providers, richer services,
established standards, and best practices.

In the research arena, HP Labs, Intel, and Yahoo have launched the distributed
Cloud Research Test Bad, with facilities in Asia, Europe, and North America, with
the objective to develop innovations including cloud computing specific chips. IBM
has launched the Research Computing Cloud, which is an on-demand, globally
accessible set of computing resources that support business processes.

1.7 Cloud Computing in the Future

In summary, cloud computing is definitely a type of computing
paradigm/architecture that will remain for a long time to come. In the near
future, cloud computing can emerge in various directions. One possible scenario
for the future is that an enterprise may use a distributed hybrid cloud as illustrated
in Fig. 1.9.

According to this scenario, the enterprise will use the core applications on its
private cloud, while some other applications will be distributed on several private
clouds, which are optimized for specific applications.

1 Cloud Computing Fundamentals 19

Enterprise

Core
Applications

High Computing and
Failover Infrastructure B2B Applications

Consumer
Applications

Private Cloud

Public Cloud
Amazon AMS

Public Cloud
MS Azure

Public Cloud
Google App Engine

Fig. 1.9 Distributed hybrid cloud architecture (adapted from Lakshmanan (2009))

References

Chappell, D. (August 2008). A short introduction to cloud platforms: An enterprise-oriented view.
San Francisco, CA: Chappel and Associates.

Grossman, R. L. (March/April 2009). The case for cloud computing. IEEE ITPro, 23–27.
Hutchinson, C., & Ward, J. (March/April 2009). Navigation the next-generation application

architecture. IEEE ITPro, 18–22.
Jens, F. (September 2008). Defining cloud services and cloud computing.

http://blogs.idc.com/ie/?p=190.
Jones, M. T. Cloud computing with linux. www.ibm.com/developerworks/linux/library/l-cloud-

computing.
Lakshmanan, G. (April 2009). Cloud computing – Relevance to enterprise. Infosys White Paper.
Leavitt, N. (January 2009). Is cloud computing really ready for prime time? IEEE Computer,

15–20.
Sun Microsystems (June 2009). Introduction to cloud computing architecture. White Paper, Sun

Microsystems.
Voas, J., & Zhang, J. (March/April 2009). Cloud computing: New wine or just a new bottle? IEEE

ITPro, 15–17.
Vouk, M. A. (June 2008). Cloud computing – Issues, research and implementations. Proceedings of

the ITI 30th International Conference on Information Technology Interfaces, Cavtat, Croatia,
31–40.

Wang, L., Tao, J., & Kunze, M. (2008). Scientific cloud computing: Early definition and experi-
ence. Proceedings of the 10th IEEE International Conference on High Performance Computing
and Communications, Austin, TX, 825–830.

Chapter 2
Cloud Computing Technologies and Applications

Jinzy Zhu

2.1 Cloud Computing: IT as a Service

In a nutshell, the existing Internet provides to us content in the forms of videos,
emails and information served up in web pages. With Cloud Computing, the next
generation of Internet will allow us to “buy” IT services from a web portal, drastic
expanding the types of merchandise available beyond those on e-commerce sites
such as eBay and Taobao. We would be able to rent from a virtual storefront the
basic necessities to build a virtual data center: such as CPU, memory, storage, and
add on top of that the middleware necessary: web application servers, databases,
enterprise server bus, etc. as the platform(s) to support the applications we would
like to either rent from an Independent Software Vendor (ISV) or develop ourselves.
Together this is what we call as “IT as a Service,” or ITaaS, bundled to us the end
users as a virtual data center.

Within ITaaS, there are three layers starting with Infrastructure as a Service, or
IaaS, comprised of the physical assets we can see and touch: servers, storage, and
networking switches. At the IaaS level, what cloud computing service provider can
offer is basic computing and storage capability, such as the cloud computing cen-
ter founded by IBM in Wuxi Software Park and Amazon EC2. Taking computing
power provision as an example, the basic unit provided is the server, including CPU,
memory, storage, operating system and system monitoring software.

In order to allow users to customize their own server environment, server tem-
plate technology is resorted to, which means binding certain server configuration
and the operating system and software together, and providing customized functions
as required at the same time.

Using virtualization technology, we could provide as little as 0.1 CPU in a virtual
machine to the end user, therefore drastically increasing the utilization potential of
a physical server to multiple users.

J. Zhu (B)
IBM Cloud Computing Center, China
e-mail: jinzyzhu@cn.ibm.com

21B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_2, C© Springer Science+Business Media, LLC 2010

22 J. Zhu

With virtualization increasing the number of machines to manage, service pro-
vision becomes crucial since it directly affects service management and the IaaS
maintenance and operation efficiency. Automation, the next core technology, can
make resources available for users through self-service without getting the service
providers involved. A stable and powerful automation management program can
reduce the marginal cost to zero, which in turn can promote the scale effect of cloud
computing.

On the basis of automation, dynamic orchestration of resources can be realized.
Dynamic orchestration of resources aims to meet the requirements of service level.
For example, IaaS platform will add new servers or storage spaces for users auto-
matically according to the CPU utilization of the server, so as to fulfill the terms
of service level made with users beforehand. The intelligence and reliability of
dynamic orchestration of resources technology is a key point here. Additionally,
virtualization is another key technology. It can maximize resource utilization effi-
ciency and reduce cost of IaaS platform and user usage by promoting physical
resource sharing. The dynamic migration function of virtualization technology can
dramatically improve the service availability and this is attractive for many users.

The next layer within ITaaS is Platform as a Service, or PaaS. At the PaaS
level, what the service providers offer is packaged IT capability, or some logical
resources, such as databases, file systems, and application operating environment.
Currently, actual cases in the industry include Rational Developer Cloud of IBM,
Azure of Microsoft and AppEngine of Google. At this level, two core technolo-
gies are involved. The first is software development, testing and running based on
cloud. PaaS service is software developer-oriented. It used to be a huge difficulty
for developers to write programs via network in a distributed computing environ-
ment, and now due to the improvement of network bandwidth, two technologies can
solve this problem: the first is online development tools. Developers can directly
complete remote development and application through browser and remote console
(development tools run in the console) technologies without local installation of
development tools. Another is integration technology of local development tools
and cloud computing, which means to deploy the developed application directly
into cloud computing environment through local development tools. The second
core technology is large-scale distributed application operating environment. It
refers to scalable application middleware, database and file system built with a
large amount of servers. This application operating environment enables appli-
cation to make full use of abundant computing and storage resource in cloud
computing center to achieve full extension, go beyond the resource limitation of
single physical hardware, and meet the access requirements of millions of Internet
users.

The top of the ITaaS is what most non-IT users will see and consume: Software
as a Service (SaaS). At the SaaS level, service providers offer consumer or indus-
trial applications directly to individual users and enterprise users. At this level, the
following technologies are involved: Web 2.0, Mashup, SOA and multi-tenancy.

The development of AJAX technology of Web 2.0 makes Web application easier
to use, and brings user experience of desktop application to Web users, which in

2 Cloud Computing Technologies and Applications 23

turn make people adapt to the transfer from desktop application to Web application
easily. Mashup technology provide a capability of assembling contents on Web,
which can allow users to customize websites freely and aggregate contents from
different websites, and enables developers to build application quickly.

Similarly, SOA provides combination and integration function as well, but it pro-
vides the function in the background of Web. Multi-tenancy is a technology that
supports multi tenancies and customers in the same operating environment. It can
significantly reduce resource consumptions and cost for every customer.

The following Table 2.1 shows the different technologies used in different cloud
computing service types.

Table 2.1 IaaS, PaaS and SaaS

Service type IaaS PaaS SaaS

Service category VM Rental, Online
Storage

Online Operating
Environment,
Online Database,
Online Message
Queue

Application and
Software Rental

Service Customization Server Template Logic Resource
Template

Application Template

Service Provisioning Automation Automation Automation
Service accessing and

Using
Remote Console,

Web 2.0
Online Development

and Debugging,
Integration of
Offline
Development Tools
and Cloud

Web 2.0

Service monitoring Physical Resource
Monitoring

Logic Resource
Monitoring

Application
Monitoring

Service level
management

Dynamic
Orchestration of
Physical Resources

Dynamic
Orchestration of
Logic Resources

Dynamic
Orchestration of
Application

Service resource
optimization

Network
Virtualization,
Server
Virtualization,
Storage
Virtualization

Large-scale
Distributed File
System, Database,
Middleware etc

Multi-tenancy

Service measurement Physical Resource
Metering

Logic Resource Usage
Metering

Business Resource
Usage Metering

Service integration
and combination

Load Balance SOA SOA, Mashup

Service security Storage Encryption
and Isolation,
VM Isolation,
VLAN, SSL/SSH

Data Isolation,
Operating
Environment
Isolation,
SSL

Data Isolation,
Operating
Environment
Isolation, SSL, Web
Authentication and
Authorization

24 J. Zhu

Transform any IT capability into a service may be an appealing idea, but to real-
ize it, integration of the IT stack needs to happen. To sum up, key technologies used
in cloud computing are: automation, virtualization, dynamic orchestration, online
development, large-scale distributed application operating environment, Web 2.0,
Mashup, SOA and multi-tenancy etc. Most of these technologies have matured in
recent years to enable the emergence of Cloud Computing in real applications.

2.2 Cloud Computing Security

One of the biggest user concerns about Cloud Computing is its security, as nat-
urally with any emerging Internet technology. In the enterprise data centers and
Internet Data Centers (IDC), service providers offer racks and networks only, and
the remaining devices have to be prepared by users themselves, including servers,
firewalls, software, storage devices etc. While a complex task for the end user, he
does have a clear overview of the architecture and the system, thus placing the
design of data security under his control. Some users use physical isolation (such as
iron cages) to protect their servers. Under cloud computing, the backend resource
and management architecture of the service is invisible for users (and thus the word
“Cloud” to describe an entity far removed from our physical reach). Without physi-
cal control and access, the users would naturally question the security of the system.

A comparable analogy to data security in a Cloud is in financial institutions where
a customer deposits his cash bills into an account with a bank and thus no longer
have a physical asset in his possession. He will rely on the technology and financial
integrity of the bank to protect his now virtual asset. Similarly we’ll expect to see a
progression in the acceptance of placing data in physical locations out of our reach
but with a trusted provider.

To establish that trust with the end users of Cloud, the architects of Cloud com-
puting solutions do indeed designed rationally to protect data security among end
users, and between end users and service providers.

From the point of view of the technology, the security of user data can be reflected
in the following rules of implementation:

1. The privacy of user storage data. User storage data cannot be viewed or changed
by other people (including the operator).

2. The user data privacy at runtime. User data cannot be viewed or changed by other
people at runtime (loaded to system memory).

3. The privacy when transferring user data through network. It includes the security
of transferring data in cloud computing center intranet and internet. It cannot be
viewed or changed by other people.

4. Authentication and authorization needed for users to access their data. Users can
access their data through the right way and can authorize other users to access.

To ensure security, cloud computing services can use corresponding technologies
shown in the Table 2.2 below:

2 Cloud Computing Technologies and Applications 25

Table 2.2 Recommendations to operators and users on cloud security

To Other Users To Operators

The privacy of user storage data SAN network zoning, mapping
Clean up disks after callback
File system authentication

Bare device encryption,
file system encryption

The privacy of user data at
runtime

VM isolation, OS isolation OS isolation

The privacy when transferring
user data through network

SSL, VLAN, VPN SSL, VPN

Authentication and authorization
needed for users to access their
data

Firewall,
VPN authentication,
OS authentication

VPN authentication,
OS authentication

In addition to the technology solutions, business and legal guidelines can be
employed to enforce data security, with terms and conditions to ensure user rights
to financial compensation in case of breached security.

2.3 Cloud Computing Model Application Methodology

Cloud computing is a new model for providing business and IT services. The service
delivery model is based on future development consideration while meeting cur-
rent development requirements. The three levels of cloud computing service (IaaS,
PaaS and SaaS) cover a huge range of services. Besides computing and the ser-
vice delivery model of storage infrastructure, various models such as data, software
application, programming model etc. can also be applicable to cloud computing.
More importantly, the cloud computing model involves all aspects of enterprise
transformation in its evolution, so technology architecture is only a part of it,
and multi-aspect development such as organization, processes and different busi-
ness models should also be under consideration. Based on standard architecture
methodology with best practices of cloud computing, a Cloud Model Application
Methodology can be used to guide industry customer analysis and solve potential
problems and risks emerged during the evolution from current computing model
to cloud computing model. This methodology can also be used to instruct the
investment and decision making analysis of cloud computing model, determine the
process, standard, interface and public service of IT assets deployment and manage-
ment to promote business development. The diagram below shows the overall status
of this methodology (Fig. 2.1).

2.3.1 Cloud Computing Strategy Planning Phase

Cloud strategy contains two steps to ensure a comprehensive analysis for the strat-
egy problems that customers might face when applying cloud computing mode.
Based on Cloud Computing Value Analysis, these two steps will analyze the model

26 J. Zhu

IBM Cloud Computing Blueprint Model

Strategy Phase
Planning Phase Deployment Phase

Cloud Industries Best Practices

Governance, QoS, Change ManagementGovernance, QoS, Change Management

Cloud Value
Proposition

Cloud
Strategy

Quality of
Service

Transformation
Planning

Business
Architecture

IT
Architecture

Cloud
Provider/Enabler

chosen
MA

Fig. 2.1 Cloud computing methodology overview

condition needed to achieve customers’ target, and then will establish a strategy to
function as the guideline.

(1) Cloud Computing Value Proposition
The target of this step is to analyze the specific business value and possi-
ble combination point between cloud computing mode and specific users by
leveraging the analysis of cloud computing users’ requirement model and con-
sidering the best practices of cloud computing industry. Analyze the key factors
that might influence customers to apply cloud computing mode and make sug-
gestions on the best customer application methods. In this analysis, we need
to identify the main target for customer to apply cloud computing mode, and
the key problems they wish to solve. Take some common targets as exam-
ples: IT management simplification, operation and maintenance cost reduction;
business mode innovation; low cost out-sourcing hosting; high service quality
out-sourcing hosting etc.

The analysis result will be provided to support decision-making level to
make condition assessments and strategy for future development and prepare for
the strategy establishment and organization of the following cloud computing.

(2) Cloud Computing Strategy Planning
This step is the most important part of strategy phase. Strategy establishment
is based on the analysis result of the value step, and aims to establish the
strategy documentation according to the good understanding of various con-
ditions that customers might face when applying cloud computing mode to plan
for future vision and perspective. Professional analysis made by the method
above typically involves broad customer business model research, organiza-
tion structure analysis and operation process identification; also, there are some
non-functional requirement and limitation in the plan, such as the concern for
security standard, reliability requirement and rules and regulations.

2 Cloud Computing Technologies and Applications 27

2.3.2 Cloud Computing Tactics Planning Phase

At the phase of cloud planning, it is necessary to make a detailed investigation on
customer position and to analyze the problems and risks in cloud application both at
present and in the future. After that, concrete approaches and plans can be drawn to
ensure that customers can use cloud computing successfully to reach their business
goals. This phase includes some practicable planning steps in multiple orders listed
as follows,

(1) Business Architecture Development
While capturing the organizational structures of enterprises, the business mod-
els also get the information on business process support. As various business
processes and relative networks in enterprise architecture are being set down
one after another, gains and losses brought by relative paths in the business
development process will also come into people’s understanding. We catego-
rize these to business interests and possible risks brought by cloud computing
application from a business perspective.

(2) IT Architecture Development
It is necessary to identify the major applications needed to support enterprises
business processes and the key technologies needed to support enterprise appli-
cations and data systems. Besides, cloud computing maturity models should be
introduced and the analysis of technological reference models should be made,
so as to provide help, advices and strategy guide for the design and realization
of cloud computing mode in the enterprise architecture.

(3) Requirements on Quality of Service Development
Compared with other computing modes, the most distinguishing feature of
cloud computing mode is that the requirements on quality of service (also called
non-functional needs) should be rigorously defined beforehand, for example,
the performance, reliability, security, disaster recovery, etc. This requirement is
a key factor in deciding whether a cloud computing mode application is suc-
cessful or not and whether the business goal is reached; it is also an important
standard in measuring the quality of cloud computing service or the competence
in establishing a cloud computing center.

(4) Transformation Plan Development
It is necessary to formulate all kinds of plans needed in the transformation from
current business systems to the cloud computing modes, including the general
steps, scheduling, quality guarantee, etc. Usually, an infrastructure service cloud
cover different items such as infrastructure consolidation plan report, oper-
ation and maintenance management system plan, management process plan,
application system transformation plan, etc.

2.3.3 Cloud Computing Deployment Phase

The deployment phase focuses mainly on the programming of both strategy
realization phase and the planning phases. Two steps are emphasized in this phase:

28 J. Zhu

(1) Cloud Computing Provider or Enabler Chosen
According to the past analysis and programming, customers may have to choose
a cloud computing provider or an enabler. It is most important to know that
the requirement on service level agreement (SLA) is still a deciding factor for
providers in winning a project.

(2) Maintenance and Technical Service
As for maintenance and technical service, different levels of standards are
adopted; these standards are defined by the requirement on quality of services
made beforehand. Cloud computing providers or builders have to ensure the
quality of services, for example, the security of customers in service operation
and the reliability of services.

2.4 Cloud Computing in Development/Test

Economic crises can bring with enterprise unprecedented business challenges and
more competitions for the same markets. To address these challenges, enterprises
have to optimize and update their business operations. At this critical moment, only
by offering agile operating systems to end users can enterprises turn the crisis into
opportunities and promote better development.

Years of IT development has closely linked IT with the business systems, and
operation and maintenance systems of enterprises. To a large extent, the optimiza-
tion and updating of business is indeed that of the IT system, which requires
enterprises to keep innovating in business system. As a result, how to develop new IT
systems quickly while doing rigorous tests to provide stable and trustworthy services
for customers have become the key to enterprise development. Thus, the develop-
ment testing centers have become the engines of enterprises growth and how to keep
the engines operating in a quick and effective way has become a major concern for
enterprise CIOs.

As the importance of development centers in companies grows, there will be
more and more projects, equipments and staff in these centers. How to establish
a smart development center has become many people’s concern. As the latest IT
breakthrough, how will cloud computing help to transform development test centers
and bring competitive advantages to enterprises? We want to illustrate this problem
through the following case:

Director A is the manager of an information center and he is now in charge
of all development projects. Recently, he is thinking about how to best optimize
his development and testing environment. After investigation, he concludes that the
requirements of the new test center are as follows:

• Reducing the investment on hardware
• Providing environment quickly for new development testing projects
• Reusing equipments
• Ensuring project information security

2 Cloud Computing Technologies and Applications 29

Based on A’s requirement analysis, he can use Cloud Computing solutions to
establish a cloud-computing-based test development center for his company.

• Reducing the cost

In traditional test development systems, companies would set up an environment
for each test and development project. Different test systems may have different
functions, performances, or stabilities and thus software and hardware configura-
tions will vary accordingly. However, in a cloud test development platform, all the
servers, memories and networks needed in test development are pooling-managed;
and through the technology of virtualization, each test or development project is
provided with a logical hardware platform.

The virtual hardware platforms of multiple projects can share the same set
of hardware resources, thus through integrating the development test project, the
hardware investment will be greatly reduced.

• Providing environment for new projects

Cloud can automatically provide end users with IT resources, which include com-
puting resources, operating system platforms and application software. All of these
are realized through the automation module of Cloud.

Automation of computing resources: In the Cloud service interface, when end
users input the computing resources (processor, storage and memory) needed
according to the requirements of the application system, the Cloud platform will
dynamically pick out the resources in the corresponding resource pool and prepare
for the installation of the system platform.

Automation of system platforms: When the computing resources allocation is fin-
ished, the automation of system platforms will help you to install the system with the
computing resources on the base of the chosen system platform (windows, Linux,
AIX, etc.) dynamically and automatically. It can concurrently install operation sys-
tem platforms for all computers in need and customize an operation system with
customization parameters and system service for customers. Moreover, the users,
networks and systems can all be set automatically.

Automation of application software: The software of enterprises would be
controlled completely. The software distribution module can help you to deploy
complex mission-critical applications from one center spot to multiple places
quickly and effectively.

Through automation, Cloud can provide environment for new development test
projects and accelerate the process of development tests.

• Reusing equipments

Cloud has provided a resource management process based on development life
cycles test. The process covers many operations such as computing resource estab-
lishment, modification, release and reservation. When the test development projects

30 J. Zhu

are suspended or completed, Cloud Platform can make a back-up of the existing
test environment and release the computing resources, thereby realizing the reuse of
computing resources.

• Ensuring project information security

The cloud computing platform has provided perfect means to ensure the security
and isolation of each project. There are two ways for users to access the system:
accessing the Web management interface or accessing the project virtual machine.
To access a Web interface, one needs a user ID and a password. To control a virtual
machine access, the following methods can be adopted:

• User authentication is conducted through the VPN equipment in the external
interface of the system.

• Each project has one and only a Vlan, and the virtual machine of each project
is located inside the Vlan. The switches and the hypervisors in the hosts can
guarantee the isolation of the Vlan.

• The isolation of virtual machine is guaranteed by virtual engine itself.
• Besides, user authentication of the operation systems can also protect user

information.

Vlan is created dynamically along with the establishment of the project. Unicast
or broadcast messages can be sent among project virtual machines or between the
virtual machine and the workstation of the project members. Virtual machines of
different projects are isolated from each other, thereby guaranteeing the security of
project data. A user can get involved in several projects and meanwhile visit several
virtual machines of different projects.

The new generation of intelligent development test platforms needs the support
of intelligent IT infrastructure platforms. By establishing intelligent development
test platforms through cloud computing, a new IT resource supply mode can be
formed. Under this mode, the test development center can automatically manage
and dynamically distribute, deploy, configure, reconfigure and recycle IT resources
based on the requirements of different projects; besides, it can also install software
and application systems automatically. When projects are over, the test development
center can recycle the resources automatically, thereby making the best use of the
computing capabilities.

2.5 Cloud-Based High Performance Computing Clusters

In the development history of information science from the last half a century, High
Performance Computing (HPC) has always been a leading technology at the time.
It has become a major tool for future innovations of both theoretical and research
science. As new cross-disciplines combining traditional subjects and HPC emerge

2 Cloud Computing Technologies and Applications 31

in the areas of computational chemistry, computational physics and bioinformatics,
computing technology need to take a leap forward as well to meet the demands of
these new research topics.

With the current financial crisis, how to provide higher computing performance
with less resource input has become a big challenge for the HPC centers. In the
construction of a new generation of computing center with high performance, we
should not only pay attention to the choice of software and hardware, but also take
fully account of the center operation, utilization efficiency, technological innova-
tion cooperation and other factors. The rationality of the general framework and
the effectiveness of resource management should also be fully considered. Only by
doing these can the center gain long-term high-performance capacity in computing
research and supply.

In other words, the new generation of high-performance computing center
does not only provide traditional high-performance computing, nor it is only a
high-performance equipment solution. The management of resources, users and vir-
tualization, the dynamic resource generation and recycling should also be taken into
account. In this way, the high-performance computing based on cloud computing
technology is born.

The cloud computing-based high-performance computing center aims to solve
the following problems:

• High-performance computing platform generated dynamically
• Virtualized computing resources
• High-performance computer management technology combined with tradi-

tion ones
• High-performance computing platform generated dynamically

In traditional high-performance computing environment, physical equipments
are configured to meet the demands of customers; for example, Beowulf Linux and
WCCS Architecture are chosen to satisfy customers’ requirements on computing
resources. All of the operation systems and parallel environment are set beforehand,
and cluster management software is used to manage the computing environment.
However, as high-performance computing develops, there are more and more end
users and application software; thus, the requirements on the computing platform
become more diverse. Different end users and application software may require dif-
ferent operation systems and parallel environment. High-performance computing
requires a new way of resource supply, in which the platform should be dynami-
cally generated according to the needs of every end user and application software;
the platform can be open, including Linux, Windows or UNIX.

• Virtualized computing resources

Since few virtualized architecture are used in traditional high-performance com-
puting, this kind of platform cannot manage virtualized resources. However, as
high-performance computing develops, in many cases we need to attain more

32 J. Zhu

virtualized resources through virtualization, for example, the development and
debugging of parallel software, and the support for more customer application etc.

In the cloud computing-based high-performance computing center, the virtual-
ization of physical resources can be realized through the Cloud platform; moreover,
virtualized resources can be used to establish high-performance computing platform
and generate high-performance computing environment whose scale is larger than
that of the actual physical resource so as to meet the requirements of customers.

• Combination with traditional management technology

The cloud computing-based high-performance computing platform can not only
manage computers though the virtualization and dynamic generation technology,
but also work together with traditional cluster and operation management soft-
ware in enabling users to manage the virtualized high-performance computers in
a traditional way, and submit their own works.

A new IT resources provision model can be attained by the adoption of cloud
computing infrastructure and high-performance computing center construction. In
this model, the computing center can automatically manage and dynamically dis-
tribute, deploy, configure, reconfigure and recycle the resources. The automatic
installation of software and application can be realized, too. By use of the model,
the high-performance computing resources can be distributed efficiently and dynam-
ically. When the project is finished, the computing center can automatically recycle
the resources to make full use of the computing power. Taking advantage of cloud
computing, the high-performance computing center can not only provide high calcu-
lating power for scientific research institutions, but also expand the service content
of computing center. In other words, it can serve as a data center to support other
applications and promote higher utilization efficiency of entire resources.

2.6 Use Cases of Cloud Computing

2.6.1 Case Study: Cloud as Infrastructure for an Internet
Data Center (IDC)

In the 1990’s, Internet portals spent huge amount of investment to attract eyeballs.
Rather than profits and losses, their market valuation were based on the number
of unique “hits” or visitors. This strategy proved to work out well as these portals
begin to offer advertisement opportunities targeting their installed user base, as well
as new paid services to the end user, thereby increasing revenue per capita in a
theoretically infinite growth curve.

Similarly Internet Data Centers (IDC) have become a strategic initiative for
Cloud service providers to attract users. With a critical mass of users consuming
computing resources and applications, an IDC would become a portal attracting
more applications and more users in a positive cycle.

2 Cloud Computing Technologies and Applications 33

The development of the next generation of IDC hinges on two key factors. The
first is the growth of Internet. By the end of June 2008, for example, Internet users
in China totaled 253 million and the annual growth rate is as high as 56.2%.1

As a result, the requirement on Internet storage and traffic capacity grows, which
means Internet operators have to provide more storage and servers to meet users’
needs. The second is the development of mobile communication. By the end of
2008, the number of mobile phone users in China has amounted to 4 billion. The
development of mobile communication drives server-based computing and storage,
which enables users to access to the data and computing services needed via Internet
through lightweight clients.

In the time of dramatic Internet and mobile communication expansion, how can
we build new IDC with core competency? Cloud computing provides an innovative
business model for data centers, and thereby can help telecom operators to pro-
mote business innovation and higher service capabilities against the backdrop of the
whole business integration of fixed and mobile networks.

2.6.1.1 The Bottleneck on IDC Development

Products and services offered by a traditional IDC are highly homogenized. In
almost of all the

IDC’s, basic collocation services account for majority of the revenue, while
value-added services add only a small part of it. For example, in one of the IDC’s of
a telecom operator, the hosting service claims 90% of its revenue, while value-added
service takes only 10%. This makes it impossible to meet customers’ requirements
on load balance, disaster recovery, data flow analysis, resource utilization analysis,
and etc.

The energy utilization is low, but the operation costs are very high. According to
CCID research statistics,2 the energy costs of IDC enterprises make up about 50%
of their operating costs and more servers will lead to an exponential increase in the
corresponding power consumption.3 With the increase of the number of Internet
users and enterprise IT transformation, IDC enterprises will have to face a sharp
increase in power consumption as their businesses grow. If effective solutions are
not taken immediately, the high costs will undermine the sustained development of
these enterprises.

Besides, as online games and Web 2.0 sites become increasingly popular, all
types of content including audio, videos, images and games will need a massive
storage and relevant servers to support transmission. This will result in a steady
increase in enterprises’ requirements for IDC services, and higher standards on the
utilization efficiency of resources in data centers as well as the service level.

1www.ibm.com/cloud
2blog.irvingwb.com/blog/2008/07/what-is-cloud-c.html
3Source: CCIDConsulting, 2008–2009 China IDC Market Research Annual Report

34 J. Zhu

Under the full service operation model emerged after the restructuring of telecom
operators, the market competition becomes more and more fierce. The consolidation
of fixed network and mobile services imposes higher requirements on telecom IDC
operators as they have to introduce new services to meet market demands in time.

2.6.1.2 Cloud Computing Provides IDC with a New Infrastructure Solution

Cloud computing provides IDC with a solution that takes into consideration of
both future development strategies and the current requirement for development.
Cloud computing builds up a resource service management system where physi-
cal resources is on the input, and the output is the virtual resources on right time
and with the right volume and right quality. Thanks to the virtualization technology,
the resources of IDC centers including servers, storage and networks are put into a
huge resource pool by cloud computing. With cloud computing management plat-
form, administrators are able to dynamically monitor, schedule and deploy all the
resources in the pool and provide them for the users via network. A unified resource
management platform can lead to higher efficiency of IDC operation and sched-
ule efficiency and utilization of the resources in the center and lower management
complexity. The automatic resource deployment and software installation help to
guarantee the timely introduction of new services and can lower the time-to-market.
Customers can use the resources in data centers by renting based on their business
needs. Besides, as required by business development needs, they are allowed to
adjust the resources that they rent timely, and pay fees according to resource usage.
This kind of flexible charging mode makes IDC more appealing. The management
through a unified platform is also helpful to IDC expansion. When an IDC operator
needs to add resources, new resources can be added to the existing cloud computing
management platform to be managed and deployed uniformly.

Cloud computing will make it an unceasing process to upgrade software and add
new functions and services, which can be done through intelligent monitoring and
automatic installation program instead of manual operation.

According to the Long Tail Theory, cloud computing builds infrastructures based
on the scale of market head, and provides marginal management costs that are nearly
zero in market tail as well as a plug-and-play technological infrastructure. It man-
ages to meet diversified requirements with variable costs. In this way, the effect of
the Long Tail is realized to keep a small-volume production of various items and by
the use of innovative IT technology, and it sets up a market economy model which
is open to competition and favorable to the survival of the fittest.

2.6.1.3 The Value of Cloud Computing for IDC Service Providers

First of all, based on cloud computing technology, IDC is flexible and scalable, and
can realize the effect of Long Tail at a relatively low cost. The cloud computing
platform is able to develop and launch new products at a low marginal cost of man-
agement. Therefore, startup costs of new business can be reduced to nearly zero, and

2 Cloud Computing Technologies and Applications 35

the resources would not be limited to a single kind of products or services. So under
a specified investment scope, the operators can greatly expand products lines, and
meet the needs of different services through the automatic scheduling of resources,
thereby making a best use of the Long Tail.

Secondly, the cloud computing dynamic infrastructure is able to deploy resources
in a flexible way to meet business needs at peak times. For example, during the
Olympics, the websites related to the competitions are flooded with visitors. To
address this problem, the cloud computing technology would deploy other idle
resources provisionally to support the requirements on resources at the peak hours.
The United States Olympic Committee has applied the cloud computing technolo-
gies provided by AT&T to support competitions viewing during Olympics. Besides,
SMS and telephone calls on holidays, as well as the application and inquiry days for
examinations also witness the requirements for resources at the peak.

Thirdly, cloud computing improves the return on investment for IDC service
providers. By improving the utilization and management efficiency of resources,
cloud computing technologies can reduce computing resources, power consump-
tion, and human resource costs. Additionally, it can lead to shorter time-to-market
for a new service, thereby helping IDC service providers to occupy the market.

Cloud computing also provides an innovative charging mode. IDC service
providers charge users based on the resource renting conditions and users only have
to pay for what they use. This makes the payment charging more transparent and
can attract more customers (Table 2.3).

2.6.1.4 The Value Brought by Cloud Computing for IDC Users

First, initial investments and operating costs can be lowered, and risks can be
reduced. There is no need for IDC users to make initial investments in hardware

Table 2.3 Value comparison on co-location, physical server renting and IaaS for providers

Co-location
Physical server
renting IaaS with cloud computing

Profit margin Low.
Intense
competition

Low.
Intense
competition

High.
Cost saving by resource
sharing

Value add service Very few Few Rich, such as IT service
management, software
renting, etc

Operation Manual operation.
Complex

Manual operation.
Complex

Automatic and integrated
operation. End to end
request management

Response to
customer
request

Manual action. Slow Manual action. Slow Automatic process. Fast

Power
consumption

Normal Normal Reduce power by server
consolidation and sharing.
Scheduled power off

36 J. Zhu

and expensive software licenses. Instead, users only have to rent necessary hard-
ware and software resources based on their actual needs, and pay according to usage
conditions. In the era of enterprise informatization, more and more subject matter
experts have begun to establish their own websites and information systems. Cloud
computing can help these enterprises to realize informatization with relatively less
investment and fewer IT professionals.

Secondly, an automatic, streamlined and unified service management platform
can rapidly meet customers’ increased requirements for resources, and can enable
them to acquire the resources in time. In this way customers can become more
responsive to market requirements and enhance business innovation.

Thirdly, IDC users are able to access more value-added services and achieve
faster requirement response. Through the IDC cloud computing unified service
delivery platform, the customers are allowed to put forward personalized require-
ments and enjoy various kinds of value-added services. And their requirements
would get a quick response, too (Table 2.4).

2.6.1.5 Cloud Computing Can Make Fixed Costs Variable

An IDC can provide 24∗7 hosting services for individuals and businesses. Besides
traditional hosting service, these clients also need the cloud to provide more applica-
tions and services. In so doing, enterprises are able to gain absolute control on their
own computing environment. Furthermore, when necessary, they can also purchase
online the applications and services that are needed quickly at any time, as well as
adjust the rental scale timely.

Table 2.4 Value comparison on co-location, physical server renting and IaaS for users

Co-location Physical server renting IAAS using Cloud

Performance Depend on hardware Depend on hardware Guaranteed
performance

Price Server investment plus
bandwidth and space
fee

Bandwidth and server
renting fee

CPU, memory, storage,
bandwidth fee. Pay
per use

Availability Depend on single
hardware

Depend on single
hardware

High available by
hardware failover

Scalability Manual scale out Manual scale out Automated scale out
System

management
Manual hardware setup

and configuration.
Complex

Manual hardware setup
and configuration.
Complex

Automated OS and
software installation.
Remote monitoring
and control. Simple

Staff High labor cost and skill
requirement

High labor cost and skill
requirement

Low labor cost and skill
requirement

Usability Need on site operation Need on site operation All work is done
through Web UI.
Quick action

2 Cloud Computing Technologies and Applications 37

2.6.1.6 An IDC Cloud Example

In one example, an IDC in Europe serves industry customers in four neighboring
countries, which covers sports, government, finance, automobile and the healthcare.

This IDC attaches great importance to cloud computing technology in the hope
of establishing a data center that is flexible, demand-driven and responsive. It has
decided to work with cloud computing technology to establish several cross-Europe
cloud centers. The first five data centers are connected by virtual SAN and the lat-
est MPLS technology. Moreover, the center complies with the ISO27001 security
standard, and other security functions that are needed by the banks and government
organizations, including auditing function provided by certified partners, are also
realized (Fig. 2.2).

Server Network Storage

Consolidated IDC fabric

Virtual infrastructure

Storage
Network

Servers

Enterprise customer
ISV and development community

Extend enterprise data center

Isolation

Easy access to resource

Cloud Computing

Software

Storage
Network

Servers Software

Virtual infrastructure

Fig. 2.2 IDC cloud

The IDC uses the main Data Center to serve customers in its sister sites. The
new cloud computing center will enable this IDC to pay for fixed or usage-based
changeable services according to credit card bill. In the future, the management
scope of this hosting center expand to even more data centers in Europe.

2.6.1.7 The Influence of Cloud Computing in 3G Era

Ever since 3G services are launched by the major communication operators, the sim-
ple voice and information service can no longer meet the growing requirements of
users. The 3G data services have become the focus of competition among operators.
Many operators have introduced some specialized services. And with the growth of
3G clients and the expansion and improvement of 3G networks, operators have to

38 J. Zhu

provide more diversified 3G services to survive in the fierce market competition.
Cloud can be used as a platform to provide such value added services.

In this 3G era, mobile TV, mobile securities and data backup will all become
critical businesses. Huge amounts of videos, images, and documents are to be stored
in data centers so that users can download and view them at any time, and they can
promote interaction. Cloud computing can effectively support this kind of business
requirements, and get maximal storage with limited resources. Besides, it can also
search and provide the resources that are needed to users promptly to meet their
needs.

After the restructuring of operators, the businesses of leading service providers
will all cover fixed network and mobile service, and they may have to face up to
fierce competition in 3G market. Cloud computing can support unified monitoring
and dynamic deployment of resources. So, during the business consolidation of the
operators, the cloud computing platform can deploy necessary resources in time to
support business development, and respond quickly to market requirements to help
operators to gain larger market share.

The 3G-enabled high bandwidth makes it easier and quicker to surf Internet
through mobile phones and it has become a critical application of 3G technolo-
gies. Cloud computing makes it compatible among different equipments, software
and networks, so that the customers can access the resources in the cloud through
any kinds of clients.

2.6.2 Case Study – Cloud Computing for Software Parks

The traditional manufacturing industry has helped to maintain economic growth
in previous generations, but it has also brought along a host of problems such as
labor market deterioration, huge consumption of energy resources, environmental
pollution, and ever-more drive towards lower cost. As an emerging economy begins
its social transformation, software outsourcing has gained an edge compared with
traditional manufacturing industry: on one hand, it can attract and develop top-level
talent to enhance the technical level and competitive power of a nation; on the other
hand, it can also prompt the smooth structural transformation to a sustainable and
green service industry, thereby ensuring continuous prosperity and endurance even
in difficult times.

As such, software outsourcing has become a main business line for many emerg-
ing economies to ramp up their service economy, based on economies of scale and
affordable costs. To reach this goal, software firms in these emerging economies
need to conform their products and services to international standards and absorb
experiences from developed nations to enhance the quality of their outsourcing
services. More importantly, good policy support from the government and nec-
essary infrastructures are critical components in the durability of these software
outsourcing firms.

The IT infrastructure is surely indispensable for software outsourcing and soft-
ware businesses. To ensure the success of software outsourcing, there are two

2 Cloud Computing Technologies and Applications 39

prerequisites: a certification standard of software management which is of inter-
national level (such as CMM Level 5), and an advanced software designing,
programming and testing pipeline, namely the software development platform of
data center. The traditional data center only put together all the hardware devices of
the enterprise, leading to the monopolization of some devices by a certain project
or business unit. This would create huge disparity within the system and can’t guar-
antee the quality of applications and development. Besides, it would result in cost
increase and unnecessary spending and in the long term undermine the enterprise’s
competitive power in the international market of software outsourcing. Furthermore,
when a new project is put on the agenda, it would take a long time to prepare for
and address the bottleneck of the project caused by the traditional IT equipments.

To pull the software enterprises out of this dilemma, IBM firstly developed
a brand-new management mode for software developing environment: the man-
agement and development platform of “cloud computing”. The platform was
constructed with the aid of the accumulated experience of IBM itself in the field
of software outsourcing service and data center management. The valuable experi-
ence from the long-term cooperation with other software outsourcing powers is also
taken into consideration. This platform is a new generation of data center manage-
ment platform. Compared with traditional data center, it has outstanding technical
advantages.

Below is the schematic diagram of the relationship between Cloud Computing
platform and software outsourcing ecosystems (Fig. 2.3):

Firstly, the platform can directly serve as a data service center for software out-
sourcing companies in the Software Park and neighboring enterprises. As soon as
a software outsourcing order is accepted, the company can turn to the manage-
ment and development platform of “cloud computing” to look for IT resources
suitable for use, the process of which is as simple and convenient as booking
hotel via Internet. Besides, by relying on IBM’s advanced technology, the cloud
computing platform is able to promote unified administrative standard to ensure
the confidentiality, security, stability and expandability of the platform. That is to

Telco
Financial
Services
Sector

Public
Sector

Virtualized Cloud Infrastructure

Software Development
and Test Platform

Digital
M & E

Fig. 2.3 Cloud computing platform and software outsourcing ecosystems

40 J. Zhu

say, thanks to its brand effect, the platform developed by the software demon-
stration plot is up to international advanced level, and could thereby enhance
the service level of software outsourcing in the entire park. The final aim is
to measure up to international standards and to meet the needs of international
and Chinese enterprises. Meanwhile, a platform of unified standard can lower IT
maintenance costs and raise the response speed for requirements, making possi-
ble the sustainable development of the Software Park. Lastly, the management and
development platform of cloud computing can directly support all kinds of appli-
cations and provide enterprise users with various services including outsourcing
and commercial services as well as services related to academic and scientific
researches.

The following are the benefits brought to the outsourcing services companies
and outsourcing demonstration plot of Wuxi government by the management and
development platform of cloud computing:

(1) For outsourcing service companies which apply cloud computing platform:

• An advanced platform with unified standard is provided and the quality is
guaranteed;

• IT management becomes easier and the costs of developing products is
greatly lowered;

• Response speed for business demand is enhanced and expandability
is ensured;

• Existing applications and newly-emerged data-intensive applications are
supported;

• Miscellaneous functions for expediting the speed of innovation is also
provided for outsourcing service companies, colleges and universities and
research institutes.

(2) Below are the advantages brought to the outsourcing demonstration plot of
Wuxi government through the application of cloud computing platform:

• The government can transform from a supervision mode to a service mode
which is in favor of attracting investments;

• It is conducive to environmental protection and the build-up of a harmonious
society;

• It can support the development of innovative enterprises and venture compa-
nies.

Detailed information about the major functions and technical architectures of
the management and development platform of Cloud Computing is introduced as
below:

2 Cloud Computing Technologies and Applications 41

2.6.2.1 Cloud Computing Architecture

The management and development platform of Cloud Computing is mainly
composed of two functional sub-platforms: outsourcing software research and
development platform and operation management platform.

• Outsourcing software research and development platform: an end-to-end soft-
ware development platform is provided for the outsourcing service companies in
the park. In terms of functions, the platform generally covers the entire software
developing lifecycle including requirement, designing, developing and testing
of the software. It helps the outsourcing service companies in establishing a
software developing procedure that is effective and operable.

• Operation management platform: according to the outsourcing service company’s
actual demand in building the research and development platform, as well as the
practical situation of the software and hardware resources distribution in data cen-
ter, the platform provides automatic provisioning services on demand of software
and hardware resources. Also, management on resources distribution is based on
different processes, posts and roles and resource utilization report will also be
provided.

Through the cooperative effect of the two platforms mentioned above, the man-
agement and development platform of “cloud computing” could fully exert its
advantage. The construction of outsourcing software research and development
platform can be customized according to different project needs (e.g., games devel-
opment platform, e-business development platform, etc), which can show the best
practices of IBM’s outsourcing software development services. And the operation
management platform can provide supporting functions such as management on
the prior platform, as well as operation and maintenance, and rapid configuration.
It is also significant in that it can reduce the workload and costs of operation and
management. Unlike the handmade software research and development platform,
it is both time-saving and labor-saving, and it is not that easy to make mistakes
in it.

2.6.2.2 Outsourcing Software Research and Development Platform

The outsourcing software research and development at the enterprise level have to
put an emphasis on the cooperation and speed of software development. It man-
ages to combine the software implantation with verification, so as to ensure the high
quality of software and shorten the period of development. The program is targeted
at and suitable for different types of outsourcing research and development compa-
nies with a demand for code development cooperation and document management.
The detailed designing of the program varies according to different enterprise needs
(Fig. 2.4).

42 J. Zhu

Fig. 2.4 Software outsourcing services platform

As can be seen in the chart, the primary construction of the outsourcing software
research and development platform consists of the construction of 4 sub-platforms:

• Requirement architecture management platform
• Quality assurance management platform
• Quality assurance management supporting platform
• Configuration and changes management platform

The integrated construction and operation of these four sub-platforms cover the
entire developing lifecycle of requirement, designing, developing and testing of the
software. They are customer-oriented and are featured by high quality, and good
awareness of quality prevention. With the help of these four sub-platforms, the out-
sourcing service companies can manage to establish a software development process
with high efficiency and operability.

2.6.3 Case Study – an Enterprise with Multiple Data Centers

Along with China’s rapid economic growth, the business of one state-owned
enterprise is also gearing up for fast expansion. Correspondingly, the group has
increasingly higher demand for the supporting IT environment. How can the group
achieve maximum return on its IT investment? For the IT department, on one hand
is repetitive and time-consuming work of system operation and management; while
there is an increasingly higher demand from the managers to support the company’s

2 Cloud Computing Technologies and Applications 43

business and raise its competitive power and promote business transformation.
Faced with this problem, this enterprise is now searching for solutions in Cloud
Computing.

Enterprise Resources Plan (ERP) plays an important role as supporting the entire
business in the company. The existing EAR system is not able to apply automatic
technology. Repeated, manual work accounts for the majority of the system main-
tenance operation, which leads to lower efficiency and higher pressure on the IT
system maintenance operation. Meanwhile, on the technical level, it lacks of tech-
nology platform to perform the distribution, deployment, as well as state control and
recycle of system resources. As a result, the corresponding information resources
management is performed through traditional manual work, which is in contradic-
tion with the entire information strategy of the company. The specifics are listed as
below:

• The contradiction between the increasing IT resources and limited human
resources

• The contradiction between automatic technology and traditional manual work
• The effectiveness and persistence of resources information (including configura-

tion information)

The company has invested a lot in information technology. It has not only con-
structed the ERP system for the management and control of enterprise production,
but also upgraded the platform, updated host computer and improved IT manage-
ment in infrastructure. In a word, the SAP system is of great significance in the IT
system of Sinochem Group.

The implementation of Cloud Computing platform has helped to solve the
problems faced by the IT department in this company.

2.6.3.1 Overall Design of the Cloud Computing Platform in an Enterprise

The Cloud Computing Platform mainly is related to three discrete environments of
the company’s data centers: the training, development/test and the disaster recovery
environment. These systems involved in cloud computing are respectively located
in Data Center A, Datacenter B and the disaster center in Data Center C. It shows
the benefits of Cloud Computing virtualization crossing physical sites. See the
following Fig. 2.5:

Combined with the technical characteristics of the Cloud Computing plat-
form and the application characteristics of the ERP system in the company, the
construction project has provided the following functions:

• The installation and deployment of the five production systems of ERP
• The automatic deployment of hardware: logical partition and distribution of

hardware resources.
• The installation and recovery of the centralized AIX operating system
• Display of system resource usage: CPU/memory/disk usage.

44 J. Zhu

ERP

Data Center
A

Data Center
B

Data Center
C Provision development

Reclaim resources

Provision testing

Managing
servers

storage
storage

Fig. 2.5 Coverage of cloud computing in sinochem group

Business Users

Monitoring
(Tivoli Monitoring)

Backup
(Tivoli Storage

Manager)

Provisioning
(Tivoli Provisioning

Manager)

Self-service Portal

Physical and Virtual Resources

Servers Network Storage

Lotus. software

Collaboration
Software

IT Admins

Execute

P
la

n

Monitor

A
na

ly
ze

Fig. 2.6 SaaS cloud

2 Cloud Computing Technologies and Applications 45

2.6.4 Case Study: Cloud Computing Supporting SaaS

By adopting cloud computing solutions, a telco can address the IT challenges faced
by SMEs. Thanks to the services provided by the Blue Cloud system, VNTT has
provided the customers with IBM Lotus Foundation and WebSphere Portal Express
business OA service based on Redhat, CentOS and Windows platform. Besides,
VNTT also provides customers with email services, file sharing and Web server
that are always ready for use. For better internal and external communication, these
enterprises need only one portal to rent the portal server based on IBM WebSphere
Portal.

By applying Cloud Computing as the underlying infrastructure, a telecommu-
nications company can provide its customers with a larger scale of IT services,
including infrastructure hosting, collaborative platform, applications, process and
information service; meanwhile, it can also ensure data security, convenience of
access and the easy management of the environment. In this instance, Cloud will
provide a strong technical infrastructure support as well as an effective combination
with business model innovation (Fig. 2.6).

2.7 Conclusion

With Cloud Computing as a new way to consume IT services, we can be much more
flexible and productive in utilizing dynamically allocated resources to create and to
operate. Cloud will continue to evolve as the foundation for the future Internet where
we will be interconnected in a web of content and services.

Chapter 3
Key Enabling Technologies for Virtual Private
Clouds

Jeffrey M. Nick, David Cohen, and Burton S. Kaliski Jr.

Abstract The concept of a virtual private cloud (VPC) has emerged recently as a
way of managing information technology resources so that they appear to be oper-
ated for a single organization from a logical point of view, but may be built from
underlying physical resources that belong to the organization, an external service
provider, or a combination of both. Several technologies are essential to the effective
implementation of a VPC. Virtual data centers provide the insulation that sets one
organization’s virtual resources apart from those of other organizations and from the
underlying physical infrastructure. Virtual applications collect those resources into
separately manageable units. Policy-based deployment and policy compliance offer
a means of control and verification of the operation of the virtual applications across
the virtual data centers. Finally, service management integration bridges across the
underlying resources to give an overall, logical and actionable view. These key
technologies enable cloud providers to offer organizations the cost and efficiency
benefits of cloud computing as well as the operational autonomy and flexibility to
which they have been accustomed.

3.1 Introduction

It is becoming relatively commonplace for organizations to outsource some or all
of their IT operations to an external “cloud” service provider that offers specialized
services over the Internet at competitive prices. This model promises improved total

J.M. Nick (B)
Office of the CTO, EMC Corporation, Hopkinton, MA, USA
e-mail: jeff.nick@emc.com

D. Cohen
Cloud Infrastructure Group, EMC Corporation, Cambridge, MA, USA
e-mail: david.cohen@emc.com

B.S. Kaliski Jr.
Office of the CTO, EMC Corporation, Hopkinton, MA, USA
e-mail: burt.kaliski@emc.com

47B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_3, C© Springer Science+Business Media, LLC 2010

48 J.M. Nick et al.

cost of ownership (TCO) through the leverage of large-scale commodity resources
that are dynamically allocated and shared across many customers. The problem
with this model to date is that organizations have had to give up control of the
IT resources and functions being outsourced. They may gain the cost efficiencies of
services offered by the external provider, but they lose the autonomy and flexibility
of managing the outsourced IT infrastructure in a manner consistent with the way
they manage their internal IT operations.

The concept of a virtual private cloud (VPC) has emerged recently (Cohen,
2008; Wood, Shenoy, Gerber, Ramakrishnan, & Van der Merwe, 2009; Extend Your
IT Infrastructure with Amazon Virtual Private Cloud, http://aws.amazon.com/vpc/)
as answer to this apparent dilemma of cost vs. control. In a typical approach,
a VPC connects an organization’s information technology (IT) resources to a
dynamically allocated subset of a cloud provider’s resources via a virtual pri-
vate network (VPN). Organizational IT controls are then applied to the collective
resources to meet required service levels. As a result, in addition to improved
TCO, the model promises organizations direct control of security, reliability and
other attributes they have been accustomed to with conventional, internal data
centers.

The VPC concept is both fundamental and transformational. First, it pro-
poses a distinct abstraction of public resources combined with internal resources
that provides equivalent functionality and assurance to a physical collection
of resources operated for a single organization, wherein the public resources
may be shared with many other organizations that are also simultaneously
being provided their own VPCs. Second, the concept provides an actionable
path for an organization to incorporate cloud computing into its IT infras-
tructure. Once the organization is managing its existing resources as a private
cloud (i.e., with virtualization and standard interfaces for resource manage-
ment), the organization can then seamlessly extend its management domain to
encompass external resources hosted by a cloud provider and connected over
a VPN.

From the point of view of the organization, the path to a VPC model is
relatively straightforward. In principle, it should be no more complicated, say,
than the introduction of VPNs or virtual machines into the organization’s IT
infrastructure, because the abstraction preserves existing interfaces and service
levels, and isolates the new implementation details. However, as with intro-
duction of any type of abstraction, the provider’s point of view is where the
complexities arise. Indeed, the real challenge of VPCs is not whether organi-
zations will embrace them once they meet organizational IT requirements, but
how to meet those requirements – especially operational autonomy and flexibil-
ity – without sacrificing the efficiency that motivated the interest in the cloud to
begin with.

With the emergence of VPCs as a means to bring cloud computing to organiza-
tions, the next question to address is: What are the key technologies cloud providers
and organizations need to realize VPCs?

3 Key Enabling Technologies for Virtual Private Clouds 49

3.2 Virtual Private Clouds

A cloud, following NIST’s definition that has become a standard reference (Mell
& Grance, 2009), is a pool of configurable computing resources (servers, networks,
storage, etc.). Such a pool may be deployed in several ways, as further described in
Mell and Grance (2009):

• A private cloud operated for a single organization;
• A community cloud shared by a group of organizations;
• A public cloud available to arbitrary organizations; or
• A hybrid cloud that combines two or more clouds.

The full definition of a private cloud given in Mell and Grance (2009) is

Private cloud. The cloud infrastructure is operated solely for an organization. It may be
managed by the organization or a third party and may exist on premise or off premise.

The definition suggests three key questions about a cloud deployment:

1. Who uses the cloud infrastructure?
2. Who runs the infrastructure?
3. Where is the infrastructure?

The distinction among private, community, public, and hybrid clouds is based
primarily on the answer to the first question. The second and third questions are
implementation options that may apply to more than one deployment model. In
particular, a cloud provider may run and/or host the infrastructure in all four cases.

Although NIST’s definition does not state so explicitly, there is an implication
that the cloud infrastructure refers to physical resources. In other words, the com-
puting resources in a private cloud are physically dedicated to the organization; they
are used only (i.e., “solely”) by that organization for a relatively long period of time.
In contrast, the computing resources in a public or community cloud are potentially
used by multiple organizations over even a short period of time.

The physical orientation of the definition motivates the concept of a virtual pri-
vate cloud, which, following the usual paradigm, gives an appearance of physical
separation, i.e., extending (Mell & Grance, 2009):

Virtual private cloud (VPC). The cloud infrastructure appears as though it is operated solely
for an organization. It may be managed by the organization or a third party and may exist
on premise or off premise — or some combination of these options.

In other words, a VPC offers the function of a private cloud though not necessar-
ily its form. The VPC’s underlying, physical computing resources may be operated
for many organizations at the same time. Nevertheless, the virtual resources pre-
sented to a given organization – the servers, networks, storage, etc. – will satisfy the
same requirements as if they were physically dedicated.

50 J.M. Nick et al.

The possibility that the underlying physical resources may be run and/or hosted
by a combination of the organization and a third party is an important aspect of the
definition, as was first articulated by R. Cohen in a May 2008 blog posting (Cohen,
2008) that introduced the VPC concept:

A VPC is a method for partitioning a public computing utility such as EC2 into quarantined
virtual infrastructure. A VPC may encapsulate multiple local and remote resources to appear
as a single homogeneous computing environment bridging the ability to securely utilize
remote resources as part of [a] seamless global compute infrastructure.

Subsequent work has focused on a specific implementation profile where the
VPC encompasses just the resources from the public cloud. Wood et al. in a June
2009 paper (Wood, Shenoy, Gerber, Ramakrishnan, & Van der Merwe, 2009) write:

A VPC is a combination of cloud computing resources with a VPN infrastructure to give
users the abstraction of a private set of cloud resources that are transparently and securely
connected to their own infrastructure.

Likewise, Amazon describes its virtual private cloud in a January 2010
white paper (Extend Your IT Infrastructure with Amazon Virtual Private Cloud,
http://aws.amazon.com/vpc/) as “an isolated portion of the AWS cloud,” again
connected to internal resources via a VPN.

In both Wood et al. and Amazon, a VPC has the appearance of a private cloud,
so meets the more general definition stated above. However, the implementation
profile imposes the limitation that the physical resources underlying the VPC are
hosted and run by a cloud provider. In other words, the answer to the second and
third questions above is “external.” Although internal resources, e.g., the “enterprise
site” of Wood et al., are connected to the VPC over the VPN, they are not part of the
VPC proper.

This article maintains R. Cohen’s broader definition because the cloud for which
an organization will be responsible, ultimately, will encompass most or all of its
resources, not just the external portions. The primary VPC implementation profile
considered here is therefore one in which the underlying resources are drawn from a
public cloud and an internal, private cloud – or, in other words, from a hybrid cloud
that combines the two (see Fig. 3.1) (Note 1). How those resources are managed in
order to meet organizational IT requirements is the focus of the sections that follow.

Note

1. The implementation profile is most relevant to medium to large enterprises
that already have substantial internal IT investments and are likely to maintain
some of those resources while incorporating IT services from an external cloud
provider. For enterprises that outsource all IT to a cloud provider, the imple-
mentation profile would include only the external resources. The key enabling
technologies for VPCs are relevant in either case.

3 Key Enabling Technologies for Virtual Private Clouds 51

External Public
Cloud

Internal Private
Cloud

Virtual Private Cloud

VPC Abstraction Layer

Fig. 3.1 Primary virtual
private cloud (VPC)
implementation profile: VPC
is built from the hybrid of an
external public cloud and an
internal private cloud

3.3 Virtual Data Centers and Applications

An organization’s objective for its use of IT in general is to realize certain
information-based business processes while conforming with applicable laws and
regulations, and optimizing the cost/benefit tradeoff. Whether implemented with
cloud computing or with conventional IT, the organization’s high-level IT objec-
tives are the same. The promise of cloud computing is that over time, organizations
may be able to meet those objectives with an ever improving cost/benefit tradeoff.

3.3.1 Virtual Data Centers

In conventional IT, data centers provide a convenient way of organizing resources
into locally connected pools. The locality provides an opportunity for common
physical oversight and improved network performance among resources within
the data center. In effect, a data center can be viewed as a local container of IT
resources that can be managed together from a resource, security, and/or information
perspective.

Virtualization, as a general paradigm, insulates resources and functionality from
the underlying physical implementation, with the consequent advantage that vir-
tual resources can be dynamically allocated to an organization without concern (by
the organization) for the underlying physical implications. Moreover, the virtual
resources can readily be migrated from one physical environment to another – for
instance, between the organization’s data centers and data centers operated by a
cloud provider.

From this perspective, virtual resources “in the cloud” are, in principle, location-
and container-independent. However, for the same reasons as in conventional IT,

52 J.M. Nick et al.

containers and location-type attributes may play an important role in practice,
because organizations will continue to call for the performance advantages that
locality brings, and it will be convenient to manage resources as sets. Accordingly,
just as data centers are the basic, high-level unit of management in conventional IT,
it is reasonable to expect that virtual data centers – the first key enabling technology
for VPCs – will be the basic, high-level unit of resource management (Notes 1, 2):

Virtual data center (VDC). A pool of virtual resources that appear in terms of performance to
be locally connected, and can be managed as a set.

For practical reasons, a VDC will typically be implemented based on a single,
underlying physical data center; the apparent local connectivity would otherwise be
difficult to achieve (although there are recent high-performance network technolo-
gies that do span physical data centers). The limitation is only in one direction, of
course: A given physical data center can host more than one VDC. Furthermore,
a data center operated by a public cloud provider may offer VDCs to multiple
organizations, or henceforth, tenants, so the underlying computing environment is
multi-tenant.

In addition to local connectivity, the placement of resources in a particular
location may offer geographical advantages such as proximity to certain users or
energy resources, or diversity of applicable laws and regulations. The placement of
resources across multiple, independent locations can also help improve resilience.
Such geographical aspects may be “virtualized” by policy-based management (see
Section 3.4 below). The VDC (and/or its resources) would be selected so that they
achieve the desired properties, with the actual location left to the implementation
(although certain properties may only be achievable in a specific geography).

In addition, VDCs, like physical data centers, may vary in terms of the capabili-
ties they offer, such as:

1. The types of virtual resources that are supported;
2. The cost, performance, security, and other attributes of those resources (and of

the VDC in general), including the types of energy used; and
3. Specific resources that are already present and may be inconvenient to obtain

elsewhere, such as large data sets or specialized computing functionality.

Rather than presenting the appearance of a physical data center as it actually is,
the VDC abstraction can show a data center as it ideally should be. As a result, a
VDC offers the opportunity for simplified, unified management from the point of
view of the organization using it.

Given the VDC as a basic unit of management, the primary VPC implementation
profile may be further refined as one in which the virtual resources are organized
into the combination of

3 Key Enabling Technologies for Virtual Private Clouds 53

• One or more private VDCs hosted by a cloud provider; and
• One or more internal, private VDCs hosted by the organization

The cloud provider’s VDCs would be based on scalable partitions of the cloud
provider’s public data centers; the internal VDCs could be simply the virtualization
of the organization’s existing data centers, or perhaps again scalable partitions. In
either case, the modifier private, is essential: In order for the resulting VPC to appear
as though it is operated solely for an organization, the component VDCs must be so
as well.

Building a VPC thus decomposes into the problem of building a private VDC,
or, expanding the definition, a pool of virtual resources that appears to be locally
connected and to be operated for a single organization. The specific translation
between a private VDC and underlying physical resources is, of course, a matter
of implementation, but several technologies clearly will play a key role, including,
obviously, virtualization and resource management, as well as, possibly, encryption
of some form (Note 3).

With this first enabling technology in place, an organization using a VPC will
have at its disposal some number of private VDCs or containers into which it may
deploy resources, as well as the possibility of obtaining additional VDCs if needed.
How those containers are used is the subject of the next enabling technology.

Notes

1. Cloud computing can be realized without the data center metaphor, for instance
in settings where local connectivity is not important, such as highly distributed
or peer-to-peer applications. The focus here is on the typical enterprise use cases,
which are data-center based.

2. Virtualization, in principle, gives an appearance of privacy in the sense that if
all tenants interact only through the VDC abstraction, then, by definition, they
cannot access one another’s resources (assuming of course that in the physical
counterpart whose appearance is being presented, they cannot do so). Thus, vir-
tualization of servers, networks, storage, etc., alone is arguably sufficient to build
a VDC (as far as appearances; resource management is also needed to handle
scheduling, etc.).

There are two main problems with this position. First, there may be paths out-
side the abstraction by which parties may interact with the underlying resources.
At the very least, the infrastructure operator will have such access, both phys-
ical and administrative. Second, there may be paths within the abstraction that
inadvertently enable such interaction, whether due to errors or to side channels
that are not completely concealed. This introduces the possibility of malevo-
lent applications or mal-apps that target other tenants sharing the same public
computing environment. The cloud cartography and cross-VM information leak-
age techniques of Ristenpart, Tromer, Shacham, and Savage (2009) are recent
examples.

54 J.M. Nick et al.

It is worth noting that comparable vulnerabilities are already being dealt with
by conventional data centers through a range of security controls, from encryp-
tion to behavioral analysis. The difference in cloud computing is not as much
the nature of the vulnerabilities, as the number of potential adversaries “in the
camp.” A base and adaptive set of security controls will be essential for the
abstraction, robustly, to maintain its assurances, while applications implement
additional controls above the abstraction just as they would if running directly
on physical infrastructure. A good example of such an additional control is the
VPN (which is visible to applications in the private VDC model).

Trusted computing (Mitchell, 2005) may also play a role in private VDCs
by providing a root of trust with respect to which tenants may verify the
integrity of their resources. The integration of trusted computing and virtualiza-
tion is explored more fully in projects such as Terra by Garfinkel, Pfaff, Chow,
Rosenblum, and Boneh (2003) and Daonity (now continued as Daoli) (Chen,
Chen, Mao, & Yan, 2007).

3.3.2 Virtual Applications

Information-based processes in conventional IT are realized by various applications
involving interactions among collections of resources. The resources supporting a
given application may run in a single data center or across multiple data centers
depending on application requirements.

Continuing the analogy with conventional IT, one may expect that virtual appli-
cations – the second key enabling technology – will be the basic, high-level unit of
resource deployment:

Virtual application. A collection of interconnected virtual resources deployed in one or more
virtual data centers that implement a particular IT service.

A virtual application consists not only of the virtual machines that implement the
application’s software functionality, but also of the other virtual resources needed to
realize the application such as virtual networks and virtual storage. In this sense, a
virtual application extends the concept of a virtual appliance (Sapuntzakis & Lam,
2003), which includes the complete software stack (virtual machines and operating
system, with network interfaces) implementing a single service, to encompass the
set of services supporting the application.

Just as a VDC can show a data center in a more ideal form, a virtual application
can present the appearance of an application as it ideally should be. Today, security,
resource management, and information management are typically enforced by the
operating system and application stack, which makes them complex and expensive
to implement and maintain. With the simplified, unified management provided by
the virtual application abstraction and encapsulation of application components in
virtual machine containers, the virtual application container becomes a new control

3 Key Enabling Technologies for Virtual Private Clouds 55

point for consistent application management. Instead of orchestrating each resource
individually, an organization can operate on the full set in concert, achieving the
equivalent of “one click” provisioning, power on, snapshot, backup, and so on.

The primary VPC implementation profile may be now refined again as one in
which virtual applications consisting of virtual resources run across one or more
VDCs (see Fig. 3.2) (Note 1).

Virtual Private Cloud
VDC4

VPN

VPN
VPN

vApp3VDC3VDC2

VDC1

vApp2

vApp1

Fig. 3.2 Virtual applications
run across one or more
private virtual data centers
(VDCs), connected by virtual
private networks (VPNs)

The Open Virtualization Format (OVF, 2009) recently standardized by the Data
Management Task Force offers a convenient way to specify collections of virtual
machines. Through metadata, the interconnections between those machines and
their dependencies on other resources such as networks and storage may also be
expressed, supporting full virtual applications as defined here. In addition to sev-
eral commercial products, the specification is also supported in the Open-OVF open
source project (open-ovf.sourceforge.net).

An organization using a VPC with the first two enabling technologies now intro-
duced will be able to use its private VDCs to deploy virtual applications. The
next enabling technologies address the contract between those applications and the
VPC that enables the automatic assembly of components to meet organizational IT
objectives while maintaining flexibility for optimization.

Note

1. The interplay between VDCs and virtual applications is an important aspect of
meeting organizational IT requirements with a VPC, which do depend in some
cases on (possibly relative) location, as noted in Section 3.3.1. Thus, in addition
to the primary role of virtual applications in enabling portability between clouds,
virtual applications may also be viewed as a way to enable effective deployment
within a cloud by describing the desired relationships among virtual resources.

3.4 Policy-Based Management

Over time, a VPC will be populated with resources supporting virtual applications
running at various VDCs. Those resources will be deployed and assembled with the
ultimate intent of meeting the organizational IT requirements. This is the essence of
the “contract,” formal or otherwise, between an organization and the VPC.

The role of such a contract can be viewed in two parts: putting its terms into
practice, and checking that the practice is correct.

56 J.M. Nick et al.

3.4.1 Policy-Based Deployment

Consider an organization that wants to deploy an e-commerce application with cer-
tain objectives for security, performance, and business continuity. In a conventional
data center, that application might be implemented as the combination of resources
starting with a web server and a database. A firewall would be added to meet the
security objectives, and a load-balancer to assign transactions to additional web
servers as needed to meet the performance objectives. To address the business conti-
nuity objectives, a second instance of these components might be placed in another
data center, coordinated with the first through a business continuity manager.

Suppose further that the organization also wants to deploy a customer rela-
tionship management (CRM) application with similar service objectives. That
application might likewise be implemented as a combination of web servers,
databases, firewalls, load-balancers, and so on, across two data centers.

Now, consider what happens when the organization decides to deploy these appli-
cations in a VPC (under some “contract,” per the comments above). Following the
model in Section 3.3.2, each application would be deployed as a collection of virtual
resources. The VPC would thus be hosting the combination of the sets of resources
for the two applications: two sets of virtual web servers, two virtual databases, two
firewalls, two load-balancers, etc., and this collection would be repeated across two
VDCs.

Deploying an application in a VPC as just described has some advantages, such
as dynamic allocation of resources and economies of scale. However, such a process
is really no more than a migration of components from one environment to another,
or what could also be called a literal virtualization. Infrastructure sprawl in the data
center translates directly into virtual sprawl, with as many components to manage
as before, just consolidated onto fewer servers, and arranged in a more flexible way.

Cloud computing environments can improve this situation by organizing com-
ponents and capabilities into searchable lists of virtual applications and resources
that can readily be deployed. By selecting services from an offering catalog and
inventory, rather than imposing entirely unique choices, an organization can take
advantage of optimizations that the cloud provider may already have put in place.
The load-balancer would be a good example. Instead of each application contribut-
ing its own load-balancer, the VPC would offer one itself for use by multiple
applications.

Once an application designer knows that load-balancing will be available, he or
she no longer needs to specify a virtual application as a combination of, say, two
web servers and a load-balancer. Instead, the virtual application may be expressed
as the combination of a single web server (and other functional components) and a
policy that the VPC should create additional instances of the web server and balance
transactions among them to maintain a specified performance level. This policy has
the further benefit that the application may automatically be scaled beyond the two
instances originally specified in a literal counterpart to the data center version.

Load-balancing is one instance of a general pattern: Applications are designed
as a combination of functionality and qualities relating to service-level agreements

3 Key Enabling Technologies for Virtual Private Clouds 57

(SLAs). These qualities, sometimes also called, “ilities” (from the common suffix of
scalability, availability, etc.), generally are implemented with quite similar compo-
nents across different applications, like load-balancers, firewalls, business continuity
managers, and so on. They are therefore natural candidates for services supporting
multiple applications in a VPC.

A simple formula illustrates both the pattern and the problem. A typical applica-
tion is constructed first by building a base application that meets some functional
requirements, then adding “ilities” that address the non-functional ones. The result-
ing full application is then virtualized and deployed in the VPC. This pattern may
be summarized as follows:

functionality

full
virtual

application

full
application

base
application

build add “ilities”

virtualize
| @

Given only the full virtual application, the VPC will likely have a problem rec-
ognizing the “ilities,” and therefore, managing them or optimizing their delivery, as
much as it is difficult to optimize object code without the original source. However,
given some of that original source, the VPC will have much more opportunity to
add value. Consequently, the preferred model for application deployment in a VPC
is for the computing environment to add “ilities” as part of deployment.

The pattern now becomes the following:

functionality
base

application
build

full
virtual

application

add “ilities”
base

virtual
application

virtualize
| @

The “ilities” may be added by configuring the base virtual application or by
deploying additional services. Following the VDC model in Section 3.3.2, policy
may also be realized according to the placement of virtual resources into specific
VDCs, e.g., where local connectivity, proximity to certain users, independence, etc.
are required.

The paradigm may be summarized as the third key enabling technology, policy-
based deployment:

Policy-based deployment. The assembly of application components in a computing environ-
ment according to predefined policy objectives.

58 J.M. Nick et al.

Although policy-based deployment can also be applied in other types of clouds
(as well as in data centers), the technology is particularly important for VPCs
because of their primary use case: organizations that need to meet well-defined IT
objectives.

Shifting the introduction of some policy features from development to deploy-
ment doesn’t necessarily make deployment easier, and in fact may make it harder,
as Matthews, Garfinkel, Hoff, and Wheeler (2009) observe, due to number of
stakeholders and administrators potentially involved. Automation is essential to sim-
plifying deployment, and a well-defined language for expressing policy is essential
to automation. The separation of “ilities” from functionality is therefore necessary
but not sufficient. In addition, the “ilities” must be expressed as machine-readable
rules that the computing environment can implement. In Matthews et al. (2009),
such rules take the form of a Virtual Machine Contract, defined as:

A Virtual Machine Contract is a complex declarative specification of a simple question,
should this virtual machine be allowed to operate, and if so, is it currently operating within
acceptable parameters? (Matthews et al., 2009)

A specification like OVF can be employed to carry contracts and other policy
information so that they travel along with the virtual machines, and, more generally,
virtual applications, to which the conditions apply.

With automated policy-based deployment in place, an organization is able to
specify to the VPC its expectations as far as security, performance and other SLAs,
and the VPC can then, automatically, optimize its operations toward those objec-
tives. The military expression, “You get what you inspect, not what you expect,”
motivates the challenge addressed by the next enabling technology: How to verify
that the terms of the contract with the VPC are actually met.

3.4.2 Policy Compliance

In whatever computing environment an organization chooses to deploy an appli-
cation, the organization will need some evidence that the application is running
as intended. This evidence serves both the organization’s own assurances and
those of auditors or customers. Even if no malice is involved, the environment’s
optimizations may only approximate the intended result.

Policy objectives are particularly difficult to achieve in a multi-application setting
because of the potential for resource contention. A physical computing resource, for
instance, may reliably meet the computational performance objectives for the one
application it supports, but when that resource interacts with another resource, the
presence of network traffic from other applications may make the communication
performance unpredictable. Network reservation schemes and similar approaches
for storage play an important role in meeting SLAs for this reason. There may also
be opportunities for different applications, by design, to operate in a complementary
fashion that reduces the contention.

3 Key Enabling Technologies for Virtual Private Clouds 59

A multi-tenant computing environment such as a public cloud hosting VPCs for
multiple organizations introduces further complexities. As with any Internet service,
tenants are affected by one another’s behavior, which can be unpredictable. Because
there is no direct opportunity for negotiation among different tenants with respect
to the underlying computing environment (in principle, they cannot even detect one
another), any contention must be resolved by the cloud provider itself.

The objectives of different tenants are not necessarily aligned with one another,
so in addition to the basic resource contention, there may also be contention among
optimization strategies. The potential for interference is another strong motiva-
tion for placing the policy services within the computing environment rather than
individual applications.

Finally, the tenants’ objectives are not necessarily aligned with those of the public
cloud provider. Although serving customers will presumably be the first priority of
a successful cloud provider, staying in business is another, and there is a definite
motivation for implementing further optimizations that cut costs for the provider
without necessarily increasing benefit for any of the tenants (Note 1).

Given the difficulty of meeting policy requirements perfectly across multiple
applications and tenants, it becomes particularly important for the VPC to provide,
and the tenant to receive, some information about the extent to which those require-
ments are met, or not, at various points in time. This leads to the fourth key enabling
technology, policy compliance.

Policy compliance. Verification that an application or other IT resource is operating according
to predefined policy objectives.

Per the separation of “ilities” from based functionality discussed in Section 3.4.1,
it is reasonable to expect that policy compliance itself will eventually be considered
as just another service to be added to the application when deployed in the VPC
(Note 2). Such a capability goes hand in hand with policy-based deployment: It
will be much easier for a VPC to gather appropriate evidence from resources it
has already assembled with policy objectives in mind, than to have to discover the
objectives, the resources, and the evidence after the fact.

As far as the evidence itself, for precisely the purpose of evaluating performance,
many IT resources are instrumented with activity logs that record transactions and
other events. For instance, a physical network router may keep track of the source,
destination, size, timestamp and other metadata of the packets it transfers (or is
unable to transfer); a physical storage array may record similar information about
the blocks it reads and write. With appropriate interfaces, the virtual environment
can leverage these features to gather evidence of policy compliance. For example,
I/O tagging embeds virtual application identifiers as metadata in physical requests,
with the benefit that the identifiers are then automatically included in activity logs
for later analysis by the virtual environment with minimal impact on performance
(Note 3).

60 J.M. Nick et al.

The collection of system logs from physical computing, networking, and storage
resources, containing information about virtual applications and resources and their
activities, provides an information set from which policy compliance evidence may
be derived. This information set, keyed by the virtual application identifiers and
related quantities, enables distributed application context and correlation – in effect,
a virtual view of the activity of the virtual application, across the VPC.

Constructing such a view, especially from heterogeneous unstructured system
logs that were designed only for local visibility, and management interfaces that
were intended only for local control, depends on a fifth and final enabling technol-
ogy, one that responds to the question: How to bring all this information together
intelligently?

Notes

1. A related situation where a cloud storage provider may lose some portion of
tenants’ data as a result of its own performance optimizations (or actual malice)
is explored in Juels and Kaliski (2007) and Bowers, Juels, and Oprea (2009),
which also propose mechanisms for detecting and recovering from such loss
before it reaches an irreversible stage. The detection mechanism may be viewed
as an example of policy compliance for stored data.

2. If an application includes built-in policy compliance and the components
involved are portable, then the compliance will continue to function in the
VPC. Such verification provides a helpful checkpoint of the service levels
achieved within a given computing environment. However, as more applica-
tions with built-in policy compliance are deployed, the VPC will see a sprawl
of application-specific compliance components. This is another motivation for
building policy compliance into the VPC.

3. I/O tagging offers the additional benefit of enabling virtualization-aware phys-
ical resource managers to enforce policies based on the virtual identifiers. This
is a promising area for further exploration, particularly for methods to resolve
the contention, as observed above, among policies for different applications and
tenants.

3.5 Service-Management Integration

Virtual data centers, the first of the enabling technologies, may be viewed as provid-
ing insulation that sets one organization’s virtual resources apart from those of other
organizations, and from the underlying physical resources. Virtual applications,
the second, collect those resources into separately manageable units. Policy-based
deployment and policy compliance, the third and fourth, offer a means of control
and verification of the operation of the virtual applications across the VDCs. All four
rest on a fifth technology: a more basic foundation that bridges across underlying
boundaries, one oriented toward seamless integration.

3 Key Enabling Technologies for Virtual Private Clouds 61

Recall the original implementation profile for the VPC, per Section 3.2: a hybrid
of an internal, private cloud and a public cloud. Following Section 3.3, the VPC
provides the appearance of some number of VDCs, some drawn from the internal
cloud, some from the public cloud. Throughout Section 3.4, this VPC is essentially
viewed as seamless, which it is in appearance (the exposure of multiple VDCs is
an architectural feature). Thus, Section 3.4 can speak of deploying an application
into the VPC, collecting evidence from the VPC, and so on, without regard to the
fact that the deployment and collection ultimately involve interactions with physical
resources, and more significantly, that these physical resources are in multiple data
centers operated by at least two different entities.

The fundamental challenge for satisfaction of policy-based management in a
VPC is how to enable such seamless interaction between resource, service and pol-
icy management components: across data center infrastructure boundaries, and then
across federated service provider boundaries.

Such bridges are not easy to build, because the various management interfaces –
like the local logs in Section 3.4.2 – were designed for separate purposes. At the
physical layer, they may use different names for the same entity or function, employ
incompatible authentication and access control systems, and express the same con-
ditions in different ways. The information the organization and the VPC need is
available, but is not immediately useful without some translation. Moreover, that
translation is not simply a matter of converting between formats, but, in effect,
virtualizing the interfaces to the management metadata across the borders of the
underlying management component.

The fifth and final key enabling technology, service-management integration,
addresses this last challenge:

Service-management integration. The translation of heterogeneous management information
from separate domains into an overall, logical and actionable view.

Service-management integration is a special case of the broader technology of
information integration, which is concerned, similarly, with translating of federating
general information from multiple domains. The special case of VPCs is concerned
in particular with federating three things: (1) the underlying infrastructure into one
virtual computing environment, (2) identities interacting with the resources in the
environment, and (3) information about the resources.

By its nature, service-management integration for VPCs is amenable to an event-
ing paradigm where the basic unit of information is an event published by one entity
in the system, and consumed by another. This paradigm is a good match for a policy
compliance manager that is interested in the content of multiple physical logs, as that
evidence accumulates. It also provides a deployment manager with a current view
of the underlying resources as they continually change. Further, the architectural
separation between publisher and subscriber lends itself to the physical separation
and distribution of participating elements across data center and cloud federation
boundaries.

62 J.M. Nick et al.

The intermediation between publisher and consumer can be achieved through
a messaging system. As a dedicated communication layer for events, such a sys-
tem provides a federated information delivery “backplane” that bridges multiple
management domains (e.g., internal data centers, cloud provider data centers) into
a single service-oriented architecture, translating back and forth among the secu-
rity and management languages of the various domains. Events published in one
domain can be consumed in another according to various subscription rules or fil-
ters; the policy compliance manager for a particular tenant, for instance, will only
be interested in (and should only know about) events related to that tenant’s virtual
applications.

The messaging system can implement its translations through a set of adapters,
informed by an understanding of the connections among the identities and events in
the different domains. The system’s learning of those connections can occur auto-
matically, or it may require manual intervention, and in some cases it may need to
be augmented with a significant amount of computation, for instance to search for
correlated events in the different domains. In a cloud computing environment, the
resources for such computation will not be hard to find. (How to balance between the
use of resources to make the overall environment more efficient, versus allocating
them directly to tenants, is another good question for further exploration.)

3.6 Conclusions

This article started with the simple premise that cloud computing is becoming more
important to organizations, yet, as with any new paradigm, faces certain challenges.

One of the challenges is to define a type of cloud computing most appropriate for
adoption. A virtual private cloud built with IT resources from both the organization’s
own internal data centers and a cloud provider’s public data centers has been offered
as a preferred implementation profile. To ensure privacy, i.e., the appearance that the
cloud is operated solely for the organization, certain additional protections are also
needed.

Another challenge is to make good use of the collective resources. A literal type
of virtualization where applications are basically ported from a data center to the
VPC would realize some of benefits, but the greater potential comes from enabling
the VPC itself to optimize the assembly of applications. The starting point for that
advance is the separation of functionality from policy within the specification of a
virtual application so that policy requirements can be met in a common and therefore
optimized way by the VPC. Commonality of policy management also enables the
VPC to verify that policies are met.

Finally, information infrastructure rests as the foundation of realizing a VPC.
Indeed, virtualization is all about turning resources into information. The better
the VPC can engage with that information, rising from the shadows of the private
data center past and the public cloud present, the more effectively organizations can
move into the promise of the virtual private cloud future.

3 Key Enabling Technologies for Virtual Private Clouds 63

References

Bowers, K. D., Juels, A., & Oprea, A. (November 2009). HAIL: A high-availability and
integrity layer for cloud storage. Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), ACM, Chicago, IL, USA, 187–198.

Cohen, R. (May 2008). Virtual private cloud, Elastic vapor: Life in the cloud. Retrieved January
2010, from http://www.elasticvapor.com/2008/05/virtual-private-cloud-vpc.html.

Chen, H., Chen, J., Mao, W., & Yan, F. (June 2007). Daonity – Grid security from two levels of
virtualization. Elsevier Journal of Information Security Technical Report, 12(3), 123–138.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., & Boneh, D. (December 2003). Terra: A vir-
tual machine-based platform for trusted computing. ACM SIGOPS Operating Systems Review,
37(5), 193–206.

Juels, A., & Kaliski, B. S., Jr. (October 2007). PORs: Proofs of retrievability for large files.
Proceedings of the 14th ACM Conference on Computer and Communications Security (CCS),
ACM, Alexandria, VA, USA, 584–597.

Matthews, J., Garfinkel, T., Hoff, C., & Wheeler, J. (June 2009). Virtual machine contracts for
datacenter and cloud computing environments. Proceedings of the 1st Workshop on Automated
Control for Datacenters and Clouds, ACM, Barcelona, 25–30.

Mell, P., & Grance, T. (2009). The NIST definition of cloud computing, version 15, NIST. Retrieved
January 2010, from http://csrc.nist.gov/groups/SNS/cloud-computing/.

Mitchell, C. (Ed.). (2005). Trusted computing. London: IET.
OVF (January 2010). Open virtualization format specification, DMTF Document DSP0243,

Version 1.0.0, Retrieved January 2010, from http://www.dmtf.org/.
Ristenpart, T., Tromer, E., Shacham, H., & Savage, S. (November 2009). Hey, you, get off of

my cloud: Exploring information leakage in third-party compute clouds. Proceedings of the
16th ACM Conference on Computer and Communications Security (CCS), ACM, Chicago, IL,
199–212.

Sapuntzakis, C., & Lam, M. S. (May 2003), Virtual appliances in the collective: A road to hassle-
free computing. Proceedings of HotOS IX: The 9th Workshop on Hot Topics in Operating
Systems, USENIX, Lihue, Hawaii, 55–60.

Wood, T., Shenoy, P., Gerber, A., Ramakrishnan, K. K., & Van der Merwe, J. (June 2009).
The case for enterprise-ready virtual private clouds. Proceedings of HotCloud ’09 Workshop
on Hot Topics in Cloud Computing, San Diego, CA, USA, Retrieved January 2010, from
http://www.usenix.org/event/hotcloud09/tech/.

Chapter 4
The Role of Networks in Cloud Computing

Geng Lin and Mac Devine

4.1 Introduction

The confluence of technology advancements and business developments in
Broadband Internet, Web services, computing systems, and application software
over the past decade has created a perfect storm for cloud computing. The “cloud
model” of delivering and consuming IT functions as services is poised to fun-
damentally transform the IT industry and rebalance the inter-relationships among
end users, enterprise IT, software companies, and the service providers in the IT
ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).

In the center of the cloud delivery and consumption model is the network
(Gartner Report, 2008). The network serves as the linkage between the end users
consuming cloud services and the provider’s data centers providing the cloud ser-
vices. In addition, in large-scale cloud data centers, tens of thousands of compute
and storage nodes are connected by a data center network to deliver a single-purpose
cloud service. How do network architectures affect cloud computing? How will net-
work architecture evolve to better support cloud computing and cloud-based service
delivery? What is the network’s role in security, reliability, performance, and scal-
ability of cloud computing? Should the network be a dumb transport pipe or an
intelligent stack that is cloud workload aware?

This chapter focuses on the networking aspect in cloud computing and shall pro-
vide insights to these questions. The chapter is organized as follows. In Section 4.2,
we discuss the different deployment models for cloud services – private clouds, pub-
lic clouds, and hybrid clouds – and their unique architectural requirements on the
network. In Sections 4.3 and 4.4, we focus on the hybrid cloud model and discuss

G. Lin (B)
IBM Alliance, Cisco Systems, San Francisco, CA, USA
e-mail: gelin@cisco.com

M. Devine
IBM Corporation, Research Triangle Park, NC, USA
e-mail: wdevine@us.ibm.com

65B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_4, C© Springer Science+Business Media, LLC 2010

66 G. Lin and M. Devine

the business opportunities associated with hybrid clouds and the network architec-
ture that enables hybrid clouds. In many ways, the hybrid cloud network architecture
encompasses the characteristics of the networks for both public and private clouds.
In Section 4.5, we discuss our conclusions and highlight the directions for future
work in cloud-enabling network architectures.

4.2 Cloud Deployment Models and the Network

The IT industry is attracted by the simplicity and cost effectiveness represented
by the cloud computing concept that IT capabilities are delivered as services in a
scalable manner over the Internet to a massive amount of remote users. While the
purists are still debating the precise definition of cloud computing, the IT indus-
try views cloud computing – an emerging business model – as a new way to solve
today’s business challenges. A survey conducted by Oliver Wyman (Survey, private
study for IBM) in November 2008 with business executives from different enter-
prises identified “reduce capital cost,” “reduce IT management cost,” “accelerate
technology deployment,” and “accelerate business innovation” as the main business
benefits for cloud computing. Figure 4.1 shows the detailed survey results.

Despite the benefits promised by cloud computing, the IT industry also sees that
significant innovation and improvement on technologies and operations governance
are needed to enable broad adoption of cloud services. Chief concerns are secu-
rity and performance issues. Take security as an example, while it is acceptable for
individual consumers to turn to Amazon Elastic Compute Cloud (EC2) and Simple
Storage Services (S3) for on-demand compute resources and storage capacities, it is

Reduce capital
cost

100%

Accelerate
technology de-
ployment

Accelerate busi-
ness innovation

Reduce IT man-
agement cost

78% 81%

80%67%62%

62%56% 60%

67%38%20%

Digital Enterprise
N = 7

Enterprise
N = 27

Mid market
N = 5

Survey: Business benefits of cloud computing (N = 39)

Fig. 4.1 Business benefits for cloud computing

4 The Role of Networks in Cloud Computing 67

a different matter for a bank to store its customer information in a third-party owned
cloud.

Based on the differences in the deployment model, cloud services can be
delivered in three principal ways: public cloud, private cloud, and hybrid cloud.

4.2.1 Public Cloud

A public cloud refers to a cloud service delivery model in which a service provider
makes massively scalable IT resources, such as CPU and storage capacities, or soft-
ware applications, available to the general public over the Internet. Public cloud
services are typically offered on a usage-based model. Public cloud is the first
deployment model of cloud services to enter the IT industry’s vocabulary. The
concept of public clouds has clearly demonstrated the long-term potential of the
cloud computing model and lit up the imagination of the industry and the research
community.

There are many public cloud service providers in place today, offering services
ranging from infrastructure-as-as-service, to development-platform-as-a-service, to
special purpose application-as-a-services. Amazon EC2, Force.com, and Google
App Engine, are among some of the best known examples of public clouds, but
the market now bristles with competition. See the survey by InformationWeek
(Babcock, 2009a, 2009b, 2009c) on the major public cloud service providers for
a detailed analysis on their services, pricing models, platforms supported, etc.

While the public cloud offers a clean, infrastructure-less model for end users
to consume IT services, and intrigues the research community with its disruptive
nature, migrating the majority of today’s IT services, such as the various business
applications in an enterprise environment (e.g. insurance applications, health care
administration, bank customer account management, the list goes on and on), to a
public cloud model is not feasible. Data security, corporate governance, regulatory
compliance, and performance and reliability concerns prohibit such IT applications
to be moved out of the “controlled domains” (i.e. within the corporate firewalls),
while the public cloud infrastructure, government regulation, and public acceptation
continue to improve.

4.2.2 Private Cloud

Private cloud, in contrast, represents a deployment model where enterprises (typ-
ically large corporations with multi-location presence) offer cloud services over
the corporate network (can be a virtual private network) to its own internal users
behind a firewall-protected environment. Recent advances in virtualization and data
center consolidation have allowed corporate network and datacenter administra-
tors to effectively become service providers that meet the needs of their customers
within these corporations. Private clouds allow large corporations to benefit from

68 G. Lin and M. Devine

the “resource pooling” concept associated with cloud computing and their very own
size, yet in the mean time addressing the concerns on data security, corporate gov-
ernance, government regulation, performance, and reliability issues associated with
public clouds today.

Critics of private clouds point out that these corporations “still have to buy, build,
and manage clouds” and as such do not benefit from lower up-front capital costs and
less hands-on management, essentially “lacking the economic model that makes
cloud computing such an intriguing concept.” While these criticisms are true from
a purist’s point view, private clouds are a viable and necessary deployment model
in the overall adoption of cloud computing as a new IT model. We believe that
without large corporations embracing it, cloud computing will never become a main
stream computing and IT paradigm (for this one can refer to the previous example of
Grid Computing). Private cloud represents an enabling as well as a transitional step
towards the broader adoption of IT services in public clouds. As the public cloud
infrastructure, government regulation, and public acceptance continue to improve,
more and more IT applications will be first offered as services in a private cloud
environment and then migrated to the public cloud. The migration path of Email
service in a corporation environment – from initially multiple departmental email
servers, to today’s single corporate-level “email cloud”, to a public email cloud –
offers an exemplary representation. While purists might argue in black and white
terms, we believe private cloud as a viable deployment model for cloud computing
will exist for a long time and deserves the attention from both business and research
communities.

4.2.3 Hybrid Cloud

While public and private clouds represent the two ends of the cloud computing
spectrum in terms of ownership and efficiency of shared resources – and each is
finding acceptance in accordance to the services offered and customer segments
targeted – a third deployment model of cloud computing, the hybrid cloud model
that blends the characteristics of public and private clouds, is emerging.

A hybrid cloud is a deployment model for cloud services where an organization
provides cloud services and manages some supporting resources in-house and has
others provided externally. For example, an organization might store customer data
within its own data center and have a public cloud service, such as Amazon’s EC2,
to provide the computing power in an on-demand manner when data processing is
needed. Another example is the concept of “public cloud as an overflow for private
clouds” where an IT manager does not need to provision its enterprise private cloud
for the worst-case workload scenario (doing so will certainly defeat the economics
of a private cloud), but to leverage a public cloud for overflow capacities to move
less-mission-critical workloads on and off premise dynamically and transparently
to accommodate business growth or seasonal peak load demands. One can find dif-
ferent variations of the “overflow” scenario, such as “follow-the-sun” operations in

4 The Role of Networks in Cloud Computing 69

a global organization where workloads are moved around the globe based on the
time zones of the working teams. Architecturally, a hybrid cloud can be considered
a private cloud extending its boundary into a third party cloud environment (e.g. a
public cloud) to obtain additional (or non-mission critical) resources in a secure and
on-demand manner.

Adoption of cloud services is a gradual process: Enterprise IT (which represents
the majority of IT industry spending and service consumption) needs a migration
path to move today’s on-premise IT applications to the services offered by pub-
lic cloud providers through a utility model. As such, the hybrid cloud represents a
prevalent deployment model. Large enterprises often have substantial investments
in the IT infrastructure required to provide resources in house already. Meanwhile,
organizations need to keep sensitive data under their own control to ensure security
and compliance to government regulations. The tantalizing possibility offered by
the hybrid cloud model – enterprise IT organizations managing an internal cloud
that meshes seamlessly with a public cloud, which charges on a pay-as-you-go
basis – embodies the promise of the amorphous term cloud computing. To enable
hybrid clouds, virtualization, seamless workload mobility, dynamic provisioning of
cloud resources, and transparent user experience, are among the critical technical
challenges to be resolved.

4.2.4 An Overview of Network Architectures for Clouds

There are three principal areas in which the network architecture is of importance
to cloud computing: (1) a data center network that interconnects the infrastructure
resources (e.g. servers and storage devices) within a cloud service data center, (2) a
data center interconnect network that connects multiple data centers in a private,
public, or hybrid cloud to supporting the cloud services, (3) the public Internet
that connect end users to the public cloud provider’s data centers. The last area
has mostly to do with today’s telecommunications network infrastructure, and is a
complex topic by itself from the architectural, regulatory, operational and regional
perspectives. It is beyond the scope of this chapter. We shall focus only on the first
two areas (data center network and the data center interconnect network) in this
chapter.

4.2.4.1 Data Center Network

Cloud providers offer scalable cloud services via massive data centers. In such
massive-scale data centers, Data Center Network (DCN) is constructed to connect
tens, sometimes hundreds, of thousands of serves to deliver massively scalable cloud
services to the public. Hierarchical network design is the most common architecture
used in data center networks. Figure 4.2 show a conceptual view of a hierarchical
data center network as well as an example of mapping the reference architecture to
a physical data center deployment.

70 G. Lin and M. Devine

Server Rack

Network Rack

Network Equipment

Server Pod

Core Layer

Aggregation Layer

Access Layer

Fig. 4.2 Data center network architecture

The access layer of a data center network provides connectivity for server
resource pool residing in the data center. Design of the access layer is heavily
influenced by the decision criteria such as server density, form factor, and server
virtualization that can result in higher interface count requirements. The commonly
used approaches for data center access layer connectivity are end-of-row (EoR)
switch, top-of-rack (ToR) switch, and integrated switch (typically in the form of
blade switches inside a modular blade server chassis). Another form of the inte-
grated switch is the embedded software switch in a server end point (see Virtual
Ethernet Switch in this section). Each design approach has pros and cons, and is
dictated by server hardware and application requirements.

The aggregation layer of the data center provides a consolidation point where
access layer switches are connected providing connectivity between servers for
multi-tier applications, as well as connectivity across the core of the network to the
clients residing within the campus, WAN, or Internet. The aggregation layer typ-
ically provides the boundary between Layer-3 routed links and Layer-2 Ethernet
broadcast domains in the data center. The access switches are connected to the
aggregation layer using 802.1Q VLAN trunks to provide the capability of con-
necting servers belonging to different VLANs and IP subnets to the same physical
switch.

The primary function of the core layer in a data center network is to provide
highly available, high performance Layer-3 switching for IP traffic between the
data center and the Telco’s Internet edge and backbone. In some situations, mul-
tiple geographically distributed data centers owned by a cloud service provider
may be connected via a private WAN or a Metropolitan Area Network (MAN).
For such environments, expanding Layer 2 networks across multiple data cen-
ters is a better architecture design (readers can refer to Section 4.2 “Data Center

4 The Role of Networks in Cloud Computing 71

Interconnect Network” for details). In other situations, the traffic has to be carried
over the public Internet. The typical network topologies for this kind of geograph-
ically distributed data centers is Layer-3 Peering Routing between the data center
core switches. By configuring all links connecting to the network core as point-to-
point Layer-3 connections, rapid convergence around any link failure is provided,
and the control plane of the core switches is not exposed to broadcast traffic
from end node devices or required to participate in STP for Layer-2 network loop
prevention.

The evolution of networking technology to support large-scale data centers is
most evident at the access layer due to rapid increase of number of servers in a
data center. Some research work (Greenberg, Hamilton, Maltz, & Patel, 2009; Kim,
Caesar, & Rexford, 2008) calls for a large Layer-2 domain with a flatter data center
network architecture (2 layers vs. 3 layers). While this approach may fit a homoge-
nous, single purpose data center environment, a more prevalent approach is based
on the concept of switch virtualization which allows the function of the logical
Layer-2 access layer to span across multiple physical devices. There are several
architectural variations in implementing switch virtualization at the access layer.
They include Virtual Blade Switch (VBS), Fabric Extender, and Virtual Ethernet
Switch technologies. The VBS approach allows multiple physical blade switches to
share a common management and control plane by appearing as a single switching
node (Cisco Systems, 2009d). The Fabric Extender approach allows a high-density,
high-throughput, multi-interface access switch to work in conjunction with a set
of fabric extenders serving as “remote I/O modules” extending the internal fabric
of the access switches to a larger number of low-throughput server access ports
(Cisco Systems, 2008). The Virtual Ethernet Switch is typically software based
access switch integrated inside a hypervisor at the server side. These switch vir-
tualization technologies allow the data center to support multi-tenant cloud services
and provide flexible configurations to scale up and down the deployment capacities
according to the level of workloads (Cisco Systems, 2009a, 2009c).

While we have discussed the general design principles for the data center net-
work in a massively scalable data center, some cloud service providers, especially
some public cloud providers, have adopted a two-tier data center architecture to
optimize data center cost and service delivery (Greenberg, Lahiri, Maltz, Patel, &
Sengupta, 2008). In this architecture, the creation and delivery of the cloud service
are typically accomplished by two tiers of data centers – a front end tier and a back
end tier – with significant difference in their sizes. Take the Web search service as
an example, the massive data analysis applications (e.g., computing the web search
index) is a natural fit for the centralized mega data centers (measured by hundreds of
thousands of servers) while the highly interactive user front-end applications (e.g.
the query/response process) is a natural fit for geographically distributed micro data
centers (measured by hundreds or thousands of servers) each placed close to major
population centers to minimize network latency and delivery cost. The hierarchi-
cal data center network architecture is scalable enough to support both mega data
centers and micro data centers with the same design principles discussed in this
section.

72 G. Lin and M. Devine

4.2.4.2 Data Center Interconnect Network

Data center interconnect networks (DCIN) are used to connect multiple data centers
to support a seamless customer experience of cloud services. While a conventional,
statically provisioned virtual private network can interconnect multiple data centers
and offer secure communications, to meet the requirements of seamless user expe-
rience for cloud services (high-availability, dynamic server migration, application
mobility), the DCIN for cloud services has emerged as a special class of networks
based on the design principle of Layer 2 network extension across multiple data
centers (Cisco Systems, 2009b). For example, in the case of server migration (either
in a planned data center maintenance scenario or in an unplanned dynamic applica-
tion workload balancing scenario) when only part of the server pool is moved at any
given time, maintaining the Layer 2 adjacency of the entire server pool across multi-
ple data centers as opposed to renumbering IP addresses of servers is a much better
solution. The Layer 2 network extension approach, on one hand, is a must from
business-continuity perspective; on the other hand, is cost effective from the opera-
tions perspective because it maintains the same server configuration and operations
policies.

Among the chief technical requirements and use cases for data center intercon-
nect networks are data center disaster avoidance (including data center maintenance
without downtime), dynamic virtual server migration, high-availability clusters, and
dynamic workload balancing and application mobility across multiple sites. These
are critical requirements for cloud computing. Take the application mobility as an
example. It provides the foundation necessary to enable compute elasticity – a key
characteristics of cloud computing – by providing the flexibility to move virtual
machines between different data centers.

Figure 4.3 shows a high level architecture for the data center interconnect
network based on the Layer 2 network extension approach.

Since the conventional design principle for Layer 2 network is to reduce its diam-
eter to increase performance and manageability (usually limiting it to the access
layer, hence advocating consolidating servers to a single mega data center and lim-
iting the Layer 2 connectivity to intra data center communications), there are many
areas of improvement and further research needed to meet the needs of data center
interconnect networks. Listed below are some of the key requirements for Layer 2
network extension across multiple data centers.

End-to-End Loop Prevention

To improve the high availability of the Layer 2 VLAN when it extends between
data centers, this interconnection must be duplicated. Therefore, an algorithm must
be enabled to control any risk of a Layer 2 loop and to protect against any type of
global disruptions that could be generated by a remote failure. An immediate option
to consider is to leverage Spanning Tree Protocol (STP), but it must be isolated
between the remote sites to mitigate the risk of propagating unwanted behaviors
such as topology change or root bridge movement from one data center to another.

4 The Role of Networks in Cloud Computing 73

Dark Fiber
Service Provider
Layers 1, 2, and 3

Core

WAN

Core

WAN

Same Extended VLAN

Aggregation
and
distribution

Access

L3

L2

Aggregation
and
distribution

Access

Data-center Data-center

WAN
Transport

LNA Extension
Encapsulation Options

Description

Dark Fiber and Service Provider
Layer1

Customer Owned or Service Provider
Leased

Native Ethernet, IP, MPLS

Service Provider Layer 2 Native Ethernet,IP, MPLS

Service Provider Layer 3

Service Provider Layer 2 Service,
Ethernet Private Line L (EPL)

IP Leased-Line Service IP, MPLS

L3

L2

Fig. 4.3 Data center interconnect LAN extension encapsulation options

WAN Load Balancing

Typically, WAN links are expensive, so the uplinks need to be fully utilized, with
traffic load-balanced across all available uplinks. A mechanism to dynamically
balance workloads at the virtual machine level is an area of research.

Core Transparency

The LAN extension solution needs to be transparent to the existing enterprise core
network, if available, to reduce any effect on operations. This is more common in
the private cloud or hybrid cloud environments than in a public cloud.

Encryption

The requirement for LAN extension cryptography is increasingly prevalent, for
example, to meet the needs for cloud services and for federal and regulatory
requirements.

4.3 Unique Opportunities and Requirements for Hybrid Cloud
Networking

IT industry is in the midst of a transformation. Globalization, explosion of
business information, unprecedented levels of interconnectedness and dynamic
collaboration among different business assets both within a corporation and across

74 G. Lin and M. Devine

multiple corporations (on-demand supply chain as an example) require today’s
enterprise businesses to move to an IT infrastructure that is truly economical, highly
integrated, agile and responsive.

As discussed in the previous section, the hybrid cloud model provides a seamless
extension to an enterprise’s private IT infrastructure by providing elastic compute,
storage and network services in a cost-effective manner. This seamless extension
could allow enterprises to streamline business processes, be more responsive to
change, have flexible collaboration with business partners, leverage more rapidly
the emerging technologies that address growing business challenges and increase
competitiveness by delivering more services to customers.

To achieve this vision of business agility that hybrid clouds promise to enable,
significant challenges lay ahead. Challenging requirements for hybrid cloud deploy-
ments in terms of deployment and operational costs, quality of service delivery,
business resiliency and security must be addressed. Hybrid clouds will need to sup-
port a large number of “smart industry solution workloads” – business applications
in the form of smart transportation solutions, smart energy solutions, smart supply
chain solutions, etc. In these “smart industry solutions,” large amount of business
information and control data will be collected, analyzed and reacted upon in a time-
constrained fashion across multiple tiers of cloud centers; workloads and data will
be dynamically shifted within a hybrid cloud environment. This will require signif-
icant improvements to today’s network. Using the metaphor of a bridge design, we
can describe these requirements in three categories – the foundation, the span and
the superstructure.

4.3.1 Virtualization, Automation and Standards – The Foundation

Virtualization, automation and standards are the pillars of the foundation of all good
cloud computing infrastructures. Without this foundation firmly in place across the
servers, storage and network layers, only minimal improvements on the adoption
of cloud services can be made; conversely, with this foundation in place, dramatic
improvements can be brought about by “uncoupling” applications and services from
the underlying infrastructure to improve application portability, drive up resource
utilization, enhance service reliability and greatly improve the underlying cost struc-
tures. However, this “uncoupling” must be done harmoniously such that the network
is “application aware” and that the application is “network aware”. Specifically, the
networks – both the data center network and the data center interconnect network
(and in the long run the public core network) – need to embrace virtualization and
automation services. The network must coordinate with the upper layers of the cloud
(i.e. the application workloads – both physical and virtual) to provide the needed
level of operational efficiency to break the lock between IT resources in today’s
client-server model.

This transformation to a dynamic infrastructure which is “centered” on service
delivery not only requires enterprise IT to transcend the daily IT break-and-fix

4 The Role of Networks in Cloud Computing 75

routine but to create a paradigm shift within the user community toward a shared
environment with repeatable, standardized processes. Centralized delivery of a stan-
dardized set of services instead of the distributed delivery of a highly customized set
of services must be accompanied by new levels of flexibility via self-service mech-
anisms. In other words, easier and faster access to services make the standardization
acceptable or even attractive to users since they sacrifice the ability to customize but
gain convenience and time.

There is also a strong need for open standards to enable interoperability and
federation across not only the individual layers of a private cloud behind an enter-
prise’s firewall but also when consuming public cloud based services. This type of
hybrid cloud environment allows scalable and flexible collaboration and global inte-
gration in support of evolving business model changes with clients (e.g. customer
relationship management) and partners (e.g. supply chain partners).

4.3.2 Latency, Bandwidth, and Scale – The Span

The span of the network requirements for latency, bandwidth and scale which are
needed to support traditional enterprise business applications and those needed to
support cloud based applications can be very wide. Accurate forecasting of the
quality of user experience and potential business impact for any network failure
is already a major challenge for IT managers and planners even for today’s tra-
ditional enterprise business applications. This challenge will become even more
difficult as businesses will depend increasingly on more high performance cloud
based applications which often have more variability than traditional enterprise
business applications.

Meeting this challenge is essential to the “quality of experience” required to get
the user community to accept a shared set of standardized services which are cloud
delivered. Without this acceptance, the transformation of today’s data center to a
private or hybrid cloud environment with the dynamic and shared infrastructure
needed for a reduced total cost of ownership will be much more difficult. Some
users may choose to “get around” IT by trying to leverage services from the public
cloud without the proper integration with existing IT and business processes which
can have significant negative impacts on their businesses.

“Quality of experience” for access to some cloud based applications and services
may require LAN-like performance to allow a portion of the user community to use
real-time information to respond instantaneously to new business needs and to meet
the demands of their customers. For these use cases, latency and bandwidth matter.
Furthermore, there does not have to be problems at any one hop in order for end
to end performance to be affected. Mild congestion at a number of hops can create
problems in latency and packet loss. Therefore, content distribution, optimized rout-
ing and application acceleration services are usually required especially for hybrid
cloud deployments with regional to global network connectivity.

76 G. Lin and M. Devine

Other users may only want the ability to simply request a new service without
needing to know how or where it is built and delivered. It is not that the performance
is not important to these users. In fact, communication and application delivery
optimizations may still be required to increase the performance of applications and
data that must traverse the cloud. It is just that their main criterion for quality has
more to do with the ability to easily provision as many services as needed than it
is dependent on latency and bandwidth optimizations. For these use cases, the abil-
ity to easily provision system resources including network resources (physical or
virtual) is essential. It is also important to note that the two most prevailing tech-
niques to help server-side scaling, i.e. physical density and virtualization, both drive
an increased dependence on network integration.

For each user group and their corresponding use cases, the evolution to global-
scale service delivery may best be accomplished via a hybrid cloud environment.
The hybrid cloud can enable the visibility, control and automation needed to deliver
quality services at almost any scale by leveraging not only the private network but
also the public internet via managed network service providers.

Public clouds can be used for off-loading certain workloads. This off-load could
be so that the private network infrastructure can be available and optimized for other
latency and bandwidth sensitive workloads and/or for the provisioning of additional
services due to a shortage of available infrastructure on-premise. Application plat-
forms and tooling available on the public cloud can also be used to provide even
greater flexibility for development and test environments which are often the best
workloads for this type of off-loading. SaaS applications can also be consumed by
the user community within a hybrid cloud environment. Under the hybrid cloud
model, the consumption of public cloud services can be fully integrated with the
existing on-premise IT and business processes to maximize the return of investment
as well as ensure regulatory compliance.

4.3.3 Security, Resiliency, and Service Management – The
Superstructure

Like the superstructure which ensures the integrity of a bridge’s design, the elements
of cloud computing environment – security, resiliency and service management –
ensure the integrity of its design. Without these “superstructure” elements the
value proposition associated with cloud computing will collapse and the economic
benefits promised by cloud computing will be just illusions.

For some workloads, compliance with industry regulations like HIPAA (Health
Insurance Portability and Accountability Act) and SOX (Sarbanes Oxley) require
businesses to keep complete control over the security of their data. While there is
much innovation happening for security within public clouds, the maturity level of
these technologies may not yet be at a level where security and regulatory compli-
ance can be guaranteed. However, even in these cases, an enterprise can still off-load
non sensitive/critical workloads onto a public cloud while using a private cloud to
ensure the needed SLAs for sensitive/critical workloads.

4 The Role of Networks in Cloud Computing 77

The network plays a key role in the establishment of these regulatory compliant
clouds. Private WAN services must be enabled to provide the security needed for
the private portion of the cloud. If a hybrid cloud environment is being used then
the network must also be able to provide the federated connectivity and isolation
needed and support the proper level of encryption for VPN tunnels which will be
used by the public clouds to access data which remains behind a corporate firewall.
Although there are other cloud deployment options available for workloads which
do not have the need for the same level of compliance, networking connectivity
and security functions are still central for a successful deployment of these cloud
services.

Service management and automation also plays a critical role in hybrid clouds.
As cloud services continue to advance, it is more likely that in the future network-
ing services for cloud applications will be offered through an application-oriented
abstraction layer APIs, rather than in specific networking technologies. Within this
network architecture paradigm, modification and provisioning of network resources
can be made in a more automated and optimized manner via service management or
network self-adjustment. Specifically, these modifications can be made via operator-
initiated provisioning through service management systems to assert direct control
on network services, or via “smart” networking technologies which can also adapt
services in an autonomic or self-adjusting fashion. Furthermore, it is critical that
the network service management and the smart networking technologies are tightly
integrated with the overall management for the cloud service delivery so that the
changes required by the upper layers of the cloud “stack” in network resources can
be carried through by the network service management or self-adaptations in an
automated fashion.

Many of these “smart” networking technologies are focused on maximizing the
resiliency of cloud deployments in terms of the availability, performance and work-
load mobility. For example, application delivery networking services optimize the
flow of information and provide application acceleration by the classification and
prioritization of application, content and user access; virtual switching technol-
ogy provides an “abstraction” of the switching fabric and allows virtual machine
mobility.

As these “smart” networking technologies mature, their capabilities will extend
beyond the current capabilities for a single cloud to the “intra-cloud” as well as to the
“intercloud.” With this maturation, the hybrid cloud will provide unprecedented lev-
els of global interconnectedness for real time or near real time information access,
application-to-application integration and collaboration.

4.4 Network Architecture for Hybrid Cloud Deployments

Hybrid clouds play a key role in the adoption of cloud computing as the new gen-
eration IT paradigm. While the IT industry and the research community are still in
the early stage to understand the implementation technologies for hybrid clouds, a

78 G. Lin and M. Devine

Private Cloud

Network Service Node

Public Cloud

Network Service Node

Fire Wall

Service
Control

Fire Wall

Service
Control

Data Center Interconnect

WAN Accelerator

Load Balancer Load Balancer

WAN Accelerator

ransport Network

Data Center Core
Switch

Cloud-in-a-box Data Center Core
Switch

Cloud-in-a-box

Standard Management
Interfaces

Cloud Management System

Fig. 4.4 A Functional view of network architecture for hybrid clouds

number of major functional components in the hybrid cloud network architecture
have been identified. Figure 4.4 shows a functional view of the network architecture
for hybrid clouds.

4.4.1 Cloud-in-a-Box

As large enterprises start to build their own private clouds and further expand them
into hybrid clouds, a significant need is to simplify the design, deployment, and
management of clouds. The traditional data center deployment model of having
separated physical devices focusing on server units, networking units, and storage
units presents a significant challenge. A new trend in the design and deployment of
private and hybrid clouds is the concept of “cloud-in-a-box.”

A cloud-in-a-box, sometimes also called a cloud cell, is a pre-integrated, pre-
packaged and self-contained service delivery platform that can be used easily
and quickly to implement private cloud centers. Physically, it is typically deliv-
ered in a single chassis containing multiple blades; some blades are computing
units, some switching units, and some storage units. They are interconnected by
a combination of a common backplane (e.g. a PCI-type backplane) and high-speed
converged Ethernet connections (e.g. 10G FCoE). From the networking perspective,
the switches that are pre-integrated into a cloud-in-a-box are typically the access
layer switches.

Software wise, a common hypervisor environment typically expands across
the computing units, the networking units, and storage units in a cloud-in-a-box
device. From the networking perspective, this requires a virtual Ethernet switch
to be embedded in the hypervisor. In the VMware environment, the VMware’s

4 The Role of Networks in Cloud Computing 79

vNetwork Distributed Switch and Cisco’s Nexus 1000v virtual switch are the two
well known examples of hypervisor-embedded virtual Ethernet switches. On top
of the common virtualization layer, a service management application is typically
included to allow the management and automation of cloud services provision-
ing, accounting and billing, security, dynamic resource reallocation and workload
mobility. Furthermore, some of today’s purpose-built cloud-in-a-box platforms also
include a cloud service application to offer the specific cloud service. For example, a
development-and-test oriented cloud-in-a-box platform may pre-integrate and pre-
package a cloud-ready Integrated Development Environment (IDE) as part of the
product.

At the time of this chapter is written, there are a number of cloud-in-a-box prod-
ucts offered in the industry. See (VCEC, 2009; IBM Corporation, 2009) for further
information.

4.4.2 Network Service Node

Layer 4 network services play an important role in the network architecture for
hybrid clouds. Application firewalls ensure the secure transport of user data and
application workloads between the data centers in a hybrid cloud; server load bal-
ancers ensure the workloads distributed evenly or according to operations policies
both within a single data center and across multiple data centers; WAN accelerators
provide WAN optimization that accelerates the targeted cloud workloads over the
WAN, and ensure a transparent user experience regardless where the applications
reside.

While these Layer 4 services exist in today’s data center environments, the prolif-
eration of server virtualization in the cloud delivery model has created a significant
challenge to the traditional network service architecture, as the Layer 4 services now
need to be virtualization aware.

Visibility into virtual machine activity and isolation of server traffic becomes
more difficult when virtual machine-sourced traffic can reach other virtual machines
both within the same server and across the data center network and data center inter-
connect network. In the traditional access model, each physical server is connected
to an access port. Any communication to and from a particular server or between
servers goes through a physical access switch and any associated services such as a
firewall or a load balancer. But what happens when applications now reside on vir-
tual machines and multiple virtual machines reside within the same physical server?
It might not be necessary for traffic to leave the physical server and pass through
a physical access switch for one virtual machine to communicate with another. On
the other hand, application residing in a virtual machine can be “moved” to another
data center for load balancing. How to ensure the WAN accelerator to recognize
an application residing within a virtual machine and optimize the WAN treatment
for a virtual machine? Enforcing network policies in this type of environment can
be a significant challenge. A network service node is a logical or a physical unit

80 G. Lin and M. Devine

that provides the layer-4 network services to support cloud service deployment. The
goal remains to provide many of the same network services and features used in the
traditional access layer in the new virtualization-aware access layer. We believe this
will be a fertile area for future research.

4.4.3 Data Center Network and Data Center Interconnect
Network

Data center network and data center interconnect network are described before. Due
to the length limitation of this chapter, we shall not expand beyond what has been
described in Sections 4.2.4.1 and 4.2.4.2.

4.4.4 Management of the Network Architecture

Management of the network architecture in a hybrid cloud is part of the overall
cloud management system. Key topics include the “physical” system management
of the network infrastructure in the hybrid cloud and the “virtualization” manage-
ment aspect that spans across the entire network path, starting from the virtual
Ethernet switch embedded in the Hypervisor, through the access and core switches
in the data center network, and across the data center interconnect network, as well
as the network service modules along the network path.

Virtualization brings a new dimension to the management architecture. Similar
to traditional “physical” system management, the network virtualization manage-
ment needs to dynamically provision, monitor and manage end-to-end network
resources and services between virtual machines in a cloud environment. In this
context, a way to express workloads, network resources and operation policies in a
virtualization-aware but hypervisor independent manner is the first step. Readers
interested in more details in this area can start from DMTFb (2009). Once this
is achieved, algorithms and systems can be developed to derive the network con-
figurations and resource allocation based on the requirements from the virtual
machine workloads. Similar to the “physical” system management, interoperabil-
ity between the systems (e.g. between management system and the network, and
between management systems) is an important requirement. For this purpose, com-
mon standards, open interfaces, common data model (management information
model) are key. Currently this is still a less coordinated area where a number of
standards bodies, including the Distributed Management Task Force (DMTF), the
Object Management Group (OMG), the Open Grid Forum (OGF), etc., are work-
ing on various “standards” for cloud management. This is an area that needs more
efforts to mature. Interested readers can start from DMTFa and Cloud Standards
Coordination, http://cloud-standards.org.

4 The Role of Networks in Cloud Computing 81

4.5 Conclusions and Future Directions

As the next paradigm shift for IT industry, cloud computing is still in the early stage.
Just as the previous major IT paradigm shift – from centralized computing to dis-
tributed computing – has had tremendous impact on IP networking (and vice versa),
we see a similar impact with regard to cloud computing and the next generation net-
works. In many ways, supporting cloud computing represents a natural evolution for
the IP networking; we see the Layer 2 domain in the data center network becoming
wider, flatter and virtualization aware; we see the data center interconnect network
and Layer 4 network services becoming virtualization aware and self-adaptable to
security, performance and SLA constraints; we see virtual machine mobility and
cloud service elasticity not only within a single data center but also over metro net-
works or WAN across multiple data centers. As the IT industry creates and deploys
more cloud services, more requirements will be put on to the networks and more
intelligence will be implemented by the cloud-enabling network.

Our belief is that the hybrid cloud will emerge as the ideal cloud deployment
model for most enterprises since it blends the best of private and public clouds. The
networks play an extremely critical role in enabling hybrid cloud deployments. For
core services with critical business data, the private network within the hybrid cloud
can allow full control over network security, performance, management, etc. The
public side of the hybrid cloud provides the ability to extend an enterprise’s reach
to Internet deployed applications and services which can then be integrated with its
on-premise assets and business processes. We believe more cloud-enabling innova-
tions will occur in both data center networks and data center interconnect networks.
Furthermore, we believe the public Internet will embrace many of the capabili-
ties exhibited in today’s data center interconnect networks (and expand beyond).
Somewhat contrary to today’s loosely coupled IP networking architecture (with
respect to other IT assets – servers, storage, and applications) which was the resulted
from the distributed client server computing model, we believe the cloud computing
model will drive a more tightly integrated network architecture with other IT assets
Mell & Grance (October 2009).

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (February 2009).
Above the clouds: A Berkeley view of cloud computing (Tech. Rep. No. UCB/EECS-2009-28).

Babcock, C. (August 2009a). Private clouds take shape. Information Week Article.
Babcock, C. (September 2009b). The public cloud: Infrastructure as a service. InformationWeek

Analytics Alerts.
Babcock, C. (September 2009c). Hybrid clouds. Information Week Analytics Alerts.
Cisco Systems (December 2008). Cisco Nexus 2000 series fabric extenders. http://www.

ciscopowered.info/en/US/prod/collateral/switches/ps9441/ps10110/at_a_glance_c45-511599.
pdf.

Cisco Systems (May 2009a). Security and virtualization in the data center. http://www.cisco.
com/en/US/prod/collateral/switches/ps5718/ps708/white_paper_c11_493718.pdf.

82 G. Lin and M. Devine

Cisco Systems (July 2009b). Data center interconnect: Layer 2 extension between remote data.
http://www.cisco.com/en/US/prod/collateral/switches/ps5718/ps708/white_paper_c11_493718.
pdf. Accessed on February 2010.

Cisco Systems and VMware Inc. (August 2009c). Virtual machine mobility with Vmware
Vmotion and cisco data center interconnect technologies. http://www.cisco.com/en/US/
solutions/collateral/ns340/ns517/ns224/ns836/white_paper_c11-557822.pdf. Accessed on
February 2010.

Cisco Systems (October 2009d). Data center design – IP network infrastructure. http://www.
cisco.com/en/US/docs/solutions/Enterprise/Data_Center/DC_3_0/DC-3_0_IPInfra.pdf.
Accessed on February 2010.

Distributed Management Task Force (DMTFa). DMTF open cloud standards incubator.
http://www.dmtf.org/about/cloud-incubator. Accessed on February 2010.

Distributed Management Task Force (DMTFb) (February 2009). Open virtualization format spec-
ification. http://www.dmtf.org/standards/published_documents/DSP0243_1.0.0.pdf. Accessed
on February 2010.

Greenberg, A., Lahiri, P., Maltz, D. A., Patel, P., & Sengupta, S. (August 2008). Towards a next
generation data center architecture: Scalability and commoditization. Proceedings of the ACM
Workshop on Programmable Router and Extensible Services for Tomorrow (PRESTO), Seattle,
WA, USA, 55–62.

Greenberg, A., Hamilton, J., Maltz, D. A., & Patel, P. (January 2009). The cost of a cloud: Research
problems in data center networks. ACM SIGCOMM Computer Communication Review, 39(1),
68–73.

IBM Corporation (December 2009). A breakthrough in service delivery for data center
workloads – IBM cloudburst. ftp://ftp.software.ibm.com/software/tivoli/products/cloudburst/
IBM_CloudBurst_data_sheet-December_2009.pdf.

Skorupa, J., Fabbi, M., Leong, L., Chamberlin, T., Pultz, J. E., Willis, D. A., (June 2008). You can’t
do cloud computing without the right cloud (Network) (Gartner Rep. no.: G00158513).

Kim, C., Caesar, M., & Rexford, J. (August 2008). Floodless in SEATTLE: A scalable Ethernet
architecture for large enterprises. Proceedings of the ACM SIGCOMM, Seattle, WA, USA, 3–14.

Lin, G., Fu, D., Zhu, J., & Dasmalchi, G. (March/April 2009). Cloud computing: IT as a service.
IT Professional, 11(2), 10–13.

Mell, P., & Grance, T. (October 2009). The NIST definition of cloud computing. http://csrc.nist.
gov/groups/SNS/cloud-computing. Accessed on February 2010.

Chapter 5
Data-Intensive Technologies for Cloud
Computing

Anthony M. Middleton

5.1 Introduction

As a result of the continuing information explosion, many organizations are drown-
ing in data and the resulting “data gap” or inability to process this information
and use it effectively is increasing at an alarming rate. Data-intensive comput-
ing represents a new computing paradigm (Kouzes, Anderson, Elbert, Gorton, &
Gracio, 2009) which can address the data gap using scalable parallel processing
to allow government, commercial organizations, and research environments to pro-
cess massive amounts of data and implement applications previously thought to
be impractical or infeasible. Cloud computing provides the opportunity for orga-
nizations with limited internal resources to implement large-scale data-intensive
computing applications in a cost-effective manner.

The fundamental challenges of data-intensive computing are managing and pro-
cessing exponentially growing data volumes, significantly reducing associated data
analysis cycles to support practical, timely applications, and developing new algo-
rithms which can scale to search and process massive amounts of data. Researchers
at LexisNexis believe that the answer to these challenges is a scalable, inte-
grated computer systems hardware and software architecture designed for parallel
processing of data-intensive computing applications. This chapter explores the
challenges of data-intensive computing and offers an in-depth comparison of com-
mercially available system architectures including the LexisNexis Data Analytics
Supercomputer (DAS) also referred to as the LexisNexis High-Performance
Computing Cluster (HPCC), and Hadoop, an open source implementation based
on Google’s MapReduce architecture.

Cloud computing emphasizes the ability to scale computing resources as needed
without a large upfront investment in infrastructure and associated ongoing opera-
tional costs (Napper & Bientinesi, 2009; Reese, 2009; Velte, Velte, & Elsenpeter,
2009). Cloud computing services are typically categorized in three models:

A.M. Middleton (B)
LexisNexis Risk Solutions, Boca Raton, FL, USA
e-mail: tony.middleton@lexisnexis.com

83B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_5, C© Springer Science+Business Media, LLC 2010

84 A.M. Middleton

(1) Infrastructure as a Service (IaaS). Service includes provision of hardware and
software for processing, data storage, networks and any required infrastructure for
deployment of operating systems and applications which would normally be needed
in a data center managed by the user; (2) Platform as a Service (PaaS). Service
includes programming languages and tools and an application delivery platform
hosted by the service provider to support development and delivery of end-user
applications; and (3) Software as a Service (SaaS). Hosted software applications are
provided and managed by the service provider for the end-user replacing locally-run
applications with Web-based applications (Lenk, Klems, Nimis, Tai, & Sandholm,
2009; Levitt, 2009; Mell & Grance, 2009; Vaquero, Rodero-Merino, Caceres, &
Lindner, 2009; Viega, 2009).

Data-intensive computing applications are implemented using either the IaaS
model which allows the provisioning of scalable clusters of processors for data-
parallel computing using various software architectures, or the PaaS model which
provides a complete processing and application development environment including
both infrastructure and platform components such as programming languages and
applications development tools. Data-intensive computing can be implemented in a
public cloud (cloud infrastructure and platform is publicly available from a cloud
services provider) such as Amazon’s Elastic Compute Cloud (EC2) and Elastic
MapReduce or as a private cloud (cloud infrastructure and platform is operated
solely for a specific organization and may exist internally or externally to the orga-
nization) (Mell & Grance, 2009). IaaS and PaaS implementations for data-intensive
computing can be either dynamically provisioned in virtualized processing environ-
ments based on application scheduling and data processing requirements, or can be
implemented as a persistent high-availability configuration. A persistent configura-
tion has a performance advantage since it uses dedicated infrastructure instead of
virtualized servers shared with other users.

5.1.1 Data-Intensive Computing Applications

Parallel processing approaches can be generally classified as either compute-
intensive, or data-intensive (Skillicorn & Talia, 1998; Gorton, Greenfield, Szalay, &
Williams, 2008; Johnston, 1998). Compute-intensive is used to describe application
programs that are compute bound. Such applications devote most of their execu-
tion time to computational requirements as opposed to I/O, and typically require
small volumes of data. Parallel processing of compute-intensive applications typi-
cally involves parallelizing individual algorithms within an application process, and
decomposing the overall application process into separate tasks, which can then
be executed in parallel on an appropriate computing platform to achieve overall
higher performance than serial processing. In compute-intensive applications, mul-
tiple operations are performed simultaneously, with each operation addressing a
particular part of the problem. This is often referred to as functional parallelism
or control parallelism (Abbas, 2004).

5 Data-Intensive Technologies for Cloud Computing 85

Data-intensive is used to describe applications that are I/O bound or with a need
to process large volumes of data (Gorton et al., 2008; Johnston, 1998; Gokhale,
Cohen, Yoo, & Miller, 2008). Such applications devote most of their processing
time to I/O and movement of data. Parallel processing of data-intensive applica-
tions typically involves partitioning or subdividing the data into multiple segments
which can be processed independently using the same executable application pro-
gram in parallel on an appropriate computing platform, then reassembling the results
to produce the completed output data (Nyland, Prins, Goldberg, & Mills, 2000).
The greater the aggregate distribution of the data, the more benefit there is in paral-
lel processing of the data. Gorton et al. (2008) state that data-intensive processing
requirements normally scale linearly according to the size of the data and are very
amenable to straightforward parallelization. The fundamental challenges for data-
intensive computing according to Gorton et al. (2008) are managing and processing
exponentially growing data volumes, significantly reducing associated data analy-
sis cycles to support practical, timely applications, and developing new algorithms
which can scale to search and process massive amounts of data. Cloud comput-
ing can address these challenges with the capability to provision new computing
resources or extend existing resources to provide parallel computing capabilities
which scale to match growing data volumes (Grossman, 2009).

5.1.2 Data-Parallelism

Computer system architectures which can support data-parallel applications are
a potential solution to terabyte and petabyte scale data processing requirements
(Nyland et al., 2000; Ravichandran, Pantel, & Hovy, 2004). According to Agichtein
and Ganti (2004), parallelization is considered to be an attractive alternative for pro-
cessing extremely large collections of data such as the billions of documents on the
Web (Agichtein, 2004). Nyland et al. (2000) define data-parallelism as a compu-
tation applied independently to each data item of a set of data which allows the
degree of parallelism to be scaled with the volume of data. According to Nyland
et al. (2000), the most important reason for developing data-parallel applications is
the potential for scalable performance, and may result in several orders of magni-
tude performance improvement. The key issues with developing applications using
data-parallelism are the choice of the algorithm, the strategy for data decomposition,
load balancing on processing nodes, message passing communications between
nodes, and the overall accuracy of the results (Nyland et al., 2000; Rencuzogullari
& Dwarkadas, 2001). Nyland et al. (2000) also note that the development of a data-
parallel application can involve substantial programming complexity to define the
problem in the context of available programming tools, and to address limitations of
the target architecture. Information extraction from and indexing of Web documents
is typical of data-intensive processing which can derive significant performance ben-
efits from data-parallel implementations since Web and other types of document
collections can typically then be processed in parallel (Agichtein, 2004).

86 A.M. Middleton

5.1.3 The “Data Gap”

The rapid growth of the Internet and World Wide Web has led to vast amounts of
information available online. In addition, business and government organizations
create large amounts of both structured and unstructured information which needs
to be processed, analyzed, and linked. Vinton Cerf of Google has described this as
an “Information Avalanche” and has stated “we must harness the Internet’s energy
before the information it has unleashed buries us” (Cerf, 2007). An IDC white paper
sponsored by EMC estimated the amount of information currently stored in a dig-
ital form in 2007 at 281 exabytes and the overall compound growth rate at 57%
with information in organizations growing at even a faster rate (Gantz et al., 2007).
In another study of the so-called information explosion it was estimated that 95%
of all current information exists in unstructured form with increased data process-
ing requirements compared to structured information (Lyman & Varian, 2003). The
storing, managing, accessing, and processing of this vast amount of data represents
a fundamental need and an immense challenge in order to satisfy needs to search,
analyze, mine, and visualize this data as information (Berman, 2008). In 2003,
LexisNexis defined this issue as the “Data Gap”: the ability to gather information is
far outpacing organizational capacity to use it effectively.

Organizations build the applications to fill the storage they have available, and
build the storage to fit the applications and data they have. But will organizations
be able to do useful things with the information they have to gain full and inno-
vative use of their untapped data resources? As organizational data grows, how
will the “Data Gap” be addressed and bridged? Researchers at LexisNexis believe
that the answer is a scalable computer systems hardware and software architecture
designed for data-intensive computing applications which can scale to processing
billions of records per second (BORPS) (Note: the term BORPS was introduced by
Seisint, Inc. in 2002. Seisint was acquired by LexisNexis in 2004). What are the
characteristics of data-intensive computing systems and what system architectures
are available to organizations to implement data-intensive computing applications?
Can these capabilities be implemented using cloud computing to reduce risk and
upfront investment in infrastructure and to allow a pay-as-you-go model? This
chapter will explore those issues and offer a comparison of commercially available
system architectures.

5.2 Characteristics of Data-Intensive Computing Systems

The National Science Foundation believes that data-intensive computing requires
a “fundamentally different set of principles” than current computing approaches
(NSF, 2009). Through a funding program within the Computer and Information
Science and Engineering area, the NSF is seeking to “increase understanding of
the capabilities and limitations of data-intensive computing.” The key areas of
focus are:

5 Data-Intensive Technologies for Cloud Computing 87

• Approaches to parallel programming to address the parallel processing of data on
data-intensive systems

• Programming abstractions including models, languages, and algorithms which
allow a natural expression of parallel processing of data

• Design of data-intensive computing platforms to provide high levels of reliability,
efficiency, availability, and scalability.

• Identifying applications that can exploit this computing paradigm and determin-
ing how it should evolve to support emerging data-intensive applications.

Pacific Northwest National Labs has defined data-intensive computing as “cap-
turing, managing, analyzing, and understanding data at volumes and rates that push
the frontiers of current technologies” (Kouzes et al., 2009; PNNL, 2008). They
believe that to address the rapidly growing data volumes and complexity requires
“epochal advances in software, hardware, and algorithm development” which can
scale readily with size of the data and provide effective and timely analysis and pro-
cessing results. The HPCC architecture developed by LexisNexis represents such an
advance in capabilities.

5.2.1 Processing Approach

Current data-intensive computing platforms use a “divide and conquer” parallel
processing approach combining multiple processors and disks in large computing
clusters connected using high-speed communications switches and networks which
allows the data to be partitioned among the available computing resources and pro-
cessed independently to achieve performance and scalability based on the amount
of data (Fig. 5.1). Buyya, Yeo, Venugopal, Broberg, and Brandic (2009) define a
cluster as “a type of parallel and distributed system, which consists of a collection

Network Fabric / Interconnect

Node

Local
Memory

Hard
Drive

CPU

Node

CPU

Node

CPU

Local
Memory

Hard
Drive

Local
Memory

Hard
Drive

Fig. 5.1 Shared nothing computing cluster

88 A.M. Middleton

of inter-connected stand-alone computers working together as a single integrated
computing resource.” This approach to parallel processing is often referred to as
a “shared nothing” approach since each node consisting of processor, local mem-
ory, and disk resources shares nothing with other nodes in the cluster. In parallel
computing this approach is considered suitable for data processing problems which
are “embarrassingly parallel” , i.e. where it is relatively easy to separate the prob-
lem into a number of parallel tasks and there is no dependency or communication
required between the tasks other than overall management of the tasks. These types
of data processing problems are inherently adaptable to various forms of distributed
computing including clusters and data grids and cloud computing.

5.2.2 Common Characteristics

There are several important common characteristics of data-intensive computing
systems that distinguish them from other forms of computing. First is the principle
of collocation of the data and programs or algorithms to perform the computa-
tion. To achieve high performance in data-intensive computing, it is important to
minimize the movement of data (Gray, 2008). In direct contrast to other types of
computing and supercomputing which utilize data stored in a separate repository
or servers and transfer the data to the processing system for computation, data-
intensive computing uses distributed data and distributed file systems in which data
is located across a cluster of processing nodes, and instead of moving the data, the
program or algorithm is transferred to the nodes with the data that needs to be pro-
cessed. This principle – “Move the code to the data” – which was designed into the
data-parallel processing architecture implemented by Seisint in 2003, is extremely
effective since program size is usually small in comparison to the large datasets pro-
cessed by data-intensive systems and results in much less network traffic since data
can be read locally instead of across the network. This characteristic allows pro-
cessing algorithms to execute on the nodes where the data resides reducing system
overhead and increasing performance (Gorton et al., 2008).

A second important characteristic of data-intensive computing systems is the
programming model utilized. Data-intensive computing systems utilize a machine-
independent approach in which applications are expressed in terms of high-level
operations on data, and the runtime system transparently controls the scheduling,
execution, load balancing, communications, and movement of programs and data
across the distributed computing cluster (Bryant, 2008). The programming abstrac-
tion and language tools allow the processing to be expressed in terms of data flows
and transformations incorporating new dataflow programming languages and shared
libraries of common data manipulation algorithms such as sorting. Conventional
supercomputing and distributed computing systems typically utilize machine depen-
dent programming models which can require low-level programmer control of
processing and node communications using conventional imperative programming
languages and specialized software packages which adds complexity to the parallel

5 Data-Intensive Technologies for Cloud Computing 89

programming task and reduces programmer productivity. A machine dependent pro-
gramming model also requires significant tuning and is more susceptible to single
points of failure.

A third important characteristic of data-intensive computing systems is the focus
on reliability and availability. Large-scale systems with hundreds or thousands of
processing nodes are inherently more susceptible to hardware failures, communica-
tions errors, and software bugs. Data-intensive computing systems are designed to
be fault resilient. This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of node or process-
ing failures, and selective re-computation of results. A processing cluster configured
for data-intensive computing is typically able to continue operation with a reduced
number of nodes following a node failure with automatic and transparent recovery
of incomplete processing.

A final important characteristic of data-intensive computing systems is the inher-
ent scalability of the underlying hardware and software architecture. Data-intensive
computing systems can typically be scaled in a linear fashion to accommodate vir-
tually any amount of data, or to meet time-critical performance requirements by
simply adding additional processing nodes to a system configuration in order to
achieve billions of records per second processing rates (BORPS). The number of
nodes and processing tasks assigned for a specific application can be variable or
fixed depending on the hardware, software, communications, and distributed file
system architecture. This scalability allows computing problems once considered
to be intractable due to the amount of data required or amount of processing time
required to now be feasible and affords opportunities for new breakthroughs in data
analysis and information processing.

5.2.3 Grid Computing

A similar computing paradigm known as grid computing has gained popularity
primarily in research environments (Abbas, 2004). A computing grid is typically
heterogeneous in nature (nodes can have different processor, memory, and disk
resources), and consists of multiple disparate computers distributed across organiza-
tions and often geographically using wide-area networking communications usually
with relatively low-bandwidth. Grids are typically used to solve complex computa-
tional problems which are compute-intensive requiring only small amounts of data
for each processing node. A variation known as data grids allow shared repositories
of data to be accessed by a grid and utilized in application processing, however the
low-bandwidth of data grids limit their effectiveness for large-scale data-intensive
applications.

In contrast, data-intensive computing systems are typically homogeneous in
nature (nodes in the computing cluster have identical processor, memory, and
disk resources), use high-bandwidth communications between nodes such as giga-
bit Ethernet switches, and are located in close proximity in a data center using

90 A.M. Middleton

high-density hardware such as rack-mounted blade servers. The logical file system
typically includes all the disks available on the nodes in the cluster and data files
are distributed across the nodes as opposed to a separate shared data repository such
as a storage area network which would require data to be moved to nodes for pro-
cessing. Geographically dispersed grid systems are more difficult to manage, less
reliable, and less secure than data-intensive computing systems which are usually
located in secure data center environments.

5.2.4 Applicability to Cloud Computing

Cloud computing can take many shapes. Most visualize the cloud as the Internet
or Web which is often depicted in this manner, but a more general definition is
that cloud computing shifts the location of the computing resources and infras-
tructure providing computing applications to the network (Vaquero et al., 2009).
Software accessible through the cloud becomes a service, application platforms
accessible through the cloud to develop and deliver new applications become a
service, and hardware and software to create infrastructure and virtual data cen-
ter environments accessible through the cloud becomes a service (Weiss, 2007).
Other characteristics usually associated with cloud computing include a reduction in
the costs associated with management of hardware and software resources (Hayes,
2008), pay-per-use or pay-as-you-go access to software applications and on-demand
computing resources (Vaquero et al., 2009), dynamic provisioning of infrastructure
and scalability of resources to match the size of the data and computing require-
ments which is directly applicable to the characteristics of data-intensive computing
(Grossman & Gu, 2009). Buyya et al. (2009) provide the following comprehensive
definition of a cloud: “A Cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers that are dynamically
provisioned and presented as one or more unified computing resource(s) based
on service-level agreements established through negotiation between the service
provider and consumer.”

The cloud computing models directly applicable to data-intensive computing
characteristics are Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS). IaaS typically includes a large pool of configurable virtualized resources
which can include hardware, operating systems, middleware, and development plat-
forms or other software services which can be scaled to accommodate varying
processing loads (Vaquero et al., 2009). The computing clusters typically used for
data-intensive processing can be provided in this model. Processing environments
such as Hadoop MapReduce and LexisNexis HPCC which include application
development platform capabilities in addition to basic infrastructure implement
the Platform as a Service (PaaS) model. Applications with a high degree of data-
parallelism and a requirement to process very large datasets can take advantage of
cloud computing and IaaS or PaaS using hundreds of computers provisioned for a
short time instead of one or a small number of computers for a long time (Armbrust

5 Data-Intensive Technologies for Cloud Computing 91

et al., 2009). According to Armbrust et al. in a University of California Berkeley
research report (Armbrust et al., 2009), this processing model is particularly well-
suited to data analysis and other applications that can benefit from parallel batch
processing. However, the user cost/benefit analysis should also include the cost of
moving large datasets into the cloud in addition the speedup and lower processing
cost offered by the IaaS and PaaS models.

5.3 Data-Intensive System Architectures

A variety of system architectures have been implemented for data-intensive and
large-scale data analysis applications including parallel and distributed relational
database management systems which have been available to run on shared nothing
clusters of processing nodes for more than two decades (Pavlo et al., 2009). These
include database systems from Teradata, Netezza, Vertica, and Exadata/Oracle and
others which provide high-performance parallel database platforms. Although these
systems have the ability to run parallel applications and queries expressed in the
SQL language, they are typically not general-purpose processing platforms and
usually run as a back-end to a separate front-end application processing system.
Although this approach offers benefits when the data utilized is primarily structured
in nature and fits easily into the constraints of a relational database, and often excels
for transaction processing applications, most data growth is with data in unstruc-
tured form (Gantz et al., 2007) and new processing paradigms with more flexible
data models were needed. Internet companies such as Google, Yahoo, Microsoft,
Facebook, and others required a new processing approach to effectively deal with
the enormous amount of Web data for applications such as search engines and social
networking. In addition, many government and business organizations were over-
whelmed with data that could not be effectively processed, linked, and analyzed
with traditional computing approaches.

Several solutions have emerged including the MapReduce architecture pioneered
by Google and now available in an open-source implementation called Hadoop
used by Yahoo, Facebook, and others. LexisNexis, an acknowledged industry leader
in information services, also developed and implemented a scalable platform for
data-intensive computing which is used by LexisNexis and other commercial and
government organizations to process large volumes of structured and unstructured
data. These approaches will be explained and contrasted in terms of their overall
structure, programming model, file systems, and applicability to cloud computing
in the following sections. Similar approaches using commodity computing clusters
including Sector/Sphere (Grossman & Gu, 2008; Grossman, Gu, Sabala, & Zhang,
2009; Gu & Grossman, 2009), SCOPE/Cosmos (Chaiken et al., 2008), DryadLINQ
(Yu, Gunda, & Isard, 2009), Meandre (Llor et al., 2008), and GridBatch (Liu &
Orban, 2008) recently described in the literature are also suitable for data-intensive
cloud computing applications and represent additional alternatives.

92 A.M. Middleton

5.3.1 Google MapReduce

The MapReduce architecture and programming model pioneered by Google is an
example of a modern systems architecture designed for processing and analyzing
large datasets and is being used successfully by Google in many applications to pro-
cess massive amounts of raw Web data (Dean & Ghemawat, 2004). The MapReduce
architecture allows programmers to use a functional programming style to create a
map function that processes a key-value pair associated with the input data to gen-
erate a set of intermediate key-value pairs, and a reduce function that merges all
intermediate values associated with the same intermediate key (Dean & Ghemawat,
2004). According to Dean and Ghemawat (2004), the MapReduce programs can be
used to compute derived data from documents such as inverted indexes and the pro-
cessing is automatically parallelized by the system which executes on large clusters
of commodity type machines, highly scalable to thousands of machines. Since the
system automatically takes care of details like partitioning the input data, scheduling
and executing tasks across a processing cluster, and managing the communications
between nodes, programmers with no experience in parallel programming can easily
use a large distributed processing environment.

The programming model for MapReduce architecture is a simple abstraction
where the computation takes a set of input key-value pairs associated with the input
data and produces a set of output key-value pairs. The overall model for this process
is shown in Fig. 5.2. In the Map phase, the input data is partitioned into input splits

Input
Data

Output
Data

Input Shuffle
& Sort

Reduce

Map

Map

Map

Map

Map

Map

Reduce

Reduce

Reduce

Map Output

Fig. 5.2 MapReduce processing architecture (O’Malley, 2008)

5 Data-Intensive Technologies for Cloud Computing 93

and assigned to Map tasks associated with processing nodes in the cluster. The Map
task typically executes on the same node containing its assigned partition of data
in the cluster. These Map tasks perform user-specified computations on each input
key-value pair from the partition of input data assigned to the task, and generates
a set of intermediate results for each key. The shuffle and sort phase then takes the
intermediate data generated by each Map task, sorts this data with intermediate data
from other nodes, divides this data into regions to be processed by the reduce tasks,
and distributes this data as needed to nodes where the Reduce tasks will execute. All
Map tasks must complete prior to the shuffle and sort and reduce phases. The num-
ber of Reduce tasks does not need to be the same as the number of Map tasks. The
Reduce tasks perform additional user-specified operations on the intermediate data
possibly merging values associated with a key to a smaller set of values to produce
the output data. For more complex data processing procedures, multiple MapReduce
calls may be linked together in sequence.

Figure 5.3 shows the MapReduce architecture and key-value processing in more
detail. The input data can consist of multiple input files. Each Map task will pro-
duce an intermediate output file for each key region assigned based on the number
of Reduce tasks R assigned to the process (hash(key) modulus R). The reduce func-
tion then “pulls” the intermediate files, sorting and merging the files for a specific
region from all the Map tasks. To minimize the amount of data transferred across the
network, an optional Combiner function can be specified which is executed on the
same node that performs a Map task. The combiner code is usually the same as

Input file 1
(Key, Value)*

Input file 2
(Key, Value)*

Input file 3
(Key, Value)*

Map 1 Map 2 Map 3 Map 4 Map 5

(Key, Value)*
m1 for r1

(Key, Value)*
m1 for r2

(Key, Value)*
m2 for r1

(Key, Value)*
m2 for r2

(Key, Value)*
m3 for r1

(Key, Value)*
m3 for r2

(Key, Value)*
m4 for r1

(Key, Value)*
m4 for r2

(Key, Value)*
m5 for r1

(Key, Value)*
m5 for r2

Sort 1 Sort 2

(Key, Value*)* (Key, Value*)*

Reduce 1 Reduce 2

Output File 1
(Key, Value)*

Output File 2
(Key, Value)*

Fig. 5.3 MapReduce key-value processing (Nicosia, 2009)

94 A.M. Middleton

the reducer function code which does partial merging and reducing of data for
the local partition, then writes the intermediate files to be distributed to the
Reduce tasks. The output of the Reduce function is written as the final output
file. In the Google implementation of MapReduce, functions are coded in the C++
programming language.

Underlying and overlayed with the MapReduce architecture is the Google File
System (GFS). GFS was designed to be a high-performance, scalable distributed
file system for very large data files and data-intensive applications providing fault
tolerance and running on clusters of commodity hardware (Ghemawat, Gobioff, &
Leung, 2003). GFS is oriented to very large files dividing and storing them in fixed-
size chunks of 64 Mb by default which are managed by nodes in the cluster called
chunkservers. Each GFS consists of a single master node acting as a nameserver
and multiple nodes in the cluster acting as chunkservers using a commodity Linux-
based machine (node in a cluster) running a user-level server process. Chunks are
stored in plain Linux files which are extended only as needed and replicated on
multiple nodes to provide high-availability and improve performance. Secondary
nameservers provide backup for the master node. The large chunk size reduces
the need for MapReduce clients programs to interact with the master node, allows
filesystem metadata to be kept in memory in the master node improving perfor-
mance, and allows many operations to be performed with a single read on a chunk
of data by the MapReduce client. Ideally, input splits for MapReduce operations are
the size of a GFS chunk. GFS has proven to be highly effective for data-intensive
computing on very large files, but is less effective for small files which can cause
hot spots if many MapReduce tasks are accessing the same file.

Google has implemented additional tools using the MapReduce and GFS archi-
tecture to improve programmer productivity and to enhance data analysis and
processing of structured and unstructured data. Since the GFS filesystem is primarily
oriented to sequential processing of large files, Google has also implemented a scal-
able, high-availability distributed storage system for structured data with dynamic
control over data format with keyed random access capabilities (Chang et al., 2006).
Data is stored in Bigtable as a sparse, distributed, persistent multi-dimensional
sorted map structured which is indexed by a row key, column key, and a timestamp.
Rows in a Bigtable are maintained in order by row key, and row ranges become
the unit of distribution and load balancing called a tablet. Each cell of data in a
Bigtable can contain multiple instances indexed by the timestamp. Bigtable uses
GFS to store both data and log files. The API for Bigtable is flexible providing
data management functions like creating and deleting tables, and data manipulation
functions by row key including operations to read, write, and modify data. Index
information for Bigtables utilize tablet information stored in structures similar to a
B+Tree. MapReduce applications can be used with Bigtable to process and trans-
form data, and Google has implemented many large-scale applications which utilize
Bigtable for storage including Google Earth.

Google has also implemented a high-level language for performing parallel data
analysis and data mining using the MapReduce and GFS architecture called Sawzall
and a workflow management and scheduling infrastructure for Sawzall jobs called

5 Data-Intensive Technologies for Cloud Computing 95

Workqueue (Pike, Dorward, Griesemer, & Quinlan, 2004). According to Pike et al.
(2004), although C++ in standard MapReduce jobs is capable of handling data
analysis tasks, it is more difficult to use and requires considerable effort by program-
mers. For most applications implemented using Sawzall, the code is much simpler
and smaller than the equivalent C++ by a factor of 10 or more. A Sawzall program
defines operations on a single record of the data, the language does not allow exam-
ining multiple input records simultaneously and one input record cannot influence
the processing of another. An emit statement allows processed data to be output
to an external aggregator which provides the capability for entire files of records
and data to be processed using a Sawzall program. The system operates in a batch
mode in which a user submits a job which executes a Sawzall program on a fixed
set of files and data and collects the output at the end of a run. Sawzall jobs can be
chained to support more complex procedures. Sawzall programs are compiled into
an intermediate code which is interpreted during runtime execution. Several reasons
are cited by Pike et al. (2004) why a new language is beneficial for data analysis
and data mining applications: (1) a programming language customized for a spe-
cific problem domain makes resulting programs “clearer, more compact, and more
expressive”; (2) aggregations are specified in the Sawzall language so that the pro-
grammer does not have to provide one in the Reduce task of a standard MapReduce
program; (3) a programming language oriented to data analysis provides a more
natural way to think about data processing problems for large distributed datasets;
and (4) Sawzall programs are significantly smaller that equivalent C++ MapReduce
programs and significantly easier to program.

Google does not currently make available its MapReduce architecture in a pub-
lic cloud computing IaaS or PaaS environment. Google however does provide the
Google Apps Engine as a public cloud computing PaaS environment (Lenk et al.,
2009; Vaquero et al., 2009).

5.3.2 Hadoop

Hadoop is an open source software project sponsored by The Apache Software
Foundation (http://www.apache.org). Following the publication in 2004 of the
research paper describing Google MapReduce (Dean & Ghemawat, 2004), an
effort was begun in conjunction with the existing Nutch project to create an
open source implementation of the MapReduce architecture (White, 2009). It later
became an independent subproject of Lucene, was embraced by Yahoo! after the
lead developer for Hadoop became an employee, and became an official Apache
top-level project in February of 2006. Hadoop now encompasses multiple subpro-
jects in addition to the base core, MapReduce, and HDFS distributed filesystem.
These additional subprojects provide enhanced application processing capabili-
ties to the base Hadoop implementation and currently include Avro, Pig, HBase,
ZooKeeper, Hive, and Chukwa. More information can be found at the Apache
Web site.

96 A.M. Middleton

The Hadoop MapReduce architecture is functionally similar to the Google imple-
mentation except that the base programming language for Hadoop is Java instead of
C++. The implementation is intended to execute on clusters of commodity pro-
cessors (Fig. 5.4) utilizing Linux as the operating system environment, but can
also be run on a single system as a learning environment. Hadoop clusters also
utilize the “shared nothing” distributed processing paradigm linking individual
systems with local processor, memory, and disk resources using high-speed com-
munications switching capabilities typically in rack-mounted configurations. The
flexibility of Hadoop configurations allows small clusters to be created for testing
and development using desktop systems or any system running Unix/Linux provid-
ing a JVM environment, however production clusters typically use homogeneous
rack-mounted processors in a data center environment.

Master
Switch

Slave
Switch

Slave
Switch

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Disks

Node

Link

Trunk
Trunk

T
ru

nk

Slave
SwitchLi

nk

Link Li
nk

Li
nk

Link

Fig. 5.4 Commodity hardware cluster (O’Malley, 2008)

The Hadoop MapReduce architecture is similar to the Google implementation
creating fixed-size input splits from the input data and assigning the splits to Map
tasks. The local output from the Map tasks is copied to Reduce nodes where it is
sorted and merged for processing by Reduce tasks which produce the final output as
shown in Fig. 5.5.

Hadoop implements a distributed data processing scheduling and execution envi-
ronment and framework for MapReduce jobs. A MapReduce job is a unit of work
that consists of the input data, the associated Map and Reduce programs, and user-
specified configuration information (White, 2009). The Hadoop framework utilizes
a master/slave architecture with a single master server called a jobtracker and slave
servers called tasktrackers, one per node in the cluster. The jobtracker is the commu-
nications interface between users and the framework and coordinates the execution
of MapReduce jobs. Users submit jobs to the jobtracker, which puts them in a job
queue and executes them on a first-come/first-served basis. The jobtracker manages
the assignment of Map and Reduce tasks to the tasktracker nodes which then exe-
cute these tasks. The tasktrackers also handle data movement between the Map and
Reduce phases of job execution. The Hadoop framework assigns the Map tasks to

5 Data-Intensive Technologies for Cloud Computing 97

Split 0

Split 1

Split 2

Split 3

Split 4

map

map

map

Part 0

Part 1

Output
HDFS

Input
HDFS

sort/merge

sort/merge

copy

Reduce

Reduce

Fig. 5.5 Hadoop MapReduce (White, 2008)

every node where the input data splits are located through a process called data
locality optimization. The number of Reduce tasks is determined independently and
can be user-specified and can be zero if all of the work can be accomplished by
the Map tasks. As with the Google MapReduce implementation, all Map tasks must
complete before the shuffle and sort phase can occur and Reduce tasks initiated. The
Hadoop framework also supports Combiner functions which can reduce the amount
of data movement in a job.

The Hadoop framework also provides an API called Streaming to allow Map
and Reduce functions to be written in languages other than Java such as Ruby and
Python and provides an interface called Pipes for C++.

Hadoop includes a distributed file system called HDFS which is analogous to
GFS in the Google MapReduce implementation. A block in HDFS is equivalent
to a chunk in GFS and is also very large, 64 Mb by default but 128 Mb is used
in some installations. The large block size is intended to reduce the number of
seeks and improve data transfer times. Each block is an independent unit stored
as a dynamically allocated file in the Linux local filesystem in a datanode directory.
If the node has multiple disk drives, multiple datanode directories can be specified.
An additional local file per block stores metadata for the block. HDFS also follows
a master/slave architecture which consists of a single master server that manages
the distributed filesystem namespace and regulates access to files by clients called
the Namenode. In addition, there are multiple Datanodes, one per node in the clus-
ter, which manage the disk storage attached to the nodes and assigned to Hadoop.
The Namenode determines the mapping of blocks to Datanodes. The Datanodes
are responsible for serving read and write requests from filesystem clients such as

98 A.M. Middleton

MapReduce tasks, and they also perform block creation, deletion, and replication
based on commands from the Namenode. An HDFS system can include additional
secondary Namenodes which replicate the filesystem metadata, however there are
no hot failover services. Each datanode block also has replicas on other nodes based
on system configuration parameters (by default there are 3 replicas for each datan-
ode block). In the Hadoop MapReduce execution environment it is common for a
node in a physical cluster to function as both a Tasktracker and a datanode (Venner,
2009). The HDFS system architecture is shown in Fig. 5.6.

Rack 2

Metadata (Name, replicas, …);
/home/foo/data, 3, ...

Namenode

Client

Rack 1

Write

Replication

Read

Metadata ops

Block ops

Datanodes Datanodes

Blocks

Client

Fig. 5.6 HDFS architecture (Borthakur, 2008)

The Hadoop execution environment supports additional distributed data pro-
cessing capabilities which are designed to run using the Hadoop MapReduce
architecture. Several of these have become official Hadoop subprojects within the
Apache Software Foundation. These include HBase, a distributed column-oriented
database which provides similar random access read/write capabilities as and is
modeled after Bigtable implemented by Google. HBase is not relational, and does
not support SQL, but provides a Java API and a command-line shell for table man-
agement. Hive is a data warehouse system built on top of Hadoop that provides
SQL-like query capabilities for data summarization, ad-hoc queries, and analysis
of large datasets. Other Apache sanctioned projects for Hadoop include Avro –
A data serialization system that provides dynamic integration with scripting lan-
guages, Chukwa – a data collection system for managing large distributed systems,
ZooKeeper – a high-performance coordination service for distributed applications,

5 Data-Intensive Technologies for Cloud Computing 99

and Pig – a high-level data-flow language and execution framework for parallel
computation.

Pig is high-level dataflow-oriented language and execution environment origi-
nally developed at Yahoo! ostensibly for the same reasons that Google developed
the Sawzall language for its MapReduce implementation – to provide a specific
language notation for data analysis applications and to improve programmer pro-
ductivity and reduce development cycles when using the Hadoop MapReduce
environment. Working out how to fit many data analysis and processing applica-
tions into the MapReduce paradigm can be a challenge, and often requires multiple
MapReduce jobs (White, 2009). Pig programs are automatically translated into
sequences of MapReduce programs if needed in the execution environment. In addi-
tion Pig supports a much richer data model which supports multi-valued, nested data
structures with tuples, bags, and maps. Pig supports a high-level of user customiza-
tion including user-defined special purpose functions and provides capabilities in the
language for loading, storing, filtering, grouping, de-duplication, ordering, sorting,
aggregation, and joining operations on the data (Olston, Reed, Srivastava, Kumar,
& Tomkins, 2008a). Pig is an imperative dataflow-oriented language (language
statements define a dataflow for processing). An example program is shown in
Fig. 5.7. Pig runs as a client-side application which translates Pig programs into
MapReduce jobs and then runs them on an Hadoop cluster. Figure 5.8 shows how
the program listed in Fig. 5.7 is translated into a sequence of MapReduce jobs. Pig
compilation and execution stages include a parser, logical optimizer, MapReduce
compiler, MapReduce optimizer, and the Hadoop Job Manager (Gates et al.,
2009).

According to Yahoo! where more than 40% of Hadoop production jobs and 60%
of ad-hoc queries are now implemented using Pig, Pig programs are 1/20th the size
of the equivalent MapReduce program and take 1/16th the time to develop (Olston,
2009). Yahoo! uses 12 standard benchmarks (called the PigMix) to test Pig perfor-
mance versus equivalent MapReduce performance from release to release. With the

Fig. 5.7 Sample pig latin program (Olston et al., 2008a)

100 A.M. Middleton

Fig. 5.8 Pig program translation to MapReduce (Olston et al., 2008a)

current release, Pig programs take approximately 1.5 times longer than the equiva-
lent MapReduce (http://wiki.apache.org/pig/PigMix). Additional optimizations are
being implemented that should reduce this performance gap further.

Hadoop is available in both public and private cloud computing environ-
ments. Amazon’s EC2 cloud computing platform now includes Amazon Elastic
MapReduce (http://aws.amazon.com/elasticmapreduce/) which allows users to pro-
vision as much capacity as needed for data-intensive computing applications. Data
for MapReduce applications can be loaded to the HDFS directly from Amazon’s S3
(Simple Storage Service).

5.3.3 LexisNexis HPCC

LexisNexis, an industry leader in data content, data aggregation, and information
services independently developed and implemented a solution for data-intensive
computing called the HPCC (High-Performance Computing Cluster) which is also
referred to as the Data Analytics Supercomputer (DAS). The LexisNexis vision for
this computing platform is depicted in Fig. 5.9. The development of this computing
platform by the Seisint subsidiary of LexisNexis began in 1999 and applications
were in production by late 2000. The LexisNexis approach also utilizes commod-
ity clusters of hardware running the Linux operating system as shown in Figs. 5.1
and 5.4. Custom system software and middleware components were developed and
layered on the base Linux operating system to provide the execution environment
and distributed filesystem support required for data-intensive computing. Because
LexisNexis recognized the need for a new computing paradigm to address its
growing volumes of data, the design approach included the definition of a new high-
level language for parallel data processing called ECL (Enterprise Data Control

5 Data-Intensive Technologies for Cloud Computing 101

Language). The power, flexibility, advanced capabilities, speed of development, and
ease of use of the ECL programming language is the primary distinguishing factor
between the LexisNexis HPCC and other data-intensive computing solutions. The
following provides an overview of the HPCC systems architecture and the ECL
language and a general comparison to the Hadoop MapReduce architecture and
platform.

Fig. 5.9 LexisNexis vision for a data analytics supercomputer

LexisNexis developers recognized that to meet all the requirements of data-
intensive computing applications in an optimum manner required the design and
implementation of two distinct processing environments, each of which could be
optimized independently for its parallel data processing purpose. The first of these
platforms is called a Data Refinery whose overall purpose is the general process-
ing of massive volumes of raw data of any type for any purpose but typically used
for data cleansing and hygiene, ETL processing of the raw data (extract, transform,
load), record linking and entity resolution, large-scale ad-hoc analysis of data, and
creation of keyed data and indexes to support high-performance structured queries
and data warehouse applications. The Data Refinery is also referred to as Thor, a
reference to the mythical Norse god of thunder with the large hammer symbolic
of crushing large amounts of raw data into useful information. A Thor system is
similar in its hardware configuration, function, execution environment, filesystem,
and capabilities to the Hadoop MapReduce platform, but offers significantly higher
performance in equivalent configurations.

The second of the parallel data processing platforms designed and implemented
by LexisNexis is called the Data Delivery Engine. This platform is designed as an

102 A.M. Middleton

online high-performance structured query and analysis platform or data warehouse
delivering the parallel data access processing requirements of online applications
through Web services interfaces supporting thousands of simultaneous queries and
users with sub-second response times. High-profile online applications developed
by LexisNexis such as Accurint utilize this platform. The Data Delivery Engine
is also referred to as Roxie, which is an acronym for Rapid Online XML Inquiry
Engine. Roxie uses a special distributed indexed filesystem to provide parallel pro-
cessing of queries. A Roxie system is similar in its function and capabilities to
Hadoop with HBase and Hive capabilities added, but provides significantly higher
throughput since it uses a more optimized execution environment and filesystem for
high-performance online processing. Most importantly, both Thor and Roxie sys-
tems utilize the same ECL programming language for implementing applications,
increasing continuity and programmer productivity.

The Thor system cluster is implemented using a master/slave approach with a
single master node and multiple slave nodes for data parallel processing. Each of
the slave nodes is also a data node within the distributed file system for the cluster.
This is similar to the Jobtracker, Tasktracker, and Datanode concepts in an Hadoop
configuration. Multiple Thor clusters can exist in an HPCC environment, and job
queues can span multiple clusters in an environment if needed. Jobs executing on a
Thor cluster in a multi-cluster environment can also read files from the distributed
file system on foreign clusters if needed. The middleware layer provides additional
server processes to support the execution environment including ECL Agents and
ECL Servers. A client process submits an ECL job to the ECL Agent which coor-
dinates the overall job execution on behalf of the client process. An ECL Job is
compiled by the ECL server which interacts with an additional server called the
ECL Repository which is a source code repository and contains shared ECL code.
ECL programs are compiled into optimized C++ source code, which is subsequently
compiled into executable code and distributed to the slave nodes of a Thor cluster
by the Thor master node. The Thor master monitors and coordinates the processing
activities of the slave nodes and communicates status information monitored by the
ECL Agent processes. When the job completes, the ECL Agent and client process
are notified, and the output of the process is available for viewing or subsequent pro-
cessing. Output can be stored in the distributed filesystem for the cluster or returned
to the client process. ECL is analogous to the Pig language which can be used in the
Hadoop environment.

The distributed filesystem used in a Thor cluster is record-oriented which is dif-
ferent from the block format used by Hadoop clusters. Records can be fixed or
variable length, and support a variety of standard (fixed record size, CSV, XML)
and custom formats including nested child datasets. Record I/O is buffered in large
blocks to reduce latency and improve data transfer rates to and from disk Files to be
loaded to a Thor cluster are typically first transferred to a landing zone from some
external location, then a process called “spraying” is used to partition the file and
load it to the nodes of a Thor cluster. The initial spraying process divides the file
on user-specified record boundaries and distributes the data as evenly as possible in
order across the available nodes in the cluster. Files can also be “desprayed” when

5 Data-Intensive Technologies for Cloud Computing 103

needed to transfer output files to another system or can be directly copied between
Thor clusters in the same environment.

Nameservices and storage of metadata about files including record format infor-
mation in the Thor DFS are maintained in a special server called the Dali server
(named for the developer’s pet Chinchilla), which is analogous to the Namenode in
HDFS. Thor users have complete control over distribution of data in a Thor cluster,
and can re-distribute the data as needed in an ECL job by specific keys, fields, or
combinations of fields to facilitate the locality characteristics of parallel processing.
The Dali nameserver uses a dynamic datastore for filesystem metadata organized in
a hierarchical structure corresponding to the scope of files in the system. The Thor
DFS utilizes the local Linux filesystem for physical file storage, and file scopes are
created using file directory structures of the local file system. Parts of a distributed
file are named according to the node number in a cluster, such that a file in a 400-
node cluster will always have 400 parts regardless of the file size. The Hadoop fixed
block size can end up splitting logical records between nodes which means a node
may need to read some data from another node during Map task processing. With
the Thor DFS, logical record integrity is maintained, and processing I/O is com-
pletely localized to the processing node for local processing operations. In addition,
if the file size in Hadoop is less than some multiple of the block size times the num-
ber of nodes in the cluster, Hadoop processing will be less evenly distributed and
node to node disk accesses will be needed. If input splits assigned to Map tasks
in Hadoop are not allocated in whole block sizes, additional node to node I/O will
result. The ability to easily redistribute the data evenly to nodes based on process-
ing requirements and the characteristics of the data during a Thor job can provide
a significant performance improvement over the Hadoop approach. The Thor DFS
also supports the concept of “superfiles” which are processed as a single logical file
when accessed, but consist of multiple Thor DFS files. Each file which makes up a
superfile must have the same record structure. New files can be added and old files
deleted from a superfile dynamically facilitating update processes without the need
to rewrite a new file. Thor clusters are fault resilient and a minimum of one replica
of each file part in a Thor DFS file is stored on a different node within the cluster.

Roxie clusters consist of a configurable number of peer-coupled nodes function-
ing as a high-performance, high availability parallel processing query platform. ECL
source code for structured queries is pre-compiled and deployed to the cluster. The
Roxie distributed filesystem is a distributed indexed-based filesystem which uses a
custom B+Tree structure for data storage. Indexes and data supporting queries are
pre-built on Thor clusters and deployed to the Roxie DFS with portions of the index
and data stored on each node. Typically the data associated with index logical keys
is embedded in the index structure as a payload. Index keys can be multi-field and
multivariate, and payloads can contain any type of structured or unstructured data
supported by the ECL language. Queries can use as many indexes as required for
a query and contain joins and other complex transformations on the data with the
full expression and processing capabilities of the ECL language. For example, the
LexisNexis Accurint comprehensive person report which produces many pages of
output is generated by a single Roxie query.

104 A.M. Middleton

A Roxie cluster uses the concept of Servers and Agents. Each node in a Roxie
cluster runs Server and Agent processes which are configurable by a System
Administrator depending on the processing requirements for the cluster. A Server
process waits for a query request from a Web services interface then determines the
nodes and associated Agent processes that have the data locally that is needed for a
query, or portion of the query. Roxie query requests can be submitted from a client
application as a SOAP call, HTTP or HTTPS protocol request from a Web applica-
tion, or through a direct socket connection. Each Roxie query request is associated
with a specific deployed ECL query program. Roxie queries can also be executed
from programs running on Thor clusters. The Roxie Server process that receives the
request owns the processing of the ECL program for the query until it is completed.
The Server sends portions of the query job to the nodes in the cluster and Agent
processes which have data needed for the query stored locally as needed, and waits
for results. When a Server receives all the results needed from all nodes, it collates
them, performs any additional processing, and then returns the result set to the client
requestor.

The performance of query processing varies depending on factors such as
machine speed, data complexity, number of nodes, and the nature of the query, but
production results have shown throughput of a thousand results a second or more.
Roxie clusters have flexible data storage options with indexes and data stored locally
on the cluster, as well as being able to use indexes stored remotely in the same envi-
ronment on a Thor cluster. Nameservices for Roxie clusters are also provided by the
Dali server. Roxie clusters are fault-resilient and data redundancy is built-in using a
peer system where replicas of data are stored on two or more nodes, all data includ-
ing replicas are available to be used in the processing of queries by Agent processes.
The Roxie cluster provides automatic failover in case of node failure, and the cluster
will continue to perform even if one or more nodes are down. Additional redundancy
can be provided by including multiple Roxie clusters in an environment.

Load balancing of query requests across Roxie clusters is typically implemented
using external load balancing communications devices. Roxie clusters can be sized
as needed to meet query processing throughput and response time requirements, but
are typically smaller that Thor clusters.

The implementation of two types of parallel data processing platforms (Thor
and Roxie) in the HPCC processing environment serving different data processing
needs allows these platforms to be optimized and tuned for their specific purposes to
provide the highest level of system performance possible to users. This is a distinct
advantage when compared to the Hadoop MapReduce platform and architecture
which must be overlayed with different systems such as HBase, Hive, and Pig which
have different processing goals and requirements, and don’t always map readily into
the MapReduce paradigm. In addition, the LexisNexis HPCC approach incorporates
the notion of a processing environment which can integrate Thor and Roxie clusters
as needed to meet the complete processing needs of an organization. As a result,
scalability can be defined not only in terms of the number of nodes in a cluster,
but in terms of how many clusters and of what type are needed to meet system

5 Data-Intensive Technologies for Cloud Computing 105

performance goals and user requirements. This provides a distinct advantage when
compared to Hadoop clusters which tend to be independent islands of processing.

LexisNexis HPCC is commercially available to implement private cloud com-
puting environments (http://risk.lexisnexis.com/Article.aspx?id=51). In addition,
LexisNexis provides hosted persistent HPCC environments to external customers.
Public cloud computing PaaS utilizing the HPCC platform is planned as a future
offering.

5.3.4 ECL

The ECL programming language is a key factor in the flexibility and capabilities
of the HPCC processing environment. ECL was designed to be a transparent and
implicitly parallel programming language for data-intensive applications. It is a
high-level, declarative, non-procedural dataflow-oriented language that allows the
programmer to define what the data processing result should be and the dataflows
and transformations that are necessary to achieve the result. Execution is not deter-
mined by the order of the language statements, but from the sequence of dataflows
and transformations represented by the language statements. It combines data repre-
sentation with algorithm implementation, and is the fusion of both a query language
and a parallel data processing language. ECL uses an intuitive syntax which has
taken cues from other familiar languages, supports modular code organization
with a high degree of reusability and extensibility, and supports high-productivity
for programmers in terms of the amount of code required for typical applica-
tions compared to traditional languages like Java and C++. Similar to the benefits
Sawzall provides in the Google environment, and Pig provides to Hadoop users, a
20 times increase in programmer productivity is typical significantly reducing devel-
opment cycles. ECL is compiled into optimized C++ code for execution on the
HPCC system platforms, and can be used for complex data processing and anal-
ysis jobs on a Thor cluster or for comprehensive query and report processing on
a Roxie cluster. ECL allows inline C++ functions to be incorporated into ECL
programs, and external programs in other languages can be incorporated and paral-
lelized through a PIPE facility. External services written in C++ and other languages
which generate DLLs can also be incorporated in the ECL system library, and
ECL programs can access external Web services through a standard SOAPCALL
interface.

The basic unit of code for ECL is called an attribute. An attribute can contain a
complete executable query or program, or a shareable and reusable code fragment
such as a function, record definition, dataset definition, macro, filter definition, etc.
Attributes can reference other attributes which in turn can reference other attributes
so that ECL code can be nested and combined as needed in a reusable manner.
Attributes are stored in ECL code repository which is subdivided into modules typi-
cally associated with a project or process. Each ECL attribute added to the repository
effectively extends the ECL language like adding a new word to a dictionary, and

106 A.M. Middleton

attributes can be reused as part of multiple ECL queries and programs. With ECL
a rich set of programming tools is provided including an interactive IDE similar to
Visual C++, Eclipse and other code development environments.

The ECL language includes extensive capabilities for data definition, filtering,
data management, and data transformation, and provides an extensive set of built-in
functions to operate on records in datasets which can include user-defined trans-
formation functions. Transform functions operate on a single record or a pair of
records at a time depending on the operation. Built-in transform operations in the
ECL language which process through entire datasets include PROJECT, ITERATE,
ROLLUP, JOIN, COMBINE, FETCH, NORMALIZE, DENORMALIZE, and
PROCESS. The transform function defined for a JOIN operation for example
receives two records, one from each dataset being joined, and can perform any
operations on the fields in the pair of records, and returns an output record which
can be completely different from either of the input records. Example syntax
for the JOIN operation from the ECL Language Reference Manual is shown in
Fig. 5.10. Other important data operations included in ECL which operate across
datasets and indexes include TABLE, SORT, MERGE, MERGEJOIN, DEDUP,
GROUP, APPLY, ASSERT, AVE, BUILD, BUILDINDEX, CHOOSESETS,
CORRELATION, COUNT, COVARIANCE, DISTRIBUTE, DISTRIBUTION,
ENTH, EXISTS, GRAPH, HAVING, KEYDIFF, KEYPATCH, LIMIT, LOOP,
MAX, MIN, NONEMPTY, OUTPUT, PARSE, PIPE, PRELOAD, PULL, RANGE,
REGROUP, SAMPLE, SET, SOAPCALL, STEPPED, SUM, TOPN, UNGROUP,
and VARIANCE.

The Thor system allows data transformation operations to be performed either
locally on each node independently in the cluster, or globally across all the nodes in
a cluster, which can be user-specified in the ECL language. Some operations such
as PROJECT for example are inherently local operations on the part of a distributed
file stored locally on a node. Others such as SORT can be performed either locally or
globally if needed. This is a significant difference from the MapReduce architecture
in which Map and Reduce operations are only performed locally on the input split
assigned to the task. A local SORT operation in an HPCC cluster would sort the
records by the specified key in the file part on the local node, resulting in the records
being in sorted order on the local node, but not in full file order spanning all nodes.
In contrast, a global SORT operation would result in the full distributed file being in
sorted order by the specified key spanning all nodes. This requires node to node data
movement during the SORT operation. Figure 5.11 shows a sample ECL program
using the LOCAL mode of operation which is the equivalent of the sample PIG
program for Hadoop shown in Fig. 5.7. Note the explicit programmer control over
distribution of data across nodes. The colon-equals “:=”operator in an ECL program
is read as “is defined as”. The only action in this program is the OUTPUT statement,
the other statements are definitions.

An additional important capability provided in the ECL programming language
is support for natural language processing (NLP) with PATTERN statements and
the built-in PARSE function. The PARSE function cam accept an unambiguous
grammar defined by PATTERN, TOKEN, and RULE statements with penalties

5 Data-Intensive Technologies for Cloud Computing 107

Fig. 5.10 ECL Sample syntax for JOIN operation

Fig. 5.11 ECL code example

108 A.M. Middleton

or preferences to provide deterministic path selection, a capability which can sig-
nificantly reduce the difficulty of NLP applications. PATTERN statements allow
matching patterns including regular expressions to be defined and used to parse
information from unstructured data such as raw text. PATTERN statements can be
combined to implement complex parsing operations or complete grammars from
BNF definitions. The PARSE operation function across a dataset of records on a
specific field within a record, this field could be an entire line in a text file for exam-
ple. Using this capability of the ECL language it is possible to implement parallel
processing for information extraction applications across document files including
XML-based documents or Web pages. The key benefits of ECL can be summarized
as follows:

• ECL incorporates transparent and implicit data parallelism regardless of the size
of the computing cluster and reduces the complexity of parallel programming
increasing the productivity of application developers.

• ECL enables implementation of data-intensive applications with huge volumes
of data previously thought to be intractable or infeasible. ECL was specifically

1

1

2

2

1

8

14

Hash Distribute

Hash Distribute

Hash Distribute

RIGHT LEFT

Local Sort

Local Group

Local Sort

Local Group

Grouped Top N

Disk Write
‘∼thor_date400: :date: :topurls’

Local Join

Disk Write
Spill File

Disk Read
Spill

Disk Read
Spill

Disk Write
Spill File

Grouped Aggregate

Projected
Disk Read
‘....visits’..

Disk Read
‘....urlinfo’..

Fig. 5.12 ECL code example execution graph

5 Data-Intensive Technologies for Cloud Computing 109

designed for manipulation of data and query processing. Order of magnitude
performance increases over other approaches are possible.

• ECL provides a comprehensive IDE and programming tools that provide a
highly-interactive environment for rapid development and implementation of
ECL applications.

• ECL is a powerful, high-level, parallel programming language ideal for imple-
mentation of ETL, Information Retrieval, Information Extraction, and other
data-intensive applications.

• ECL is a mature and proven language but still evolving as new advancements in
parallel processing and data-intensive computing occur.

5.4 Hadoop vs. HPCC Comparison

Hadoop and HPCC can be compared directly since it is possible for both systems to
be executed on identical cluster hardware configurations. This permits head-to-head
system performance benchmarking using a standard workload or set of application
programs designed to test the parallel data processing capabilities of each system. A
standard benchmark available for data-intensive computing platforms is the Terasort
benchmark managed by an industry group led by Microsoft and HP. The Terabyte
sort has evolved to be the GraySort which measures the number of terabytes per
minute that can be sorted on a platform which allows clusters with any number
of nodes to be utilized. However, in comparing the effectiveness and equivalent
cost/performance of systems, it is useful to run benchmarks on identical system
hardware configurations. A head-to-head comparison of the original Terabyte sort
on a 400-node cluster will be presented here. An additional method of comparing
system platforms is a feature and functionality comparison, which is a subjective
evaluation based on factors determined by the evaluator. Although such a compar-
ison contains inherent bias, it is useful in determining strengths and weaknesses of
systems.

5.4.1 Terabyte Sort Benchmark

The Terabyte sort benchmark has its roots in benchmark tests sorting conducted
on computer systems since the 1980s. More recently, a Web site originally spon-
sored by Microsoft and one of its research scientists Jim Gray has conducted formal
competitions each year with the results presented at the SIGMOD (Special Interest
Group for Management of Data) conference sponsored by the ACM each year
(http://sortbenchmark.org). Several categories for sorting on systems exist including
the Terabyte sort which was to measure how fast a file of 1 Terabyte of data format-
ted in 100 byte records (10,000,000 total records) could be sorted. Two categories
were allowed called Daytona (a standard commercial computer system and software

110 A.M. Middleton

with no modifications) and Indy (a custom computer system with any type of modi-
fication). No restrictions existed on the size of the system so the sorting benchmark
could be conducted on as large a system as desired. The current 2009 record holder
for the Daytona category is Yahoo! using a Hadoop configuration with 1460 nodes
with 8 GB Ram per node, 8000 Map tasks, and 2700 Reduce tasks which sorted
1 TB in 62 seconds (O’Malley & Murthy, 2009). In 2008 using 910 nodes, Yahoo!
performed the benchmark in 3 minutes 29 seconds. In 2008, LexisNexis using the
HPCC architecture on only a 400-node system performed the Terabyte sort bench-
mark in 3 minutes 6 seconds. In 2009, LexisNexis again using only a 400-node
configuration performed the Terabyte sort benchmark in 102 seconds.

However, a fair and more logical comparison of the capability of data-intensive
computer system and software architectures using computing clusters would be to
conduct this benchmark on the same hardware configuration. Other factors should
also be evaluated such as the amount of code required to perform the bench-
mark which is a strong indication of programmer productivity, which in itself is
a significant performance factor in the implementation of data-intensive computing
applications.

On August 8, 2009 a Terabyte Sort benchmark test was conducted on a devel-
opment configuration located at LexisNexis Risk Solutions offices in Boca Raton,
FL in conjunction with and verified by Lawrence Livermore National Labs (LLNL).
The test cluster included 400 processing nodes each with two local 300 MB SCSI
disk drives, Dual Intel Xeon single core processors running at 3.00 GHz, 4 GB mem-
ory per node, all connected to a single Gigabit ethernet switch with 1.4 Terabytes/sec
throughput. Hadoop Release 0.19 was deployed to the cluster and the standard
Terasort benchmark written in Java included with the release was used for the bench-
mark. Hadoop required 6 minutes 45 seconds to create the test data, and the Terasort
benchmark required a total of 25 minutes 28 seconds to complete the sorting test
as shown in Fig. 5.13. The HPCC system software deployed to the same platform
and using standard ECL required 2 minutes and 35 seconds to create the test data,
and a total of 6 minutes and 27 seconds to complete the sorting test as shown in

Fig. 5.13 Hadoop terabyte sort benchmark results

5 Data-Intensive Technologies for Cloud Computing 111

Fig. 5.14 HPCC terabyte sort benchmark results

Fig. 5.14. Thus the Hadoop implementation using Java running on the same hard-
ware configuration took 3.95 times longer than the HPCC implementation using
ECL.

The Hadoop version of the benchmark used hand-tuned Java code including
custom TeraSort, TeraInputFormat and TeraOutputFormat classes with a total of
562 lines of code required for the sort. The HPCC system required only 10 lines of
ECL code for the sort, a 50-times reduction in the amount of code required.

5.4.2 Pig vs. ECL

Although many Hadoop installations implement applications directly in Java, the
Pig Latin language is now being used to increase programmer productivity and fur-
ther simplify the programming of data-intensive applications at Yahoo! and other
major users of Hadoop (Gates et al., 2009). Google also added a high-level lan-
guage for similar reasons called Sawzall to its implementation of MapReduce to
facilitate data analysis and data mining (Pike et al., 2004). The HPCC platform
includes a high-level language discussed previously which is analogous to Pig and
Sawzall called ECL. ECL is the base programming language used for applications
on the HPCC platform even though it is compiled into C++ for execution. When
comparing the Hadoop and HPCC platforms, it is useful to compare the features
and functionality of these high-level languages.

Both Pig and ECL are intrinsically parallel, supporting transparent data-
parallelism on the underlying platform. Pig and ECL are translated into programs

112 A.M. Middleton

that automatically process input data for a process in parallel with data dis-
tributed across a cluster of nodes. Programmers of both languages do not need
to know the underlying cluster size or use this to accomplish data-parallel exe-
cution of jobs. Both Pig and ECL are dataflow-oriented, but Pig is an impera-
tive programming language and ECL is a declarative programming language. A
declarative language allows programmers to focus on the data transformations
required to solve an application problem and hides the complexity of the under-
lying platform and implementation details, reduces side effects, and facilitates
compiler optimization of the code and execution plan. An imperative program-
ming language dictates the control flow of the program which may not result
in an ideal execution plan in a parallel environment. Declarative programming
languages allow the programmer to specify “what” a program should accom-
plish, instead of “how” to accomplish it. For more information, refer to the
discussions of declarative (http://en.wikipedia.org/wiki/Declarative_programming)
and imperative (http://en.wikipedia.org/wiki/Imperative_programming) program-
ming languages on Wikipedia.

The source code for both Pig and ECL is compiled or translated into another
language – Pig source programs are translated into Java language MapReduce jobs
for execution and ECL programs are translated into C++ source code which is then
compiled into a DLL for execution. Pig programs are restricted to the MapReduce
architecture and HDFS of Hadoop, but ECL has no fixed framework other than the
DFS (Distributed File System) used for HPCC and therefore can be more flexible in
implementation of data operations. This is evident in two key areas: (1) ECL allows
operations to be either global or local, where standard MapReduce is restricted to
local operations only in both the Map and Reduce phases. Global operations process
the records in a dataset in order across all nodes and associated file parts in sequence
maintaining the records in sorted order as opposed to only the records contained in
each local node which may be important to the data processing procedure; (2) ECL
has the flexibility to implement operations which can process more than one record
at a time such as its ITERATE operation which uses a sliding window and passes two
records at a time to an associated transform function. This allows inter-record field-
by-field dependencies and decisions which are not available in Pig. For example the
DISTINCT operation in Pig which is used to remove duplicates does not allow this
on a subset of fields. ECL provides both DEDUP and ROLLUP operations which
are usually preceded by a SORT and operate on adjacent records in a sliding window
mode and any condition relating to the field contents of the left and right record of
adjacent records can be used to determine if the record is removed. ROLLUP allows
a custom transformation to be applied to the de-duplication process.

An important consideration of any software architecture for data is the under-
lying data model. Pig incorporates a very flexible nested data model which allows
non-atomic data types (atomic data types include numbers and strings) such as set,
map, and tuple to occur as fields of a table (Olston, Reed, Srivastava, Kumar, &
Tomkins, 2008b). Tuples are sequences of fields, bags are collections of tuples, and
maps are a collection of data items where each data item has a key with which it can
be looked up. A data record within Pig is called a relation which is an outer bag,

5 Data-Intensive Technologies for Cloud Computing 113

the bag is a collection of tuples, each tuple is an ordered set of fields, and a field is
a piece of data. Relations are referenced by a name assigned by a user. Types can
be assigned by the user to each field, but if not assigned will default to a bytearray
and conversions are applied depending on the context in which the field is used.
The ECL data model also offers a nested data structure using child datasets. A user-
specified RECORD definition defines the content of each record in a dataset which
can contain fixed or variable length fields or child datasets which in turn contain
fields or child datasets etc. With this format any type of data structure can be rep-
resented. ECL offers specific support for CSV and XML formats in addition to flat
file formats. Each field in a record has a user-specified identifier and data type and
an optional default value and optional field modifiers such as MAXLENGTH that
enhance type and use checking during compilation. ECL will perform implicit cast-
ing and conversion depending on the context in which a field is used, and explicit
user casting is also supported. ECL also allows in-line datasets allowing sample data
to be easily defined and included in the code for testing rather than separately in a
file.

The Pig environment offers several programmer tools for development, execu-
tion, and debugging of Pig Latin programs (Pig Latin is the formal name for the
language, and the execution environment is called Pig, although both are commonly
referred to as Pig). Pig provides command line execution of scripts and an interactive
shell called Grunt that allows you to execute individual Pig commands or execute
a Pig script. Pig programs can also be embedded in Java programs. Although Pig
does not provide a specific IDE for developing and executing PIG programs, add-ins
are available for several program editing environments including Eclipse, Vim, and
Textmate to perform syntax checking and highlighting (White, 2009). PigPen is an
Eclipse plug-in that provides program editing, an example data generator, and the
capability to run a Pig script on a Hadoop cluster.

The HPCC platform provides an extensive set of tools for ECL development
including a comprehensive IDE called QueryBuilder which allows program editing,
execution, and interactive graph visualization for debugging and profiling ECL pro-
grams. The common code repository tree is displayed in QueryBuilder and tools
are provided for source control, accessing and searching the repository. ECL jobs
can be launched to an HPCC environment or specific cluster, and execution can
be monitored directly from QueryBuilder. External tools are also provided includ-
ing ECLWatch which provides complete access to current and historical workunits
(jobs executed in the HPCC environment are packaged into workunits), queue man-
agement and monitoring, execution graph visualization, distributed filesystem utility
functions, and system performance monitoring and analysis.

Although Pig Latin and the Pig execution environment provide a basic high-
level language environment for data-intensive processing and analysis and increases
the productivity of developers and users of the Hadoop MapReduce environment,
ECL is a significantly more comprehensive and mature language that generates
highly optimized code, offers more advanced capabilities in a robust, proven, inte-
grated data-intensive processing architecture. Table 5.1 provides a feature to feature
comparison between the Pig and ECL languages and their execution environments.

114 A.M. Middleton

Ta
bl

e
5.

1
Pi

g
vs

.E
C

L
fe

at
ur

e
co

m
pa

ri
so

n

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

L
an

gu
ag

e
ty

pe
D

at
a-

flo
w

or
ie

nt
ed

,i
m

pe
ra

tiv
e,

pa
ra

lle
ll

an
gu

ag
e

fo
r

da
ta

-i
nt

en
si

ve
co

m
pu

tin
g.

A
ll

Pi
g

st
at

em
en

ts
pe

rf
or

m
ac

tio
ns

in
se

qu
en

tia
lly

or
de

re
d

st
ep

s.
Pi

g
pr

og
ra

m
s

de
fin

e
a

se
qu

en
ce

of
ac

tio
ns

on
th

e
da

ta
.

D
at

a-
flo

w
or

ie
nt

ed
,d

ec
la

ra
tiv

e,
no

n-
pr

oc
ed

ur
al

,p
ar

al
le

l
la

ng
ua

ge
fo

r
da

ta
-i

nt
en

si
ve

co
m

pu
tin

g.
M

os
tE

C
L

st
at

em
en

ts
ar

e
de

fin
iti

on
s

of
th

e
de

si
re

d
re

su
lt

w
hi

ch
al

lo
w

s
th

e
ex

ec
ut

io
n

pl
an

to
be

hi
gh

ly
op

tim
iz

ed
by

th
e

co
m

pi
le

r.
E

C
L

ac
tio

ns
su

ch
as

O
U

T
PU

T
ca

us
e

ex
ec

ut
io

n
of

th
e

da
ta

flo
w

s
to

pr
od

uc
e

th
e

re
su

lt
de

fin
ed

by
th

e
E

C
L

pr
og

ra
m

.
C

om
pi

le
r

T
ra

ns
la

te
d

in
to

a
se

qu
en

ce
of

M
ap

R
ed

uc
e

Ja
va

pr
og

ra
m

s
fo

r
ex

ec
ut

io
n

on
a

H
ad

oo
p

C
lu

st
er

.R
un

s
as

a
cl

ie
nt

ap
pl

ic
at

io
n.

C
om

pi
le

d
an

d
op

tim
iz

ed
in

to
C

+
+

so
ur

ce
co

de
w

hi
ch

is
co

m
pi

le
d

in
to

D
L

L
fo

r
ex

ec
ut

io
n

on
an

H
PC

C
cl

us
te

r.
R

un
s

as
a

se
rv

er
ap

pl
ic

at
io

n.
U

se
r-

de
fin

ed
fu

nc
tio

ns
W

ri
tte

n
in

Ja
va

to
pe

rf
or

m
cu

st
om

pr
oc

es
si

ng
an

d
tr

an
sf

or
m

at
io

ns
as

ne
ed

ed
in

Pi
g

la
ng

ua
ge

st
at

em
en

ts
.

R
E

G
IS

T
E

R
is

us
ed

to
re

gi
st

er
a

JA
R

fil
e

so
th

at
U

D
Fs

ca
n

be
us

ed
.

Pr
oc

es
si

ng
fu

nc
tio

ns
or

T
R

A
N

SF
O

R
M

fu
nc

tio
ns

ar
e

w
ri

tte
n

in
E

C
L

.E
C

L
su

pp
or

ts
in

lin
e

C
+

+
in

fu
nc

tio
ns

an
d

ex
te

rn
al

Se
rv

ic
es

co
m

pi
le

d
in

to
D

L
L

lib
ra

ri
es

w
ri

tte
n

in
an

y
la

ng
ua

ge

M
ac

ro
s

N
ot

su
pp

or
te

d
E

xt
en

si
ve

su
pp

or
tf

or
E

C
L

m
ac

ro
s

to
im

pr
ov

e
co

de
re

us
e

of
co

m
m

on
pr

oc
ed

ur
es

.A
dd

iti
on

al
te

m
pl

at
e

la
ng

ua
ge

fo
r

us
e

in
m

ac
ro

s
pr

ov
id

es
un

iq
ue

na
m

in
g

an
d

co
nd

iti
on

al
co

de
ge

ne
ra

tio
n

ca
pa

bi
lit

ie
s.

5 Data-Intensive Technologies for Cloud Computing 115

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

D
at

a
m

od
el

N
es

te
d

da
ta

m
od

el
w

ith
na

m
ed

re
la

tio
ns

to
de

fin
e

da
ta

re
co

rd
s.

R
el

at
io

ns
ca

n
in

cl
ud

e
ne

st
ed

co
m

bi
na

tio
ns

of
ba

gs
,t

up
le

s,
an

d
fie

ld
s.

A
to

m
ic

da
ta

ty
pe

s
in

cl
ud

e
in

t,
lo

ng
,fl

oa
t,

do
ub

le
,

ch
ar

ar
ra

y,
by

te
ar

ra
y,

tu
pl

e,
ba

g,
an

d
m

ap
.I

f
ty

pe
s

no
t

sp
ec

ifi
ed

,d
ef

au
lt

to
by

te
ar

ra
y

th
en

co
nv

er
te

d
du

ri
ng

ex
pr

es
si

on
s

ev
al

ua
tio

n
de

pe
nd

in
g

on
th

e
co

nt
ex

ta
s

ne
ed

ed
.

N
es

te
d

da
ta

m
od

el
us

in
g

ch
ild

da
ta

se
ts

.D
at

as
et

s
co

nt
ai

n
fie

ld
s

or
ch

ild
da

ta
se

ts
co

nt
ai

ni
ng

fie
ld

s
or

ad
di

tio
na

lc
hi

ld
da

ta
se

ts
.R

ec
or

d
de

fin
iti

on
s

de
sc

ri
be

th
e

fie
ld

s
in

da
ta

se
ts

an
d

ch
ild

da
ta

se
ts

.I
nd

ex
es

ar
e

sp
ec

ia
ld

at
as

et
s

su
pp

or
tin

g
ke

ye
d

ac
ce

ss
to

da
ta

.D
at

a
ty

pe
s

ca
n

be
sp

ec
ifi

ed
fo

r
fie

ld
s

in
re

co
rd

de
fin

iti
on

s
an

d
in

cl
ud

e
B

oo
le

an
,i

nt
eg

er
,r

ea
l,

de
ci

m
al

,s
tr

in
g,

qs
tr

in
g,

U
ni

co
de

,d
at

a,
va

rs
tr

in
g,

va
ru

ni
co

de
,a

nd
re

la
te

d
op

er
at

or
s

in
cl

ud
in

g
se

to
f

(t
yp

e)
,

ty
pe

of
(e

xp
re

ss
io

n)
an

d
re

co
rd

of
(d

at
as

et
)

an
d

E
N

U
M

(e
nu

m
er

at
io

n)
.E

xp
lic

it
ty

pe
ca

st
in

g
is

av
ai

la
bl

e
an

d
im

pl
ic

it
ty

pe
ca

st
in

g
m

ay
oc

cu
r

du
ri

ng
ev

al
ua

tio
n

of
ex

pr
es

si
on

s
by

E
C

L
de

pe
nd

in
g

on
th

e
co

nt
ex

t.
Ty

pe
tr

an
sf

er
be

tw
ee

n
ty

pe
s

is
al

so
su

pp
or

te
d.

A
ll

da
ta

se
ts

ca
n

ha
ve

an
as

so
ci

at
ed

fil
te

r
ex

pr
es

s
to

in
cl

ud
e

on
ly

re
co

rd
s

w
hi

ch
m

ee
tt

he
fil

te
r

co
nd

iti
on

,i
n

E
C

L
a

fil
te

re
d

ph
ys

ic
al

da
ta

se
ti

s
ca

lle
d

a
re

co
rd

se
t.

D
is

tr
ib

ut
io

n
of

da
ta

C
on

tr
ol

le
d

by
H

ad
oo

p
M

ap
R

ed
uc

e
ar

ch
ite

ct
ur

e
an

d
H

D
FS

,n
o

ex
pl

ic
it

pr
og

ra
m

m
er

co
nt

ro
lp

ro
vi

de
d.

PA
R

A
L

L
E

L
al

lo
w

s
nu

m
be

r
of

R
ed

uc
e

ta
sk

s
to

be
sp

ec
ifi

ed
.L

oc
al

op
er

at
io

ns
on

ly
ar

e
su

pp
or

te
d,

gl
ob

al
op

er
at

io
ns

re
qu

ir
e

cu
st

om
Ja

va
M

ap
R

ed
uc

e
pr

og
ra

m
s.

E
xp

lic
it

pr
og

ra
m

m
er

co
nt

ro
lo

ve
r

di
st

ri
bu

tio
n

of
da

ta
ac

ro
ss

cl
us

te
r

us
in

g
D

IS
T

R
IB

U
T

E
fu

nc
tio

n.
H

el
ps

av
oi

d
da

ta
sk

ew
.

E
C

L
su

pp
or

ts
bo

th
lo

ca
l(

op
er

at
io

ns
ar

e
pe

rf
or

m
ed

on
da

ta
lo

ca
lt

o
no

de
)

an
d

gl
ob

al
(o

pe
ra

tio
ns

pe
rf

or
m

ed
ac

ro
ss

no
de

s)
m

od
es

.
O

pe
ra

to
rs

St
an

da
rd

co
m

pa
ri

so
n

op
er

at
or

s;
st

an
da

rd
ar

ith
m

et
ic

op
er

at
or

s
an

d
m

od
ul

us
di

vi
si

on
,B

oo
le

an
op

er
at

or
s

A
N

D
,O

R
,N

O
T;

nu
ll

op
er

at
or

s
(i

s
nu

ll,
is

no
tn

ul
l)

;d
er

ef
er

en
ce

op
er

at
or

s
fo

r
tu

pl
es

an
d

m
ap

s;
ex

pl
ic

it
ca

st
op

er
at

or
;m

in
us

an
d

pl
us

si
gn

op
er

at
or

s;
m

at
ch

es
op

er
at

or
.

Su
pp

or
ts

ar
ith

m
et

ic
op

er
at

or
s

in
cl

ud
in

g
no

rm
al

di
vi

si
on

,
in

te
ge

r
di

vi
si

on
,a

nd
m

od
ul

us
di

vi
si

on
;b

itw
is

e
op

er
at

or
s

fo
r

A
N

D
,O

R
,a

nd
X

O
R

;s
ta

nd
ar

d
co

m
pa

ri
so

n
op

er
at

or
s;

B
oo

le
an

op
er

at
or

s
N

O
T,

A
N

D
,O

R
;e

xp
lic

it
ca

st
op

er
at

or
;

m
in

us
an

d
pl

us
si

gn
op

er
at

or
s;

se
ta

nd
re

co
rd

se
to

pe
ra

to
rs

;
st

ri
ng

co
nc

at
en

at
io

n
op

er
at

or
;s

or
td

es
ce

nd
in

g
an

d
as

ce
nd

in
g

op
er

at
or

;s
pe

ci
al

op
er

at
or

s
IN

,B
E

T
W

E
E

N
,W

IT
H

IN
.

116 A.M. Middleton
Ta

bl
e

5.
1

(c
on

tin
ue

d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

C
on

di
tio

na
l

ex
pr

es
si

on
ev

al
ua

tio
n

T
he

bi
nc

on
d

op
er

at
or

is
pr

ov
id

ed
(c

on
di

tio
n

?
tr

ue
_v

al
ue

:
fa

ls
e_

va
lu

e)
E

C
L

in
cl

ud
es

an
IF

st
at

em
en

tf
or

si
ng

le
ex

pr
es

si
on

co
nd

iti
on

al
ev

al
ua

tio
n,

an
d

M
A

P,
C

A
SE

,C
H

O
O

SE
,W

H
IC

H
,a

nd
R

E
JE

C
T

E
D

fo
r

m
ul

tip
le

ex
pr

es
si

on
ev

al
ua

tio
n.

T
he

A
SS

E
R

T
st

at
em

en
tc

an
be

us
ed

to
te

st
a

co
nd

iti
on

ac
ro

ss
a

da
ta

se
t.

E
X

IS
T

S
ca

n
be

us
ed

to
de

te
rm

in
e

if
re

co
rd

s
m

ee
tin

g
th

e
sp

ec
ifi

ed
co

nd
iti

on
ex

is
ti

n
a

da
ta

se
t.

IS
V

A
L

ID
de

te
rm

in
es

if
a

fie
ld

co
nt

ai
ns

a
va

lid
va

lu
e.

Pr
og

ra
m

lo
op

s
N

o
ca

pa
bi

lit
y

ex
is

ts
ot

he
r

th
an

th
e

st
an

da
rd

re
la

tio
n

op
er

at
io

ns
ac

ro
ss

a
da

ta
se

t.
FO

R
E

A
C

H
..

.
G

E
N

E
R

A
T

E
pr

ov
id

es
ne

st
ed

ca
pa

bi
lit

y
to

co
m

bi
ne

sp
ec

ifi
c

re
la

tio
n

op
er

at
io

ns
.

In
ad

di
tio

n
to

bu
ilt

-i
n

da
ta

tr
an

sf
or

m
fu

nc
tio

ns
,E

C
L

pr
ov

id
es

L
O

O
P

an
d

G
R

A
PH

st
at

em
en

ts
w

hi
ch

al
lo

w
lo

op
in

g
of

da
ta

se
to

pe
ra

tio
ns

or
ite

ra
tio

n
of

a
sp

ec
ifi

ed
pr

oc
es

s
on

a
da

ta
se

tu
nt

il
a

lo
op

fil
te

r
co

nd
iti

on
is

m
et

or
a

lo
op

co
un

ti
s

sa
tis

fie
d.

In
de

xe
s

N
ot

su
pp

or
te

d
di

re
ct

ly
by

Pi
g.

H
B

as
e

an
d

H
iv

e
pr

ov
id

e
in

de
xe

d
da

ta
ca

pa
bi

lit
y

fo
r

H
ad

oo
p

M
ap

R
ed

uc
e

w
hi

ch
ar

e
ac

ce
ss

ib
le

th
ro

ug
h

cu
st

om
us

er
-d

efi
ne

d
fu

nc
tio

ns
in

Pi
g.

In
de

xe
s

ca
n

be
cr

ea
te

d
on

da
ta

se
ts

to
su

pp
or

tk
ey

ed
ac

ce
ss

to
da

ta
to

im
pr

ov
e

da
ta

pr
oc

es
si

ng
pe

rf
or

m
an

ce
an

d
fo

r
us

e
on

th
e

R
ox

ie
da

ta
de

liv
er

y
en

gi
ne

fo
r

qu
er

y
ap

pl
ic

at
io

ns
.

L
an

gu
ag

e
st

at
em

en
t

ty
pe

s
G

ro
up

ed
in

to
re

la
tio

na
lo

pe
ra

to
rs

,d
ia

gn
os

tic
op

er
at

or
s,

U
D

F
(u

se
r-

de
fin

ed
fu

nc
tio

n)
st

at
em

en
ts

,E
va

lf
un

ct
io

ns
,a

nd
lo

ad
/s

to
re

fu
nc

tio
ns

.T
he

G
ru

nt
sh

el
lo

ff
er

s
ad

di
tio

na
l

in
te

ra
ct

iv
e

fil
e

co
m

m
an

ds
.

G
ro

up
ed

in
to

da
ta

se
t,

in
de

x
an

d
re

co
rd

de
fin

iti
on

s,
bu

ilt
-i

n
fu

nc
tio

ns
to

de
fin

e
pr

oc
es

si
ng

an
d

da
ta

flo
w

s
an

d
w

or
kfl

ow
m

an
ag

em
en

t,
an

d
ac

tio
ns

w
hi

ch
tr

ig
ge

r
ex

ec
ut

io
n.

Fu
nc

tio
ns

in
cl

ud
e

tr
an

sf
or

m
fu

nc
tio

ns
su

ch
as

JO
IN

w
hi

ch
op

er
at

e
on

da
ta

re
co

rd
s,

an
d

ag
gr

eg
at

io
n

fu
nc

tio
ns

su
ch

as
SU

M
.A

ct
io

n
st

at
em

en
ts

re
su

lt
in

ex
ec

ut
io

n
ba

se
d

on
sp

ec
ifi

ed
E

C
L

de
fin

iti
on

s
de

sc
ri

bi
ng

th
e

da
ta

flo
w

s
an

d
re

su
lts

fo
r

a
pr

oc
es

s.
E

xt
er

na
lp

ro
gr

am
ca

lls
PI

G
in

cl
ud

es
th

e
ST

R
E

A
M

st
at

em
en

tt
o

se
nd

da
ta

to
an

ex
te

rn
al

sc
ri

pt
or

pr
og

ra
m

.T
he

SH
IP

st
at

em
en

tc
an

be
us

ed
to

sh
ip

pr
og

ra
m

bi
na

ri
es

,j
ar

fil
es

,o
r

da
ta

to
th

e
H

ad
oo

p
cl

us
te

r
co

m
pu

te
no

de
s.

T
he

D
E

FI
N

E
st

at
em

en
t,

w
ith

IN
PU

T,
O

U
T

PU
T,

SH
IP

,a
nd

C
A

C
H

E
cl

au
se

s
al

lo
w

fu
nc

tio
ns

an
d

co
m

m
an

ds
to

be
as

so
ci

at
ed

w
ith

ST
R

E
A

M
to

ac
ce

ss
ex

te
rn

al
pr

og
ra

m
s.

E
C

L
in

cl
ud

es
PI

PE
op

tio
n

on
D

A
TA

SE
T

an
d

O
U

T
PU

T
an

d
a

PI
PE

fu
nc

tio
n

to
ex

ec
ut

e
ex

te
rn

al
3rd

-p
ar

ty
pr

og
ra

m
s

in
pa

ra
lle

lo
n

no
de

s
ac

ro
ss

th
e

cl
us

te
r.

M
os

tp
ro

gr
am

s
w

hi
ch

re
ce

iv
e

an
in

pu
tfi

le
an

d
pa

ra
m

et
er

s
ca

n
ad

ap
te

d
to

ru
n

in
th

e
H

PC
C

en
vi

ro
nm

en
t.

5 Data-Intensive Technologies for Cloud Computing 117

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

E
xt

er
na

lw
eb

se
rv

ic
es

ac
ce

ss
N

ot
su

pp
or

te
d

di
re

ct
ly

by
th

e
Pi

g
la

ng
ua

ge
.U

se
r-

de
fin

ed
fu

nc
tio

ns
w

ri
tte

n
in

Ja
va

ca
n

pr
ov

id
e

th
is

ca
pa

bi
lit

y.
B

ui
lt-

in
E

C
L

fu
nc

tio
n

SO
A

PC
A

L
L

fo
r

SO
A

P
ca

lls
to

ac
ce

ss
ex

te
rn

al
W

eb
Se

rv
ic

es
.A

n
en

tir
e

da
ta

se
tc

an
be

pr
oc

es
se

d
by

a
si

ng
le

SO
A

PC
A

L
L

in
an

E
C

L
pr

og
ra

m
.

D
at

a
ag

gr
eg

at
io

n
Im

pl
em

en
te

d
in

Pi
g

us
in

g
th

e
G

R
O

U
P,

an
d

FO
R

E
A

C
H

..
.

G
E

N
E

R
A

T
E

st
at

em
en

ts
pe

rf
or

m
in

g
E

V
A

L
fu

nc
tio

ns
on

fie
ld

s.
B

ui
lt-

in
E

V
A

L
fu

nc
tio

ns
in

cl
ud

e
A

V
G

,C
O

N
C

A
T,

C
O

U
N

T,
D

IF
F,

IS
E

M
PT

Y
,M

A
X

,M
IN

,S
IZ

E
,S

U
M

,
T

O
K

E
N

IZ
E

.

Im
pl

em
en

te
d

in
E

C
L

us
in

g
th

e
TA

B
L

E
st

at
em

en
tw

ith
gr

ou
p

by
fie

ld
s

sp
ec

ifi
ed

an
d

an
ou

tp
ut

re
co

rd
de

fin
iti

on
th

at
in

cl
ud

es
co

m
pu

te
d

fie
ld

s
us

in
g

ex
pr

es
si

on
s

w
ith

ag
gr

eg
at

io
n

fu
nc

tio
ns

pe
rf

or
m

ed
ac

ro
ss

th
e

sp
ec

ifi
ed

gr
ou

p.
B

ui
lt-

in
ag

gr
eg

at
io

n
fu

nc
tio

ns
w

hi
ch

w
or

k
ac

ro
ss

da
ta

se
ts

or
gr

ou
ps

in
cl

ud
e

A
V

E
,C

O
R

R
E

L
A

T
IO

N
,C

O
U

N
T,

C
O

V
A

R
IA

N
C

E
,

M
A

X
,M

IN
,S

U
M

,V
A

R
IA

N
C

E
.

N
at

ur
al

la
ng

ua
ge

pr
oc

es
si

ng
T

he
T

O
K

E
N

IZ
E

st
at

em
en

ts
pl

its
a

st
ri

ng
an

d
ou

tp
ut

s
a

ba
g

of
w

or
ds

.O
th

er
w

is
e

no
di

re
ct

la
ng

ua
ge

su
pp

or
tf

or
pa

rs
in

g
an

d
ot

he
r

na
tu

ra
ll

an
gu

ag
e

pr
oc

es
si

ng
.U

se
r-

de
fin

ed
fu

nc
tio

ns
ar

e
re

qu
ir

ed
.

In
cl

ud
es

PA
T

T
E

R
N

,R
U

L
E

,T
O

K
E

N
,a

nd
D

E
FI

N
E

st
at

em
en

ts
fo

r
de

fin
in

g
pa

rs
in

g
pa

tte
rn

s,
ru

le
s,

an
d

gr
am

m
ar

s.
Pa

tte
rn

s
ca

n
in

cl
ud

e
re

gu
la

r
ex

pr
es

si
on

de
fin

iti
on

s
an

d
us

er
-d

efi
ne

d
va

lid
at

io
n

fu
nc

tio
ns

.T
he

PA
R

SE
st

at
em

en
tp

ro
vi

de
s

bo
th

re
gu

la
r

ex
pr

es
si

on
ty

pe
pa

rs
in

g
or

To
m

ita
pa

rs
in

g
ca

pa
bi

lit
y

an
d

re
cu

rs
iv

e
gr

am
m

ar
s.

Sp
ec

ia
lp

ar
si

ng
sy

nt
ax

is
in

cl
ud

ed
sp

ec
ifi

ca
lly

fo
r

X
M

L
da

ta
.

Sc
ie

nt
ifi

c
fu

nc
tio

n
su

pp
or

t
N

ot
su

pp
or

te
d

di
re

ct
ly

by
th

e
Pi

g
la

ng
ua

ge
.R

eq
ui

re
s

th
e

de
fin

iti
on

an
d

us
e

of
a

us
er

-d
efi

ne
d

fu
nc

tio
n.

E
C

L
pr

ov
id

es
bu

ilt
-i

n
fu

nc
tio

ns
fo

r
A

B
S,

A
C

O
S,

A
SI

N
,

A
TA

N
,A

TA
N

2,
C

O
S,

C
O

SH
,E

X
P,

L
N

,L
O

G
,R

O
U

N
D

,
R

O
U

N
D

U
P,

SI
N

,S
IN

H
,S

Q
R

T,
TA

N
,T

A
N

H
.

H
as

hi
ng

fu
nc

tio
ns

fo
r

da
ta

se
t

di
st

ri
bu

tio
n

N
o

ex
pl

ic
it

pr
og

ra
m

m
er

co
nt

ro
lf

or
da

ta
se

td
is

tr
ib

ut
io

n.
PA

R
A

L
L

E
L

op
tio

n
on

re
la

tio
na

lo
pe

ra
tio

ns
al

lo
w

s
th

e
nu

m
be

r
of

R
ed

uc
e

ta
sk

s
to

be
sp

ec
ifi

ed
.

H
as

hi
ng

fu
nc

tio
ns

av
ai

la
bl

e
fo

r
us

e
w

ith
th

e
D

IS
T

R
IB

U
T

E
st

at
em

en
ti

nc
lu

de
H

A
SH

,H
A

SH
32

(3
2-

bi
tF

N
V

),
H

A
SH

64
(6

4-
bi

tF
N

V
),

H
A

SH
C

R
C

,H
A

SH
M

D
5

(1
28

-b
it

M
D

5)

118 A.M. Middleton

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

C
re

at
in

g
sa

m
pl

e
da

ta
se

ts
T

he
SA

M
PL

E
op

er
at

io
n

se
le

ct
s

a
ra

nd
om

da
ta

sa
m

pl
e

w
ith

a
sp

ec
ifi

ed
sa

m
pl

e
si

ze
.

E
C

L
pr

ov
id

es
E

N
T

H
w

hi
ch

se
le

ct
s

ev
er

y
nt

h
re

co
rd

of
a

da
ta

se
t,

SA
M

PL
E

w
hi

ch
pr

ov
id

es
th

e
ca

pa
bi

lit
y

to
se

le
ct

no
n-

ov
er

la
pp

in
g

sa
m

pl
es

on
a

sp
ec

ifi
ed

in
te

rv
al

,C
H

O
O

SE
N

w
hi

ch
se

le
ct

s
th

e
fir

st
n

re
co

rd
s

of
a

da
ta

se
ta

nd
C

H
O

O
SE

SE
T

S
w

hi
ch

al
lo

w
s

m
ul

tip
le

co
nd

iti
on

s
to

be
sp

ec
ifi

ed
an

d
th

e
nu

m
be

r
of

re
co

rd
s

th
at

m
ee

tt
he

co
nd

iti
on

or
op

tio
na

lly
a

nu
m

be
r

of
re

co
rd

s
th

at
m

ee
tn

on
e

of
th

e
co

nd
iti

on
s

sp
ec

ifi
ed

.T
he

ba
se

da
ta

se
tf

or
ea

ch
of

th
e

E
N

T
H

,
SA

M
PL

E
,C

H
O

O
SE

N
,a

nd
C

H
O

O
SE

T
S

ca
n

ha
ve

a
as

so
ci

at
ed

fil
te

r
ex

pr
es

si
on

.
W

or
kfl

ow
m

an
ag

em
en

t
N

o
la

ng
ua

ge
st

at
em

en
ts

in
Pi

g
di

re
ct

ly
af

fe
ct

W
or

kfl
ow

.T
he

H
ad

oo
p

cl
us

te
r

do
es

al
lo

w
Ja

va
M

ap
R

ed
uc

e
pr

og
ra

m
s

ac
ce

ss
to

sp
ec

ifi
c

w
or

kfl
ow

in
fo

rm
at

io
n

an
d

sc
he

du
lin

g
op

tio
ns

to
m

an
ag

e
ex

ec
ut

io
n.

W
or

kfl
ow

Se
rv

ic
es

in
E

C
L

in
cl

ud
e

th
e

C
H

E
C

K
PO

IN
T

an
d

PE
R

SI
ST

st
at

em
en

ts
al

lo
w

th
e

da
ta

flo
w

to
be

ca
pt

ur
ed

at
sp

ec
ifi

c
po

in
ts

in
th

e
ex

ec
ut

io
n

of
an

E
C

L
pr

og
ra

m
.I

f
a

pr
og

ra
m

m
us

tb
e

re
ru

n
be

ca
us

e
of

a
cl

us
te

r
fa

ilu
re

,i
tw

ill
re

su
m

e
at

la
st

C
he

ck
po

in
tw

hi
ch

is
de

le
te

d
af

te
r

co
m

pl
et

io
n.

T
he

PE
R

SI
ST

fil
es

ar
e

st
or

ed
pe

rm
an

en
tly

in
th

e
fil

es
ys

te
m

.
If

a
jo

b
is

re
pe

at
ed

,p
er

si
st

ed
st

ep
s

ar
e

on
ly

re
ca

lc
ul

at
ed

if
th

e
co

de
ha

s
ch

an
ge

d,
or

an
y

un
de

rl
yi

ng
da

ta
ha

s
ch

an
ge

d.
O

th
er

w
or

kfl
ow

st
at

em
en

ts
in

cl
ud

e
FA

IL
U

R
E

to
tr

ap
ex

pr
es

si
on

ev
al

ua
tio

n
fa

ilu
re

s,
PR

IO
R

IT
Y

,R
E

C
O

V
E

R
Y

,
ST

O
R

E
D

,S
U

C
C

E
SS

,W
H

E
N

fo
r

pr
oc

es
si

ng
ev

en
ts

,
G

L
O

B
A

L
an

d
IN

D
E

PE
N

D
E

N
T.

5 Data-Intensive Technologies for Cloud Computing 119

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

PI
G

re
la

tio
n

op
er

at
io

ns
:

C
og

ro
up

T
he

C
O

G
R

O
U

P
op

er
at

io
n

is
si

m
ila

r
to

th
e

JO
IN

op
er

at
io

n
an

d
gr

ou
ps

th
e

da
ta

in
tw

o
or

m
or

e
re

la
tio

ns
(d

at
as

et
s)

ba
se

d
on

co
m

m
on

fie
ld

va
lu

es
.C

O
G

R
O

U
P

cr
ea

te
s

a
ne

st
ed

se
to

f
ou

tp
ut

tu
pl

es
w

hi
le

JO
IN

cr
ea

te
s

a
fla

ts
et

of
ou

tp
ut

tu
pl

es
.

IN
N

E
R

an
d

O
U

T
E

R
jo

in
s

ar
e

su
pp

or
te

d.
Fi

el
ds

fr
om

ea
ch

re
la

tio
n

ar
e

sp
ec

ifi
ed

as
th

e
jo

in
ke

y.
N

o
su

pp
or

te
xi

st
s

fo
r

co
nd

iti
on

al
pr

oc
es

si
ng

ot
he

r
th

an
fie

ld
eq

ua
lit

y.

In
E

C
L

,t
hi

s
is

ac
co

m
pl

is
he

d
us

in
g

th
e

D
E

N
O

R
M

A
L

IZ
E

fu
nc

tio
n

jo
in

in
g

to
ea

ch
da

ta
se

ta
nd

ad
di

ng
al

lr
ec

or
ds

m
at

ch
in

g
th

e
jo

in
ke

y
to

a
ne

w
re

co
rd

fo
rm

at
w

ith
a

ch
ild

da
ta

se
tf

or
ea

ch
ch

ild
fil

e.
T

he
D

E
N

O
R

M
A

L
IZ

E
fu

nc
tio

n
is

si
m

ila
r

to
a

JO
IN

an
d

is
us

ed
to

fo
rm

a
co

m
bi

ne
d

re
co

rd
ou

t
of

a
pa

re
nt

an
d

an
y

nu
m

be
r

of
ch

ild
re

n.

C
ro

ss
C

re
at

es
th

e
cr

os
s

pr
od

uc
to

f
tw

o
or

m
or

e
re

la
tio

ns
(d

at
as

et
s)

.
In

E
C

L
th

e
JO

IN
op

er
at

io
n

ca
n

be
us

ed
to

cr
ea

te
cr

os
s

pr
od

uc
ts

us
in

g
a

jo
in

co
nd

iti
on

th
at

is
al

w
ay

s
tr

ue
.

D
is

tin
ct

R
em

ov
es

du
pl

ic
at

e
tu

pl
es

in
a

re
la

tio
n.

A
ll

fie
ld

s
in

th
e

tu
pl

e
m

us
tm

at
ch

.T
he

tu
pl

es
ar

e
so

rt
ed

pr
io

r
to

th
is

op
er

at
io

n.
C

an
no

tb
e

us
ed

on
a

su
bs

et
of

fie
ld

s.
A

FO
R

E
A

C
H

..
.

G
E

N
E

R
A

T
E

st
at

em
en

tm
us

tb
e

us
ed

to
ge

ne
ra

te
th

e
fie

ld
s

pr
io

r
to

a
D

IS
T

IN
C

T
op

er
at

io
n

in
th

is
ca

se
.

T
he

E
C

L
D

E
D

U
P

st
at

em
en

tc
om

pa
re

s
ad

ja
ce

nt
re

co
rd

s
to

de
te

rm
in

e
if

a
sp

ec
ifi

ed
co

nd
iti

on
al

ex
pr

es
si

on
is

m
et

,i
n

w
hi

ch
ca

se
th

e
du

pl
ic

at
e

re
co

rd
is

dr
op

pe
d

an
d

th
e

re
m

ai
ni

ng
re

co
rd

is
co

m
pa

re
d

to
th

e
ne

xt
re

co
rd

in
a

sl
id

in
g

w
in

do
w

m
an

ne
r.

T
hi

s
pr

ov
id

es
a

m
uc

h
m

or
e

fle
xi

bl
e

de
du

pl
ic

at
io

n
ca

pa
bi

lit
y

th
an

th
e

Pi
g

D
IS

T
IN

C
T

op
er

at
io

n.
A

SO
R

T
is

re
qu

ir
ed

pr
io

r
to

a
D

E
D

U
P

un
le

ss
us

in
g

th
e

A
L

L
op

tio
n.

C
on

di
tio

ns
ca

n
us

e
an

y
ex

pr
es

si
on

an
d

ca
n

re
fe

re
nc

e
va

lu
es

fr
om

th
e

le
ft

an
d

ri
gh

ta
dj

ac
en

tr
ec

or
ds

.D
E

D
U

P
ca

n
us

e
an

y
su

bs
et

of
fie

ld
s.

D
um

p
D

is
pl

ay
s

th
e

co
nt

en
ts

of
a

re
la

tio
n.

E
C

L
pr

ov
id

es
an

O
U

T
PU

T
st

at
em

en
tt

ha
tc

an
ei

th
er

w
ri

te
fil

es
to

th
e

fil
es

ys
te

m
or

fo
r

di
sp

la
y.

D
is

pl
ay

fil
es

ca
n

be
na

m
ed

an
d

ar
e

st
or

ed
in

th
e

W
or

ku
ni

ta
ss

oc
ia

te
d

w
ith

th
e

jo
b.

W
or

ku
ni

ts
ar

e
ar

ch
iv

ed
on

a
m

an
ag

em
en

ts
er

ve
r

in
th

e
H

PC
C

pl
at

fo
rm

.

120 A.M. Middleton

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

Fi
lte

r
Se

le
ct

s
tu

pl
es

fr
om

a
re

la
tio

n
ba

se
d

on
a

co
nd

iti
on

.U
se

d
to

se
le

ct
th

e
da

ta
yo

u
w

an
to

r
co

nv
er

se
ly

to
fil

te
r

ou
tr

em
ov

e
th

e
da

ta
yo

u
do

n’
tw

an
t.

Fi
lte

r
ex

pr
es

si
on

s
ca

n
be

us
ed

an
y

tim
e

a
da

ta
se

to
r

re
co

rd
se

ti
s

re
fe

re
nc

ed
in

an
y

E
C

L
st

at
em

en
tw

ith
th

e
fil

te
r

ex
pr

es
si

on
in

pa
re

nt
he

si
s

fo
llo

w
in

g
th

e
da

ta
se

tn
am

e
as

da
ta

se
t_

na
m

e(
fil

te
r_

ex
pr

es
si

on
).

T
he

E
C

L
co

m
pi

le
r

op
tim

iz
es

fil
te

ri
ng

of
th

e
da

ta
du

ri
ng

ex
ec

ut
io

n
ba

se
d

on
th

e
co

m
bi

na
tio

n
of

fil
te

ri
ng

ex
pr

es
si

on
s.

Fo
re

ac
h

..
.

G
en

er
at

e
G

en
er

at
es

da
ta

tr
an

sf
or

m
at

io
ns

ba
se

d
on

co
lu

m
ns

of
da

ta
.T

hi
s

ac
tio

n
ca

n
be

us
ed

fo
r

pr
oj

ec
tio

n,
ag

gr
eg

at
io

n,
an

d
tr

an
sf

or
m

at
io

n,
an

d
ca

n
in

cl
ud

e
ot

he
r

op
er

at
io

ns
in

th
e

ge
ne

ra
tio

n
cl

au
se

su
ch

as
FI

LT
E

R
,D

IS
T

IN
C

T,
G

R
O

U
P,

et
c.

E
ac

h
E

C
L

tr
an

sf
or

m
op

er
at

io
n

su
ch

as
PR

O
JE

C
T,

JO
IN

,
R

O
L

L
U

P,
et

c.
in

cl
ud

e
a

T
R

A
N

SF
O

R
M

fu
nc

tio
n

w
hi

ch
im

pl
ic

itl
y

pr
ov

id
es

th
e

FO
R

E
A

C
H

..
.

G
E

N
E

R
A

T
E

op
er

at
io

n
as

re
co

rd
s

ar
e

pr
oc

es
se

d
by

th
e

T
R

A
N

SF
O

R
M

fu
nc

tio
n.

D
ep

en
di

ng
on

th
e

fu
nc

tio
n,

th
e

ou
tp

ut
re

co
rd

of
th

e
tr

an
sf

or
m

ca
n

in
cl

ud
e

fie
ld

s
fr

om
th

e
in

pu
ta

nd
co

m
pu

te
d

fie
ld

s
se

le
ct

iv
el

y
as

ne
ed

ed
an

d
do

es
no

th
av

e
to

be
id

en
tic

al
to

th
e

in
pu

tr
ec

or
d.

G
ro

up
G

ro
up

s
to

ge
th

er
th

e
tu

pl
es

in
a

si
ng

le
re

la
tio

n
th

at
ha

ve
th

e
sa

m
e

gr
ou

p
ke

y
fie

ld
s.

T
he

G
R

O
U

P
op

er
at

io
n

in
E

C
L

fr
ag

m
en

ts
a

da
ta

se
ti

nt
o

a
se

to
f

se
ts

ba
se

d
on

th
e

br
ea

k
cr

ite
ri

a
w

hi
ch

is
a

lis
to

f
fie

ld
s

or
ex

pr
es

si
on

s
ba

se
d

on
fie

ld
s

in
th

e
re

co
rd

w
hi

ch
fu

nc
tio

n
as

th
e

gr
ou

p
by

ke
ys

.T
hi

s
al

lo
w

s
ag

gr
eg

at
io

ns
an

d
tr

an
sf

or
m

op
er

at
io

ns
su

ch
as

IT
E

R
A

T
E

,S
O

R
T,

D
E

D
U

P,
R

O
L

L
U

P
an

d
ot

he
rs

to
oc

cu
r

w
ith

in
de

fin
ed

su
bs

et
s

of
th

e
da

ta
as

it
ex

ec
ut

es
on

ea
ch

su
bs

et
in

di
vi

du
al

ly
.

5 Data-Intensive Technologies for Cloud Computing 121

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

Jo
in

Jo
in

s
tw

o
or

m
or

e
re

la
tio

ns
ba

se
d

on
co

m
m

on
fie

ld
va

lu
es

.T
he

JO
IN

op
er

at
or

al
w

ay
s

pe
rf

or
m

s
an

in
ne

r
jo

in
.I

f
on

e
re

la
tio

n
is

sm
al

la
nd

ca
n

be
he

ld
in

m
em

or
y,

th
e

“r
ep

lic
at

ed
”

op
tio

n
ca

n
be

us
ed

to
im

pr
ov

e
pe

rf
or

m
an

ce
.

T
he

E
C

L
JO

IN
op

er
at

io
n

w
or

ks
on

tw
o

da
ta

se
ts

or
a

se
to

f
da

ta
se

ts
.F

or
tw

o
da

ta
se

ts
IN

N
E

R
,F

U
L

L
O

U
T

E
R

,L
E

FT
O

U
T

E
R

,R
IG

H
T

O
U

T
E

R
,L

E
FT

O
N

LY
an

d
R

IG
H

T
O

N
LY

jo
in

s
ar

e
pe

rm
itt

ed
.F

or
th

e
se

to
f

da
ta

se
ts

JO
IN

,I
N

N
E

R
,

L
E

FT
O

U
T

E
R

,L
E

FT
O

N
LY

,a
nd

M
O

FN
(m

in
,m

ax
)

jo
in

s
ar

e
pe

rm
itt

ed
.A

ny
ty

pe
of

co
nd

iti
on

al
ex

pr
es

si
on

re
fe

re
nc

in
g

fie
ld

s
in

th
e

da
ta

se
ts

to
be

jo
in

ed
ca

n
be

us
ed

as
a

jo
in

co
nd

iti
on

.J
O

IN
ca

n
be

us
ed

in
bo

th
a

gl
ob

al
an

d
lo

ca
l

m
od

es
al

so
pr

ov
id

es
ad

di
tio

na
lo

pt
io

ns
fo

r
di

st
ri

bu
tio

n
in

cl
ud

in
g

H
A

SH
w

hi
ch

di
st

ri
bu

te
s

th
e

da
ta

se
ts

by
th

e
sp

ec
ifi

ed
jo

in
ke

ys
,a

nd
L

O
O

K
U

P
w

hi
ch

co
pi

es
on

e
da

ta
se

t
if

sm
al

lt
o

al
ln

od
es

an
d

is
si

m
ila

r
to

th
e

“r
ep

lic
at

ed
”

jo
in

fe
at

ur
e

of
Pi

g.
Jo

in
s

ca
n

al
so

us
e

ke
ye

d
in

de
xe

s
to

im
pr

ov
e

pe
rf

or
m

an
ce

an
d

se
lf

-j
oi

ns
(j

oi
ni

ng
th

e
sa

m
e

da
ta

se
tt

o
its

el
f)

is
su

pp
or

te
d.

A
dd

iti
on

al
jo

in
-t

yp
e

op
er

at
io

ns
pr

ov
id

ed
by

E
C

L
in

cl
ud

e
M

E
R

G
E

JO
IN

w
hi

ch
jo

in
s

an
d

m
er

ge
s

in
a

si
ng

le
op

er
at

io
n,

an
d

sm
ar

ts
te

pp
in

g
us

in
g

ST
E

PP
E

D
w

hi
ch

pr
ov

id
es

a
m

et
ho

d
of

do
in

g
n-

ar
y

jo
in

/m
er

ge
-j

oi
n

op
er

at
io

ns
.

L
im

it
U

se
d

to
lim

it
th

e
nu

m
be

r
of

ou
tp

ut
tu

pl
es

in
a

re
la

tio
n.

H
ow

ev
er

,t
he

re
is

no
gu

ar
an

te
e

of
w

hi
ch

tu
pl

es
w

ill
be

ou
tp

ut
un

le
ss

pr
ec

ed
ed

by
an

O
R

D
E

R
st

at
em

en
t.

T
he

L
IM

IT
fu

nc
tio

n
in

E
C

L
is

to
re

st
ri

ct
th

e
ou

tp
ut

of
a

re
co

rd
se

tr
es

ul
tin

g
fr

om
pr

oc
es

si
ng

to
a

m
ax

im
um

nu
m

be
r

or
re

co
rd

s,
or

to
fa

il
th

e
op

er
at

io
n

if
th

e
lim

it
is

ex
ce

ed
ed

.
T

he
C

H
O

O
SE

N
fu

nc
tio

n
ca

n
be

us
e

to
se

le
ct

a
sp

ec
ifi

ed
nu

m
be

r
of

re
co

rd
s

in
a

da
ta

se
t.

L
oa

d
L

oa
ds

da
ta

fr
om

th
e

fil
es

ys
te

m
.

Si
nc

e
E

C
L

is
de

cl
ar

at
iv

e,
th

e
eq

ui
va

le
nt

of
th

e
Pi

g
L

O
A

D
op

er
at

io
n

is
a

D
A

TA
SE

T
de

fin
iti

on
w

hi
ch

al
so

in
cl

ud
es

a
R

E
C

O
R

D
de

fin
iti

on
.T

he
ex

am
pl

es
sh

ow
n

in
Fi

gs
5.

7
an

d
Fi

g.
5.

11
de

m
on

st
ra

te
th

is
di

ff
er

en
ce

.

122 A.M. Middleton

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

O
rd

er
So

rt
s

a
re

la
tio

n
ba

se
d

on
on

e
or

m
or

e
fie

ld
s.

B
ot

h
as

ce
nd

in
g

an
d

de
sc

en
di

ng
so

rt
s

ar
e

su
pp

or
te

d.
R

el
at

io
ns

w
ill

be
in

or
de

r
fo

r
a

D
U

M
P,

bu
ti

f
th

e
re

su
lt

of
an

O
R

D
E

R
is

fu
rt

he
r

pr
oc

es
se

d
by

an
ot

he
r

re
la

tio
n

op
er

at
io

n,
th

er
e

is
no

gu
ar

an
te

e
th

e
re

su
lts

w
ill

be
pr

oc
es

se
d

in
th

e
or

de
r

sp
ec

ifi
ed

.
R

el
at

io
ns

ar
e

co
ns

id
er

ed
to

be
un

or
de

re
d

in
Pi

g.

T
he

E
C

L
SO

R
T

fu
nc

tio
n

so
rt

s
a

da
ta

se
ta

cc
or

di
ng

to
a

lis
to

f
ex

pr
es

si
on

s
or

ke
y

fie
ld

s.
T

he
SO

R
T

ca
n

be
gl

ob
al

in
w

hi
ch

th
e

da
ta

se
tw

ill
be

or
de

re
d

ac
ro

ss
th

e
no

de
s

in
a

cl
us

te
r,

or
lo

ca
li

n
w

hi
ch

th
e

da
ta

se
tw

ill
be

or
de

re
d

on
ea

ch
no

de
in

th
e

cl
us

te
r

in
di

vi
du

al
ly

.F
or

gr
ou

pe
d

da
ta

se
ts

,t
he

SO
R

T
ap

pl
ie

s
to

ea
ch

gr
ou

p
in

di
vi

du
al

ly
.S

or
tin

g
op

er
at

io
ns

ca
n

be
pe

rf
or

m
ed

us
in

g
a

qu
ic

ks
or

t,
in

se
rt

io
ns

or
t,

or
he

ap
so

rt
,a

nd
ca

n
be

st
ab

le
or

un
st

ab
le

fo
r

du
pl

ic
at

es
.

Sp
lit

Pa
rt

iti
on

s
a

re
la

tio
n

in
to

tw
o

or
m

or
e

re
la

tio
ns

.
Si

nc
e

E
C

L
is

de
cl

ar
at

iv
e,

pa
rt

iti
on

s
ar

e
cr

ea
te

d
by

si
m

pl
y

sp
ec

if
yi

ng
fil

te
r

ex
pr

es
si

on
s

on
th

e
ba

se
da

ta
se

t.
E

xa
m

pl
e

fo
r

da
ta

se
tD

S1
,y

ou
co

ul
d

de
fin

e
D

S2
:=

D
S1

(fi
lte

r_
ex

pr
es

si
on

_1
),

D
S3

:=
D

S1
(fi

lte
r_

ex
pr

es
si

on
_2

),
et

c.
St

or
e

St
or

es
da

ta
to

th
e

fil
e

sy
st

em
.

T
he

O
U

T
PU

T
fu

nc
tio

n
in

E
C

L
is

us
ed

to
w

ri
te

a
da

ta
se

tt
o

th
e

fil
es

ys
te

m
or

to
st

or
e

it
in

th
e

w
or

ku
ni

tf
or

di
sp

la
y.

O
ut

pu
tfi

le
s

ca
n

be
co

m
pr

es
se

d
us

in
g

L
Z

W
co

m
pr

es
si

on
.V

ar
ia

tio
ns

of
O

U
T

PU
T

su
pp

or
tfl

at
fil

e,
C

SV
,a

nd
X

M
L

fo
rm

at
s.

O
ut

pu
tc

an
al

so
be

w
ri

tte
n

to
a

PI
PE

as
th

e
st

an
da

rd
in

pu
tt

o
th

e
co

m
m

an
d

sp
ec

ifi
ed

fo
r

th
e

PI
PE

op
er

at
io

n.
O

ut
pu

tc
an

w
ri

te
no

to
nl

y
th

e
fil

es
ys

te
m

on
th

e
lo

ca
lc

lu
st

er
,b

ut
to

an
y

cl
us

te
r

fil
es

ys
te

m
in

th
e

H
PC

C
pr

oc
es

si
ng

en
vi

ro
nm

en
t.

U
ni

on
T

he
U

N
IO

N
op

er
at

or
is

us
ed

to
m

er
ge

th
e

co
nt

en
ts

of
tw

o
or

m
or

e
re

la
tio

ns
in

to
a

si
ng

le
re

la
tio

n.
O

rd
er

of
tu

pl
es

is
no

t
pr

es
er

ve
d,

bo
th

in
pu

ta
nd

ou
tp

ut
re

la
tio

ns
ar

e
in

te
rp

re
te

d
as

an
un

or
de

re
d

ba
g

of
tu

pl
es

.D
oe

s
no

te
lim

in
at

e
du

pl
ic

at
e

tu
pl

es
.

T
he

M
E

R
G

E
fu

nc
tio

n
re

tu
rn

s
a

si
ng

le
da

ta
se

to
r

in
de

x
co

nt
ai

ni
ng

al
lt

he
da

ta
se

ts
or

in
de

xe
s

sp
ec

ifi
ed

in
a

lis
to

f
da

ta
se

ts
.D

at
as

et
s

m
us

th
av

e
th

e
sa

m
e

re
co

rd
fo

rm
at

.A
SO

R
T

E
D

op
tio

n
al

lo
w

s
th

e
m

er
ge

to
be

or
de

re
d

ac
co

rd
in

g
to

a
fie

ld
lis

tt
ha

ts
pe

ci
fie

s
th

e
so

rt
or

de
r.

A
D

E
D

U
P

op
tio

n
ca

us
es

on
ly

re
co

rd
s

w
ith

un
iq

ue
ke

ys
to

be
in

cl
ud

ed
.T

he
R

E
G

R
O

U
P

fu
nc

tio
n

al
lo

w
s

m
ul

tip
le

da
ta

se
ts

w
hi

ch
ha

ve
be

en
gr

ou
pe

d
us

in
g

th
e

sa
m

e
fie

ld
s

to
be

m
er

ge
d

in
to

a
si

ng
le

da
ta

se
t.

5 Data-Intensive Technologies for Cloud Computing 123

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

A
dd

iti
on

al
E

C
L

tr
an

sf
or

m
at

io
n

fu
nc

tio
ns

E
C

L
in

cl
ud

es
m

an
y

ad
di

tio
na

lf
un

ct
io

ns
pr

ov
id

in
g

im
po

rt
an

td
at

a
tr

an
sf

or
m

at
io

ns
th

at
ar

e
no

ta
va

ila
bl

e
in

Pi
g

w
ith

ou
ti

m
pl

em
en

tin
g

cu
st

om
us

er
-d

efi
ne

d
pr

oc
es

si
ng

.
C

om
bi

ne
N

ot
av

ai
la

bl
e

T
he

C
O

M
B

IN
E

fu
nc

tio
n

co
m

bi
ne

s
tw

o
da

ta
se

ts
in

to
a

si
ng

le
da

ta
se

t
on

a
re

co
rd

-b
y-

re
co

rd
ba

si
s

in
th

e
or

de
r

in
w

hi
ch

th
ey

ap
pe

ar
in

ea
ch

.R
ec

or
ds

fr
om

ea
ch

ar
e

pa
ss

ed
to

th
e

sp
ec

ifi
ed

tr
an

sf
or

m
fu

nc
tio

n,
an

d
th

e
re

co
rd

fo
rm

at
of

th
e

ou
tp

ut
da

ta
se

tc
an

co
nt

ai
n

se
le

ct
ed

fie
ld

s
fr

om
bo

th
in

pu
td

at
as

et
s

an
d

ad
di

tio
na

lfi
el

ds
as

ne
ed

ed
.

Fe
tc

h
N

ot
av

ai
la

bl
e

T
he

FE
T

C
H

fu
nc

tio
n

pr
oc

es
se

s
th

ro
ug

h
al

lt
he

re
co

rd
s

in
an

in
de

x
da

ta
se

ti
n

th
e

or
de

r
sp

ec
ifi

ed
by

th
e

in
de

x
fe

tc
hi

ng
th

e
co

rr
es

po
nd

in
g

re
co

rd
fr

om
th

e
ba

se
da

ta
se

ta
nd

pa
ss

in
g

it
th

ro
ug

h
a

sp
ec

ifi
ed

tr
an

sf
or

m
fu

nc
tio

n
to

cr
ea

te
a

ne
w

da
ta

se
t.

It
er

at
e

N
ot

av
ai

la
bl

e
T

he
IT

E
R

A
T

E
fu

nc
tio

n
pr

oc
es

se
s

th
ro

ug
h

al
lr

ec
or

ds
in

a
da

ta
se

t
on

e
pa

ir
of

re
co

rd
s

at
a

tim
e

us
in

g
a

sl
id

in
g

w
in

do
w

m
et

ho
d

pe
rf

or
m

in
g

th
e

tr
an

sf
or

m
re

co
rd

on
ea

ch
pa

ir
in

tu
rn

.I
f

th
e

da
ta

se
t

is
gr

ou
pe

d,
th

e
IT

E
R

A
T

E
pr

oc
es

se
s

ea
ch

gr
ou

p
in

di
vi

du
al

ly
.T

he
IT

E
R

A
T

E
fu

nc
tio

n
is

us
ef

ul
in

pr
op

ag
at

in
g

in
fo

rm
at

io
n

an
d

ca
lc

ul
at

in
g

ne
w

in
fo

rm
at

io
n

su
ch

as
ru

nn
in

g
to

ta
ls

si
nc

e
it

al
lo

w
s

in
te

r-
re

co
rd

de
pe

nd
en

ci
es

to
be

co
ns

id
er

ed
.

N
or

m
al

iz
e

U
se

of
FO

R
E

A
C

H
..

.
G

E
N

E
R

A
T

E
is

re
qu

ir
ed

T
he

N
O

R
M

A
L

IZ
E

fu
nc

tio
n

no
rm

al
iz

es
ch

ild
re

co
rd

s
ou

to
f

a
da

ta
se

ti
nt

o
a

se
pa

ra
te

da
ta

se
t.

T
he

as
so

ci
at

ed
tr

an
sf

or
m

an
d

ou
tp

ut
re

co
rd

fo
rm

at
do

es
no

th
av

e
to

be
th

e
sa

m
e

as
th

e
in

pu
t.

124 A.M. Middleton

Ta
bl

e
5.

1
(c

on
tin

ue
d)

L
an

gu
ag

e
fe

at
ur

e
or

ca
pa

bi
lit

y
Pi

g
E

C
L

Pr
oc

es
s

N
ot

av
ai

la
bl

e
T

he
PR

O
C

E
SS

fu
nc

tio
n

is
si

m
ila

r
to

IT
E

R
A

T
E

an
d

pr
oc

es
se

s
th

ro
ug

h
al

lr
ec

or
ds

in
a

da
ta

se
to

ne
pa

ir
of

re
co

rd
s

at
a

tim
e

(l
ef

t
re

co
rd

,r
ig

ht
re

co
rd

)
us

in
g

a
sl

id
in

g
w

in
do

w
m

et
ho

d
pe

rf
or

m
in

g
th

e
as

so
ci

at
ed

tr
an

sf
or

m
fu

nc
tio

n
on

ea
ch

pa
ir

of
re

co
rd

s
in

tu
rn

.
A

se
co

nd
tr

an
sf

or
m

fu
nc

tio
n

is
al

so
sp

ec
ifi

ed
th

at
co

ns
tr

uc
ts

th
e

ri
gh

tr
ec

or
d

fo
r

th
e

ne
xt

co
m

pa
ri

so
n.

Pr
oj

ec
t

U
se

of
FO

R
E

A
C

H
..

.
G

E
N

E
R

A
T

E
is

re
qu

ir
ed

T
he

PR
O

JE
C

T
pr

oc
es

se
s

th
ro

ug
h

al
lt

he
re

co
rd

s
in

a
da

ta
se

t
pe

rf
or

m
in

g
th

e
sp

ec
ifi

ed
tr

an
sf

or
m

on
ea

ch
re

co
rd

in
tu

rn
.

R
ol

lu
p

N
ot

av
ai

la
bl

e
T

he
R

O
L

L
U

P
fu

nc
tio

n
is

si
m

ila
r

to
th

e
D

E
D

U
P

fu
nc

tio
n

bu
t

in
cl

ud
es

a
sp

ec
ifi

ed
tr

an
sf

or
m

fu
nc

tio
n

to
pr

oc
es

s
ea

ch
pa

ir
of

du
pl

ic
at

e
re

co
rd

s.
T

hi
s

al
lo

w
s

yo
u

to
re

tr
ie

ve
an

d
us

e
va

lu
ab

le
in

fo
rm

at
io

n
fr

om
th

e
du

pl
ic

at
e

re
co

rd
be

fo
re

it
is

th
ro

w
n

aw
ay

.
D

ep
en

di
ng

on
ho

w
th

e
R

O
L

L
U

P
is

de
fin

ed
,e

ith
er

th
e

le
ft

or
ri

gh
t

re
co

rd
pa

ss
ed

to
th

e
tr

an
sf

or
m

ca
n

be
re

ta
in

ed
,o

r
an

y
m

ix
tu

re
of

da
ta

fr
om

bo
th

.
D

ia
gn

os
tic

op
er

at
or

s
Pi

g
in

cl
ud

es
di

ag
no

st
ic

op
er

at
or

s
to

ai
d

in
th

e
vi

su
al

iz
at

io
n

of
da

ta
st

ru
ct

ur
es

.T
he

D
E

SC
R

IB
E

op
er

at
or

re
tu

rn
s

th
e

sc
he

m
a

of
a

re
la

tio
n.

T
he

E
X

PL
A

IN
op

er
at

or
al

lo
w

s
yo

u
to

re
vi

ew
th

e
lo

gi
ca

l,
ph

ys
ic

al
,a

nd
M

ap
R

ed
uc

e
ex

ec
ut

io
n

pl
an

s
th

at
ar

e
us

ed
to

co
m

pu
te

an
op

er
at

io
n

in
a

Pi
g

sc
ri

pt
.T

he
IL

L
U

ST
R

A
T

E
op

er
at

or
di

sp
la

ys
a

st
ep

-b
y-

st
ep

ex
ec

ut
io

n
of

a
se

qu
en

ce
of

st
at

em
en

ts
al

lo
w

yo
u

to
se

e
ho

w
da

ta
is

tr
an

sf
or

m
ed

th
ro

ug
h

a
se

qu
en

ce
of

Pi
g

L
at

in
st

at
em

en
ts

es
se

nt
ia

lly
du

m
pi

ng
th

e
ou

tp
ut

of
ea

ch
st

at
em

en
ti

n
th

e
sc

ri
pt

.

T
he

D
IS

T
R

IB
U

T
IO

N
ac

tio
n

pr
od

uc
es

a
cr

os
st

ab
re

po
rt

in
X

M
L

fo
rm

at
in

di
ca

tin
g

ho
w

m
an

y
re

co
rd

s
th

er
e

ar
e

in
a

da
ta

se
tf

or
ea

ch
va

lu
e

in
ea

ch
fie

ld
in

th
e

da
ta

se
tt

o
ai

d
in

th
e

an
al

ys
is

of
da

ta
di

st
ri

bu
tio

n
in

or
de

r
to

av
oi

d
sk

ew
s.

T
he

Q
ue

ry
B

ui
ld

er
an

d
E

C
LW

at
ch

pr
og

ra
m

de
ve

lo
pm

en
te

nv
ir

on
m

en
tt

oo
ls

pr
ov

id
e

a
co

m
pl

et
e

vi
su

al
iz

at
io

n
to

ol
fo

r
an

al
yz

in
g,

de
bu

gg
in

g,
an

d
pr

ofi
lin

g
ex

ec
ut

io
n

of
E

C
L

jo
bs

.D
ur

in
g

th
e

ex
ec

ut
io

n
of

a
jo

b,
th

e
da

ta
flo

w
s

ex
pr

es
se

d
by

E
C

L
ca

n
be

vi
ew

ed
as

a
di

re
ct

ed
ac

yc
lic

gr
ap

h
(D

A
G

)
w

hi
ch

sh
ow

s
th

e
ex

ec
ut

io
n

pl
an

,d
at

afl
ow

s
as

th
ey

oc
cu

r,
an

d
th

e
re

su
lts

of
ea

ch
pr

oc
es

si
ng

st
ep

.U
se

rs
ca

n
do

ub
le

cl
ic

k
on

th
e

gr
ap

h
to

dr
ill

do
w

n
fo

r
ad

di
tio

na
li

nf
or

m
at

io
n.

A
n

ex
am

pl
e

of
th

e
gr

ap
h

co
rr

es
po

nd
in

g
to

th
e

E
C

L
co

de
sh

ow
n

in
Fi

g.
5.

11
is

sh
ow

n
in

Fi
g.

5.
12

.

5 Data-Intensive Technologies for Cloud Computing 125

5.4.3 Architecture Comparison

Hadoop MapReduce and the LexisNexis HPCC platform are both scalable archi-
tectures directed towards data-intensive computing solutions. Each of these system
platforms has strengths and weaknesses and their overall effectiveness for any appli-
cation problem or domain is subjective in nature and can only be determined through
careful evaluation of application requirements versus the capabilities of the solution.
Hadoop is an open source platform which increases its flexibility and adaptability to
many problem domains since new capabilities can be readily added by users adopt-
ing this technology. However, as with other open source platforms, reliability and
support can become issues when many different users are contributing new code
and changes to the system. Hadoop has found favor with many large Web-oriented
companies including Yahoo!, Facebook, and others where data-intensive computing
capabilities are critical to the success of their business. Amazon has implemented
new cloud computing services using Hadoop as part of its EC2 called Amazon
Elastic MapReduce. A company called Cloudera was recently formed to provide
training, support and consulting services to the Hadoop user community and to pro-
vide packaged and tested releases which can be used in the Amazon environment.
Although many different application tools have been built on top of the Hadoop
platform like Pig, HBase, Hive, etc., these tools tend not to be well-integrated offer-
ing different command shells, languages, and operating characteristics that make it
more difficult to combine capabilities in an effective manner.

However, Hadoop offers many advantages to potential users of open source soft-
ware including readily available online software distributions and documentation,
easy installation, flexible configurations based on commodity hardware, an execu-
tion environment based on a proven MapReduce computing paradigm, ability to
schedule jobs using a configurable number of Map and Reduce tasks, availability of
add-on capabilities such as Pig, HBase, and Hive to extend the capabilities of the
base platform and improve programmer productivity, and a rapidly expanding user
community committed to open source. This has resulted in dramatic growth and
acceptance of the Hadoop platform and its implementation to support data-intensive
computing applications.

The LexisNexis HPCC platform is an integrated set of systems, software, and
other architectural components designed to provide data-intensive computing capa-
bilities from raw data processing and ETL applications, to high-performance query
processing and data mining. The ECL language was specifically implemented to
provide a high-level dataflow parallel processing language that is consistent across
all system components and has extensive capabilities developed and optimized over
a period of almost 10 years. The LexisNexis HPCC is a mature, reliable, well-
proven, commercially supported system platform used in government installations,
research labs, and commercial enterprises. The comparison of the Pig Latin lan-
guage and execution system available on the Hadoop MapReduce platform to the
ECL language used on the HPCC platform presented here reveals that ECL pro-
vides significantly more advanced capabilities and functionality without the need

126 A.M. Middleton

for extensive user-defined functions written in another language or resorting to a
native MapReduce application coded in Java.

The following comparison of overall features provided by the Hadoop and HPCC
system architectures reveals that the HPCC architecture offers a higher level of inte-
gration of system components, an execution environment not limited by a specific
computing paradigm such as MapReduce, flexible configurations and optimized
processing environments which can provide data-intensive applications from data
analysis to data warehousing and high-performance online query processing, and
high programmer productivity utilizing the ECL programming language and tools.
Table 5.2 provides a summary comparison of the key features of the hardware
and software architectures of both system platforms based on the analysis of each
architecture presented in this chapter.

5.5 Conclusions

As a result of the continuing information explosion, many organizations are drown-
ing in data and the data gap or inability to process this information and use it
effectively is increasing at an alarming rate. Data-intensive computing represents a
new computing paradigm which can address the data gap and allow government and
commercial organizations and research environments to process massive amounts of
data and implement applications previously thought to be impractical or infeasible.
Some organizations with foresight recognized early that new parallel-processing
architectures were needed including Google who initially developed the MapReduce
architecture and LexisNexis who developed the HPCC architecture. More recently
the Hadoop platform has emerged as an open source alternative for the MapReduce
approach. Hadoop has gained momentum quickly, and additional add-on capabili-
ties to enhance the platform have been developed including a dataflow programming
language and execution environment called Pig. These architectures, their relative
strengths and weaknesses, and their applicability to cloud computing are described
in this chapter, and a direct comparison of the Pig language of Hadoop to the ECL
language used with the LexisNexis HPCC platform was presented. Availability of
a high-level parallel dataflow-oriented programming language has proven to be a
critical success factor in data-intensive computing.

The suitability of a processing platform and architecture for an organization and
its application requirements can only be determined after careful evaluation of avail-
able alternatives. Many organizations have embraced open source platforms while
others prefer a commercially developed and supported platform by an established
industry leader. The Hadoop MapReduce platform is now being used successfully at
many so-called Web companies whose data encompasses massive amounts of Web
information as its data source. The LexisNexis HPCC platform is at the heart of a
premier information services provider and industry leader, and has been adopted by
government agencies, commercial organizations, and research laboratories because
of its high-performance cost-effective implementation. Existing HPCC applications

5 Data-Intensive Technologies for Cloud Computing 127

Ta
bl

e
5.

2
H

ad
oo

p
vs

.H
PC

C
fe

at
ur

e
co

m
pa

ri
so

n

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

H
ar

dw
ar

e
ty

pe
Pr

oc
es

si
ng

cl
us

te
rs

us
in

g
co

m
m

od
ity

of
f-

th
e-

sh
el

f
(C

O
T

S)
ha

rd
w

ar
e.

Ty
pi

ca
lly

ra
ck

-m
ou

nt
ed

bl
ad

e
se

rv
er

s
w

ith
In

te
lo

r
A

M
D

pr
oc

es
so

rs
,l

oc
al

m
em

or
y

an
d

di
sk

co
nn

ec
te

d
to

a
hi

gh
-s

pe
ed

co
m

m
un

ic
at

io
ns

sw
itc

h
(u

su
al

ly
G

ig
ab

it
E

th
er

ne
t

co
nn

ec
tio

ns
)

or
hi

er
ar

ch
y

of
co

m
m

un
ic

at
io

ns
sw

itc
he

s
de

pe
nd

in
g

on
th

e
to

ta
ls

iz
e

of
th

e
cl

us
te

r.
C

lu
st

er
s

ar
e

us
ua

lly
ho

m
og

en
ou

s
(a

ll
pr

oc
es

so
rs

ar
e

co
nfi

gu
re

d
id

en
tic

al
ly

),
bu

tt
hi

s
is

no
ta

re
qu

ir
em

en
t.

Sa
m

e

O
pe

ra
tin

g
sy

st
em

U
ni

x/
L

in
ux

an
d

W
in

do
w

s
(r

eq
ui

re
s

th
e

in
st

al
la

tio
n

of
C

yg
w

in
)

L
in

ux
/W

in
do

w
s.

Sy
st

em
co

nfi
gu

ra
tio

ns
H

ad
oo

p
sy

st
em

so
ft

w
ar

e
im

pl
em

en
ts

cl
us

te
r

w
ith

M
ap

R
ed

uc
e

pr
oc

es
si

ng
pa

ra
di

gm
.T

he
cl

us
te

r
al

so
fu

nc
tio

ns
as

a
di

st
ri

bu
te

d
fil

e
sy

st
em

ru
nn

in
g

H
D

FS
.O

th
er

ca
pa

bi
lit

ie
s

ar
e

la
ye

re
d

on
to

p
of

th
e

H
ad

oo
p

M
ap

R
ed

uc
e

an
d

H
D

FS
sy

st
em

so
ft

w
ar

e
in

cl
ud

in
g

H
B

as
e,

H
iv

e,
et

c.

H
PC

C
cl

us
te

rs
ca

n
be

im
pl

em
en

te
d

in
tw

o
co

nfi
gu

ra
tio

ns
:D

at
a

R
efi

ne
ry

(T
ho

r)
is

an
al

og
ou

s
to

th
e

H
ad

oo
p

M
ap

R
ed

uc
e

C
lu

st
er

;D
at

a
D

el
iv

er
y

E
ng

in
e

(R
ox

ie
)

pr
ov

id
es

se
pa

ra
te

hi
gh

-p
er

fo
rm

an
ce

on
lin

e
qu

er
y

pr
oc

es
si

ng
an

d
da

ta
w

ar
eh

ou
se

ca
pa

bi
lit

ie
s.

B
ot

h
co

nfi
gu

ra
tio

ns
al

so
fu

nc
tio

n
as

di
st

ri
bu

te
d

fil
e

sy
st

em
s

bu
ta

re
im

pl
em

en
te

d
di

ff
er

en
tly

ba
se

d
on

th
e

in
te

nd
ed

us
e

to
im

pr
ov

e
pe

rf
or

m
an

ce
.H

PC
C

en
vi

ro
nm

en
ts

ty
pi

ca
lly

co
ns

is
to

f
m

ul
tip

le
cl

us
te

rs
of

bo
th

co
nfi

gu
ra

tio
n

ty
pe

s.
A

lth
ou

gh
fil

es
ys

te
m

s
on

ea
ch

cl
us

te
r

ar
e

in
de

pe
nd

en
t,

a
cl

us
te

r
ca

n
ac

ce
ss

fil
es

th
e

fil
es

ys
te

m
on

an
y

ot
he

r
cl

us
te

r
in

th
e

sa
m

e
en

vi
ro

nm
en

t.
L

ic
en

si
ng

co
st

N
on

e.
H

ad
oo

p
is

an
op

en
so

ur
ce

pl
at

fo
rm

an
d

ca
n

be
fr

ee
ly

do
w

nl
oa

de
d

an
d

us
ed

.
L

ic
en

se
fe

es
cu

rr
en

tly
de

pe
nd

on
si

ze
an

d
ty

pe
of

sy
st

em
co

nfi
gu

ra
tio

ns
.D

oe
s

no
tp

re
cl

ud
e

a
fu

tu
re

op
en

so
ur

ce
of

fe
ri

ng
.

128 A.M. Middleton

Ta
bl

e
5.

2
(c

on
tin

ue
d)

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

C
or

e
so

ft
w

ar
e

C
or

e
so

ft
w

ar
e

in
cl

ud
es

th
e

op
er

at
in

g
sy

st
em

an
d

H
ad

oo
p

M
ap

R
ed

uc
e

cl
us

te
r

an
d

H
D

FS
so

ft
w

ar
e

E
ac

h
sl

av
e

no
de

in
cl

ud
es

a
Ta

sk
tr

ac
ke

r
se

rv
ic

e
an

d
D

at
an

od
e

se
rv

ic
e.

A
m

as
te

r
no

de
in

cl
ud

es
a

Jo
bt

ra
ck

er
se

rv
ic

e
w

hi
ch

ca
n

be
co

nfi
gu

re
d

as
a

se
pa

ra
te

ha
rd

w
ar

e
no

de
or

ru
n

on
on

e
of

th
e

sl
av

e
ha

rd
w

ar
e

no
de

s.
L

ik
ew

is
e,

fo
r

H
D

FS
,a

m
as

te
r

N
am

en
od

e
se

rv
ic

e
is

al
so

re
qu

ir
ed

to
pr

ov
id

e
na

m
e

se
rv

ic
es

an
d

ca
n

be
ru

n
on

on
e

of
th

e
sl

av
e

no
de

s
or

a
se

pa
ra

te
no

de

Fo
r

a
T

ho
r

co
nfi

gu
ra

tio
n,

co
re

so
ft

w
ar

e
in

cl
ud

es
th

e
op

er
at

in
g

sy
st

em
an

d
va

ri
ou

s
se

rv
ic

es
in

st
al

le
d

on
ea

ch
no

de
of

th
e

cl
us

te
r

to
pr

ov
id

e
jo

b
ex

ec
ut

io
n

an
d

di
st

ri
bu

te
d

fil
e

sy
st

em
ac

ce
ss

.A
se

pa
ra

te
se

rv
er

ca
lle

d
th

e
D

al
is

er
ve

r
pr

ov
id

es
fil

es
ys

te
m

na
m

e
se

rv
ic

es
an

d
m

an
ag

es
W

or
ku

ni
ts

fo
r

jo
bs

in
th

e
H

PC
C

en
vi

ro
nm

en
t.

A
T

ho
r

cl
us

te
r

is
al

so
co

nfi
gu

re
d

w
ith

a
m

as
te

r
no

de
an

d
m

ul
tip

le
sl

av
e

no
de

s.
A

R
ox

ie
cl

us
te

r
is

a
pe

er
-c

ou
pl

ed
cl

us
te

r
w

he
re

ea
ch

no
de

ru
ns

Se
rv

er
an

d
A

ge
nt

ta
sk

s
fo

r
qu

er
y

ex
ec

ut
io

n
an

d
ke

y
an

d
fil

e
pr

oc
es

si
ng

.T
he

fil
es

ys
te

m
on

th
e

R
ox

ie
cl

us
te

r
us

es
a

di
st

ri
bu

te
d

B
+

T
re

e
to

st
or

e
in

de
x

an
d

da
ta

an
d

pr
ov

id
es

ke
ye

d
ac

ce
ss

to
th

e
da

ta
.A

dd
iti

on
al

m
id

dl
ew

ar
e

co
m

po
ne

nt
s

ar
e

re
qu

ir
ed

fo
r

op
er

at
io

n
of

T
ho

r
an

d
R

ox
ie

cl
us

te
rs

.
M

id
dl

ew
ar

e
co

m
po

ne
nt

s
N

on
e.

C
lie

nt
so

ft
w

ar
e

ca
n

su
bm

it
jo

bs
di

re
ct

ly
to

th
e

Jo
bt

ra
ck

er
on

th
e

m
as

te
r

no
de

of
th

e
cl

us
te

r.
A

H
ad

oo
p

W
or

kfl
ow

Sc
he

du
le

r
(H

W
S)

w
hi

ch
w

ill
ru

n
as

a
se

rv
er

is
cu

rr
en

tly
un

de
r

de
ve

lo
pm

en
tt

o
m

an
ag

e
jo

bs
w

hi
ch

re
qu

ir
e

m
ul

tip
le

M
ap

R
ed

uc
e

se
qu

en
ce

s.

M
id

dl
ew

ar
e

co
m

po
ne

nt
s

in
cl

ud
e

an
E

C
L

co
de

re
po

si
to

ry
im

pl
em

en
te

d
on

a
M

yS
Q

L
se

rv
er

,a
nd

E
C

L
se

rv
er

fo
r

co
m

pi
lin

g
of

E
C

L
pr

og
ra

m
s

an
d

qu
er

ie
s,

an
E

C
L

A
ge

nt
ac

tin
g

on
be

ha
lf

of
a

cl
ie

nt
pr

og
ra

m
to

m
an

ag
e

th
e

ex
ec

ut
io

n
of

a
jo

b
on

a
T

ho
r

cl
us

te
r,

an
E

SP
Se

rv
er

(E
nt

er
pi

se
Se

rv
ic

es
Pl

at
fo

rm
)

pr
ov

id
in

g
au

th
en

tic
at

io
n,

lo
gg

in
g,

se
cu

ri
ty

,a
nd

ot
he

r
se

rv
ic

es
fo

r
th

e
jo

b
ex

ec
ut

io
n

an
d

W
eb

se
rv

ic
es

en
vi

ro
nm

en
t,

an
d

th
e

D
al

is
er

ve
r

w
hi

ch
fu

nc
tio

ns
as

th
e

sy
st

em
da

ta
st

or
e

fo
r

jo
b

w
or

ku
ni

t
in

fo
rm

at
io

n
an

d
pr

ov
id

es
na

m
in

g
se

rv
ic

es
fo

r
th

e
di

st
ri

bu
te

d
fil

es
ys

te
m

s.
Fl

ex
ib

ili
ty

ex
is

ts
fo

r
ru

nn
in

g
th

e
m

id
dl

ew
ar

e
co

m
po

ne
nt

s
on

on
e

to
se

ve
ra

ln
od

es
.M

ul
tip

le
co

pi
es

of
th

es
e

se
rv

er
s

ca
n

pr
ov

id
e

re
du

nd
an

cy
an

d
im

pr
ov

e
pe

rf
or

m
an

ce
.

5 Data-Intensive Technologies for Cloud Computing 129

Ta
bl

e
5.

2
(c

on
tin

ue
d)

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

Sy
st

em
to

ol
s

T
he

df
sa

dm
in

to
ol

pr
ov

id
es

in
fo

rm
at

io
n

ab
ou

tt
he

st
at

e
of

th
e

fil
es

ys
te

m
;f

sc
k

is
a

ut
ili

ty
fo

r
ch

ec
ki

ng
th

e
he

al
th

of
fil

es
in

H
D

FS
;d

at
an

od
e

bl
oc

k
sc

an
ne

r
pe

ri
od

ic
al

ly
ve

ri
fie

s
al

lt
he

bl
oc

ks
st

or
ed

on
a

da
ta

no
de

;b
al

an
ce

r
re

-d
is

tr
ib

ut
es

bl
oc

ks
fr

om
ov

er
-u

til
iz

ed
da

ta
no

de
s

to
un

de
ru

til
iz

ed
da

ta
no

de
s

as
ne

ed
ed

.
T

he
M

ap
R

ed
uc

e
W

eb
U

I
in

cl
ud

es
th

e
Jo

bT
ra

ck
er

pa
ge

w
hi

ch
di

sp
la

ys
in

fo
rm

at
io

n
ab

ou
tr

un
ni

ng
an

d
co

m
pl

et
ed

jo
bs

,d
ri

lli
ng

do
w

n
on

a
sp

ec
ifi

c
jo

b
di

sp
la

ys
de

ta
ile

d
in

fo
rm

at
io

n
ab

ou
tt

he
jo

b.
T

he
re

is
al

so
a

Ta
sk

s
pa

ge
th

at
di

sp
la

ys
in

fo
ab

ou
tM

ap
an

d
R

ed
uc

e
ta

sk
s.

H
PC

C
in

cl
ud

es
a

su
ite

of
cl

ie
nt

an
d

op
er

at
io

ns
to

ol
s

fo
r

m
an

ag
in

g,
m

ai
nt

ai
ni

ng
,a

nd
m

on
ito

ri
ng

H
PC

C
co

nfi
gu

ra
tio

ns
an

d
en

vi
ro

nm
en

ts
.T

he
se

in
cl

ud
e

Q
ue

ry
B

ui
ld

er
th

e
pr

og
ra

m
de

ve
lo

pm
en

te
nv

ir
on

m
en

t,
an

A
ttr

ib
ut

e
M

ig
ra

tio
n

To
ol

,
D

is
tr

ib
ut

ed
Fi

le
U

til
ity

(D
FU

),
an

E
nv

ir
on

m
en

tC
on

fig
ur

at
io

n
U

til
ity

,R
ox

ie
C

on
fig

ur
at

io
n

U
til

ity
.C

om
m

an
d

lin
e

ve
rs

io
ns

ar
e

al
so

av
ai

la
bl

e.
E

C
LW

at
ch

is
a

W
eb

ba
se

d
ut

ili
ty

pr
og

ra
m

fo
r

m
on

ito
ri

ng
th

e
H

PC
C

en
vi

ro
nm

en
ta

nd
in

cl
ud

es
qu

eu
e

m
an

ag
em

en
t,

di
st

ri
bu

te
d

fil
e

sy
st

em
m

an
ag

em
en

t,
jo

b
m

on
ito

ri
ng

,a
nd

sy
st

em
pe

rf
or

m
an

ce
m

on
ito

ri
ng

to
ol

s.
A

dd
iti

on
al

to
ol

s
ar

e
pr

ov
id

ed
th

ro
ug

h
W

eb
se

rv
ic

es
in

te
rf

ac
es

.
E

as
e

of
de

pl
oy

m
en

t
A

ss
is

te
d

by
on

lin
e

to
ol

s
pr

ov
id

ed
by

C
lo

ud
er

a
ut

ili
zi

ng
W

iz
ar

ds
.

R
eq

ui
re

s
a

m
an

ua
lR

PM
de

pl
oy

m
en

t.
E

nv
ir

on
m

en
tc

on
fig

ur
at

io
n

to
ol

.A
G

en
es

is
se

rv
er

pr
ov

id
es

a
ce

nt
ra

lr
ep

os
ito

ry
to

di
st

ri
bu

te
O

S
le

ve
ls

et
tin

gs
,s

er
vi

ce
s,

an
d

bi
na

ri
es

to
al

ln
et

-b
oo

te
d

no
de

s
in

a
co

nfi
gu

ra
tio

n
D

is
tr

ib
ut

ed
fil

e
sy

st
em

B
lo

ck
-o

ri
en

te
d,

us
es

la
rg

e
64

M
B

or
12

8
M

B
bl

oc
ks

in
m

os
t

in
st

al
la

tio
ns

.B
lo

ck
s

ar
e

st
or

ed
as

in
de

pe
nd

en
tu

ni
ts

/lo
ca

lfi
le

s
in

th
e

lo
ca

lU
ni

x/
L

in
ux

fil
es

ys
te

m
fo

r
th

e
no

de
.M

et
ad

at
a

in
fo

rm
at

io
n

fo
r

bl
oc

ks
is

st
or

ed
in

a
se

pa
ra

te
fil

e
fo

r
ea

ch
bl

oc
k.

M
as

te
r/

Sl
av

e
ar

ch
ite

ct
ur

e
w

ith
a

si
ng

le
N

am
en

od
e

to
pr

ov
id

e
na

m
e

se
rv

ic
es

an
d

bl
oc

k
m

ap
pi

ng
an

d
m

ul
tip

le
D

at
an

od
es

.F
ile

s
ar

e
di

vi
de

d
in

to
bl

oc
ks

an
d

sp
re

ad
ac

ro
ss

no
de

s
in

th
e

cl
us

te
r.

M
ul

tip
le

lo
ca

lfi
le

s
(1

co
nt

ai
ni

ng
th

e
bl

oc
k,

1
co

nt
ai

ni
ng

m
et

ad
at

a)
fo

r
ea

ch
lo

gi
ca

lb
lo

ck
st

or
ed

on
a

no
de

ar
e

re
qu

ir
ed

to
re

pr
es

en
ta

di
st

ri
bu

te
d

fil
e.

T
he

T
ho

r
D

FS
is

re
co

rd
-o

ri
en

te
d,

us
es

lo
ca

lL
in

ux
fil

es
ys

te
m

to
st

or
e

fil
e

pa
rt

s.
Fi

le
s

ar
e

in
iti

al
ly

lo
ad

ed
(S

pr
ay

ed
)

ac
ro

ss
no

de
s

an
d

ea
ch

no
de

ha
s

a
si

ng
le

fil
e

pa
rt

w
hi

ch
ca

n
be

em
pt

y
fo

r
ea

ch
di

st
ri

bu
te

d
fil

e.
Fi

le
s

ar
e

di
vi

de
d

on
ev

en
re

co
rd

/d
oc

um
en

t
bo

un
da

ri
es

sp
ec

ifi
ed

by
th

e
us

er
.M

as
te

r/
Sl

av
e

ar
ch

ite
ct

ur
e

w
ith

na
m

e
se

rv
ic

es
an

d
fil

e
m

ap
pi

ng
in

fo
rm

at
io

n
st

or
ed

on
a

se
pa

ra
te

se
rv

er
.O

nl
y

on
e

lo
ca

lfi
le

pe
r

no
de

re
qu

ir
ed

to
re

pr
es

en
ta

di
st

ri
bu

te
d

fil
e.

R
ea

d/
w

ri
te

ac
ce

ss
is

su
pp

or
te

d
be

tw
ee

n
cl

us
te

rs
co

nfi
gu

re
d

in
th

e
sa

m
e

en
vi

ro
nm

en
t.

U
til

iz
in

g
sp

ec
ia

la
da

pt
or

s
al

lo
w

s
fil

es
fr

om
ex

te
rn

al
da

ta
ba

se
s

su
ch

as
M

yS
Q

L
to

be
ac

ce
ss

ed
,a

llo
w

in
g

tr
an

sa
ct

io
na

ld
at

a
to

be
in

te
gr

at
ed

w
ith

D
FS

da
ta

an
d

in
co

rp
or

at
ed

in
to

ba
tc

h
jo

bs
.T

he
R

ox
ie

D
FS

ut
ili

ze
s

di
st

ri
bu

te
d

B
+

T
re

e
in

de
x

fil
es

co
nt

ai
ni

ng
ke

y
in

fo
rm

at
io

n
an

d
da

ta
st

or
ed

in
lo

ca
lfi

le
s

on
ea

ch
no

de
.

130 A.M. Middleton

Ta
bl

e
5.

2
(c

on
tin

ue
d)

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

Fa
ul

tr
es

ili
en

ce
H

D
FS

st
or

es
m

ul
tip

le
re

pl
ic

as
(u

se
r-

sp
ec

ifi
ed

)
of

da
ta

bl
oc

ks
on

ot
he

r
no

de
s

(c
on

fig
ur

ab
le

)
to

pr
ot

ec
ta

ga
in

st
di

sk
an

d
no

de
fa

ilu
re

w
ith

au
to

m
at

ic
re

co
ve

ry
.M

ap
R

ed
uc

e
ar

ch
ite

ct
ur

e
in

cl
ud

es
sp

ec
ul

at
iv

e
ex

ec
ut

io
n,

w
he

n
a

sl
ow

or
fa

ile
d

M
ap

ta
sk

is
de

te
ct

ed
,a

dd
iti

on
al

M
ap

ta
sk

s
ar

e
st

ar
te

d
to

re
co

ve
r

fr
om

no
de

fa
ilu

re
s

T
he

D
FS

fo
r

T
ho

r
an

d
R

ox
ie

st
or

es
re

pl
ic

as
of

fil
e

pa
rt

s
on

ot
he

r
no

de
s

(c
on

fig
ur

ab
le

)
to

pr
ot

ec
ta

ga
in

st
di

sk
an

d
no

de
fa

ilu
re

.
T

ho
r

sy
st

em
of

fe
rs

ei
th

er
au

to
m

at
ic

or
m

an
ua

ln
od

e
sw

ap
an

d
w

ar
m

st
ar

tf
ol

lo
w

in
g

a
no

de
fa

ilu
re

,j
ob

s
ar

e
re

st
ar

te
d

fr
om

la
st

ch
ec

kp
oi

nt
or

pe
rs

is
t.

R
ep

lic
as

ar
e

au
to

m
at

ic
al

ly
us

ed
w

hi
le

co
py

in
g

da
ta

to
th

e
ne

w
no

de
.R

ox
ie

sy
st

em
co

nt
in

ue
s

ru
nn

in
g

fo
llo

w
in

g
a

no
de

fa
ilu

re
w

ith
a

re
du

ce
d

nu
m

be
r

of
no

de
s.

Jo
b

ex
ec

ut
io

n
en

vi
ro

nm
en

t
U

se
s

M
ap

R
ed

uc
e

pr
oc

es
si

ng
pa

ra
di

gm
w

ith
in

pu
td

at
a

in
ke

y-
va

lu
e

pa
ir

s.
M

as
te

r/
Sl

av
e

pr
oc

es
si

ng
ar

ch
ite

ct
ur

e.
A

Jo
bt

ra
ck

er
ru

ns
on

th
e

m
as

te
r

no
de

,a
nd

a
Ta

sk
T

ra
ck

er
ru

ns
on

ea
ch

of
th

e
sl

av
e

no
de

s.
E

ac
h

Ta
sk

T
ra

ck
er

ca
n

be
co

nfi
gu

re
d

w
ith

a
fix

ed
nu

m
be

r
of

sl
ot

s
fo

r
M

ap
an

d
R

ed
uc

e
ta

sk
s

de
pe

nd
in

g
on

av
ai

la
bl

e
m

em
or

y
re

so
ur

ce
s.

M
ap

ta
sk

s
ar

e
as

si
gn

ed
to

in
pu

ts
pl

its
of

th
e

in
pu

tfi
le

,u
su

al
ly

1
pe

r
bl

oc
k.

T
he

nu
m

be
r

of
R

ed
uc

e
ta

sk
s

is
as

si
gn

ed
by

th
e

us
er

.M
ap

pr
oc

es
si

ng
is

lo
ca

lt
o

as
si

gn
ed

no
de

.A
sh

uf
fle

an
d

so
rt

op
er

at
io

n
is

do
ne

fo
llo

w
in

g
M

ap
ph

as
e

to
di

st
ri

bu
te

an
d

so
rt

ke
y-

va
lu

e
pa

ir
s

to
R

ed
uc

e
ta

sk
s

ba
se

d
on

ke
y

re
gi

on
s

so
th

at
pa

ir
s

w
ith

id
en

tic
al

ke
ys

ar
e

pr
oc

es
se

d
by

sa
m

e
R

ed
uc

e
ta

sk
s.

M
ul

tip
le

M
ap

R
ed

uc
e

pr
oc

es
si

ng
st

ep
s

ar
e

ty
pi

ca
lly

re
qu

ir
ed

fo
r

m
os

tp
ro

ce
du

re
s

an
d

m
us

tb
e

se
qu

en
ce

d
an

d
ch

ai
ne

d
se

pa
ra

te
ly

by
th

e
us

er
or

la
ng

ua
ge

su
ch

as
Pi

g.
Jo

b
sc

he
du

le
rs

in
cl

ud
e

FI
FO

(d
ef

au
lt)

,
Fa

ir
,a

nd
C

ap
ac

ity
de

pe
nd

in
g

on
jo

b
sh

ar
in

g
re

qu
ir

em
en

ts
,a

s
w

el
la

s
H

ad
oo

p
on

D
em

an
d

(H
O

D
)

fo
r

cr
ea

tin
g

vi
rt

ua
lc

lu
st

er
s

w
ith

in
a

ph
ys

ic
al

cl
us

te
r.

T
ho

r
ut

ili
ze

s
a

M
as

te
r/

Sl
av

e
pr

oc
es

si
ng

ar
ch

ite
ct

ur
e.

Pr
oc

es
si

ng
st

ep
s

de
fin

ed
in

an
E

C
L

jo
b

ca
n

sp
ec

if
y

lo
ca

l(
da

ta
pr

oc
es

se
d

se
pa

ra
te

ly
on

ea
ch

no
de

)
or

gl
ob

al
(d

at
a

is
pr

oc
es

se
d

ac
ro

ss
al

l
no

de
s)

op
er

at
io

n.
M

ul
tip

le
pr

oc
es

si
ng

st
ep

s
fo

r
a

pr
oc

ed
ur

e
ar

e
ex

ec
ut

ed
au

to
m

at
ic

al
ly

as
pa

rt
of

a
si

ng
le

jo
b

ba
se

d
on

an
op

tim
iz

ed
ex

ec
ut

io
n

gr
ap

h
fo

r
a

co
m

pi
le

d
E

C
L

da
ta

flo
w

pr
og

ra
m

.A
si

ng
le

T
ho

r
cl

us
te

r
ca

n
be

co
nfi

gu
re

d
to

ru
n

m
ul

tip
le

jo
bs

co
nc

ur
re

nt
ly

re
du

ci
ng

la
te

nc
y

if
ad

eq
ua

te
C

PU
an

d
m

em
or

y
re

so
ur

ce
s

ar
e

av
ai

la
bl

e
on

ea
ch

no
de

.M
id

dl
ew

ar
e

co
m

po
ne

nt
s

in
cl

ud
in

g
an

E
C

L
A

ge
nt

,E
C

L
Se

rv
er

,a
nd

D
al

iS
er

ve
r

pr
ov

id
e

th
e

cl
ie

nt
in

te
rf

ac
e

an
d

m
an

ag
e

ex
ec

ut
io

n
of

th
e

jo
b

w
hi

ch
is

pa
ck

ag
ed

as
a

W
or

ku
ni

t.
R

ox
ie

ut
ili

ze
s

a
m

ul
tip

le
Se

rv
er

/A
ge

nt
ar

ch
ite

ct
ur

e
to

pr
oc

es
s

E
C

L
pr

og
ra

m
s

ac
ce

ss
ed

by
qu

er
ie

s
us

in
g

Se
rv

er
ta

sk
s

ac
tin

g
as

a
m

an
ag

er
fo

r
ea

ch
qu

er
y

an
d

m
ul

tip
le

A
ge

nt
ta

sk
s

as
ne

ed
ed

to
re

tr
ie

ve
an

d
pr

oc
es

s
da

ta
fo

r
th

e
qu

er
y.

5 Data-Intensive Technologies for Cloud Computing 131

Ta
bl

e
5.

2
(c

on
tin

ue
d)

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s

H
ad

oo
p

M
ap

R
ed

uc
e

jo
bs

ar
e

us
ua

lly
w

ri
tte

n
in

Ja
va

.O
th

er
la

ng
ua

ge
s

ar
e

su
pp

or
te

d
th

ro
ug

h
a

st
re

am
in

g
or

pi
pe

in
te

rf
ac

e.
O

th
er

pr
oc

es
si

ng
en

vi
ro

nm
en

ts
ex

ec
ut

e
on

to
p

of
H

ad
oo

p
M

ap
R

ed
uc

e
su

ch
as

H
B

as
e

an
d

H
iv

e
w

hi
ch

ha
ve

th
ei

r
ow

n
la

ng
ua

ge
in

te
rf

ac
e.

T
he

Pi
g

L
at

in
la

ng
ua

ge
an

d
Pi

g
ex

ec
ut

io
n

en
vi

ro
nm

en
tp

ro
vi

de
s

a
hi

gh
-l

ev
el

da
ta

flo
w

la
ng

ua
ge

w
hi

ch
is

th
en

m
ap

pe
d

in
to

m
ul

tip
le

Ja
va

M
ap

R
ed

uc
e

jo
bs

.

E
C

L
is

th
e

pr
im

ar
y

pr
og

ra
m

m
in

g
la

ng
ua

ge
fo

r
th

e
H

PC
C

en
vi

ro
nm

en
t.

E
C

L
is

co
m

pi
le

d
in

to
op

tim
iz

ed
C

+
+

w
hi

ch
is

th
en

co
m

pi
le

d
in

to
D

L
L

s
fo

r
ex

ec
ut

io
n

on
th

e
T

ho
r

an
d

R
ox

ie
pl

at
fo

rm
s.

E
C

L
ca

n
in

cl
ud

e
in

lin
e

C
+

+
co

de
en

ca
ps

ul
at

ed
in

fu
nc

tio
ns

.E
xt

er
na

ls
er

vi
ce

s
ca

n
be

w
ri

tte
n

in
an

y
la

ng
ua

ge
an

d
co

m
pi

le
d

in
to

sh
ar

ed
lib

ra
ri

es
of

fu
nc

tio
ns

ca
lla

bl
e

fr
om

E
C

L
.A

Pi
pe

in
te

rf
ac

e
al

lo
w

s
ex

ec
ut

io
n

of
ex

te
rn

al
pr

og
ra

m
s

w
ri

tte
n

in
an

y
la

ng
ua

ge
to

be
in

co
rp

or
at

ed
in

to
jo

bs
.

In
te

gr
at

ed
pr

og
ra

m
de

ve
lo

pm
en

t
en

vi
ro

nm
en

t

H
ad

oo
p

M
ap

R
ed

uc
e

ut
ili

ze
s

th
e

Ja
va

pr
og

ra
m

m
in

g
la

ng
ua

ge
an

d
th

er
e

ar
e

se
ve

ra
le

xc
el

le
nt

pr
og

ra
m

de
ve

lo
pm

en
te

nv
ir

on
m

en
ts

fo
r

Ja
va

in
cl

ud
in

g
N

et
be

an
s

an
d

E
cl

ip
se

w
hi

ch
of

fe
r

pl
ug

-i
ns

fo
r

ac
ce

ss
to

H
ad

oo
p

cl
us

te
rs

.T
he

Pi
g

en
vi

ro
nm

en
td

oe
s

no
th

av
e

its
ow

n
ID

E
,b

ut
in

st
ea

d
us

es
E

cl
ip

se
an

d
ot

he
r

ed
iti

ng
en

vi
ro

nm
en

ts
fo

r
sy

nt
ax

ch
ec

ki
ng

.A
Pi

gP
en

ad
d-

in
fo

r
E

cl
ip

se
pr

ov
id

es
ac

ce
ss

to
H

ad
oo

p
C

lu
st

er
s

to
ru

n
Pi

g
pr

og
ra

m
s

an
d

ad
di

tio
na

ld
ev

el
op

m
en

tc
ap

ab
ili

tie
s.

T
he

H
PP

C
pl

at
fo

rm
is

pr
ov

id
ed

w
ith

Q
ue

ry
B

ui
ld

er
,a

co
m

pr
eh

en
si

ve
ID

E
sp

ec
ifi

ca
lly

fo
r

th
e

E
C

L
la

ng
ua

ge
.

Q
ue

ry
B

ui
ld

er
pr

ov
id

es
ac

ce
ss

to
sh

ar
ed

so
ur

ce
co

de
re

po
si

to
ri

es
an

d
pr

ov
id

es
a

co
m

pl
et

e
de

ve
lo

pm
en

ta
nd

te
st

in
g

en
vi

ro
nm

en
t

fo
r

E
C

L
da

ta
flo

w
pr

og
ra

m
s.

A
cc

es
s

to
th

e
E

C
LW

at
ch

to
ol

is
bu

ilt
-i

n,
al

lo
w

in
g

de
ve

lo
pe

rs
to

w
at

ch
jo

b
gr

ap
hs

as
th

ey
ar

e
ex

ec
ut

in
g.

A
cc

es
s

to
cu

rr
en

ta
nd

hi
st

or
ic

al
jo

b
W

or
ku

ni
ts

al
lo

w
s

de
ve

lo
pe

rs
to

ea
si

ly
co

m
pa

re
re

su
lts

fr
om

on
e

jo
b

to
th

e
ne

xt
du

ri
ng

de
ve

lo
pm

en
tc

yc
le

s.
D

at
ab

as
e

ca
pa

bi
lit

ie
s

T
he

ba
si

c
H

ad
oo

p
M

ap
R

ed
uc

e
sy

st
em

do
es

no
tp

ro
vi

de
an

y
ke

ye
d

ac
ce

ss
in

de
xe

d
da

ta
ba

se
ca

pa
bi

lit
ie

s.
A

n
ad

d-
on

sy
st

em
fo

r
H

ad
oo

p
ca

lle
d

H
B

as
e

pr
ov

id
es

a
co

lu
m

n-
or

ie
nt

ed
da

ta
ba

se
ca

pa
bi

lit
y

w
ith

ke
ye

d
ac

ce
ss

.A
cu

st
om

sc
ri

pt
la

ng
ua

ge
an

d
Ja

va
in

te
rf

ac
e

is
pr

ov
id

ed
.A

cc
es

s
to

H
B

as
e

is
no

td
ir

ec
tly

su
pp

or
te

d
by

th
e

Pi
g

en
vi

ro
nm

en
ta

nd
re

qu
ir

es
us

er
-d

efi
ne

d
fu

nc
tio

ns
or

se
pa

ra
te

M
ap

R
ed

uc
e

pr
oc

ed
ur

es
.

T
he

H
PC

C
pl

at
fo

rm
in

cl
ud

es
th

e
ca

pa
bi

lit
y

to
bu

ild
m

ul
ti-

ke
y,

m
ul

tiv
ar

ia
te

in
de

xe
s

on
D

FS
fil

es
.T

he
se

in
de

xe
s

ca
n

be
us

ed
to

im
pr

ov
e

pe
rf

or
m

an
ce

an
d

pr
ov

id
e

ke
ye

d
ac

ce
ss

fo
r

ba
tc

h
jo

bs
on

a
T

ho
r

sy
st

em
,o

r
be

us
ed

to
su

pp
or

td
ev

el
op

m
en

to
f

qu
er

ie
s

de
pl

oy
ed

to
R

ox
ie

sy
st

em
s.

K
ey

ed
ac

ce
ss

to
da

ta
is

su
pp

or
te

d
di

re
ct

ly
in

E
C

L

132 A.M. Middleton

Ta
bl

e
5.

2
(c

on
tin

ue
d)

A
rc

hi
te

ct
ur

e
ch

ar
ac

te
ri

st
ic

H
ad

oo
p

H
PC

C

O
nl

in
e

qu
er

y
an

d
da

ta
w

ar
eh

ou
se

ca
pa

bi
lit

ie
s

T
he

ba
si

c
H

ad
oo

p
M

ap
R

ed
uc

e
sy

st
em

do
es

no
tp

ro
vi

de
an

y
da

ta
w

ar
eh

ou
se

ca
pa

bi
lit

ie
s.

A
n

ad
d-

on
sy

st
em

fo
r

H
ad

oo
p

ca
lle

d
H

iv
e

pr
ov

id
es

da
ta

w
ar

eh
ou

se
ca

pa
bi

lit
ie

s
an

d
al

lo
w

s
H

D
FS

da
ta

to
be

lo
ad

ed
in

to
ta

bl
es

an
d

ac
ce

ss
ed

w
ith

an
SQ

L
-l

ik
e

la
ng

ua
ge

.A
cc

es
s

to
H

iv
e

is
no

td
ir

ec
tly

su
pp

or
te

d
by

th
e

Pi
g

en
vi

ro
nm

en
ta

nd
re

qu
ir

es
us

er
-d

efi
ne

d
fu

nc
tio

ns
or

se
pa

ra
te

M
ap

R
ed

uc
e

pr
oc

ed
ur

es
.

T
he

R
ox

ie
sy

st
em

co
nfi

gu
ra

tio
n

in
th

e
H

PC
C

pl
at

fo
rm

is
sp

ec
ifi

ca
lly

de
si

gn
ed

to
pr

ov
id

e
da

ta
w

ar
eh

ou
se

ca
pa

bi
lit

ie
s

fo
r

st
ru

ct
ur

ed
qu

er
ie

s
an

d
da

ta
an

al
ys

is
ap

pl
ic

at
io

ns
.R

ox
ie

is
a

hi
gh

-p
er

fo
rm

an
ce

pl
at

fo
rm

ca
pa

bl
e

of
su

pp
or

tin
g

th
ou

sa
nd

s
of

us
er

s
an

d
pr

ov
id

in
g

su
b-

se
co

nd
re

sp
on

se
tim

e
de

pe
nd

in
g

on
th

e
ap

pl
ic

at
io

n.

Sc
al

ab
ili

ty
1

to
th

ou
sa

nd
s

of
no

de
s.

Y
ah

oo
!

ha
s

pr
od

uc
tio

n
cl

us
te

rs
as

la
rg

e
as

40
00

no
de

s.
1

to
se

ve
ra

lt
ho

us
an

d
no

de
s.

In
pr

ac
tic

e,
H

PC
C

co
nfi

gu
ra

tio
ns

re
qu

ir
e

si
gn

ifi
ca

nt
ly

fe
w

er
no

de
s

to
pr

ov
id

e
th

e
sa

m
e

pr
oc

es
si

ng
pe

rf
or

m
an

ce
as

H
ad

oo
p.

Si
zi

ng
of

cl
us

te
rs

m
ay

de
pe

nd
ho

w
ev

er
on

th
e

ov
er

al
ls

to
ra

ge
re

qu
ir

em
en

ts
fo

r
th

e
di

st
ri

bu
te

d
fil

e
sy

st
em

.
Pe

rf
or

m
an

ce
C

ur
re

nt
ly

th
e

on
ly

av
ai

la
bl

e
st

an
da

rd
pe

rf
or

m
an

ce
be

nc
hm

ar
ks

ar
e

th
e

so
rt

be
nc

hm
ar

ks
sp

on
so

re
d

by
ht

tp
://

so
rt

be
nc

hm
ar

k.
or

g.
Y

ah
oo

!
ha

s
de

m
on

st
ra

te
d

so
rt

in
g

1
T

B
on

14
60

no
de

s
in

62
se

co
nd

s,
10

0
T

B
us

in
g

34
52

no
de

s
in

17
3

m
in

ut
es

,a
nd

1
PB

us
in

g
36

58
no

de
s

in
97

5
m

in
ut

es
.

T
he

H
PP

C
pl

at
fo

rm
ha

s
de

m
on

st
ra

te
d

so
rt

in
g

1
T

B
on

a
hi

gh
-p

er
fo

rm
an

ce
40

0-
no

de
sy

st
em

in
10

2
se

co
nd

s.
In

a
re

ce
nt

he
ad

-t
o-

he
ad

be
nc

hm
ar

k
ve

rs
us

H
ad

oo
p

on
a

an
ot

he
r

40
0-

no
de

sy
st

em
co

nd
uc

te
d

w
ith

L
L

N
L

,H
PP

C
pe

rf
or

m
an

ce
w

as
6

m
in

ut
es

27
se

co
nd

s
an

d
H

ad
oo

p
pe

rf
or

m
an

ce
w

as
25

m
in

ut
es

28
se

co
nd

s.
T

hi
s

re
su

lt
on

th
e

sa
m

e
ha

rd
w

ar
e

co
nfi

gu
ra

tio
n

sh
ow

ed
th

at
H

PC
C

w
as

3.
95

tim
es

fa
st

er
th

an
H

ad
oo

p
fo

r
th

is
be

nc
hm

ar
k.

T
ra

in
in

g
H

ad
oo

p
tr

ai
ni

ng
is

of
fe

re
d

th
ro

ug
h

C
lo

ud
er

a.
B

ot
h

be
gi

nn
in

g
an

d
ad

va
nc

ed
cl

as
se

s
ar

e
pr

ov
id

ed
.T

he
ad

va
nc

ed
cl

as
s

in
cl

ud
es

H
ad

oo
p

ad
d-

on
s

in
cl

ud
in

g
H

B
as

e
an

d
Pi

g.
C

lo
ud

er
a

al
so

pr
ov

id
es

a
V

M
W

ar
e

ba
se

d
le

ar
ni

ng
en

vi
ro

nm
en

tw
hi

ch
ca

n
be

us
ed

on
a

st
an

da
rd

la
pt

op
or

PC
.O

nl
in

e
tu

to
ri

al
s

ar
e

al
so

av
ai

la
bl

e.

B
as

ic
an

d
ad

va
nc

ed
tr

ai
ni

ng
cl

as
se

s
on

E
C

L
pr

og
ra

m
m

in
g

ar
e

of
fe

re
d

m
on

th
ly

in
se

ve
ra

ll
oc

at
io

ns
or

on
cu

st
om

er
pr

em
is

es
.A

sy
st

em
ad

m
in

is
tr

at
io

n
cl

as
s

is
of

fe
re

d
an

d
sc

he
du

le
d

as
ne

ed
ed

.
A

C
D

w
ith

a
co

m
pl

et
e

H
PC

C
an

d
E

C
L

le
ar

ni
ng

en
vi

ro
nm

en
t

w
hi

ch
ca

n
be

us
ed

on
a

si
ng

le
PC

or
la

pt
op

is
al

so
av

ai
la

bl
e.

5 Data-Intensive Technologies for Cloud Computing 133

include raw data processing, ETL, and linking of enormous amounts of data to
support online information services such as LexisNexis and industry-leading infor-
mation search applications such as Accurint; entity extraction and entity resolution
of unstructured and semi-structured data such as Web documents to support infor-
mation extraction; statistical analysis of Web logs for security applications such
as intrusion detection; online analytical processing to support business intelligence
systems (BIS); and data analysis of massive datasets in educational and research
environments and by state and federal government agencies.

There are many tradeoffs in making the right decision in choosing a new
computer systems architecture, and often the best approach is to conduct a spe-
cific benchmark test with a customer application to determine the overall system
effectiveness and performance. The relative cost-performance characteristics of
the system in additional to suitability, flexibility, scalability, footprint, and power
consumption factors which impact the total cost of ownership (TCO) must be
considered. Cloud computing alternatives which reduce or eliminate up-front
infrastructure investment should also be considered if internal resources are limited.

A comparison of the Hadoop MapReduce architecture to the HPCC architecture
in this chapter reveals many similarities between the platforms including the use
of a high-level dataflow-oriented programming language to implement transparent
data-parallel processing. Both platforms are adaptable to cloud computing to pro-
vide platform as a service (PaaS). A key advantage to using the Hadoop architecture
is its availability in a public cloud computing service offering. However, private
cloud computing which utilizes persistent configurations with dedicated infrastruc-
ture instead of virtualized servers shared with other users common in public cloud
computing can have a significant performance advantage for data-intensive com-
puting applications. Some additional advantages of choosing the LexisNexis HPCC
platform which can be utilized in private cloud computing include: (1) an archi-
tecture which implements a highly integrated system environment with capabilities
from raw data processing to high-performance queries and data analysis using a
common language; (2) an architecture which provides equivalent performance at
a much lower system cost based on the number of processing nodes required as
demonstrated with the Terabyte Sort benchmark where the HPCC platform was
almost 4 times faster than Hadoop running on the same hardware resulting in sig-
nificantly lower total cost of ownership (TCO); (3) an architecture which has been
proven to be stable and reliable on high-performance data processing production
applications for varied organizations over a 10-year period; (4) an architecture that
uses a dataflow programming language (ECL) with extensive built-in capabilities
for data-parallel processing which allows complex operations without the need for
extensive user-defined functions and automatically optimizes execution graphs with
hundreds of processing steps into single efficient workunits; (5) an architecture with
a high-level of fault resilience and language capabilities which reduce the need for
re-processing in case of system failures; and (6) an architecture which is available
from and supported by a well-known leader in information services and risk solu-
tions (LexisNexis) who is part of one of the world’s largest publishers of information
ReedElsevier.

134 A.M. Middleton

References

Abbas, A. (2004). Grid computing: A practical guide to technology and applications. Hingham,
MA: Charles River Media.

Agichtein, E. (2005). Scaling information extraction to large document collections. IEEE Data
Engineering Bulletin, 28, 3–10.

Agichtein, E., & Ganti, V. (2004). Mining reference tables for automatic text segmentation.
Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Seattle, WA, 20–29.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2009). Above the
clouds: A Berkeley view of cloud computing (University of California at Berkely, Tech. Rep.
UCB/EECS-2009-28).

Berman, F. (2008). Got data? A guide to data preservation in the information age. Communications
of the ACM, 51(12), 50–56.

Borthakur, D. (2008). Hadoop distributed file system. Available from: http://www.opendocs.net/
apache/hadoop/HDFSDescription.pdf.

Bryant, R. E. (2008). Data intensive scalable computing. Retrieved January 5, 2010, from: http://
www.cs.cmu.edu/∼bryant/presentations/DISC-concept.ppt.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6), 599–616.

Cerf, V. G. (2007). An information avalanche. IEEE Computer, 40(1), 104–105.
Chaiken, R., Jenkins, B., Larson, P.-A., Ramsey, B., Shakib, D., Weaver, S., et al. (2008).

SCOPE: Easy and efficient parallel processing of massive data sets. Proceedings of the VLDB
Endowment, New York, NY.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2006).
Bigtable: A distributed storage system for structured data. Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI’06), Seattle, WA.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.
Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI),
Boston, MA.

Gantz, J. F., Reinsel, D., Chute, C., Schlichting, W., McArthur, J., Minton, S., et al. (2007). The
expanding digital universe. IDC, White Paper.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston, C., et al.
(2009). Building a high-level dataflow system on top of map-reduce: The pig experience.
Proceedings of the 35th International Conference on Very Large Databases (VLDB 2009),
Lyon, France.

Gokhale, M., Cohen, J., Yoo, A., & Miller, W. M. (2008). Hardware technologies for high-
performance data-intensive computing. IEEE Computer, 41(4), 60–68.

Gorton, I., Greenfield, P., Szalay, A., & Williams, R. (2008). Data-intensive computing in the 21st
century. IEEE Computer, 41(4), 30–32.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. Proceedings of the 19th
ACM Symposium on Operating Systems Principles, New York, NY.

Gray, J. (2008). Distributed computing economics. ACM Queue, 6(3), 63–68.
Grossman, R. L. (2009). The case for cloud computing. IT Professional,11(2), 23–27.
Grossman, R., & Gu, Y. (2008). Data mining using high performance data clouds: Experimental

studies using sector and sphere. Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, New York, NY.

Grossman, R. L., & Gu, Y. (2009). On the varieties of clouds for data intensive computing.
Available from: http://sites.computer.org/debull/A09mar/grossman.pdf, 2009.

Grossman, R. L., Gu, Y., Sabala, M., & Zhang, W. (2009). Compute and storage clouds
using wide area high performance networks. Future Generation Computer Systems, 25(2),
179–183.

5 Data-Intensive Technologies for Cloud Computing 135

Gu, Y., & Grossman, R. L. (2009). Lessons learned from a year’s worth of benchmarks of
large data clouds. Proceedings of the 2nd Workshop on Many-Task Computing on Grids and
Supercomputers, Portland, OR.

Hayes, B. (2008). Cloud computing. Communications of the ACM, 51(7), 9–11.
Johnston,W. E. (1998). High-speed, wide area, data intensive computing: A ten year retrospec-

tive. Proceedings of the 7th IEEE International Symposium on High-Performance Distributed
Computing. Chicago, Illinois, 280.

Kouzes, R. T., Anderson, G. A., Elbert, S. T., Gorton, I., & Gracio, D. K. (2009). The changing
paradigm of data-intensive computing. Computer, 42(1), 26–34.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What’s inside the cloud? An
architectural map of the cloud landscape. Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing. Vancouver, Canada, 23–31.

Levitt, N. (2009). Is cloud computing really ready for prime time? Computer, 42(1), 15–20.
Liu, H., & Orban, D. (2008). GridBatch: Cloud computing for large-scale data-intensive batch

applications. Proceedings of the 8th IEEE International Symposium on Cluster Computing and
the Grid, Cardiff.

Llor, X., Acs, B., Auvil, L. S., Capitanu, B., Welge, M. E., & Goldberg, D. E. (2008). Meandre:
Semantic-driven data-intensive flows in the clouds. Proceedings of the 4th IEEE International
Conference on eScience, Nottingham.

Lyman, P., & Varian, H. R. (2003). How much information? (School of Information Management
and Systems, University of California at Berkeley, Research Rep.).

Mell, P., & Grance, T. (2009). The NIST definition of cloud computing. Retrieved January 5, 2010,
from: http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc.

Napper, J., & Bientinesi, P. (2009). Can cloud computing reach the Top500?. Conference On
Computing Frontiers. Proceedings of the combined workshops on UnConventional high
performance computing workshop plus memory access workshop, Ischia, Italy.

Nicosia, M. (2009). Hadoop cluster management. Retrieved January 5, 2010, from:
http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/Hadoop-
USENIX09.pdf.

Nyland, L. S., Prins, J. F., Goldberg, A., & Mills, P. H. (2000). A design methodology for data-
parallel applications. IEEE Transactions on Software Engineering, 26(4), 293–314.

NSF. (2009). Data-intensive computing. Retrieved January 5, 2010, from: http://www.nsf.gov/
funding/pgm_summ.jsp?pims_id=503324&org=IIS.

O’Malley, O. (2008). Introduction to Hadoop. Available from: http://wiki.apache.org/hadoop/
HadoopPresentations/attachments/YahooHadoopIntro-apachecon-us-2008.pdf.

O’Malley, O., & Murthy, A. C. (2009). Winning a 60 second dash with a yellow elephant. Retrieved
January 5, 2010, from: http://sortbenchmark.org/Yahoo2009.pdf.

Olston, C. (2009). Pig overview presentation – Hadoop summit. Retrieved January 5, 2010, from:
http://infolab.stanford.edu/∼olston/pig.pdf.

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008a). Pig Latin: A not-so-
foreign language for data processing (Presentation at SIGMOD 2008). Retrieved January 5,
2010, from: http://i.stanford.edu/∼usriv/talks/sigmod08-pig-latin.ppt#283,18,User-Code as a
First-Class Citizen.

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008b). Pig Latin: A not-
so_foreign language for data processing. Proceedings of the 28th ACM SIGMOD/PODS
International Conference on Management of Data/Principles of Database Systems, Vancouver,
BC.

Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., Dewitt, D. J., Madden, S., et al. (2009). A compari-
son of approaches to large-scale data analysis. Proceedings of the 35th SIGMOD International
Conference on Management of Data, New York, NY.

PNNL. (2008). Data intensive computing. Retrieved January 5, 2010, from: http://www.cs.cmu.
edu/∼bryant/presentations/DISC-concept.ppt.

136 A.M. Middleton

Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2004). Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming Journal, 13(4), 227–298.

Ravichandran, D., Pantel, P., & Hovy, E. (2004). The terascale challenge. Proceedings of the KDD
Workshop on Mining for and from the Semantic Web, Boston, MA.

Rencuzogullari, U., & Dwarkadas, S. (2001). Dynamic adaptation to available resources for par-
allel computing in an autonomous network of workstations. Proceedings of the 8th ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, San Diego, CA,
72–81.

Reese, G. (2009). Cloud application architectures. Sebastopol, CA: O’Reilly.
Skillicorn, D. B., & Talia, D. (1998). Models and languages for parallel computation. ACM

Computing Surveys, 30(2), 123–169.
Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2009). A break in the clouds:

Towards a cloud definition. SIGCOMM Computer Communication Review, 39(1), 50–55.
Velte, A. T., Velte, T. J., & Elsenpeter, R. (2009). Cloud computing: A practical approach. New

York, NY: McGraw Hill.
Venner, J. (2009). Pro Hadoop. New York, NY: Apress.
Viega, J. (2009). Cloud computing and the common man. Computer, 42(8), 106–108.
Weiss, A. (2007). Computing in the clouds. netWorker, 11(4), 16–25.
White, T. (2008). Understanding map reduce with Hadoop. Available from: http://wiki.apache.org/

hadoop/HadoopPresentations.
White, T. (2009). Hadoop: The definitive guide. Sebastopol, CA: O’Reilly Media.
Yu, Y., Gunda, P. K., & Isard, M. (2009). Distributed aggregation for data-parallel comput-

ing: Interfaces and implementations. Proceedings of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles, Big Sky, MT.

Chapter 6
Survey of Storage and Fault Tolerance Strategies
Used in Cloud Computing

Kathleen Ericson and Shrideep Pallickara

6.1 Introduction

Cloud computing has gained significant traction in recent years. Companies such as
Google, Amazon and Microsoft have been building massive data centers over the
past few years. Spanning geographic and administrative domains, these data centers
tend to be built out of commodity desktops with the total number of computers
managed by these companies being in the order of millions. Additionally, the use
of virtualization allows a physical node to be presented as a set of virtual nodes
resulting in a seemingly inexhaustible set of computational resources. By leveraging
economies of scale, these data centers can provision cpu, networking, and storage at
substantially reduced prices which in turn underpins the move by many institutions
to host their services in the cloud.

In this chapter we will be surveying the most dominant storage and fault toler-
ant strategies that are currently being used in cloud computing settings. There are
several unifying themes that underlie the systems that we survey.

6.1.1 Theme 1: Voluminous Data

The datasets managed by these systems tend to be extremely voluminous. It is not
unusual for these datasets to be several terabytes. The datasets also tend to be gen-
erated by programs, services and devices as opposed to being created by a user one
character at a time. In 2000, the Berkeley “How Much Information?” report (Lyman
& Varian, 2000) reported that there was an estimated 25–50 TB of data on the web.
In 2003 ((Lyman & Varian, 2003), the same group reported that there were approx-
imately 167 TB of information on the web. The Large Hadron Collider (LHC) is

K. Ericson and S. Pallickara (B)
Department of Computer Science, Colorado State University, Fort Collins, CO, USA
e-mails: {ericson; shrideep}@cs.colostate.edu

137B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_6, C© Springer Science+Business Media, LLC 2010

138 K. Ericson and S. Pallickara

expected to produce 15 PB/year (Synodinos, 2008). The amount of data being gen-
erated has been growing on an exponential scale – there are growing challenges not
only in how to effectively process this data, but also with basic storage.

6.1.2 Theme 2: Commodity Hardware

The storage infrastructure for these datasets tend to rely on commodity hard drives
that have rotating disks. This mechanical nature of the disk drives limits their per-
formance. While processor speeds have grown exponentially disk access times have
not kept pace. The performance disparity between processor and disk access times
is in the order of 14,000,000:1 and continues to grow (Robbins & Robbins).

6.1.3 Theme 3: Distributed Data

A given dataset is seldom stored on a given node, and is typically distributed over a
set of available nodes. This is done because a single commodity hard drive typically
cannot hold the entire dataset. Scattering the dataset on a set of available nodes
is also a precursor for subsequent concurrent processing being performed on the
dataset.

6.1.4 Theme 4: Expect Failures

Since the storage infrastructure relies on commodity components, failures should
be expected. The systems thus need to have a failure model in place that can ensure
continued progress and acceptable response times despite any failures that might
have taken place. Often these datasets are replicated, and individual slices of these
datasets have checksums associated with them to detect bit-flips and the concomitant
data corruptions that often taken place in commodity hardware.

6.1.5 Theme 5: Tune for Access by Applications

Though these storage frameworks are built on top of existing file systems, the
stored datasets are intended to be processed by applications and not humans. Since
the dataset is scattered on a large number of machines, reconstructing the dataset
requires processing the metadata (data describing the data) to identify the precise
location of specific portions of the datasets. Manually accessing any of the nodes to
look for a portion of the dataset is futile since these portions have themselves been
modified to include checksum information.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 139

6.1.6 Theme 6: Optimize for Dominant Usage

Another important consideration in these storage frameworks is optimizing the most
general access patterns for these datasets. In some cases, this would mean optimiz-
ing for long, sequential reads that puts a premium on conserving bandwidth while
in others it would involve optimizing small, continuous updates to the managed
datasets.

6.1.7 Theme 7: Tradeoff Between Consistency and Availability

Since these datasets are dispersed (and replicated) on a large number of machines
accounting for these failures entails a tradeoff between consistency and availability.
Most of these storage frameworks opt for availability and rely on eventual con-
sistency. This choice has its roots in the CAP theorem. In 2000, Brewer theorized
that it was impossible for a web service to provide full guarantees of Consistency,
Availability, and Partition-tolerance (Brewer, 2000). In 2002, Seth Gilbert and
Nancy Lynch at MIT proved this theorem (Gilbert & Lynch, 2002). While Brewer’s
theorem was geared towards web services, any distributed file system can be viewed
as such. In some cases, such as Amazon’s S3, it is easier to see this connection than
others. Before delving deeper, what do we mean by Consistency, Availability, and
Partition-tolerance?

Having a consistent distributed system means that no matter what node you con-
nect to, you will always find the same exact data. Here, we take availability to mean
that as long as a request is sent to a node that has not failed it will return a result.
This definition has no bound on time limit, it simply states that eventually a client
will get a response. Last, there is partition tolerance. A partition occurs when one
part of your distributed system can no longer communicate with another part, but
can still communicate with clients. The simplest example of this is in a system with
2 nodes, A and B. If A and B can no longer communicate with each other, but
both can and do keep serving clients, then the system is partition tolerant. With a
partition-tolerant system, nothing short of a full system failure keeps the system
from working correctly.

As a quick example, let’s look at a partition-tolerant system with two nodes A
and B. Let’s suppose there is some network error between A and B, and they can
no longer communicate with each other, but both can still connect to clients. If a
client were to write a change a file v hosted on both A and B while connected to B,
the change would go through on B, but if the client later connects to A and reads
v again, the client will not see their changes, so the system is no longer consistent.
You could get around this by instead sacrificing availability – if you ignore writes
during a network partition, you can maintain consistency.

In this chapter we will be reviewing storage frameworks from the three dominant
cloud computing providers – Google, Amazon and Microsoft. We profile each stor-
age framework along dimensions that include inter alia replication, failure model,
replication and security. Our description of each framework is self-contained,

140 K. Ericson and S. Pallickara

and the reader can peruse these frameworks in any order. For completeness we
have included a description of the xFS system (developed in the mid-90s), which
explored ideas that have now found its way into several of the systems that we
discuss.

6.2 xFS

Unlike the other systems mentioned here, xFS never made it to a production envi-
ronment. xFS is the original “Serverless File System”, and several systems in
production today build upon ideas originally brought up in (Anderson et al., 1996).
xFS was designed to run on commodity hardware, and expected to handle large
loads and multiple users. Based on tracking usage patterns in an NFS system for
several days, one assumption xFS makes is that users other than the creator of the
file rarely modify files.

6.2.1 Failure Model

In xFS, when a machine fails it is not expected to come back online. Upon failure of
a machine, data is automatically shuffled around to compensate for the loss. While
failures are assumed to be permanent, the system was designed to be able to come
back up from a full loss of functionality.

6.2.2 Replication

xFS does not support replication of files. Instead, it supports a RAID approach for
storing data, as outlined in Fig. 6.1. In xFS, servers are organized into stripe groups.
Each stripe group is a subset of the set of data servers. When a client writes to a
file, it is gathered into a write block that is held in the client’s cache. In Fig. 6.1,
there are two clients, each building their own write block. Once the write block is
full, the data is sent to the server group to be written to file. For a server group with
N servers, the file is split into N-1 pieces, and striped in a RAID pattern across all
the servers. The Nth stripe is a parity block that contains the XOR of all the other
pieces, and is shown as a striped block in Fig. 6.1. This parity block will go to the
parity server for the group. This way, if a server is lost, or a piece becomes corrupted
it can be restored. One downside to this approach is that if multiple servers from
a group go down, the data may be permanently lost, and xFS will stop working. In
general, the replication level of a file can never be greater than the number of servers
in the server group.

6.2.3 Data Access

In xFS a client will connect to a system manager, which will look up the appropri-
ate server group, and have the client connect to the server group leader. In general,

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 141

Fig. 6.1 xFS RAID approach
to storing data

this takes about 3 hops (not including the actual transmission of data). Generally,
the system will attempt to move data to be as close to the user as possible (in
many cases, the design expects the client to be running on a machine that is also
acting as a data server), incurring the short term penalty in network traffic of mov-
ing a file for the long term bonus of not needing further interaction with a system
manager.

6.2.4 Integrity

Because of the RAID backend of xFS, data corruption can be detected and repaired
using the parity block computed when data is written. xFS also uses this information
to recover missing stripe blocks when a server in a stripe group fails.

6.2.5 Consistency and Guarantees

xFS guarantees read-what-you-wrote consistency, but it also allows users to read
stale data – meaning that the best overall consistency guarantee that it can achieve is
eventual. It is also not clear that the system can effectively handle concurrent writes.
xFS never made it to a production environment, so there was never a strong need to
establish any guarantees governing access times. Additionally, xFS was designed to
handle flux in the number of available servers.

142 K. Ericson and S. Pallickara

6.2.6 Metadata

The main advantage of xFS is its fully dynamic structure. The idea is to be able to
move data around to handle load fluctuations and to increase locality. The system
uses metadata information to help locate all files and put them back together in
order.

6.2.7 Data placement

Managers in xFS try to ensure that data is being held as close to the client access-
ing it as possible–in some cases even shifting the location of data as a client starts
writing to it. While this seems unwieldy, xFS uses a log-based storage method, so
there is not too much of a network hit as data is shifted with a new write closer to
the current client.

6.2.8 Security

xFS was designed to be run in a trusted environment, and it is expected that clients
are running on machines that are also acting as storage servers. It is, however, possi-
ble for xFS to be mounted and accessed from an unsafe environment. Unfortunately,
this is more inefficient and results in much more network traffic. It is also possible
for a rogue manager to start indiscriminately overwriting data that can cause the
entire system to fail.

6.3 Amazon S3

The Simple Storage Service (S3) from Amazon is used by home users, small
businesses, academic institutions, and large enterprises. With S3 (Simple Storage
Service), data can be spread across multiple servers around the US and
Europe (S3-Europe). S3 offers low latency, infinite data durability, and 99.99%
availability.

6.3.1 Data Access and Management

S3 stores data in 2 levels: a top level of buckets and data objects. Buckets are similar
to folders, and can hold an unlimited number of data objects. Each Amazon Web
Services (AWS) account can have up to 100 buckets. Charging for S3 is computed
at the bucket level. All costs levels are tiered, but the basic costs as of January 2010
are as follows: storage costs $0.15/GB/month in the US, $0.165 in N California,
and $0.15/GB/month in Europe; $0.10/GB for uploads (free until July 2010) and

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 143

$0.17/GB for downloads; and $0.01/1,000 PUT, COPY, POST, or LIST operations,
$0.001/10,000 GET and all other operations. Each data object has a name, a blob
of data (up to 5 GB), and metadata. S3 imposes a small set of predefined metadata
entries, and allows for up to 4 KB of user generated {name, value} pairs to be added
to this metadata.

While users are allowed to create, modify, and delete objects in a bucket, S3
does not support renaming data objects or moving them between buckets–these
operations require the user to first download the entire object and then write the
whole object back to S3. The search functions are also severely limited in the cur-
rent implementation. Users are only allowed to search for objects by the name of
the bucket–the metadata and data blob itself cannot be searched.

Amazon S3 supports three protocols for accessing data: SOAP, REST, and
BitTorrent. While REST is most popularly used for large data transfers, BitTorrent
has the potential to be very useful for the transfer of large objects.

6.3.2 Security

While clients use a Public Key Infrastructure (PKI) based scheme to authenticate
when performing operations with S3, the user’s public and private keys are gener-
ated by Amazon and the private key is available through the user’s AWS site. This
means that the effective security is down to the user’s AWS password, which can be
reset through email. Since S3 accounts are linked directly to a credit card, this can
potentially cause the user a lot of problems.

Access control is specified using access control lists (ACL) at both the bucket
and data object level. Each ACL can specify access permissions for up to 100 iden-
tities, and only a limited number of access control attributes are supported: read for
buckets or data objects, write for buckets, and, finally, reading and writing the ACL
itself. The user can configure a bucket to store access log records. These logs contain
request type, object accessed, and the time the request was processed.

6.3.3 Integrity

The inner workings of Amazon S3 have not been published. It is hard to deter-
mine their approach to error detection and recovery. Based on the reported usage
(Palankar, Iamnitchi, Ripeanu, & Garfinkel, 2008), there was no permanent data
loss.

6.4 Dynamo

Dynamo is the back end for most of the services provided by Amazon. Like S3 it is
a distributed storage system. Dynamo stores data in key-value pairs, and sacrifices

144 K. Ericson and S. Pallickara

consistency for availability. Dynamo has been designed to store relatively small files
(∼1 MB) and to retrieve them very quickly. A web page may have several services
which each have their own Dynamo instance running in the background – this is
what leads to the necessity of making sure latency is low when retrieving data.

Dynamo uses consistent hashing to make a scalable system. Every file in the
system identified by a key is hashed, and this hash value is used to determine which
node in the system it is assigned to. This hash space is treated as a ring, which is
divided into Q equally sized partitions. Each node (server) in the system is assigned
an equal number of partitions. An example of this can be seen in Fig. 6.2. In this
figure, there are a total of 8 partitions. Nodes A, B, and C are responsible for keeping
copies of all files where the hashed key falls into the striped partition that they
manage.

Fig. 6.2 Dynamo hash ring

6.4.1 Checkpointing

Dynamo nodes share information via a gossip based protocol. There are no regular
heartbeats sent between the nodes. All communication is pushed by client requests.
If there is no request for data, the nodes do not communicate and do not care if
another node is down. Periodic tests to see if a node is available occur only if a node
is found to be unreachable during a client request.

6.4.2 Replication

With Dynamo, a quorum-like system is used to determine if a read or write was
successful. If enough nodes reply that a write/read was successful, the whole opera-
tion is considered successful – even if not all N replicas are written to or read from.
Dynamo allows the service writer to specify not only N, but R and W as well. R is
the number of successful reads necessary for the whole operation to be successful,
and W is the number of writes. Dynamo will report a successful write if W-1 nodes

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 145

report success, so to make a system that is always up, and will never reject a write,
W can be set to 1. Generally, W and R are both less than N, so that the system can
make progress in the presence of failures. A suggested configuration for Dynamo is
to have R + W > N. A general configuration of (N,R,W) is (3,2,2).

6.4.3 Failures

Dynamo operates under the assumption that hardware failures are expected, and
trades data consistency guarantees for availability. It uses a gossip-based system to
detect failures of nodes. Once a node stops responding, other nodes will eventually
propagate knowledge of the failure. As a design feature, nodes are not considered
removed unless an administrator issues an explicit removal command – this means
the system will gracefully handle transient downtimes. If a coordinator cannot reach
a node for a write, it will simply pass the data on to the next available node in the
hash ring. This will contain an extra bit of metadata that marks it as belonging
elsewhere. Once a node comes back online, this information can be passed back
to it.

If a node is not available, the data presumed to be on that node is not immediately
replicated on another node – this only happens when an administrator explicitly
removes the node via a command. Dynamo is built under the expectation that there
will be many transient failures, so there is no scramble to ensure replication levels
are met when a node stops responding to requests. Because of this, some reads may
fail if R is set equal to N. Once a node has been explicitly removed, all key ranges
previously held by that node are reassigned to other nodes while ensuring that a
given node is not overloaded as a result of this redistribution.

6.4.4 Accessing Data

Dynamo’s gossip-based protocol for node discovery ensures that all nodes know
in one step the exact node to send a read or write request to. There are two main
methods of accessing data: (1) using a dedicated node to handle client requests or
(2) having several dedicated nodes, or coordinators, that process client requests and
forward them to the appropriate nodes. The former approach can lead to unbalanced
network nodes while the latter approach results in a more balanced network and a
lower latency can be assured.

6.4.5 Data Integrity

There is no specific mention of detecting corruptions in data, or how any corre-
sponding error recovery may occur. Since data is stored as a binary object, it may be
left up to the application developers to detect data corruption, and handle any sort

146 K. Ericson and S. Pallickara

of recovery. Reported results in live settings (DeCandia et al., 2007), do not indicate
permanent data loss. Amazon requires regular archival of every system – there is a
chance that this archival data is used for recovery if errors in data are found

6.4.6 Consistency and Guarantees

Dynamo guarantees eventual consistency – there is a chance that not all replications
contain the same data. Due to transient network failures and concurrent writes, some
changes may not be fully propagated. To solve this problem, each object also con-
tains a context. This context contains a version vector, giving the ability to track
back through changes and figure out which version of an object should carry the
most precedence. There are several different schemes for handling this. Dynamo
itself supports several simple schemes, including a last-write-wins method. There
is also an interface that allows developers to implement more complex and data
specific merging techniques. Merging of different object versions is handled on
reads. If a coordinator retrieves multiple versions of an object on a read, it can
attempt to merge differences before sending it to the client. Anything that cannot
be resolved by the coordinator is passed onto the client. Any subsequent write from
that client is assumed to have resolved any remaining conflicts. The coordinator
makes sure to write back the resolved object to all nodes that responded to the object
query.

The only other base guarantee provided by Dynamo is performance geared
towards the 99.99th percentile of users – millisecond latencies are assured. Aside
from this, service developers are allowed to tweak the system to fit the guarantees
necessary for their application through the N, R and W settings.

6.4.7 Metadata

In Dynamo, the object metadata is referred to as context. Every time data is written,
a context is included. The context contains system metadata and other information
specific to the object such as versioning information. There may also be an extra
binary field which allows developers to add any additional information needed to
help their application run. The metadata is not searchable, and only seems to interact
with Dynamo when resolving version conflicts as mentioned above.

6.4.8 Data Placement

According to DeCandia et al. (2007), there are guarantees in place to ensure that
replicas are spread across different data centers. It is likely that Amazon has a par-
ticular scheme that allows Dynamo to efficiently determine the locations of nodes.
An object key is first hashed to find its location on the network ring. Moving around

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 147

the ring clockwise from that point, the first encountered node is where the first copy
of the data is placed. The next N-1 nodes (still moving clockwise) will contain
replicas of the data.

There are no current methods of data segregation in Dynamo – there is simply
a get() and put() interface for developers, and no support for a hierarchical
structure. Each service using Dynamo has its individual instance of it running. For
example, your shopping cart will not be able to access the best seller’s list. On the
other hand, Dynamo has no guarantees that the different instances are not running
on the same machine.

6.4.9 Security

Dynamo has been designed to run in a trusted environment, so there is no structure
in place to handle security concerns. By design, each service that uses Dynamo
has its own separate instance running. Because of this, users do have some sense
of security, as there is some natural separation of data, and one application cannot
access the data of another.

6.5 Google File System

The Google File System (GFS) is designed by Google to function as a backend for
all of Google’s systems. The basic assumption underlying its design is that com-
ponents are expected to fail. A robust system is needed to detect and work around
these failures without disrupting the serving of files. GFS is optimized for the most
common operations – long, sequential and short, random reads, as well as large,
appending and small, arbitrary writes. Additionally, a major goal in designing GFS
was to efficiently allow concurrent appends to the same file. As a design goal,
high sustained bandwidth was deemed more important than low latency in order
to accommodate large datasets.

A GFS instance contains a master server and many chunk servers. The master
server is responsible for maintaining all file system metadata and managing chunks
(stored file pieces). There are usually also several master replicas, as well as shadow
masters which can handle client reads to help reduce load on a master server. The
chunk servers hold data in 64 MB-sized chunks.

6.5.1 Checkpointing

In GFS, the master server will keep logs tracking all chunk mutation. Once a log file
starts to become too big, the master server will create a checkpoint. These check-
points can be used to recover a master server, and are used by the master replicas to
bring a new master process up.

148 K. Ericson and S. Pallickara

6.5.2 Replication

By default, all GFS maintains a replication level of 3. This is, however, a config-
urable trait: “. . .users can designate different replication levels for different regions
of the file namespace” (Ghemawat, Gobioff, & Leung, 2003). For example, a temp
directory generally has a replication level of 1, and is used as a scratch space. The
master server is responsible for ensuring that the replication level is met. This not
only involves copying over chunks if a chunk server goes down, but also removing
replicas once a server comes back up. As a general rule, the master server will try
to place replicas on different racks. With Google’s network setup, the master is able
to deduce the network topology from IP addresses.

6.5.3 Failures

When it comes to failures, GFS always expects the worst. The master server reg-
ularly exchanges heartbeats with the chunk servers. If the master server does not
receive a heartbeat from a chunk server in time, it will assume the server has died,
and will immediately start to spread the chunks located on that server to other
servers to restore replication levels. Should a chunk server recover, it will start to
send heartbeats again and notify the master that it is back up. At this point the mas-
ter server will need to delete chunks in order to drop back down to replication level
and not waste space. Because of this approach, it would be possible to wreak havoc
with a GFS instance by repeatedly turning on and off a chunk server. Master server
failure is detected by an external management system. Once this happens, one of the
master server replicas is promoted, and the master server process is started up on it.
A full restart usually takes about 2 minutes – most of this time is spent polling the
chunk servers to find out what chunks they contain

6.5.4 Data Access

Clients initially contact the master server to gain access to a file, after which the
client interacts directly with the necessary chunk server(s). For a multi terabyte file,
a client can keep track of all chunk servers in its cache. The chunk server directly
interacting with clients is granted a chunk lease by the master server, and is now
known as the primary. The primary is then responsible for ordering any operations
on the data serially. It is then responsible for propagating these changes to the other
chunk servers that hold the chunk. If a client is only looking to read data, it is possi-
ble for the client to go through the shadow master as opposed to the master server. It
is possible for concurrent writes to get interleaved in unexpected ways, or for failed
write attempts to show themselves as repeated data in chunks. GFS assumes that
any application using it is able to handle these possible problems though redundant
data may hurt the efficiency of reads.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 149

6.5.5 Data Integrity

Each chunk in GFS keeps track of its own checksum information this informa-
tion is unique for each chunk – it is not guaranteed to be the same even across
replicas. Chunk servers are responsible for checking the checksums of the chunks
they are holding. With this, it is possible for the system to detect corrupted files.
If a corrupted chunk is detected, the chunk is deleted, and copied from another
replica.

6.5.6 Consistency and Guarantees

GFS is built to handle multiple concurrent appends on a single file. It is up to a pri-
mary chunk server to order incoming permutation requests from multiple clients into
a sequential order, and then pass these changes on to all other replicas. Because of
this, it is possible that a client will not see exactly what they wrote on a sequential
read – there is a possibility that permutations from other clients have been inter-
leaved with their own. Google describes this state as consistent but undefined – all
clients will see the same data, regardless of which replica is primary, but mutations
may be interspersed. When there is a write failure, a chunk may become inconsis-
tent. This is a case where there may be redundant lines of data in some but not all
replicas.

As GFS was built to maintain bandwidth, as opposed to meet a targeted latency
goal there are no guarantees that pertain to latency. GFS does guarantee maintenance
of the specified replication level which is achieved using system heartbeats. GFS
also cannot guarantee full consistency in the face of write failures. A slightly looser
definition of consistency – at least a single copy of all data is fully stored in each
replica – is what GFS supplies. Any application built on top of GFS that can handle
these possible inconsistencies should be able to guarantee a stronger consistency.

6.5.7 Metadata

In GFS, the master server contains metadata about all chunks contained in the sys-
tem. This is how the master server keeps track of where the chunks are located. Each
chunk has its own set of metadata as well. A chunk has a version number, as well as
its own checksum information.

6.5.8 Data Placement

The master server attempts to place replicas on separate racks, a feat made possible
by Google’s network scheme. The master server also attempts to balance network
load, so it will try to evenly disperse all chunks.

150 K. Ericson and S. Pallickara

6.5.9 Security Scheme

GFS expects to be run in a trusted environment, and has no major security
approaches. If a user could bring down a chunk server, modify the chunk versions
held on it, and reconnect it to the system, GFS would slowly grind to a halt as it
believes that that server has the most up-to-date chunks and begins deleting and
rewriting all these chunks. This would create a lot of network traffic, and theoreti-
cally bring down not only any service that relies on GFS, but also anything else that
requires network bandwidth to work.

6.6 Bigtable

As the name suggests, Bigtable stores large amounts of data in a table. While it is
not a full relational model, it is essentially a multi-dimensional database. Tables are
indexed by row and column keys (strings), as well as a timestamp (int64).
Values inside cells are an uninterpreted array of bytes, and tables can be easily used
as either inputs to or outputs of MapReduce (Dean & Ghemawat, 2004). Each table
is broken up by row into tablets. Each tablet will contain a section of sequential
rows, generally about 100–200 MB in size.

Bigtable has been designed by Google to handle very large files generally mea-
suring in the petabyte range. It is in use in several products, including Google
Analytics and Google Earth. Bigtable is designed to run on top of the Google
File System (GFS), and inherits its features and limitations. Bottlenecks with GFS
directly affect Bigtable’s performance, and measures have been taken to avoid
adding too much to network traffic. Additionally, Bigtable relies on Chubby for
basic functionality. Chubby is a locking service which implements Lamport’s Paxos
theorem (Lamport, 2001) in use at Google to help clients share information about the
state of their environment (Burrows, 2006). Different systems make use of Chubby
to keep separate components synchronized. If Chubby goes down, then so does
Bigtable. Given that, Chubby has been responsible for less than .001% of Bigtable’s
downtime as reported in Chang et al. (2006). Bigtable processes usually run on top
of GFS servers, and have other Google processes running side-by-side. Ensuring a
low latency in this environment is challenging.

There are 3 pieces to an implementation of Bigtable: First, a library is linked to
every client – helping clients find the correct server when looking up data. Second,
there is a single master server. This master server will generally have no interactions
with clients, and as a result is usually only lightly loaded. Finally, there are many
tablet servers. The tablet servers are responsible for communicating with clients,
and do not necessarily serve consecutive tablets; simply what is needed. Each tablet
is only served on one tablet server at a time. It is also not necessary for all tablets
to be served – the master keeps a list of tablets not currently served, and will assign
these tablets to a server if a client requests access to it.

Tablets are stored in GFS as in the SSTable format, and there are generally several
SSTables to a tablet. An SSTable contains a set of key/value pairs, where both key

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 151

Fig. 6.3 Bigtable storage
scheme

and value are arbitrary strings. Updates to tablets are kept in a commit log. Recently
committed changes are stored in memory, and older tablet update records are stored
as SSTable. Figure 6.3 helps to show the division of what is maintained in GFS and
what is kept in tablet server memory. Both the commit logs and SSTable files are
held in GFS. Storing commit files in GFS means that all commits can be recovered
if a tablet server dies. These commit logs are as close as Bigtable comes to actual
checkpointing – more thorough checkpointing is carried out by GFS.

6.6.1 Replication

As mentioned above, the Bigtable master server makes sure that only one server is
actually modifying a tablet at a time. While this looks like Bigtable is ignoring repli-
cation entirely, every tablet’s SSTables are actually being stored in GFS. Bigtable
neatly bypasses the problem of replication and lets GFS handle it. Bigtable will
inherit the replication level of the folders where the SSTables are stored.

6.6.2 Failures

All failure detection for Bigtable eventually comes down to Chubby. When a tablet
server first starts up, it contacts Chubby and makes a server-specific file, and obtains
an exclusive lock on it. This lock is kept active as long as the tablet has a connection
to Chubby, and will immediately stop serving tablets if it loses that lock. If a tablet
server ever contacts Chubby and finds the file gone, it will kill itself. The master
server is responsible for periodically polling the tablet servers and checking to see if
they are still up. If the master cannot contact a tablet server, it first checks to see if the
tablet server can still communicate with Chubby. It does so by attempting to obtain
an exclusive lock on the tablet server file. If the master obtains the lock, Chubby
is alive and the tablet can’t communicate with Chubby. The master then deletes the
server file, ensuring that the server will not attempt to serve again. If the master’s
Chubby session expires, the master immediately kills itself without effecting tablet
serving. A cluster management system running alongside Bigtable is responsible
for starting up a new master server if this happens. While (Chang et al., 2006) does

152 K. Ericson and S. Pallickara

not explicitly state what happens if Chubby goes down, it is likely that the current
master server will kill itself and the cluster manager will repeatedly try to kick start
a new master until Chubby starts responding again.

6.6.3 Accessing Data

Every client is initially sent a library of tablet locations, so they should initially be
able to directly contact the correct tablet server. Over time, tablet servers die, some
may be added, or tablets may be deleted or split. Bigtable has a 3-tier hierarchy for
tablet location. First, there is a file stored in Chubby that contains the location of
the root tablet. Every Bigtable instance has its own root tablet. A root tablet speci-
fies the location of all tablets in a METADATA table. This METADATA table holds
the locations of all user tables as well as some tablet-specific information useful for
debugging purposes. The root tablet is simply the first tablet of the METADATA
table. The root tablet is treated specially – it is never split so that the tablet location
hierarchy doesn’t grow. With this scheme, 234 tablet locations can be addressed.
The client library caches the tablet locations from the METADATA table, and will
recursively trace through the hierarchy if it doesn’t have a tablet, or the tablet loca-
tion is scale. With an empty cache, it will take 3 round trips but may take up to 6
with a stale cache. None of these operations need to read from GFS, so the time is
negligible. The tablet servers have access to sorted SSTables, so they can usually
locate required data (if not already in memory) with a single disk access.

6.6.4 Data Integrity

Bigtable is not directly involved with maintaining data integrity. All Bigtable data is
stored in GFS, and that is what is responsible for actually detecting and fixing any
errors that occur in data. When a tablet server goes down there is a chance that a
table modification was not committed, or a tablet split was not properly propagated
back to Chubby. Keeping all tablet operation logs in GFS as well solves the first
problem: a new tablet server can read through the logs, and ensure all tablets are up
to date. Tablet splits are even less of a problem, as a tablet server will report any
tablets it has that are not referenced by Chubby.

6.6.5 Consistency and Guarantees

Bigtable guarantees eventual consistency – all replicas are eventually in sync. Tablet
servers store any tablet modifications in memory, and will write permutations to a
log, but will not necessarily wait for GFS to confirm that a write has succeeded
before confirming it with users. This helps to improve latency, and give users a
more interactive experience, such as when using Google Earth. Bigtable inherits
all of the GFS guarantees pertaining to data replication, error recovery, and data
placement.

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 153

6.6.6 Metadata

The METADATA table contains the metadata for all tablets held within an instance
of Dynamo. This metadata includes lists of the SSTables which make up a tablet, and
a set of pointers to commit logs for the tablet. When a tablet server starts serving a
file, it first reads the tablet metadata to learn which SSTable files need to be loaded.
After loading the SSTables into memory, it works through the commit logs, and
brings the version in memory up to the point it was at when the tablet was last
accessed.

6.6.7 Data Placement

All of Bigtable’s data placement is handled by GFS – it has no direct concern
for data placement. As far as Bigtable is concerned, there are only single copies
of files – it uses GFS handles to access any files needed. While Bigtable is not
directly aware of multiple versions of files, it can still take advantage of replicas
through GFS.

6.6.8 Security

Bigtable is designed to run in a trusted environment, and does not really have much
in the way of security measures. Theoretically, a user may be able to have encrypted
row and column names, as well as the data in the fields. This would be possible
since these are all arbitrary strings. While encrypting row names means you could
potentially use some of the grouping abilities, there is no reason a user would not be
able to gain some security with this method.

6.7 Microsoft Azure

Azure is Microsoft’s cloud computing solution. It consists of three parts: storage,
scalable computing, and the base fabric to hold everything together across a het-
erogeneous network. Figure 6.4 shows a high level overview of Azure’s structure.

Fig. 6.4 Azure overview

154 K. Ericson and S. Pallickara

Both the compute and storage levels rely on the fabric layer, which is running across
many machines. Azure’s scalable computing component is out of the scope of this
article, but for the sake of completeness it is mentioned here. Microsoft’s computing
solution is designed to make sure that it worked well with the storage, but it is not
necessary to use the one to use the other. Microsoft has not published very many
details about Azure.

Azure’s storage service allows the user to choose between three storage formats:
BLOBs, tables, and queues. The BLOBs are essentially containers that can hold
up to 5 GB of binary data. Azure’s BLOB format is very similar to S3 – there are
containers to hold the BLOBs, and there is no hierarchical support (you cannot put
a container inside a container). The BLOB names have no restrictions, however, so
there is nothing to keep a user from putting in “/” in a BLOB’s name to help orga-
nize data. Tables in Azure are not true relational tables, but more like Bigtable –
tables hold entities, and an entity is a list of named values. While you lose the
ability to query Azure tables like a true relational database, it is able to scale effec-
tively across many machines. Azures queues are primarily designed for use with the
computing service. Queues are what allow different applications a user is running
to communicate with each other. For example, a user may have designed a web
front-end application that can communicate with several worker applications to per-
form back-end processing. This application suite would use queues to exchange
information between the web front-end and the various workers.

6.7.1 Replication

Regardless of storage type, all data has a replication level of 3 the maintenance
of which is being coordinated by the storage service itself. According to Chappell
(2009a), the fabric service is not even aware of replication levels, it just sees the
storage service as another application. More about how this happens is in the failure
section.

6.7.2 Failure

Azure’s fabric layer is made up of machines in a Microsoft Data Center. The data
center is divided into fault domains. Microsoft defines a fault domain as a set of
machines which can be brought down by the failure of a single piece of hard-
ware. All machines dedicated to Azure are controlled by 5–7 fabric controllers.
Each machine inside the fabric has a fabric controller process running which reports
the status of all applications running on that machine (this includes user apps in
different VMs as well as the storage service). While we are not exactly clear on
how storage is handled inside the fabric, we do know that the fabric controllers see
the storage service as just another application. If an application dies for any reason,
the controllers are responsible for starting up another instance of the application. It

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 155

stands to reason that if an instance of the storage service running on a machine dies,
or if the machine itself dies, these controllers would start up another instance on
a different machine. By having the fabric layer ensure that applications are spread
across fault domains, it guarantees that replicas are spread out.

6.7.3 Accessing Data

If a user is using a .NET application running on Azure’s compute service, ADO
.NET interfaces can be used. If, on the other hand, a user is trying to access data
in Azure storage through a Java application, you would use standard REST. As an
example of accessing a BLOB from (Chappell, 2009b):

http://<StorageAccount>.blob.core.windows.net/<Container>/<BlobName>

Where <StorageAccount> is an identifier assigned when a new storage
account is created, used to identify ownership of objects. <Container> and
<BlobName> are the names of the container and blob that this request is accessing.

There is no specific mention of any guarantees on latency, but since it is expected
to be part of a web application, it’s likely low.

6.7.4 Consistency and Guarantees

Azure’s storage guarantees read-what-you-write consistency – worker threads and
clients will be able to immediately see changes it just wrote. Unfortunately, there
is no clear picture of what this means for other threads/clients. It also guarantees a
replication level of 3 for all stored data. There have also been no specific guarantees
as to latency or specific mention of SLAs.

6.7.5 Data Placement

The Azure fabric layer is responsible for the placement of data. While it is not
directly aware of replicas, it is able to ensure that instances of the storage service
are running in different fault domains. From the whitepapers Microsoft has made
available, it looks like a fabric controller only operates in one data center. There is
a chance that users are able to choose which data center to use.

6.7.6 Security

All access to Azure’s storage component is handled by a private key generated
by Azure for a specific user. While there are no particular details about how this

156 K. Ericson and S. Pallickara

happens, it is likely that this is susceptible to the same problems as S3 – another
person may be able to hijack this key. In Azure storage, there are no ACLs, only
that single access key – developers are expected to provide their own authentication
program-side.

6.8 Transactional and Analytics Debate

None of the storage systems discussed here are able to handle complex relational
information. As data storage makes a shift to the cloud, where does that leave
databases? Having on-site data management installations can be very difficult to
maintain, requiring administrative and hardware upkeep as well as the initial hard-
ware and software costs (Abadi, 2009). Being able to shift these applications to
the cloud would allow companies to focus more on what they actually produce –
possibly having the same effects that the power grid did 100 years ago (Abadi,
2009).

Transactional data management is what you generally think of first – the back-
bone for banks, airlines, and e-commerce sites. Transactional systems generally
have a lot of writes, and files tend to be in the GB range. They usually need ACID
guarantees, and thus have problems adjusting to the limitations of Brewer’s CAP
theorem. Transactional systems also generally contain data that needs to be secure,
such as credit card numbers and other private information. Because of these rea-
sons, it is hard to move a transactional system to the cloud. While several database
companies, such as Oracle, have versions that can run in a distributed environment
like Amazon’s EC2 cloud, licensing can become an issue (Armbrust et al., 2009).
Instead of only needing one license, the current implementation requires a separate
license for each VM instance: as an application scales, this can become prohibitively
expensive.

Analytical data management is slightly different. In an analytical system, there
are generally more reads than writes, and writes occur in large batches. These types
of systems are used to analyze large datasets, looking for patterns or trends. Files in
an analytical system are also on a completely different scale – a client may need to
sift through petabytes of data. For this type of system, looser eventual consistency
is acceptable – making it a good fit for distributed computing. Additionally, the data
analyzed usually has less need to be secure, so having a third-party such as Amazon
or Google hosting the data is acceptable.

6.9 Conclusions

In this chapter we have surveyed several approaches to data storage in cloud com-
puting settings. Data centers have, and will continue, to be built out of commodity
components. The use of commodity components combined with issues related to the
settings in which these components operate such as heat dissipations and scheduled

6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing 157

downtimes imply that failures are a common occurrence and should be treated as
such. In these environments, it is no longer a matter of if a system or component
will fail, but simply when. Datasets are dispersed on a set of machines to cope with
their voluminous nature and to enable concurrent processing on them. To cope with
failures, every slice of the dataset is replicated a preset number of times; replica-
tion allows applications to sustain failures to machines that hold certain slices of the
dataset and also to initiate error corrections due to data corruptions.

The European Network and Information Security Agency (ENISA) recently
released a document (Catteddu & Hogben, 2009) outlining the security risks in
cloud computing settings. Among the concerns raised in this document include
data protection, insecure or incomplete data deletion, and the possibility of mali-
cious insiders. Other security related concerns (Brodkin, 2008) that have been raised
include data segregation, control over a data’s location, and investigative support.
Most of the systems that we have described here do not adequately address sev-
eral of these aforementioned security concerns and also exacerbate the problem
by designing systems that are presumed to operate in a trusted environment: this
allows us to construct situations, in some of these systems, where a malicious
entity can wreak havoc. Issues related to security and trust need to be thoroughly
addressed before these settings can be used for mission critical and sensitive
information.

References

Abadi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEE Data
Engineering Bulletin, 32(1), 3–12.

Anderson, T. E., Dahlin, M. D., Neefe, J. M., Patterson, D. A., Roselli, D. S., & Wang, R. Y. (1996).
Serverless network file systems. ACM Transactions on Computer Systems (TOCS), 14(1),
41–79.

Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., et al. (2009). Above the
clouds: A Berkeley view of cloud computing (University of California at Berkeley, Tech. Rep.
No. UCB/EECS-2009-28).

Brewer, E. A. (2009). Towards robust distributed systems. Principles of Distributed Computing
(PODC) Keynote, Portland, OR.

Brodkin, J. (2008). Gartner: Seven cloud-computing security risks. Retried Infoworld, July
02 2008 from: http://www.infoworld.com/d/security-central/gartner-seven-cloud-computing-
security-risks-853.

Burrows, M. (2006). The chubby lock service for loosely-coupled distributed systems. Proceedings
of Operating Systems Design and Implementation (OSDI’06), Seattle, WA, 335–350.

Catteddu, D., & Hogben, G. (Eds.). (November 2009). Cloud computing risk assessment. European
Network and Information Security Agency (ENISA).

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (2006).
Bigtable: A distributed storage system for structured data. Proceedings of Operating Systems
Design and Implementation (OSDI’06), Seattle, WA, 205–218.

Chappell, D. (2009a). Introducing windows azure (Tech. Rep., Microsoft Corporation).
Chappell, D. (2009b). Introducing the windows azure platform: An early look at windows azure,

SQL azure and NET services (Tech. Rep., Microsoft Corporation).
Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.

Proceedings of Operating Systems Design and Implementation (OSDI’04), San Francisco, CA,
137–149.

158 K. Ericson and S. Pallickara

DeCandia, G., Hastorun, D., Jampani, M., Kakulapti, G., Lakshman, A., Pilchin, A., et al. (2007).
Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Operating Systems Review,
41(6), 205–220.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The google file system. 19th Symposium on
Operating Systems Principles, New York, NY, 29–43.

Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent, Available,
Partition-tolerant web services. ACM SIGACT News, 33(2), 51–59.

Lamport, L. (2001). Paxos made simple. ACM SIGACT News, 32(4), 18–25.
Lyman, P., & Varian, H. R. (2000). How Much Information? http://www2.sims.berkeley.edu/

research/projects/how-much-info/, Berkeley.
Lyman, P., & Varian, H. R. (2003). How Much Information? http://www2.sims.berkeley.edu/

research/projects/how-much-info-2003/, Berkeley.
Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2007). Amazon S3 for science

grids: A viable solution? High performance distributed computing (HPDC). Proceedings of the
2008 International Workshop on Data-Aware Distributed Computing (HPDC08), Boston, MA,
55–64.

Robbins, K. A., & Robbins, S. (2003). Unix systems programming: Communication, concurrency
and threads. Upper Saddle River, NJ: Prentice Hall.

Synodinos, D. G. (2008). LHC Grid: Data storage and analysis for the largest scientific instrument
on the planet. Retrieved InfoQ, October 01 2008, from http://www.infoq.com/articles/lhc-grid.

Chapter 7
Scheduling Service Oriented Workflows Inside
Clouds Using an Adaptive Agent Based
Approach

Marc Eduard Frîncu

Abstract As more users begin to use clouds for deploying complex applications
and store remote data there is an increasing need of minimizing the user costs. In
addition many cloud vendors start offering specialized services and thus the need
of selecting the best possible service in terms of deadline time or monetary con-
straints emerges. Vendors not only that provide specialized services but also prefer
using their own scheduling policies and often choose their negotiation strategies. To
make things even more complicated complex applications are usually comprised of
smaller tasks (e.g. workflow applications) orchestrated together by a composition
engine. In this highly dynamic and unpredictable environment multi-agent systems
seem to provide one of the best solutions. Agents are by default independent as
they act in their best interest following their own policies, but also cooperate with
each other in order to achieve a common goal. In the frame of workflow schedul-
ing the goal is represented by the minimization of the overall user cost. This paper
presents some of the challenges met by multi-agent systems when trying to schedule
tasks. Solutions to these issues are also given and a prototype multi agent scheduling
platform is presented.

7.1 Introduction

In recent years Cloud Computing (CC) emerged as a leading solution in the field of
Distributed Computing (DC). In contrast, Grid Computing lacked the open-world
vision of overcoming some fundamental problems including transparent and easy
access to resources, licensing or political issues, lack of virtualization support or to
complicated to use architectures and end-user tools.

Clouds have emerged as a main choice for service vendors mostly due to
their support for virtualization and service oriented approach. Inside clouds almost

M.E. Frîncu (B)
Institute e-Austria, Blvd. Vasile Parvan No 4 300223, Room 045B, Timisoara, Romania
e-mail: mfrincu@info.uvt.ro

159B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_7, C© Springer Science+Business Media, LLC 2010

160 M.E. Frîncu

everything can be offered as a service. This has led to the appearance of sev-
eral paradigms including Software as a Service (SaaS), Infrastructure-as-a-Service
(IaaS) or Platform-as-a-Service (PaaS).

As more users begin to use clouds for storing or executing their applications these
systems become susceptible to workload related issues. The problem is even harder
when considering complex tasks which require accessing services provided by dif-
ferent cloud vendors (see Fig. 7.1) each with their own internal policies. Selecting
the optimal/fastest service for a specific task becomes in this case an important
problem as sometimes users are paying for their time spent using the underlying
services.

Consequently scheduling tasks on services becomes even more difficult as inside
cloud environments each member uses its own policies and is not obligated to adhere
to outside rules. We end up with a bundle of services from various providers that
need to be orchestrated together in order to produce the desired outcome inside a
given time interval. Keeping the execution inside this interval minimizes production
and client costs. As service selection requires some negotiation between providers
one of the simplest and straightforward solutions is to use distributed agents that
play the roles of service providers and clients.

This paper presents an agent based approach to the problem of task schedul-
ing inside clouds. Two major problems are dealt with: finding cloud resources and
orchestrating services from different cloud vendors towards solving a common goal.
Certain deadline and cost constrains are assumed to exist. Even though the emphasis
is put on workflow tasks, independent tasks can also be handled. Towards this aim

Fig. 7.1 Connecting devices to some of the existing clouds

7 Scheduling Service Oriented Workflows Inside Clouds 161

we first present some solutions to the problem of task scheduling inside clouds.
Then we present some issues regarding task scheduling inside Service Oriented
Environments (SOE) together with some details on workflow scheduling. A detailed
overview on a distributed agent based scheduling platform architecture capable of
adapting itself to resource changes is also given. Finally a concrete experimental
prototype and some conclusions are presented.

7.2 Related Work on DS Scheduling

Lot of work has been carried out in what concerns task scheduling inside Distributed
Systems (DSs). This work can be divided into specialized Scheduling Algorithms
(SAs) for clouds and Resource Management Systems (RMS) which discover ser-
vices and allocate tasks to them. In what follows we briefly present some of the
main work concerning both SAs for CC and RMS for DSs.

Concerning the development of efficient SAs for DSs, nature has proven to be a
good place of inspiration. Recent papers such as Lorpunmanee, Sap, Abdullah, &
Chompooinwai (2007) and Ritchie and Levine (2004) try to cope with the prob-
lem of task scheduling by offering meta-heuristics inspired from behavioral patterns
observed in ant colonies. This technique also called Ant Colony Optimization
(ACO) relies on the fact that ants inside a colony act as independent agents which
try to find the best available resource inside their space by using global search tech-
niques. Each time such an agent finds a resource better than the already existing
one it marks the path to it by using pheromones. These attract other ants which start
using the resource until a better one is found.

In Banerjee, Mukherjee, and Mahanti (2009) an ACO based approach for initiat-
ing the service load distribution inside clouds has been proposed. Simulated results
on Google Application Engine (2010) and Microsoft Live Mesh (2010) have shown
a slight improvement in the throughput of cloud services when using the proposed
modified ACO algorithm.

The biggest disadvantage ACO has over other approaches is that it is not
very effective when dynamic scheduling is considered. The reason for this is that
rescheduling requires a lot of time until an optimal scenario is reached through
intensive training given by multiple iterations. Because DSs are both unpredictable
and heterogeneous each time a change is noticed the entire system needs to be
trained again. This process which could last several hours. The large retraining time
interval is not acceptable when tasks are scheduled under deadline constraints as the
scheduling could take longer than the actual task execution. An improvement on this
might be given by mixing the time consuming global search with local search when
minor changes occur inside the DS. However defining the notion of minor changes
is still an open issue.

Paper (Garg, Yeo, Anandasivam, & Buyya, 2009) deals with High Performance
Computing (HPC) task scheduling inside clouds. Energy consumption is impor-
tant both in what concerns the user costs and in relation to the carbon emissions.

162 M.E. Frîncu

The proposed meta-scheduler takes into consideration factors such as energy costs,
carbon emission rate, CPU efficiency and resource workflows when selecting an
appropriate data center belonging to a cloud provider. The designed energy based
scheduling heuristics shows a significant increase in energy savings compared with
other policies.

Most of the work concerning RMSs has evolved around the assumption of apply-
ing them onto grids and not clouds. This can be explained by two facts. The first one
is that there are many similarities between a cloud and a grid and RMS developed
for one type could also work well on the other. The second one is related with age,
and as grids emerged earlier than clouds most of the solutions have been developed
for the former. Nonetheless several of the grid oriented RMSs could be adapted to
work for clouds too.

One example is represented by the Cloud Scheduler (2010). It allows users to set
up a Virtual Machine (VM) and submit jobs to a Condor (Thain, Tannenbaum, &
Livny, 2005) pool. The VM will be replicated on machines and used as container
for executing the jobs.

In what follows we present some of the most known examples of RMS for DSs
in general.

Notable examples include the Globus-GRAM (Foster, 2005), Nim- rod/G
(Buyya, Abramson, & Giddy, 2000), Condor (Thain et al., 2005), Legion (Chapin,
Katramatos, Karpovich, & Grimshaw, 1999), NetSolve (Casanova & Dongarra,
1998) and others. Many of these solutions use fixed query engines to discover
and publish resources and do not rely on the advantages offered by distributed
agents.

The ARMS (Cao, Jarvis, Saini, Kerbyson, & Nudd, 2002) system represents an
example of agent based RMS. It uses PACE (Cao, Kerbyso, Papaefstathiou, & Nudd,
2000) for application performance predictions which are later used as inputs to the
scheduling mechanism.

In paper (Sauer, Freese, & Teschke, 2000) a multi-site agent based schedul-
ing approach consisting of two distinct decision levels one global and the other
local is presented. Each of these levels has a predictive and a reactive compo-
nent for dealing with workload distribution and for reacting to changes in the
workloads.

Paper (Cao, Spooner, Jarvis, & Nudd, 2005) presents a grid load balancing
approach by combining both intelligent agents and multi-agent approaches. Each
existing agent is responsible for handling task scheduling over multiple resources
within a grid. As in Sauer et al., (2000) there also exists a hierarchy of agents which
cooperate with each other in a peer to peer manner towards a common goal of find-
ing new resources for their tasks. This hierarchy is composed of a broker, several
coordinators and simple agents. By using evolutionary processes the SAs are able
to cope with changes in the number of tasks or resources.

Nimrod/G uses agents (Abramson, Buyya, & Giddy, 2000) to handle the setup of
the running environment, the transport of the task to the site, its execution and the
return of the result to the client. Agents can also record information acquired during
task execution as CPU time, memory consumption etc.

7 Scheduling Service Oriented Workflows Inside Clouds 163

Paper (Shen, Li, Genniwa, & Wang, 2002) proposes a system which can auto-
matically select from various negotiation models, protocols or strategies the best
one for the current computational needs and changes in resource environment. It
does this by solving two main issues DS have to dealt with Cao et al., (2002):
scalability and adaptability. The work carried in Shen et al., (2002) creates an
architecture which uses several specialized agents for applications, resources, yel-
low pages and jobs. Job agents for example are responsible for handling a job
since its submission and until its execution and their lifespan are restricted to
that interval. The framework offers several negotiation models between job and
resource agents including contract net protocol, auction and game theory based
strategies.

AppLeS (Application-Level Scheduling) (Berman, Wolski, Casanova, Cirne,
et al., 2003; Casanova, Obertelli, Berman, & Wolski, 2000) is an example of a
methodology for adaptive scheduling also relying on agents. Applications using
AppLeS share a common architecture and are scheduled adaptively by a customized
scheduling agent. The agent follows several well established steps in order to obtain
a schedule for an application: resource discovery, resource selection, schedule
selection, application execution and schedule adaptation.

7.3 Scheduling Issues Inside Service Oriented Environments

Scheduling tasks inside SOE such as clouds is a particular difficult problem as there
are several issues that need to be dealt with. These include: estimating task runtimes
and transfer costs; service discovering and selection; negotiation between clients
and different cloud vendors; and trust between involved parties. In what follows we
address each of these problems separately.

7.3.1 Estimating Task Runtimes and Transfer Costs

Many SAs require some sort of user estimates in order to provide improved schedul-
ing solutions. The estimates are either user estimated or generated by using methods
involving code profiling (Maheswaran, Braun, & Siegel, 1999), statistical determi-
nation of execution times (David & Puaut, 2004), linear regression (Muniyappa,
2002) or task templating (Ali, Bunn, et al., 2004; Smith, Foster, & Taylor, 2004).
When applied to SOE these methods come both with advantages and disadvantages
as it is shown in the next paragraphs.

In SOE there is not much insight on the resource running behind the service
and thus it is hard for users to obtain information that can help them give a correct
runtime estimate.

User given estimates are dependent on the user’s prior experience with execut-
ing similar tasks. Users also tend to overestimate task execution times knowing
that schedulers rely on them. In this case a scheduler, depending on the schedul-
ing heuristics, could postpone other tasks due to wrong information. To deal with

164 M.E. Frîncu

these scenarios schedulers can implement penalty systems where tasks belonging to
these harmful users would be intentionally delayed from execution.

Sometimes it is even difficult for users to provide runtime estimates. These sit-
uations usually occur due to the nature of the service. Considering two examples
of services, one which processes satellite images and another one which solves
symbolic mathematical problems we can draw the following conclusions. In the
first case it is quite easy to determine runtime estimates from historical execution
times as they depend on the image size and on the required operation. The second
case is more complicated as mathematical problems are usually solved by services
exposing a Computer Algebra System (CAS). CASs are specific applications which
are focused on one or more mathematical fields and which offer several methods
for solving the same problem. The choice on which method to choose depends on
internal criteria which is unknown to the user. A simple example is given when con-
sidering large integer (more than 60 digits) factorizations. These operations have
strong implications in the field of cryptography. In this case factorizing n does not
depend on similar values as n-1 or n+1. Furthermore the factoring time is not linked
to the times required to factor n-1 or n. It is therefore difficult for users to estimate
runtimes in these situations. Refining as much as possible the notion of similarity
between two tasks could be an answer to this problem but in some cases, such as the
one previously presented this could require searching for identical past submissions.

Code profiling works well on CPU intensive tasks but fails to cope with data
intensive applications where it is hard to predict execution time before all the input
data has been received. Statistical estimations of run times face similar problems as
code profiling.

Templating has also been used for assigning task estimates by placing newly
arrived tasks in already existing categories. General task characteristics such as
owner, solver application, machine used for submitting the task, input data size,
arguments used, submission time or start time are used for creating a template.
Genetic algorithms can then be used to search the global space for similarities.

Despite the difficulty in estimating runtimes there are SAs which do not require
them at all. These algorithms take into consideration only resource load and move
tasks only when their loads become unbalanced. This approach works well and tests
have shown that scheduling heuristics such as Round-Robin (Fujimoto & Hagihara,
2004) give results comparable to other classic heuristics based on runtime estimates.

In SOE the problem of providing runtime estimates could be overcome by
another important aspect related with service costs which is execution deadlines.
In this case it does not matter how fast, how slow or where a task gets executed
as long as it gets completed inside the specified time interval. Consequently when
submitting jobs inside clouds users could attach deadline constraints instead of
runtime estimates to either workflows or batch tasks and hope they will not be sig-
nificantly exceeded. Deadline based scheduling heuristics are specifically useful in
cases where users rent services for specific amount of times.

Related with task runtimes is the transfer costs for moving a task from a resource
to another. In SOE this is a problem as usually little or nothing is known about
the physical location and network route towards a particular service. When moving

7 Scheduling Service Oriented Workflows Inside Clouds 165

large amounts of data such as satellite images up to several hundreds of mega-bytes
in size the transfer cost becomes an issue. In addition to the time needed to reallocate
data problems including licensing and monetary cost arise. There are cases when
proprietary data such as satellite images that belong to certain organizations cannot
be moved outside their domain (cloud). In this case reallocation to a cloud which
provides faster and/or cheaper services for image processing is not possible due to
licensing issues.

Task reallocation involves more than simply moving depended data. Clouds rely
heavily on virtualization and thus sometimes in orders to execute tasks VMs with
certain characteristics need to be created. As a result when reallocating a task the
entire VM could require relocation. This implies several other issues such as stop-
ping and resuming preemptive tasks or restarting non-preemptive tasks once they
are safely transfered. The problem of transfer costs is thus more problematic than at
first glance.

7.3.2 Service Discovery and Selection

Services (SOAP-based (Pautasso et al., 2008), RESTful (Pautasso, Zimmermann,
& Leymann, 2008), Grid Services (Foster, 2005)) are an important part of cloud
systems. They allow for software, storage, infrastructure or entire platforms to be
exposed through a unitary interface which can be used by third party clients. Each
service vendor exposes its services to the general public so that the latter can use
them, free or at a cost, in order to solve a particular problem.

Inside this sea of services there is also a constant need of discovering proper ser-
vices for solving a particular task. Universal Description Discovery and Integration
(UDDI) (UDDI, 2010) registries offer a solution to this problem. Each service
provider registers its services to an UDDI which in turn is used by service consumers
for searching specific services. With the occurrence of Web 2.0 these searches could
be enhanced with semantic content. Once such a service is found its interface can
be used for submitting tasks and for retrieving their results. Figure 7.2 shows the
typical correspondence between services, UDDIs and clients.

After successfully finding a number of possible candidate services there remains
the problem of selecting the best one for the task. In this direction the schedul-
ing heuristics plays an important role as based on several criteria it will select the
service which is most likely to minimize the execution costs. It should be noted
that depending on whether the scheduling heuristics is adaptive or not a task could
be reallocated several times before actually being executed. Task reallocation faces
several problems as addressed in Section 7.3.1.

7.3.3 Negotiation Between Service Providers

Negotiation plays an important role in task scheduling when services from mul-
tiple clouds are involved in solving a given problem. Usually the negotiation is

166 M.E. Frîncu

Fig. 7.2 Finding and
invoking services using
UDDIs

linked to the phase of service selection and involves a scheduler request for a par-
ticular service characteristic. When considering it smaller execution costs could be
achieved.

Negotiation can also involve the decision on what data/tasks are allowed to
be submitted to the service and whether the service provider can further use the
submitted data/tasks for its own purposes or not.

As most of the times details regarding the VM or application that is exposed as a
service are hidden from public the negotiation requires the introduction of negotiator
entities which handle pre-selection discussions in the service/cloud name. Usually
this stage is accomplished by one or more agents (Cao, Spooner, Jarvis, & Nudd,
2005; Sauer et al., 2000). Details regarding the involved agents will be given in
Section 7.5. Depending on the outcome of the negotiation either access to the desired
service is either granted or a new negotiation with another agent proceeds.

7.3.4 Overcoming the Internal Resource Scheduler

An important problem RMSs need to overcome in SOE is that of the internal sched-
uler used by the service provider. This scheduler is neither influenced nor bypassed
by outside intervention. As a result it is said that scheduling between services is
accomplished by a meta-scheduler (Weissman, 1998) that deals with tasks at ser-
vice level, leaving the resource level scheduling to the internal Virtual Organization
(VO) schedulers (see Fig. 7.3). These internal schedulers handle tasks assignments

7 Scheduling Service Oriented Workflows Inside Clouds 167

Fig. 7.3 Scheduling and meta-scheduling in multi-VOs

depending on their own policies and thus there is no guarantee that the task submit-
ted by the meta-scheduler will be executed inside the cost constraints negotiated at
the time of the submission.

As a result of the negotiation between the meta-scheduler and the service
provider the latter could try to favor the task by increasing its priority. This action is
in the interest of the provider as it could get penalized, with its service trust greatly
diminished, for constantly exceeding the imposed deadlines. Consequently future
decisions made by the meta-scheduler could ignore the service and the provider
would suffer cost losses. We obtain therefore a symbiotic relationship between the
meta-scheduler and the service provider that allows both of them to gain advantages:
the service provider’s trust will increase when executing tasks faster and thus its
income will increase by receiving more tasks; and the meta-scheduler will execute
tasks faster, minimizing the costs of the client that submitted them.

7.3.5 Trust in Multi-cloud Environments

When executing tasks on remote services a certain trust level between peers is
needed. Trust issued occurs due to many problems including the block box approach
of services and because of security issues.

Services cannot be trusted as their interfaces act as black boxes with the con-
tent changeable without notice. Thus a service requestor needs to be sure that what
it accesses is the same as what was advertised by the service. If this is not the
case then the VM running behind the service would not be able to solve the given
task inflicting possible cost losses due to time spent for service selection and task
submission.

Security issues are also important and are closely linked to the previous problem.
These problems can affect both the service requestor and the service provider. The
former is usually affected when the data it submits is used for other purposes than
those decided during negotiation (e.g. cloning of copyrighted data). The latter can

168 M.E. Frîncu

also be affected when data intended to harm the vendor is sent to it. A comprehen-
sive insight on the security issues inside DSs is given in paper (Carstea, Macariu,
Frincu, & Petcu, 2008).

Trust is usually achieved through digital certificates such as the X.509 certificates
that are widely used in Web browsers, secure email services, and electronic payment
systems.

When using certificates clients usually request one from service providers in
order to be granted access.

Web-SOAP and Grid-SOAP services handle security issues by using the WS-
Security standard (WS Security, 2010). It allows parties to add signatures and
encryption headers to SOAP messages. An extension to WS-Security, WS-Trust
(WS Trust, 2010), deals with issuing, renewing and validating security tokens or
broker trust relationships between participants.

In addition to the WS-Security standard the Transport Layer Security (TLS) can
also be used. HTTPS for example can be used to cover Web-SOAP, Grid-SOAP and
RESTful services.

7.4 Workflow Scheduling

Workflows consist of several tasks bound together by data/functional dependencies
that need to be executed in a specific order for achieving the goal of the problem.
They are used especially in cases where the problem can be divided into smaller
steps each of them being executed by a distinct solver, or in our case WS. In a cloud
environment users usually submit their workflows to a service which orchestrates
the execution and returns the result. Whatever happens beyond the service interface
is out of reach and invisible to the client. The workflows can be created either by
using graphical tools (Wolniewicz et al., 2007) or by directly writing the code in
a supported format such as BPEL (WS-BPEL, 2010), YAWL (Van der Aalst & ter
Hofstede, 2005), Scufl (Greenwood, 2010), etc. Once the workflow is submitted an
enactment engine is responsible for executing the tasks by sending them to corre-
sponding WSs. In our case these WSs are replaced by scheduling agents that try
to schedule the tasks on the best available service through negotiation with other
agents. Once a task is completed its result is sent back to the enactment engine
which can proceed to the next task and so forth.

An important problem in this communication chain is the return of the result to
the workflow engine. To solve this problem the address of the agent responsible for
the VO in which the engine is located in is attached to each submitted task. In this
way once the execution is completed the result is sent straight back to the agent that
initially received the task. This task is usually achieved by messages and will be
detailed in Section 7.5.2.

It can be noticed that no prior scheduling decisions are made, and that tasks
are scheduled one by one as they become ready for scheduling. This is necessary
due to the dynamism and unpredictability of the environment. In paper (Frincu,
Macariu, & Carstea, 2009) a unified scheduling model for independent and

7 Scheduling Service Oriented Workflows Inside Clouds 169

dependent tasks has been discussed. The goal was to allow SA for independent tasks
to be applied to workflows when dynamic environments and online scheduling were
considered.

Although this approach is suited when global scheduling decisions are needed
there are cases where the workflow engine cannot easily achieve task-to-resource
mappings (Active BPEL, 2010) during runtime. Instead workflow SAs such as
HEFT (Sakellariou & Zhao, 2003), Hybrid (Sakellariou & Zhao, 2004) or CPA
(Radulescu & van Gemund, 2001) could be used. However they only consider the
tasks in the current workflow when scheduling or rescheduling decisions are needed.
These algorithms provide strategies to schedule workflow tasks on heterogeneous
resources based on the analysis of the entire task graph. Every time a workflow
is submitted tasks would first be assigned to resources and only then would the
workflow execution begin. The negotiation for resources thus takes place prior to
runtime. This static approach however is not suited for highly dynamic environments
(for example clouds) where: resource availability cannot be predicted; reservations
are difficult to achieve; a global perspective needs to be obtained; and deadline
constraints require permanent rescheduling negotiations.

In what follows we present an agent-based solution for scheduling workflows.
So called scheduling agents are used to negotiate, to schedule tasks and to send
the answer back to the workflow engine. Its aim is to provide a platform for online
workflow scheduling where tasks get scheduled only when they become ready for
execution. This means that a task whose predecessors have not completed their
execution is not considered to be submitted for execution.

7.5 Distributed Agent Based Scheduling Platform Inside Clouds

As clouds are unpredictable in what concerns resource and network load, systems
need to be able to adapt to the new execution configurations so that the cost over-
heads are not greatly exceeded. Multi-Agent Systems (MAS) provide an answer
for this problem as they rely on (semi)decentralized environments made up of
several specialized agents working together towards achieving a goal through nego-
tiation. While negotiating each agent keeps a self-centered point of view by trying
to minimize its costs.

Although a good option when highly dynamic DS are involved, distributed
approaches involve a great amount of transfer overhead (Weichhart, Affenzeller,
Reitbauer, & Wagner, 2004) as they require permanent updated from their peers in
order to maintain an up to date global view. Contrary, centralized approaches do not
require a lot of communication but their efficiency peak is maximized mostly when
dealing with DS that maintain a relatively stable configuration.

Decentralized agent based solutions for task scheduling also arise as suited
solutions when considering a federation of multiple VOs each having its own
resources and implementing its own scheduling policies. Submitting tasks in such
an environment requires inter-VO cooperation in order to execute them under
restrictions including execution deadlines, workloads, IO dependencies etc.

170 M.E. Frîncu

A computing agent can be defined by flexibility, agility and autonomy and as
depicted in (Foster, Jennings, & Kesselman, 2004) can act as the brain for task
scheduling inside the multi-cloud infrastructure. Agents allow resources to act as
autonomous entities which take decisions on their own based on internal logic.
Furthermore an intelligent agent (Sauer et al., 2000) can be seen as an extension
to the previously given definition by adding three more characteristics: reactivity
(agents react to the environment), pro-activeness (agents take initiatives driven by
goals) and social ability (interaction with other agents).

In order to take scheduling decisions agents must meet all the previous require-
ments. They need to quickly adapt to cloud changes and to communicate with others
in order to find a suitable service for tasks that need faster execution. In the con-
text of task scheduling agent adaptiveness includes handling changes in resource
workload or availability. In what follows we present a SOE oriented agent based
scheduling platform.

7.5.1 The Scheduling Platform

A distributed agent scheduling platform consists of several agents working together
for scheduling tasks. Inside a cloud consisting of several service providers (VOs),
agents have the role of negotiating and reaching an agreement between the peers.
Based on the meta-scheduling heuristics, the internal scheduler, the knowledge on
the services it governs and the tasks’ characteristics each agent will try to negotiate
the relocation from/towards it of several tasks. In trying to achieve this goal agents
will also attempt to minimize a global cost attached to each workflow.

Agent based approaches can allow each cloud provider to maintain its own inter-
nal scheduling policies (Frincu, 2009a). Furthermore they can also use their own
scheduling policies at meta-scheduling level. When deciding on task relocations
every agent will follow its own scheduling rules and will try to reach an agreement,
through negotiation, with the rest. These aspects allow VOs to maintain autonomy
and to continue functioning as independents unit inside the cloud. Autonomy is a
mandatory requirement as VOs usually represent companies that want to maintain
their independence while providing services to the general public.

Every VO willing to expose services will list one or more agents to a Yellow
Pages online directory which can be queried by other agents wanting to negotiate
for a better resource.

Agents can be designed as modular entities. In this way we can add new func-
tionalities to agents without requiring creating new agent types. This is different
from previous works (Cao, Spooner, Jarvis, & Nudd, 2005; Sauer et al., 2000) which
mostly dealt with hierarchies of agents. By doing this we create a super-agent which
tries to ensure that the tasks in its domain get the best resources. In addition the need
of having multiple agents working together for handling the same task is eliminated.
Examples of such agents include: the execution agent, the scheduling agent, the
transfer agent, the interface agent, etc.

7 Scheduling Service Oriented Workflows Inside Clouds 171

In our vision all the previously listed specialized agents become sub-modules
inside every agent. Thus each agent will have: a scheduling module, a communi-
cation module, a service discovery module and an execution module. The sum of
all agents forms the meta-scheduler, which is responsible for the inter-service task
allocation. Figure 7.4 details this modular structure together with the interactions
between agents and other cloud components.

Fig. 7.4 Agent based scheduling platform

172 M.E. Frîncu

In what follows we divide the agents in two categories depending on whether
they initiate the request i.e. requestor agents, or they respond to an inquiry i.e. solver
agents. This division does not influence the characteristics of the agent and is only
intended to depict its role.

The communication module handles any type of message exchange with other
agents. It also facilitates the dialogue between modules such as between the schedul-
ing module and the service discovery module, or between the scheduling module
and the executor module.

The service discovery module allows each agent to discover services published
on UDDI’s located inside its own domain. Typically every resource or provider
inside a VO willing to offer some functionality to the general public publishes it
as services inside an UDDI. Once a service has been published it can be used by
the scheduling agent when reallocating tasks. This module is not used to discover
services outside the agent’s domain. The reason for this behavior is simple: every
service outside its domain is not controlled by the agent and thus not trusted. Trust
on services is achieved through negotiation with other agents.

The execution module is responsible for invoking the service selected for task
execution. Service invocation is usually achieved by creating a client tailored to fit
the service interface. The creation has to be done dynamically during runtime as
it is not feasible to maintain a list of precompiled clients on disc due to the num-
ber and diversity of the existing services. Paper (Carstea, Frincu, Macariu, Petcu,
& Hammond, 2007) presents an API for accessing both SOAP-based services and
Grid Services by dynamically creating clients based on the service WSDL (Web
Service Description Language) (WSDL, 2010). It should be noted that the execu-
tion module is not responsible for creating any VM required by tasks. It is up to
the resources behind the service to initialize any required VMs based on the task
description.

The scheduling module deals with task-to-service or task-to-agent allocations.
This module is the heart of the agent based scheduling platform and relies on
scheduling heuristics for taking its decisions. Every agent has one or more tasks
assigned to it. Depending on the scheduling heuristics it can choose to execute some
of the tasks on services governed by agents outside its domain. In the same way it
can decide to accept new tasks from other agents.

Depending on the policies implemented by the VO there are two possible sce-
narios that the scheduling module can face. The first occurs when the agent has no
information on the resources running the applications and all it sees are the inter-
faces of the services. The second is the case when an agent knows all there is to know
about the underlying resources i.e. workflow, characteristics, network topology, etc.
Both of these scenarios are important depending on how the agent behaves when a
task needs to executed on one of its services.

The requestor agent submits the job either directly to the service or to the solver
agent. In what concerns the rest of this paper we deal with the latter case. The
former option involves bypassing the VO scheduler represented by the agent. This
happens because the task will be handled directly by the internal resource scheduler.
As a consequence any further scheduling optimization at the meta-scheduling level
would be hindered.

7 Scheduling Service Oriented Workflows Inside Clouds 173

The scheduling module inside an agent implements a scheduling heuristics
designed to deal with SOE. The scheduling heuristics can be seen as the strat-
egy used by the agent to select a resource for its tasks, while the interaction with
other agents represents the negotiation phase. The negotiation proceeds based on
rules embedded inside the strategy. A common bargaining language and a set of
predefined participation rules are used to ensure a successful negotiation.

Each agent has several services it governs (see Fig. 7.5). Attached to them there
are task queues. Depending on the scheduling heuristics only a given number of
tasks can be submitted (by using the execution module) to a service at any given
moment. Once submitted to the service it is the job of the internal scheduler to assign

Fig. 7.5 Task scheduling inside the agent’s domain

174 M.E. Frîncu

the tasks to the resources. Similarly to the service level queues there could also
exist queues attached to physical resources. Reallocation between these queues is
accomplished by the internal scheduler and is independent on any meta-scheduling
decisions taken by agents. Each resource behind a service can implement its own
scheduling policies. Usually tasks submitted to a service are not sent back to the
agent for meta-scheduling. There are many ways of checking whether a task has
been completed or not. One of them requires the scheduling agent to periodically
query the service to which it has submitted it for the result. In Section 7.5.3 we
briefly present a prototype where internal schedulers have their own scheduling
heuristics and work independently from the agent meta-scheduling heuristics.

7.5.2 Scheduling Through Negotiation

The central entity of every agent based scheduling platform is the scheduling mech-
anism. Based on its rules agents make active/passive decisions on whether to move
or to accept new tasks. Every decision is proceeded by a negotiation phase where
the agent requests/receives information from other agents and decides, based on the
scheduling heuristics, which offer to accept. Negotiation requires both a language
and a set of participation rules (Ramchurn, 2004). Depending on the VO policy and
on the adherence of other VOs to it many types of negotiation can be used. Examples
include game theory models (Rosenschein & Zlotkin, 1994), heuristic approaches
(Faratin, Sierra, & Jennings, 2001) and argument based (Parsons, Sierra, &
Jennings, 1998) solutions.

A minimal set of locutions has been devised for the communication language
used by our platform:

• requestOffer(i,j,k): agent i requires an offer from agent j for a task k. Task
k contains all the information required to make a scheduling decision. This
may include (if available): estimated execution times, estimated transfer costs,
execution deadlines, required input, etc.;

• sendOffer(j,i,k,p): agent j sends an offer of price p to agent i for the execution of
task k. The price p represents the cost to execute task k on resource j. Measuring
costs depends on the scheduling heuristics. For example it could represent the
estimated time required for executing the task on a service belonging to agent j;

• acceptOffer(i,j,k): agent i accepts the offer of agent j for executing task k;
• sendTask(i,j,k): agent i sends for execution task k to a service provided by

agent j;
• rejectOffer(i,j,k): agent i rejects the offer of agent j for executing task k;
• requestTasks(i,j): agent i informs agent j that it is willing to execute more tasks;
• requireDetails(i,j): agent i informs agent j that it requires more details on the

services/resources under the latter’s management. More specifically they refer to
details (WSDL URL for example) on the service proposed by agent j;

7 Scheduling Service Oriented Workflows Inside Clouds 175

• sendDetails(j,i,d): agent j sends available details to agent i. These details contain
only publicly available data as result of internal policies;

• informTaskStatus(i,j,k,m): agent i informs by using message m agent j about the
status of a task k. For example the message could contain the result of a task
execution.

Participation rules are required in order to prohibit agents from saying something
they are not allowed to say at a particular moment. Figure 7.6 shows participation
rules between these locutions in the form of a finite state machine:

A negotiation starts either from a request for more tasks from an agent j or from
a request for offers for a given task which an agent i decided to relocate. There
is a permanent link between the workflow engine agent and the scheduling agent
responsible for the VO in which the engine executes. It is to this agent where tasks

Fig. 7.6 State transitions between the communication language locutions

176 M.E. Frîncu

are placed first. Once a new task has been sent to this agent it is its responsibil-
ity to find and negotiate the execution on a resource which has the highest chance
of minimizing the deadline constraint. Workflow engines agents are similar with
scheduling agents and can communicate with them. However they cannot schedule
tasks on resources. Their only purpose is to provide an interface between the engine
and the meta-scheduling platform.

When scheduling workflows an important problem that needs to be integrated
inside the negotiation phase occurs. Considering the execution of a task on a service
that provides a result which can only be further used on services belonging to the
same VO, any other possible solutions outside of that VO would be ignored. It is
therefore the job of the requestor agent to negotiate for a solution that maximizes the
search set. For that reason a balance between the best time cost at a given moment
and future restrictions needs to be achieved. As an example, selecting the fastest
service for executing the task could be transformed into selecting the service which
executes the task faster and without restrictions on using the result.

In case an agent j has requested more tasks from another agent i the latter will
ask the former for offers regarding the cost of executing some of its tasks. At this
point agent j will send back to agent i an offer for the task in question.

Based on this offer agent i will ask for more details regarding the available ser-
vices which will allow it to make a proper decision: it will either reject or accept
the offer. In case agent i accepts the offer of agent j the task will be submitted to a
service queue governed by the latter agent (see Fig. 7.5). In return it will send back
a message on the task status. Once the task is completed the result will be sent back
to the workflow agent which will communicate it to the engine. The engine will use
the result to select consequent tasks for scheduling and execution.

In the frame of the presented negotiation protocol the key element is played by
the moment a request for a relocation offer or for new tasks is made. This point in
time basically marks the starting of the negotiation.

The problem of properly selecting the moment of an offer request has been
addressed in our paper (Frincu, 2009a). The proposed scheduling heuristics incorpo-
rates this reallocation moment and it is shown that the schedule outcome is directly
influenced by it.

In order to extend this approach to SOE, a deadline-based approach has been
investigated in paper (Frincu, 2009b). The study is based on the fact that in SOE
users usually want to minimize their costs with regard to usage time and thus provide
an execution deadline for each task inside their workflows. The aim of the schedule
is to minimize the global task lateness i.e. the difference between the actual task
finish time and the user given deadline time.

The scheduling heuristics is called DMECT (Frincu, 2009a) (Dynamic
Minimization of Estimated Completion Time). It periodically computes, for every
task, the Time Until Deadline (TUD), the Local Waiting Time (LWT) – the time
since it was assigned to the current service queue – and the Total Waiting Time
(TWT) – time since the task’s submission. From these values a decision on whether
to move the task or not is taken by checking if the TUD/TWT – LWT is smaller

7 Scheduling Service Oriented Workflows Inside Clouds 177

than 0 or not. If the value is smaller a requestOffer action is taken. It must be
noted that when the decission to relocate the task is taken, all the available ser-
vices are taken into consideration. These include both internal (part of the current
agent domain) and external (obtained from the requestOffer inquiry) ones. In this
way every existing service gets a fair chance for competing for tasks. It can be eas-
ily seen that the relocation relation will try to relocate tasks faster as their deadline
approaches.

As a response to a requestOffer inquiry, every agent will perform a sendOffer
action which will inform the requestor agent on possible choices. Every reply typi-
cally contains a cost for the task’s execution on its best service. If the initial inquiry
also contained a lower bound for that cost a list of services offering better prices
is returned. The cost for scheduling is made up of execution times possible com-
bined with monetary costs. For example when inquired, each agent will compute
the estimated execution time on every service and return only those which have val-
ues smaller than the initially provided limit. Alternatively it could return only the
smallest value, ensuring that the best available offer it had was made.

In case where it is impossible to estimate the execution time due to insufficient
data or internal policies the length of a service queue could be used as measure.
In (Frincu, 2009b) we have shown that the smaller a queue is the likelihood that it
executes tasks faster is.

After gathering all the costs the requestor agent will select the best one according
to the scheduling heuristics i.e. smallest execution time in our example. All other
offers will be rejected. Once selected the task will be sent to the selected solver
agent which will place the task in the service queue and the LWT value for the
relocated task will be set to 0. In the scenario that the task will not get executed
on the newly elected service as well, i.e. TUD/TWT – LWT < 0, the solver agent
will send a requestOffer inquiry to other agents, thus becoming the newly requestor
agent for that task.

Deciding when to request for new tasks is another important case which triggers
the negotiation process. In this case an agent sends a requestTasks message to all the
other agents informing them about its willingness to accept tasks. Once this message
has been sent agents will begin sending requestOffers to it for tasks they wish to
reallocate. From this point the negotiation proceeds similarly with the previously
discussed case.

Depending on the policy the request for new tasks can be done periodically or
when the load of the services under an agent’s supervision drops below a certain
limit. Depending on the scheduling policy this approach of actively searching new
tasks could be inefficient. For example in our scenario using the DMECT heuristics
such a request would have no effect until at least one task exceeds its staying limit
on a resource queue. Other scheduling heuristics based on simple load balancing
techniques such as the one presented in Frincu et al., (2009) could be more suited for
this scenario. In these cases there are no conditions preventing tasks from migrating
between agents. Once an agent decides that the load on its services has dropped
sufficiently new tasks can be requested.

178 M.E. Frîncu

7.5.3 Prototype Implementation Details

In this section we present some implementation aspects of the scheduling platform
prototype. The platform relies on JADE (Bellifemine, Poggi, & Rimassa, 2001) as
an agent platform and on the OSyRIS (OSYRIS WorkFlow Engine, 2010) engine
for workflow enactment.

JADE facilitates the development of distributed applications following the agent-
oriented paradigm and is in fact a FIPA (Foundation for Intelligent Physical Agents)
compliant multi-agent middleware. It is implemented in the Java language and
provides an Eclipse plug-in which eases the development process by integrating
development, deployment and debugging graphical tools. In addition JADE can be
distributed across several resources and its configuration can be controlled through
a remote graphical user interface. Agents can migrate among these resources freely
at any time. Also JADE provides: a standard architecture for scheduling agent
activities; a standard communication protocol by using the Agent Communication
Language (ACL); and allows the integration of higher functionality by allowing
users to include their own Prolog modules for activity reasoning. Even though
the simple model of JADE agents makes the development easier it requires a
considerable amount of effort for including intelligence when complex control is
required.

Paper (Poggi, Tomaiuolo, & Turci, 2004) presents an extension to JADE where
the platform is augmented with two types of agents with the aim of paving the way
for a more flexible agent cloud system. The two types of agents are: the BeanShell
agent responsible for sending and executing behaviors coming from other agents;
and the Drools agent responsible for receiving and executing rules coming from
other agents. Authentication and authorization mechanisms are offered for both
types of agents.

OSyRIS is a workflow enactment engine inspired by nature where rules are
expressed following the Event Condition Action paradigm: tasks are executed only
when some events occur and additional optional conditions are met. In OSyRIS
events represent the completion of tasks and conditions are usually placed on the
output values. A single instruction is used all the rest (split, join, parallel, sequence,
choice, loop) deriving from it: LHS -< RHS | condition, salience, where LHS (Left
Hand Side) represents the tasks that need to be completed before executing the RHS
(Right Hand Side) tasks. The engine relies on a chemical metaphor where tasks play
the role of molecules and the execution rules are the reactions.

In order to simulate VOs we have used two clusters available at the university.
One consisting of 8 Pentium dual-core nodes with 4 GB of RAM each (called VO1)
and the other having 42 nodes with 8 cores and 8 GB of RAM each. The latter cluster
is divided into 3 blades (called VO2, VO2 and VO3) each with 14 nodes each.
To each blade there is attached one scheduling agent which manages the services
running on them. A single agent is used for governing the entire VO1. Nodes are
paired and each pair is exposed through a service handled by the agent handling the
governing VO. The agents are registered to a yellow page repository as depicted in
Fig. 7.4. For inter-agent task scheduling the DMECT heuristics is used. Although

7 Scheduling Service Oriented Workflows Inside Clouds 179

different SAs could be used for local resource scheduling we have opted for a single
one: the MinQL (Frincu et al., 2009) heuristics.

The scheduling scenario proceeds as follows: once a scheduling agent receives a
task, it attaches it to one of its service queues (see Fig. 7.5). Tasks are received either
by negotiating with other agents or directly from a workflow agent. The negotiation
protocol is similar with the one in Fig. 7.6 and uses the DMECT SA’s relocation
condition (Frincu, 2009a) as described in Section 7.5.2. Each service can execute
at most k instances simultaneously. Variable k is equal to the number of processors
inside the node pair. Once sent to a service a task cannot be sent back to the agent
unless explicitly specified in the scheduling heuristics. Tasks sent to services are
scheduled inside the resource by using the MinQL SA which uses a simple load
balancing technique. Scheduling agents periodically query the service for completed
tasks. Once one is found the information inside it is used to return the result to
the agent responsible for the workflow instance. This passes the information to the
engine which in turn passes the consequent set of tasks to the agent for scheduling.

In order to simulate the cloud heterogeneity in terms of capabilities services
offer different functionalities. In our case services offer access to both CASs and
image processing methods. As each CAS offers different functions for handling
mathematical problems so does the service exposing it. The same applies for the
image processing services that do not implement all the available methods on every
service. An insight on how CASs with different capabilities can be exposed as
services is given in (Petcu, Carstea, Macariu, & Frincu, 2008).

7.6 Conclusions

In this paper we have presented some issues regarding task scheduling when services
from various providers are offered. Problems such as estimating runtimes and trans-
fer costs; service discovery and selection; trust and negotiation between providers
for accessing their services; or making the independent resource scheduler cooper-
ate with the meta-scheduler, have been discussed. As described much of the existing
scheduling platforms are grid oriented and cloud schedulers are only beginning to
emerge. As a consequence a MAS approach to the cloud scheduling problem has
been introduced. MAS have been chosen since they provide greater flexibility and
are distributed by nature. They could also represent a good choice for scheduling
scenarios where negotiation between vendors is required. Negotiation is particularly
important when dealing with workflows where tasks need to be orchestrated together
and executed under strict deadlines in order to minimize user costs. This is due to
the fact that vendors have different access and scheduling policies and therefore
selecting the best service for executing a task with a provided input becomes more
than just a simple reallocation problem. The prototype system uses a single type
of agents which combine multiple functionalities. The resulting meta-scheduler
maintains the autonomy of each VO inside the cloud.

The presented solution is under current development and future tests using
various SAs and platform configurations are planned.

180 M.E. Frîncu

Acknowledgments This research is partially supported by European Union Framework 6 grant
RII3-CT-2005-026133 SCIEnce: Symbolic Computing Infrastructure in Europe.

References

Abramson, D., Buyya, R., & Giddy, J. (2000). A computational economy for grid computing and
its implementation in the NIMROD-G resource broker. Future Generation Computer Systems,
18(8), 1061–1074.

Active BPEL. (2010). Retrieved January 7, 2010, from http://www.activebpel.org/.
Ali, A., Bunn, J., Cavanaugh, R., van Lingen, F., Mehmood, M. A., Steenberg, C., & Willers, I.

(2004). Predicting Resource Requirements of a Job Submission. Proceedings of the Conference
on Computing in High Energy and Nuclear Physics.

Banerjee, S., Mukherjee, I., & Mahanti, P. K. (2009). Cloud computing initiative using mod-
ified ant colony framework. World Academy of Science, Engineering and Technology, 56,
221–224.

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Jade: A FIPA2000 compliant agent develop-
ment environment. Proceedings of the 5th International Conference on Autonomous Agents,
Montreal, Canada, 216–217.

Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., et al. (2003). Adaptive
Computing on the Grid using APPLES. IEEE Transactions on Parallel and Distributed
Systems, 14(4), 369–382.

Buyya, R., Abramson, D., & Giddy, J. (2000). Nimrod/g: An architecture for a resource man-
agement and scheduling system in a global computational grid. Proceedings of the 4th
International Conference on High Performance Computing in Asia-Pacific Region, Vol. 1,
Beijing, China, 283–289.

Cao, J., Jarvis, S. A., Saini, S., Kerbyson, D. J., & Nudd, G. R. (2002). Arms: An agent-based
resource management system for grid computing. Scientific Programming, 10(2), 135–148.

Cao, J., Kerbyso, D. J., Papaefstathiou, E., & Nudd, G. R. (2000). Performance modelling of
parallel and distributed computing using pACE. Proceedings of 19th IEEE International
Performance, Computing and Communication Conference, Phoenix, AZ, 485–492.

Cao, J., Spooner, D. P., Jarvis, S. A., & Nudd, G. R. (2005). Grid load balancing using intelligent
agents. Future Generation Computer Systems, 21(1), 135–149.

Carstea, A., Frincu, M., Macariu, G., Petcu, D., & Hammond, K. (2007). Generic access to web
an grid-based symbolic computing services. Proceedings of the 6th International Symposium
in Parallel and Distributed Computing, Miami, FL, 143–150.

Carstea, A., Macariu, G., Frincu, M., & Petcu, D. (2008). Secure orchestration of symbolic grid
services, (IeAT Tech. Rep., No. 08-08).

Casanova, H., & Dongarra, J. (1998). Applying netsolve’s network-enabled server. EEE
Computational Science and Engineering, 5(3), 57–67.

Casanova, H., Obertelli, G., Berman, F., & Wolski, R. (2000). The APPLES parameter sweep
template: User-level middleware for the grid. Proceedings of Super Computing SC’00, Dallas,
TX, 75–76.

Chapin, S. J., Katramatos, D., Karpovich, J., & Grimshaw, A. (1999). Resource management in
legion. Future Generation Computer Systems, 15(5), 583–594.

Cloud Scheduler, (2010). Retrieved January 7, 2010, from http://cloudscheduler.org/.
David, L., & Puaut, I. (2004). Static determination of probabilistic execution times. Proceedings

of the 16th Euromicro Conference on Real-Time Systems, Catania, Sicily, 223–230.
Faratin, P., Sierra, C., & Jennings, N. R. (2001). Using similarity criteria to make issue trade-offs

in automated negotiation. Artificial Intelligence, 142(2), 205–237.
Foster, I. T. (2005). Globus toolkit version 4: Software for service-oriented systems. Proceedings

of International Conference on Network and Parallel Computing, Beijing, China, Vol. 3779,
2–13.

7 Scheduling Service Oriented Workflows Inside Clouds 181

Foster, I., Jennings, N.R., & Kesselman, C. (2004). Brain meets brawn: Why grid and agents need
each other. In Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multiagent Systems, New York, NY, 8–15.

Frincu, M. (2009). Dynamic scheduling algorithm for heterogeneous environments with regular
task input from multiple requests. In Lecture Notes in Computer Science, Vol. 5529, Geneva,
Switzerland, 199–210.

Frincu, M. (2009b). Distributed scheduling policy in service oriented environments. Proceedings
of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Timi Soara, Romania.

Frincu, M., Macariu, G., & Carstea, A. (2009). Dynamic and adaptive workflow execution platform
for symbolic computations. Pollack Periodica, Akademiai Kiado, 4(1), 145–156.

Fujimoto, N., & Hagihara, K. (2004). A comparison among grid scheduling algorithms for
independent coarse-grained tasks. International Symposium on Applications and the Internet
Workshops, Phoenix, AZ.

Garg, S. K., Yeo, C. S., Anandasivam, A., & Buyya, R. (2009). Energy-efficient scheduling of HPC
applications in cloud computing environments. (Tech. Rep.).

Google Application Engine, (2010). Retrieved January 7, 2010, from http://appengine.google.com.
Greenwood, M. (2004). Xscufl language reference. Retrieved January 7, 2010 from http://www.

mygrid.org.uk/wiki/Mygrid/WorkFlow#XScufl.
Lorpunmanee, S., Sap, M. N., Abdullah, A. H., & Chompooinwai, C. (2007). An ant colony

optimization for dynamic job scheduling in grid environment. World Academy of Science,
Engineering and Technology, 23, 314–321.

Maheswaran, M., Braun, T. D., & Siegel, H. J. (1999). Heterogeneous distributed computing.
Encyclopedia of Electrical and Electronics Engineering (Vol. 8, pp. 679–690). New York, NY:
Wiley.

Microsoft Live Mesh. (2010). Retrieved January 7, 2010, from http://www.mesh.com.
Muniyappa, V., (2010). Inference of task execution times using linear regression techniques.

(Masters Thesis, Texas Tech University, 2002).
OSyRIS Workflow Engine. (2010). Retrieved January 7, 2010, from http://gisheo.info.uvt.ro/

trac/wiki/Workflow.
Parsons, S., Sierra, C., & Jennings, N. R. (1998). Agents that reason and negotiate by arguing.

Journal of Logic and Computation, 8(3), 261–292.
Pautasso, C., Zimmermann, O., & Leymann, F. (2008). RESTful web services vs. big web ser-

vices: Making the right architectural decision. 17th International World Wide Web Conference,
Beijing, China.

Petcu, D., Carstea, A., Macariu, G., & Frincu, M. (2008). Service-oriented symbolic computing
with symGrid. Scalable Computing: Practice and Experience, 9(2), 111–124.

Poggi, A., Tomaiuolo, M., & Turci, P. (2004). Extending JADE for agent grid applica-
tions. Proceedings of the 13th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise, Stanford, CA, 352–357.

Radulescu, A., & van Gemund, A. (2001). A low-cost approach towards mixed task and data
parallel scheduling. Proceedings of the International Conference on Parallel Processing,
Wakamatsu, Japan.

Ramchurn, S. D. (2004). Multi-agent negotiation using trust and persuasion (Doctoral Thesis,
University of Southampton UK, 2004).

Ritchie, G. R. S., & Levine J. (2004). A hybrid ant algorithm for scheduling independent jobs in
heterogeneous computing environments. Proceedings of the 23rd Workshop of the UK Planning
and Scheduling Special Interest Group, Edinburgh.

Rosenschein, J. S., & Zlotkin, G. (1994). Roles of Encounter. Cambridge, MA: MIT Press.
Sakellariou, R., & Zhao, H., (2003). Experimental investigation into the rank function of the het-

erogeneous earliest finish time scheduling algorithm. In Lecture Notes in Computer Science,
Klagenfurt, Austria, Vol. 2790, 189–194.

182 M.E. Frîncu

Sakellariou, R., & Zhao, H. (2004). A hybrid heuristic for DAG scheduling on heterogeneous sys-
tems. Proceedings of the 18th International Symposium In Parallel and Distributed Processing,
Santa Fe, New Mexico.

Sauer, J., Freese, T., & Teschke, T. (2000). Towards agent-based multi-site scheduling. Proceedings
of the ECAI 2000 Workshop on New Results in Planning, Scheduling, and Design, Berlin,
Germany.

Shen, W., Li, Y., Genniwa, H., & Wang, C. (2002). Adaptive negotiation for agent-based grid
computing. Proceedings of the Agentcities/AAMAS’02, Bologna, Italy.

Smith, W., Foster, I., & Taylor, V. E. (2004). Predicting application run times with historical
information. Journal of Parallel and Distributed Computing, 64(9), 1007–1016.

Thain, D., Tannenbaum, T., & Livny, M. (2005). Distributed computing in practice: The condor
experience. Concurrency and Computation: Practice and Experience, 17(2–4) 323–356.

UDDI. (2010). Retrieved January 7, 2010, from www.uddi.org/pubs/uddi-tech-wp.pdf.
van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2005). Yawl: yet another workflow language.

Information Systems, 30(4), 245–275.
Weichhart, G., Affenzeller, M., Reitbauer, A., & Wagner, S. (2004). Modelling of an agent-based

schedule optimisation system. Proceedings of the IMS International Forum, Cernobbio, Italy,
79–87.

Weissman, J. B. (1998). Metascheduling: A scheduling model for metacomputing systems. The
7th International Symposium on High Performance Distributed Computing, Chicago, Illinois,
USA, 348–349.

Wolniewicz, P., Meyer, N., Stroinski, M., Stuempert, M., Kornmayer, H., Polak, M., et al. (2007).
Accessing grid computing resources with G-eclipse platform. Computational Methods in
Science and Technologie, 13(2) 131–141.

WS-BPEL 2.0. (2010). Retrieved January 7, 2010, from http://docs.oasis-open.org/wsbpel/
2.0/wsbpel-v2.0.pdf.

WS Security. (2010). Retrieved January 7, 2010, from http://www.ibm.com/developerworks/
library/specification/ws-secure/.

WS Trust 1.4. (2010). Retrieved January 7, 2010, from http://docs.oasis-open.org/ws-sx/ws-trust/
v1.4/ws-trust.html.

WSDL. (2010). Retrieved January 7, 2010, from http://www.w3.org/TR/wsdl.

Chapter 8
The Role of Grid Computing Technologies
in Cloud Computing

David Villegas, Ivan Rodero, Liana Fong, Norman Bobroff, Yanbin Liu,
Manish Parashar, and S. Masoud Sadjadi

Abstract The fields of Grid, Utility and Cloud Computing have a set of com-
mon objectives in harnessing shared resources to optimally meet a great variety
of demands cost-effectively and in a timely manner Since Grid Computing started
its technological journey about a decade earlier than Cloud Computing, the Cloud
can benefit from the technologies and experience of the Grid in building an infras-
tructure for distributed computing. Our comparison of Grid and Cloud starts with
their basic characteristics and interaction models with clients, resource consumers
and providers. Then the similarities and differences in architectural layers and key
usage patterns are examined. This is followed by an in depth look at the technologies
and best practices that have applicability from Grid to Cloud computing, including
scheduling, service orientation, security, data management, monitoring, interoper-
ability, simulation and autonomic support. Finally, we offer insights on how these
techniques will help solve the current challenges faced by Cloud computing.

8.1 Introduction

Cloud computing exploits the advances in computing hardware and programming
models that can be brought together to provide utility solutions to large-scale com-
puting problems. At the hardware level, the last half century has seen prolific
progress in computing power. This results from many improvements at the processor

D. Villegas (B) and S. Masoud Sadjadi
CIS, Florida International University, Miami, FL, USA
e-mails: {dvill013; sadjadi}@cis.fiu.edu

I. Rodero and M. Parashar
NSF CAC, Rutgers University, Piscataway, NJ, USA
e-mails: {irodero; parashar}@rutgers.edu

L. Fong, N. Bobroff, and Y. Liu
IBM Watson Research Center, Hawthorne, NY, USA
e-mails: {llfong; bobroff; ygliu}@us.ibm.com

183B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_8, C© Springer Science+Business Media, LLC 2010

184 D. Villegas et al.

level, and in recent years the availability of low cost multi-core circuits. Additional
progress in high speed, low latency interconnects, has allowed building large-scale
local clusters for distributed computing, and the extension to wide-area collabo-
rating clusters in the Grid. Now, the recent availability of hardware support for
platform virtualization on commodity machines provides a key enabler for Cloud
based computing.

Software models move in lockstep to match advances in hardware. There is a con-
siderable practical experience implementing distributed computing solutions and in
supporting parallel programming models on clusters. These models now work to
leverage the concurrency provided by multi-core and multi-systems. Additionally,
there are two other areas of software evolution that are moving quickly to support
the Cloud paradigm: one is the improving maturity and capability of software to
manage virtual machines, and the other is the migration from a monolithic approach
in constructing software solutions to a service approach in which complex processes
are composed of loosely coupled components.

These latest steps in the evolution of hardware and software models have led
to Grid and Cloud Computing as paradigms that reduce the cost of software
solutions. Harnessing shared computing resources from federated organizations to
execute applications is the key concept of Grid Computing, as proposed by Foster,
Kesselman, and Tuecke (2001): “Grid concept is coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organizations...The sharing
is, necessarily, highly controlled, with resource providers and consumers defining
clearly and carefully just what is shared, who is allowed to share, and the conditions
under which sharing occurs.”

Evolving from the technologies of Grid computing, Utility Computing is “a
business model in which computing resources are packaged as metered services”
(Foster, Zhao, Raicu, & Lu, 2008) to meet on demand resource requirements. The
metered resource usage is similar to electric and water utility in delivery and the pay-
ment model is pay-as-you-go. The Utility Computing projects also introduced and
demonstrated the ideas of dynamic provisioning of computing resources (Appleby
et al., 2001).

Armbrust et al. (2009) defined Cloud Computing as providing application
software delivered as services over the Internet, and the software and hardware
infrastructure in the data centers that provide those services using business models
that are similar to Utility Computing. Metering of services to support pay-as-you-go
business models is suitable to application software (i.e., software as services, SaaS),
platform (i.e., platform as services, PaaS), and infrastructure (i.e., infrastructure as
services, IaaS). Moreover, Cloud Computing leverages emerging technologies such
as the Web 2.0 for application services, and virtualization and dynamic provision-
ing support for platform services (Buyya, Yeo, Srikumar Venugopal, & Brandic,
2009).

Grid Computing, Utility Computing and Cloud Computing differ in aspects as
their architectures, the types of coordinated institutions, the types of resources
shared, the cost/business models, and the technologies used to achieve their objec-
tives. However, all these computing environments have the common objectives in
harnessing shared resources to optimally meet a variety of demands cost-effectively

8 The Role of Grid Computing Technologies in Cloud Computing 185

and at timely manner. Since Grid Computing started its technological journey
about a decade earlier than Cloud Computing, are there lessons to learn and
technologies to leverage from Grid to Cloud? In this chapter, we would like to
explore the experiences learnt in Grid and the role of Grid technologies for Cloud
computing.

The rest of this chapter is organized as follows:

• Introductory discussion on the basics of Grid and Cloud computing, and their
respective interaction models between client, resource consumer and provider
(Section 8.2)

• Comparison of key processes in Grid and Cloud computing (Section 8.3)
• Core Grid technologies and their applicability to Cloud computing (Section 8.4)
• Concluding remarks on the future directions of Grid and Cloud computing

(Section 8.5).

8.2 Basics of Grid and Cloud Computing

8.2.1 Basics of Grid Computing

Grid Computing harnesses distributed resources from various institutions (resource
providers), to meet the demands of clients consuming them. Resources from differ-
ent providers are likely to be diverse and heterogeneous in their functions (comput-
ing, storage, software, etc.), hardware architectures (Intel x86, IBM PowerPC, etc.),
and usage policies set by owning institutions. Developed under the umbrella of Grid
Computing, information services, name services, and resource brokering services
are important technologies responsible for the aggregation of resource information
and availability, selection of resources to meet the clients’ specific requirements and
the quality of services criteria while adhering to the resource usage policies.

Figure 8.1 shows an exemplary relationship of resource providers and con-
sumers for a collaborative Grid computing scenario. Clients or users submit their
requests for application execution along with resource requirements from their home
domains. A Resource broker selects a domain with appropriate resources to acquire
from and to execute the application or route the application to domain for execution
with results and status returning to the home domain.

8.2.2 Basics of Cloud Computing

IDC1 defined two specific aspects of Clouds: Cloud Services and Cloud Computing.
Cloud Services are “consumer and business products, services and solutions that are
delivered and consumed in real-time over the Internet” while Cloud Computing is
“an emerging IT development, deployment and delivery model, enabling real-time

1http://blogs.idc.com/ie/?p=190

186 D. Villegas et al.

Peer-to-Peer

Resource Domain A

Resource Domain B

Resource
Broker

job

job

Manual
submission

consumer provider

Resource Domain C

Automatic
job submission

Resource
Broker

Resource
Broker

Fig. 8.1 Grid collaborating domains

delivery of products, services and solutions over the Internet (i.e., enabling Cloud
services)”. In this chapter, we will focus the computing infrastructure and platform
aspects of the Cloud.

Amazon’s Elastic Compute Cloud2 popularized the Cloud computing model
by providing an on-demand provisioning of virtualized computational resources
as metered services to clients or users. While not restricted, most of the clients
are individual users that acquire necessary resources for their own usage through
EC2’s APIs without cross organization agreements or contracts. Figure 8.2 illus-
trates possible usage models from clients C1 and C2 for resources/services of Cloud
providers. As Cloud models evolve, many are developing the hybrid Cloud model
in which enterprise resource brokers may acquire additional needed resources from
external Cloud providers to meet the demands of submitted enterprise workloads
(E1) and client work requests (E2). Moreover, the enterprise resource domain and
Cloud providers may all belong to one corporation and thus form a private Cloud
model.

8.2.3 Interaction Models of Grid and Cloud Computing

One of the most scalable interaction models of Grid domains is peer-to-peer,
where most of the Grid participating organizations are both consumers and
providers. In practice, there are usually agreements of resource sharing among the

2http://www.amazon.com/ec2

8 The Role of Grid Computing Technologies in Cloud Computing 187

Resource Broker

Enterprise
Resource
Domain

Automatic
job submission

Cloud Provider B

Cloud Provider A

Manual
submission

virtualized

consumer provider

C1

C2

E2

E1

Fig. 8.2 Cloud usage models

peers. Furthermore, clients of consumer organizations in Grids use heterogeneous
resources from more than one resource provider belonging to the same Virtual
Organization (VO) to execute their applications. It is important for participating
resource providers and consumers to have common information models, interaction
protocols, application execution states, etc. The organization of Open Grid Forum
(OGF)3 has the goal of establishing relevant and necessary standards for Grid com-
puting. Some proposed standards include Job Submission Description Language
(JSDL), Basic Execution Service (BES) and others.

Currently, most of the Cloud providers offer their own proprietary service pro-
tocols and information formats. As Cloud computing becomes mature and widely
adopted, clients and consumer organizations would likely interact with more than
one provider for various reasons, including finding the most cost effective solutions
or acquiring a variety of services from different providers (e.g., compute providers
or data providers). Cloud consumers will likely demand common protocols and
standardized information formats for ease of federated usage and interoperabil-
ity. The Open Virtualization format (OVF) of the Distributed Management Task
Force (DMTF)4 is an exemplary proposal in this direction. Modeled after similar
formations in the Grid community, OGF officially launched a workgroup, named

3http://www.ogf.org/
4http://www.dmtf.org/standards/

188 D. Villegas et al.

the Open Cloud Computing Interface Working Group (OCCI-WG)5 to develop the
necessary common APIs for the lifecycle management of Cloud infrastructure ser-
vices. More standardization activities related to Cloud can be found in the wiki of
Cloud-Standards.org.6

8.2.4 Distributed Computing in the Grid and Cloud

The Grid encompasses two areas of distributed system activity. One is operational
with an objective of administrating and managing an interoperable collection of
distributed compute resource clusters on which to execute client jobs, typically sci-
entific/HPC applications. The procedures and protocols required to support clients
from complex services built on distributed components that handle job submission,
security, machine provisioning, and data staging. The Cloud has similar operational
requirements for supporting complex services to provide clients with services on
different levels of support such application, platform and infrastructure. The Grid
also represents as a coherent entity a collection of compute resources that may
be under different administrative domains, such as universities, but inter-operate
transparently to form virtual organizations. Although interoperability is not a near
term priority, there is a precedent for commercial Clouds to move in this direc-
tion similarly to how utilities such as power or communication contract with their
competitors to provide overflow capacity.

The second aspect of distributed computing in the Grid is that job themselves are
distributed, typically running on tightly coupled nodes within a cluster and leverag-
ing middleware services such as MPICH. Jobs running in the Grid are not typically
interactive, and some may be part of more complex services such as e-science work-
flows. Workloads in Clouds usually consist of more loosely coupled distributed jobs
such as map/reduce, and HPC jobs written to minimize internode communication
and leverage concurrency provided by large multi-core nodes. Service instances that
form components of a larger business process workflow are likely to be deployed
in the Cloud. These workload aspects of jobs running in the Cloud or Grid have
implications for structuring the services that administer and manage the quality of
their execution.

8.3 Layered Models and Usage patterns in Grid and Cloud

There are many similarities in Grid and Cloud computing systems. We compare
the approaches by differentiating three layers of abstraction in Grid: Infrastructure,
Platform and Application. Then we map these three layers to the Cloud services
of IaaS, PaaS, and SaaS. An example of the relations among layers can be seen in
Fig. 8.3.

5http://www.occi-wg.org/doku.php?id=start
6http://cloud-standards.org/

8 The Role of Grid Computing Technologies in Cloud Computing 189

Fig. 8.3 Grid and cloud layers

8.3.1 Infrastructure

This is the layer in which Clouds share most characteristics with the original pur-
pose of Grid middleware. Some examples are Eucalyptus (Nurmi et al., 2009),
OpenNebula,7 or Amazon EC2. In these systems users can provision execution
environments in the form of virtual machines through interfaces such as APIs or
command line tools. The act of defining an execution environment and sending a
request to the final resource has many similarities with scheduling a job in the Grid.
The main steps, shared by all of the cited Cloud environments are discussed below.
We use Globus as the reference Grid technology.

• The user needs to be authorized to use the system. In Grid systems this is man-
aged through the Community Authorization System (CAS) or by contacting a
Certificate Authority that is trusted by the target institution, which issues a valid
certificate. Clouds usually offer web forms to allow the registration of new users,
and have additional web applications to maintain databases of customers and
generate credentials, such as the case of Eucalyptus or Amazon.

• Once the user has a means of authenticating he needs to contact a gateway that
can validate him and process his request. Different mechanisms are employed
to carry users’ requests, but Web Services are the most common of them. Users
either write a custom program that consumes the WS offered by providers, or use
available tools. Examples include the Amazon API tools for Amazon EC2, the
euca2ools for Eucalyptus or the OpenNebula command line interface. Similarly,

7http://www.opennebula.org

190 D. Villegas et al.

Globus offers a set of console-based scripts that facilitate communication with
the Grid.

• As part of the request for resource usage, users need to specify the action or task
to be executed on the destination resources. Several formats are available for this
purpose. Globus supports a Resource Specification Language (RSL) and a Job
Submission Description Language (JSDL) that can define what process is to be
run on the target machine, as well as additional constraints that can be used by a
matchmaking component to restrict the class of resources to be considered, based
on machine architecture, processor speed, amount of memory, etc. Alternatively,
Clouds require different attributes such as the size of the execution environment
or the virtual machine image to be used.

• After the job execution or the environment creation requests are received, there
is a match-making and scheduling phase involved. The GRAM component from
Globus is specially flexible in this regard, and multiple adapters allow different
treatments for jobs: for example, the simplest job manager just performs a fork
call to spawn a new process on the target machine. More advanced and widely
used adapters transfer job execution responsibility to a local resource manager
such as Condor, LoadLeveler or Sun Grid Engine. These systems are able of
multiplexing jobs that are sent to a site into multiple resources. Cloud systems
have simpler job management strategies, since the type of jobs are homogeneous
and don’t need to be adapted to a variety of resources such as in the case of
the Grid. For example, Eucalyptus uses a Round Robin scheduling technique to
alternate among machines. OpenNebula implements a Rank Scheduling Policy
to choose the most adequate resource for a request, and supports more advance
features such as advance reservations through Haizea (Sotomayor, Keahey, &
Foster, 2008).

• One of the common phases involved in job submission is transferring the nec-
essary data to and from the execution machine. The first of them, usually called
stage-in, involves retrieving the input data for the process from a remote destina-
tion, such a GridFTP server. When the amount of data is large, a mapping service
such as a Replica Location Service (RLS) can be used to translate a logical file
name to a location. The second part of the process, stage-out, consists in either
transferring the output data to the user’s machine or to place it in a repository,
possibly using the RLS. In the case of Cloud computing, the most important data
that has to be transferred is the definition of an execution environment, usually
in terms of Virtual Machine images. Users upload the data describing the oper-
ating system and packages needed to instantiate the VM and later reference it to
perform operations such as booting a new machine. There is no standard method
for transferring data in Cloud systems, but it is worth noting Amazon’s object
storage solution, the Simple Storage Service (S3), which allows users to move
entities from 1 byte to 5 GB in size.

• Finally, Grid and Cloud systems need to offer users a method to monitor
their jobs, as well as their resource usage. This facility can also be used by
site administrators to implement usage accounting in order to track resource
utilization and enforce user quotas. In the context of Globus, there are two

8 The Role of Grid Computing Technologies in Cloud Computing 191

modules that can be used for this purpose, the first is GRAM itself, which
allows user to query previously submitted jobs’ status. The second method of
acquiring information about the Grid’s resources is provided by the Monitoring
and Discovery Service (MDS), which is in charge of aggregating resources’
data and making it available to be queried. High-level monitoring tools have
been developed on top of existing Cloud management systems such as Amazon
CloudWatch.

8.3.2 Platform

This layer is built on top of the physical infrastructure and offers a higher level of
abstraction to users. The interface provided by a PaaS solution allows developers
to build additional services without being exposed to the underlying physical or
virtual resources. These facts enable additional features to be implemented as part
of the model, such as presenting seemingly infinite resources to the user or allowing
elastic behavior on demand. Examples of Cloud solutions that present these features
are Google App Engine,8 Salesforce’s force.com9 or Microsoft Azure.10

Several solutions that can be compared to the mentioned PaaS offerings exist
in the Grid, even though this exact model cannot be exactly replicated. We define
Platform level solutions as those containing the following two aspects:

8.3.2.1 Abstraction from Physical Resources

The Infrastructure layer provides users with direct access to the underlying infras-
tructure. While this is required for the lower levels of resource interaction, in the
Platform level a user should be isolated from them. This allows developers to create
new software that is not susceptible to the number of provisioned machines or their
network configuration, for example.

8.3.2.2 Programming API to Support New Services

The Platform layer allows developers to build new software that takes advantage of
the available resources. The choice of API directly influences the programs that can
be built on the Cloud, therefore each PaaS solution is usually designed with a type
of application in mind.

With these characteristics Grid systems allow developers to produce new soft-
ware that take advantage of the shared resources in order to compare them with
PaaS solutions.

8http://code.google.com/appengine/
9http://www.force.com/
10http://www.microsoft.com/windowsazure/

192 D. Villegas et al.

• Libraries are provided by Grid middleware to access resources programmati-
cally. The Globus Java Commodity Grid (CoG) Kit (Laszewski et al., 2001) is an
example. The CoG Kit allows developers to access the Grid functionality from
a higher level. However, resources have to be independently addressed, which
makes programs tied to the destination sites. Additionally, it is linked to Globus
and makes applications dependent on a specific middleware.

• SAGA (Goodale et al., 2006) and DRMAA11 are higher level standards that aim
to define a platform independent set of Grid operations. While the former offers a
wide range of options such as job submission, security handling or data manage-
ment, the later focuses on sending and monitoring jobs. These solutions provide
a higher level of abstraction than the previous example, but are still tied to the
Grid concept of jobs as programs that are submitted to remote resources.

• An example of an API that bypasses the underlying Grid model to offer pro-
grammers a different paradigm to develop new software is MPICH-G2 (Karonis,
Toonen, & Foster, 2003). It consists of a library that can be linked to a program
that uses the Message Passing Interface (MPI) to transparently enable the appli-
cation to work on the Grid. The programmer can think in familiar terms even
though applications are Grid enabled.

• GridSuperscalar (Badia et al., 2003) is a programming paradigm to enable appli-
cations to run on the Grid. Programmers identify the functions of their code
which can be run on remote resources, then specify the data dependencies for
each of those functions, and after writing the code a runtime module determines
the data dependencies and places each of the tasks in the Grid, transferring data
accordingly so that each task can be completed.

• Another programming paradigm aimed at building new functionality on top of the
Grid is SWIFT (Zhao et al., 2007). It provides a language to define computations
and data dependencies, and is specially designed to efficiently run very large
numbers of jobs while easing the task of defining the order of execution or the
placing of data produced from one job to be consumed by another.

Probably the main difference in Cloud PaaS paradigms compared to the
described options is that Grid models need to use the lowest common denominator
when implementing new services. The reason for this is that the degree of compat-
ibility with the middleware is directly related to the number of resources available:
if a user’s service does not make any assumptions on the remote resources, it will
be able to use all of them normally; on the other hand, services requiring addi-
tional software to be installed on the target machines would have considerably fewer
candidates to for execution.

In the case of Clouds, this requirement is not as stringent for two main reasons:
the first one is that PaaS solutions are deeply tied to Cloud vendors, and there-
fore they are designed in hand with the rest of the infrastructure, and the second is
that provisioning resources with the required libraries is much easier than in Grid
computing, allowing new nodes to be spawned with the required environment. In

11http://www.drmaa.org/

8 The Role of Grid Computing Technologies in Cloud Computing 193

the case of Grids, having the required software installed in the execution resources
usually involves having a human operator do it, making the process more costly.

8.3.3 Applications

There is no clear distinctions between applications developed on Grids and those
that use Clouds to perform execution and storage. The choice of platform should not
influence the final result, since the computations delegated to the underlying systems
can take different shapes to accommodate to the available APIs and resources.

On the other hand, it is undeniable that the vast majority of Grid applica-
tions fall in the realm of scientific software, while software running in Clouds has
leaned towards commercial workloads. Here we try to identify some possible causes
for the different levels of adoption of these technologies for the development of
applications:

• Lack of business opportunities in Grids. Usually Grid middleware is installed
only in hardware intended for scientific usage. This phenomenon has not suc-
cessfully produced business opportunities that could be exploited by industry.
Conversely, Clouds are usually backed up by industry which have had better ways
to monetize their investments.

• Complexity of Grid tools. Perhaps due to the goal of providing a standardized,
one-size-fits-all solution, Grid middleware is perceived by many as complex and
difficult to install and manage. On the other hand, Cloud infrastructures have
usually been developed by providers to fit their organization’s needs and with a
concrete purpose in mind, making them easier to use and solution oriented.

• Affinity with target software. Most Grid software is developed with scien-
tific applications in mind, which is not true for the majority of Cloud systems.
Scientific programs need to get the most performance from execution resources
and many of them cannot be run on Clouds efficiently, for example because of
virtualization overhead. Clouds are more targeted to web applications. These dif-
ferent affinities to distinct paradigms make both solutions specially effective for
their target applications.

8.4 Techniques

Here we discuss the impact of techniques used in Grid computing that can be applied
in Clouds. From the time the concept of Grid was introduced, a variety of problems
had to be solved in order to enable its wide adoption. Some examples of these are
user interfacing (Section 8.4.1), data transfer (Section 8.4.2), resource monitoring
(Section 8.4.3) or security (Section 8.4.7). These basic techniques for the enable-
ment of Grids were designed to fulfill its main goals, namely, to allow the sharing
of heterogeneous resources among individuals belonging to remote administrative
domains. These goals determine the areas of application of the described techniques

194 D. Villegas et al.

in Clouds, therefore we will find the most valuable set of improvements to be in the
field of Cloud interoperability.

Clouds can not only benefit from the most fundamental techniques in Grid com-
puting: additional techniques that arose on top of these building blocks to bring
new functionality to Grids are also good candidates to be applied to Clouds. Among
these we can find Autonomic Computing (Section 8.4.4), Grid scheduling (Section
8.4.5), interoperation (Section 8.4.6) or simulation (Section 8.4.8).

The techniques discussed in this section are therefore spread through various
levels of the Grid architecture: some of them can be found in the lower layers, giv-
ing common services to other components, and others are built from the former
and extend them. Following the classification discussed in Section 8.3, we find that
some techniques belong to the Infrastructure layer, this is, have the main objec-
tive of resource management, and others are spread through the Infrastructure and
Platform layers, such as the Metascheduling techniques described in the scheduling
section.

8.4.1 Service Orientation and Web Services

The Cloud is both a provider of services (e.g. IaaS, PaaS, and SaaS) and a place to
host services on behalf of clients. To implement the former operational aspects while
maintaining flexibility, Cloud administrative functions should be constructed from
software components. The Grid faced similar challenges in building a distributed
infrastructure to support and evolve its administrative functions such as security,
job submission, and creation of Virtual Organizations. The architectural principle
adopted by the Grid is Service Orientation (SO) with software components con-
nected by Web Services (WS). This section summarizes contributions of the Open
Grid Forum (OGF) to SO in distributed computing and and how they apply to the
Cloud. SO as an architecture, and Web Services as a mechanism of inter-component
communication are explored here in the context of similarities between Grid and
Cloud requirements.

Grid designers realized the advantage of the loosely-coupled client and service
model being appropriately deployed in the distributed computing environments. The
original Grid approach to SO was Open Grid Services Infrastructure (OGSI). OGSI
was built on top of the emerging Web Services standards for expressing interfaces
between components in a language neutral way based on XML schemas. While WS
is an interface, OGSI attempted to make it object oriented by adding required meth-
ods. Subsequently, the Grid community worked within the WS standards to extend
WS specification based on experience using a SOA. This lead to the introduction of
Open Grid Services Architecture (OGSA), implemented in version 3 of the Globus
toolkit. OGSA contains key extensions to the WS standard which are now described.

In Grid and Cloud the most typical service components such as provisioning
an OS image, starting a virtual machine, or dispatching a job are long running. A
service composition of these components requires an asynchronous programming

8 The Role of Grid Computing Technologies in Cloud Computing 195

model. A consumer service component invokes a WS provider and is immediately
acknowledged so the caller does not hold his process open on a communication
link. The provider component asynchronously updates the consumer as the state
changes. Grid architects recognized the importance of supporting the asynchronous
model and integrated this approach into Web Services through the WS-Addressing
and WS-Notify extensions. WS-Addressing specifies how to reference not just ser-
vice endpoints, but objects within the service endpoint. Notification is based on
WS-Addressing which specifies the component to be notified on a state change.

Related to the long lived service operation and asynchronous communication
model is the requirement to maintain and share state information. There are many
ways to achieve statefulness, none simple, especially when multiple services can
update the same state object. In principle, a WS interface is stateless although of
course there are many ways to build applications on top of WS that pass state
through the operation messages. The challenge is to integrate the WS specifica-
tion with a standard for statefulness that does not disturb the stateless intent of WS
interface model. The OGF achieved this goal, developing the Web Service Resource
Framework (WSRF). WSRF allows factory methods in the WS implementation
to create objects, which are referenced remotely using the WS-Addressing stan-
dard. Persistent resource properties are exposed to coupled services through XML.
Introducing state potentially adds enormous complexity to a distributed system, and
the distribution of stateful data to multiple service components has the potential
for data coherence problems which would require distributed locking mechanisms.
The approach introduced by the Grid passes WS endpoints to the resources so that
synchronized access is provided by the service implementation.

One path to leveraging Grid technology experiences in the Cloud is to consider
building operation support services with a SO. The component services intercon-
nect using the suite of WS standards. The logic of composing the services is built
with modern business process design tools which produce a workflow. The design
workflow is exported in the form such as the Business Process Execution Language
(BPEL) and executed by a workflow engine. This implementation path of using
BPEL with WSRF to build a SOA has been demonstrated in an e-Science context
(Ezenwoye & Sadjadi, 2010; Ezenwoye, Sadjadi, Carey, & Robinson, 2007).

There is already some experience using WS and WSRF in the Cloud domain.
The Nimbus project12 uses the WS and WSRF model as an interface for clients to
access its Cloud workspaces.

8.4.2 Data Management

In Grid computing, data-intensive applications such as the scientific software in
domains like high energy physics, bio-informatics, astronomy or earth sciences

12http://www.nimbusproject.org/

196 D. Villegas et al.

involve large amounts of data, sometimes in the scale of PetaBytes (PB) and beyond
(Moore, Prince, & Ellisman, 1998).

Data management techniques to discover and access information are essential for
this kind of applications. Network bandwidth, transfer latency and storage resources
are as important as computational resources to determine the tasks’ latency and
performance. For example, a data-intensive application will preferably be run at a
site that has an ample and fast network channel to its dataset so that the network
overhead can be reduced, and if it generates a large amount of data, we would also
prefer a site that has enough storage space close to it.

Many technologies are applied in Grid computing to address data manage-
ment problems. Data Grids (Chervenak, Foster, Kesselman, Salisbury, & Tuecke,
2001) have emerged in scientific and commercial settings to specifically optimize
data management. For example, one of the services provided by Data Grids is
replica management (Chervenak et al., 2002; Lamehamedi, Szymanski, Shentu, &
Deelman, 2002; Samar & Stockinger, 2001; Stockinger et al., 2001). In order to
retrieve data efficiently and also avoid hot spots in a distributed environment, Data
Grids often keep replicas, which are either complete or partial copies of the origi-
nal datasets. Replica management services are responsible for creating, registering,
and managing replicas. Usually, a replica catalog such as Globus Replica Catalog
(Allcock et al., 2001) is created and managed to contain information of replicas that
can be located by users.

Besides data replication, caching is an effective method to reduce latency at
the data consumer side (Karlsson & Mahalingam, 2002). Other technologies such
as streaming, pre-staging, high-speed data movement, or optimal selection of data
sources and sinks are applied in Data Grids too. These data management technolo-
gies are also used in data sharing and distribution systems such as Content Delivery
Networks, Peer-to-Peer Networks and Distributed Databases. In Venugopal, Buyya,
and Ramamohanarao (2006), the author suggests a taxonomy of Data Grids and
compares Data Grids with other related research areas.

Standards for data services have been proposed in the Grid community. The
Open Grid Services Architecture (OGSA), which is adopted by the Global Grid
Forum (GGF), defines OGSA Data Services (Foster, Tuecke, & Unger, 2008) which
include data transfer, data access, storage resource management, data cache, data
replication, data federation, and metadata catalogues services. The Database Access
and Integration Services Working Group (DAIS-WG) (Antonioletti, Krause, &
Paton) at GGF is also developing standards of data services with an emphasis on
database management systems, which have a central role in data management such
as data storage, access, organization, authorization, etc. There are other groups at
GGF that work on data management in Grid computing such as Grid File System
Working Group, Grid Storage Management Working Group or GridFTP Working
Group. Among them, GridFTP Working Group works on improving the perfor-
mance of FTP and GripFTP (Allcock, 2003). GridFTP is an extension of FTP and it
supports parallel and striped data transfer and partial file transfer. FTP and GridFTP
are the most widely-used transport protocols when transferring bulk data for Grid
applications.

8 The Role of Grid Computing Technologies in Cloud Computing 197

The Globus Toolkit provides multiple data management solutions including
GridFTP, the Global Access to Secondary Storage(GASS), the Reliable File
Transfer (RFT), the Replica Location Service (RLS) and a higher-level Data
Replication Service (DRS) based on RFT and RLS. Specifically, GASS is a light-
weight data access mechanism for remote storage systems. It enables pre-staging
and post-staging of files and is integrated into the Globus Resource Access and
Monitoring (GRAM) to stage in executables and input data and if necessary, stage
out the output data and logs.

In the current state of Cloud computing, storage is usually close to computation
and therefore data management is simpler than in Grids, where the pool of execu-
tion and storage resources is considerably larger and therefore efficient and scalable
methods are required for placement of jobs and data location and transfer. Still, there
is the need to take data access into consideration to provide better application per-
formance. An example of this is Hadoop,13 which schedules computation close to
data to reduce transfer delays.

Same as Grid computing, Clouds need to provide scalable and efficient tech-
niques for transferring data. For example, we may need to move virtual machine
images, which are used to instantiate execution environments in Clouds, from
users to a repository and from the repository to hosting machines. Techniques for
improved transfer rates such as GridFTP would result in lower times for sites that
have high bandwidth, since they can optimize data transfer by parallelizing the
sending streams. Also, catalog services could be leveraged to improve distributed
information sharing among multiple participants such that the locating of user data
and data repositories is more efficient. The standards developed from Grid com-
puting practice can be leveraged to improve interoperability of multiple Clouds.
Finally, better integration of data management with the security infrastructure would
enable groups of trusted users. An application of this principle could be used in sys-
tems such as Amazon EC2 where VM images are shared by individuals with no
assurances about their provenance.

8.4.3 Monitoring

Although some Cloud monitoring tools have already been developed, they provide
high level information and, in most cases, the monitoring functionality is embedded
in the VM management system following specific mechanisms and models. The cur-
rent challenge for Cloud monitoring tools is providing information from the Clouds
and application/service requests with sufficient level of detail in nearly real time in
order to take effective decisions rather than providing a simple and graphical repre-
sentation of the Cloud status. To do this, different Grid monitoring technologies can
be applied to Clouds, specially those of them that are capable to provide monitor-
ing data in aggregate form due to the large scale and dynamic behavior of Clouds.

13http://hadoop.apache.org/

198 D. Villegas et al.

The experiences gained with the research of Grid monitoring standardization can
drive the definition of unified and standard monitoring interfaces and data models
to enhance interoperability among different Clouds.

Grid monitoring is a complex task, since the nature of the Grid means heteroge-
neous systems and resources. However, monitoring is essential in the Grid to allow
resource usage to be accounted for and to let users know whether and how their jobs
are running. This is also an important aspect for other tasks such as scheduling.

The OGF Performance Working Group developed a model for Grid monitoring
tools called Grid Monitoring Architecture (GMA) (Tierney et al., 2002). The archi-
tecture they propose is designed to address the characteristics of Grid platforms.
Performance information has a fixed, often short, lifetime of utility. Performance
data is often more frequently updated than requested, whereas usual database pro-
grams are firstly designed for queries. This means that permanent storage is not
always necessary, and that the tools must be able to answer quickly before the data
is obsolete. A Grid performance monitoring tool also needs to handle many different
types of resources and should be able to adapt when communication links or other
resources go down. Thus, monitoring systems should be distributed to suit these
requirements. In fact, a monitoring tool should find a good tradeoff between the
following characteristics: low latency for delivering data, high data rate, scalability,
security policies, and minimum intrusiveness.

The GMA is based on three types of components: producers, consumers and the
directory service (see Fig. 8.4). A producer is any component that can send events to
a consumer, using the producer interface (accepting subscription, queries and ability
to notify). In a monitoring tool, every sensor is encapsulated in a producer; however
a producer can be associated to many different sources: sensors, monitoring systems
or databases, for example. A consumer is any component that can receive event
data from a producer. The consumer interface contains subscription/unsubscription
routines and query mechanisms. To exchange data events, producers and consumers
have a direct connection, but to initiate the dialog, they need the directory service.

Several monitoring tools have been developed for Grid systems. Balaton et al.
(2004) provide a description and categorization of existing performance monitoring
and evaluation tools, and Serafeim et al. (Zanikolas & Sakellariou, 2005) propose a
taxonomy of Grid monitoring systems, which is employed to classify a wide range
of projects and frameworks. Some of these approaches are discussed below.

Fig. 8.4 Grid Monitoring
Architecture components

8 The Role of Grid Computing Technologies in Cloud Computing 199

Ganglia (Massie, Chun, & Culler, 2004) is a scalable distributed monitoring
system for high-performance computing environments such as clusters and
Grids. It is based on a hierarchical design targeted at federations of clus-
ters, relies on a multicast-based listen/announce protocol to monitor state
within clusters and uses a trace of point-to-point connections amongst repre-
sentative cluster nodes to federate clusters and aggregate their state. Data is
represented in XML and compressed using XDR. The Ganglia Web Frontend
can be used to inspect for example CPU utilization in the last hour or last
month. Ganglia has been deployed in many HPC infrastructures including
supercomputing facilities and large Grid systems.

Network Weather Service (NWS) (Nolski, Spring, & Hayes, 1999) is a dis-
tributed system for producing short-term performance forecasts based on
historical performance measurements. NWS provides a set of system sen-
sors for periodically monitoring end-to-end TCP/IP performance (bandwidth
and latency), available CPU percentage, and available non-paged memory.
Based on collected data, NWS dynamically characterizes and forecasts the
performance of network and computational resources.

Mercury (Balaton & Gombas, 2003) was designed to satisfy requirements of
Grid performance monitoring: it provides monitoring data represented as
metric via both pull and push access semantics and also supports steering
by controls. It supports monitoring of Grid entities such as resources and
applications in a generic, extensible and scalable way. Its design follows the
recommendations of the OGF GMA described previously.

OCM-G (Balis et al., 2004) is an OMIS-compliant application monitor devel-
oped within the CrossGrid project. It provides configurable online monitor-
ing via a central manager which forwards information requests to the local
monitors. However, OCM-G has a distributed architecture.

The Globus Monitoring and Discovery System (MDS) (Czajkowski, Fitzgerald,
Foster, & Kesselman, 2001) is another widely used monitoring tool that provides
information about the available resources on the Grid and their status. It is based on
the GLUE schema,14 which is used to provide a uniform description of resources
and to facilitate interoperation between Grid infrastructures. Other approaches for
large-scale systems have been developed such as MonALISA (Newman et al.,
2003), which is an extensible monitoring framework for hosts and networks in large-
scale distributed systems, and Palantir (Guim, Rodero, Tomas, Corbalan, & Labarta,
2006) that was designed to unify the access to different monitoring and information
systems for large scale resource-sharing across different administrative domains,
thus providing general ways for accessing all this information. Furthermore, dif-
ferent Grid portal frameworks incorporate monitoring functionalities such as in the
HPC-Europa Single Point of Access (Guim et al., 2007) and the P-GRADE Portal
(Podhorszki & Kacsuk, 2001).

14http://forge.ogf.org/sf/projects/glue-wg.

200 D. Villegas et al.

Several data centers that provide resources to Cloud systems have adopted
Ganglia as a monitoring tool. However, virtualized environments have more spe-
cific needs that have motivated Cloud computing technology providers to develop
their own monitoring system. Some of them are summarized below:

Amazon CloudWatch15 is a web service that provides monitoring for Amazon
Web Services Cloud resources such as Amazon EC2. It collects raw data
from Amazon Web Services and then processes the information into readable
metrics that are recorded for a period of two weeks. It provides the users
with visibility into resource utilization, operational performance, and overall
demand patterns - including metrics such as CPU utilization, disk reads and
writes, and network traffic.

Windows Azure Diagnostic Monitor16 collects data in local storage for every
diagnostic type that is enabled and can transfer the data it gathers to an Azure
Storage account for permanent storage. It can be scheduled to push the col-
lected data to storage at regular intervals or it can be requested an on-demand
transfer whenever this information is required.

The OpenNebula Information Manager (IM) is in charge of monitoring the
different nodes in a Cloud. It comes with various sensors, each one respon-
sible for different aspects of the compute resource to be monitored (CPU,
memory, hostname). Also, there are sensors prepared to gather information
from different hypervisors.
The monitoring functionality of Aneka (Vecchiola, Chu, & Buyya, 2009)
is implemented by the core middleware, which provides a wide set of ser-
vices including also negotiation of the quality of service, admission control,
execution management, accounting and billing. To help administrators to
tune the overall performance of the Cloud, the Management Studio provides
aggregated dynamic statistics.

Nimsoft Monitoring Solution17 (NMS), built on the Nimsoft Unified
Monitoring Architecture, delivers monitoring functionality to any combina-
tion of virtualized data center, on hosted or managed infrastructure, in the
Cloud on IaaS or PaaS or delivered as SaaS services. Specifically, it pro-
vides unified monitoring for data centers, private Clouds and public Clouds
such as Amazon WS, including service level and response time monitoring,
visualization and reporting.

Hyperic CloudStatus18 provides open source monitoring and management
software for all types of web applications, whether hosted in the Cloud
or on premise, including Amazon Web Services and Google App Engine.
CloudStatus gives users real-time reports and weekly trends on infrastructure
metrics.

15http://aws.amazon.com/cloudwatch/
16http://www.microsoft.com/windowsazure
17http://www.nimsoft.com/solutions/
18http://www.hyperic.com/

8 The Role of Grid Computing Technologies in Cloud Computing 201

8.4.4 Autonomic Computing

Inspired by the the autonomic nervous system, autonomic computing aims at design-
ing and building self-managing systems and has emerged as a promising approach
for addressing the challenges due to software complexity (Jeffrey & Kephart, 2001).
An autonomic system is able to make decisions to respond to changes in operat-
ing condition at runtime using high-level policies that are typically provided by an
expert. Such a system constantly monitors and optimizes its operation and auto-
matically adapts itself to changing conditions so that it continues to achieve its
objectives.

There are several important and valuable milestones to reach fully autonomic
computing: first, automated functions will merely collect and aggregate information
to support decisions by human users. Later, they will serve as advisors, suggesting
possible courses of action for humans to consider.

Self-management is the essence of autonomic computing and has been defined in
terms of the following four aspects of self-management (Jeffrey & Kephart, 2001).

• Self configuration: Autonomic systems will configure themselves automatically
in accordance with high-level policies representing business-level objectives that,
for example, specify what is desired and not how it is to be accomplished. When
a component is introduced, it will incorporate itself seamlessly, and the rest of
the system will adapt to its presence.

• Self optimization: Autonomic systems will continually seek ways to improve their
operation, identifying and seizing opportunities to make themselves more effi-
cient in performance and/or cost. Autonomic systems will monitor, experiment
with, and tune their own parameters and will learn to make appropriate choices
about keeping functions or outsourcing them.

• Self healing: Autonomic computing systems will detect, diagnose, and repair
localized problems resulting from bugs or failures in software and hardware.

• Self protection: Autonomic systems will be self-protecting in two senses. They
will defend the system as a whole against large-scale, correlated problems arising
from malicious attacks or cascading failures that remain uncorrected by self-
healing measures. They also will anticipate problems based on early reports from
sensors and take steps to avoid or mitigate them.

Figure 8.5 shows one basic structure of an autonomic element as proposed by
IBM. It consists of autonomic manager which monitors, analyzes, plans and exe-
cutes based on collected knowledge, and external environments including human
users and managed elements. The managed element could be hardware resources
such as CPU, memory and storage, software resources such as a database, a direc-
tory service or a system, or an application. The autonomic manager monitors the
managed elements and its external environment including changing users require-
ments, and analyzes them, computes a new plan reflecting changing conditions and
executes this plan.

202 D. Villegas et al.

Monitor

Analyze

Execute

Plan

Autonomic manager

Managed element

Users

Knowledge

Fig. 8.5 One basic structure
of an autonomic element.
Elements interact with other
elements and external
environments through
autonomic manager

Autonomic concepts have been effectively applied to distributed computing envi-
ronments such as Grids (Parashar, Li, & Chandra, 2010), and communication/
networking systems (Vasilakos, Parashar, Karnouskos, & Pedrycz, 2010), to monitor
resources, changing workloads or models (Quiroz, Gnana-Sambandam, Parashar,
& Sharma, 2009), and then adjust resource provisioning to satisfy requirements
and constraints (Quiroz, Kim, Parashar, Gnanasambandam, & Sharma, 2009). Such
capabilities have been incorporated into Cloud systems. We use CometCloud (Kim,
el Khamra, Jha, & Parashar, 2009) as a use case that provides autonomic capabil-
ities at all levels. CometCloud is an autonomic computing engine for Cloud and
Grid environments. It is based on decentralized coordination substrate, and sup-
ports autonomic applications on highly heterogeneous and dynamic Cloud/Grid
infrastructures, as well as integration of public/private Clouds/Grids. For example,
it supports autonomic cloudbursts, where the goal is to seamlessly (and securely)
bridge private enterprise Clouds and data centers with public utility Clouds or Grids
on-demand, to provide an abstraction of resizable computing capacity that is driven
by user-defined high-level policies. It enables the dynamic deployment of applica-
tion components, which typically run on internal organizational compute resources,
onto a public Cloud or Grids (i.e., cloudburst) to address dynamic workloads,
spikes in demands, economic/budgetary issues, and other extreme requirements.
Furthermore, given the increasing application and infrastructure scales, as well as
their cooling, operation and management costs, typical over-provisioning strategies
are no longer feasible. Autonomic cloudbursts can leverage utility Clouds to provide
on-demand scale-out and scale-in capabilities based on a range of metrics.

Other examples of Clouds technologies that are adopting autonomic computing
techniques from Grid computing are Aneka (Chu, Nadiminti, Jin, Venugopal, &
Buyya, 2007), VioCluster (Ruth, McGachey, & Xu, 2005) and CloudWatch.

8.4.5 Scheduling, Metascheduling, and Resource Provisioning

In the last few decades a lot of effort has been devoted to the research of job schedul-
ing, especially in centers with High Performance Computing (HPC) facilities. The
general scheduling problem consists of, given a set of jobs and requirements, a set

8 The Role of Grid Computing Technologies in Cloud Computing 203

of resources, and the system status, deciding which jobs to start executing and in
which resources. In the literature there are many job scheduling policies, such as
the FCFS approach and its variants (Schwiegelshohn & Yahyapour, 1998a, 1998b;
Feitelson & Ruddph, 1995). Other policies use estimated application information
(for example the execution time) which make no assumptions such as Smallest Job
First (SJF) (Majumdar, Eager, & Bunt, 1988), Largest Job First (LJF) (Zhu & Ahuja,
1993), Smallest Cumulative Demand First (SCDF) (Leutenegger & Vernon, 1990)
or Backfilling (Mu’alem & Feitelson, 2001), which is one of the most used in HPC
systems.

In Grid computing, scheduling techniques have evolved to incorporate other
factors, such as the heterogeneity of resources or geographical distribution. The
software component responsible for scheduling tasks in Grids is usually called
meta-scheduler or Grid resource broker. The main actions that are performed by
a Grid resource broker are: resource discovery and monitoring, resource selection,
job execution, handling and monitoring. However, it may be also responsible for
other additional tasks such as security mechanisms, accounting, quality of service
(QoS) ensuring, advance reservations, negotiation with other scheduling entities,
policy enforcement, migration, etc. A taxonomy and survey of Grid brokering sys-
tems can be found in (Krauter, Buyya, & Maheswaran, 2002). Some of their most
common characteristics are discussed as follows:

• They can involve different scheduling layers through several software compo-
nents between the Grid resource broker and the resources where the application
will run. Thus, the information and control available at the resource broker level
is far less than that available at a cluster scheduling level.

• A Grid resource broker usually does not have ownership or control over the
resources. Moreover, the cluster scheduling systems may have their own local
policies that can conflict with the Grid scheduling strategy.

• There are conflicting performance goals between the users and the resource own-
ers. While the users focus on optimizing the performance of a single application
for a specified cost goal, the resource owners aim to obtain the best system
throughput or minimize the response time.

While in Grid computing the most important scheduling tasks are optimiz-
ing applications response time and resource utilization, in Cloud computing other
factors become crucial such as economic considerations and efficient resource pro-
visioning in terms of QoS guarantees, utilization and energy. As virtualized data
centers and Clouds provide the abstraction of nearly-unlimited computing resources
through the elastic use of consolidated resources pools, the scheduling task shifts to
scheduling resources (i.e. provisioning application requests with resources). The
provisioning problem in question is how to dynamically allocate resources among
VMs with the goal of optimizing a global utility function. Some examples are min-
imizing resource over-provisioning (waste of resources) and maximizing QoS (in
order to prevent falling on under-provisioning that may led to providers revenue
loss). Different provisioning techniques for data centers have been proposed such

204 D. Villegas et al.

as those based on gang scheduling (Wiseman & Feitelson, 2003), those based on
advance reservations (Sotomayor, Montero, Llorente, & Foster, 2008), those based
on energy efficiency (Nathuji & Schwan, 2007; Ranganathan, Leech, Irwin, &
Chase, 2006) or those based on multi-tiered resource scheduling approaches (Song,
Wang, Li, Feng, & Sun, 2009).

Although Cloud computing scheduling is still challenging, several techniques
developed for Grid environments can be taken into account. Existing job schedul-
ing techniques can be also applied in virtualized environments, specially when
the application requests rates are those expected in future Clouds. In fact, some
approaches have started addressing this issue. Advance reservation developed for
Grid scheduling is used in the Haizea lease manager for OpenNebula. Different
SLA management policies for Grid computing have been extended for Clouds such
as those proposed by Buyya, Yeo, Venugopal, Broberg, & Brasdic, (2009). Market-
oriented allocation of resources policies developed for Grids have been realized for
Clouds in Aneka (Buyya et al., 2009). Sodan (2009) proposes adaptive schedul-
ing, which can adjust sizes of parallel jobs to consider different load situations and
different resource availability through job re-shaping and VM resizing. Moreover,
Cloud computing scheduling strategies can leverage Grid multi-layer architectures
and strategies such the cross-layer QoS optimization policy proposed by Chunlin
and Layuan (2008).

8.4.6 Interoperability in Grids and Clouds

One goal of Grid computing is to provide uniform and consistent access to resources
distributed in different data centers and institutions. This is because the majority of
Grids are formed based on regional as opposed to local initiatives so interoperation
is a key objective. Some examples are TeraGrid in US (Catlett, Beckman, Skow, &
Foster, 2006), GridX1 in Canada (Agarwal et al., 2007), Naregi in Japan (Matsuoka
et al., 2005) and EGEE in Europe (Berlich, Hardt, Kunze, Atkinson, & Fergusson,
2006). Interoperation is addressed at various architectural points such as the access
portal, resource brokering function, and infrastructure standardization.

Some production Grid environments, such as HPC-Europa (Oleksiak et al.,
2005), DEISA (Alessandrini & Niederberger, 2004) and PRACE,19 approach
interoperability using a uniform access interface to application users. Software
layers beneath the user interface then abstract the complexity of the underlying
heterogeneous supercomputing infrastructures.

One tool that takes this approach for Grid interoperation is meta-brokering
(Kertesz & Kacsuk, 2008), illustrated in Fig. 8.6. Meta-brokering supports the
Grid interoperability from the viewpoint of the resource management and schedul-
ing. Many projects explore this approach with varied emphases. Examples grouped
loosely by primary technical foci, are reviewed below.

19http://www.prace-project.eu/

8 The Role of Grid Computing Technologies in Cloud Computing 205

Fig. 8.6 Meta-brokering architecture

• Infrastructure interoperability

GridWay (Huedo, Montero, & Llorente, 2004), which is mainly based on
Globus, supports multiple Grids using Grid gateways (Huedo, Montero, &
Llorente, 2004) to access resources belonging to different domains. GridWay
forwards local user requests to another domain when the current one is over-
loaded.

Latin American Grid Meta-brokering (Badia et al., 2007; Bobroff et al., 2008),
proposed and implemented a common set of protocols to enable interoperability
among heterogeneous meta-schedulers organized in a peer-to-peer structure. The
resource domain selection is based on an aggregated resource information model
(Rodero, Guim, Corbalan, Fong, & Sadjadi, 2010) and jobs from home domain
can be routed to peer domains for execution.

• Resource Optimization in interoperated Grids

Koala Grid Scheduler (Mohamed & Epema, 2008) is focused on data and pro-
cessor co-allocation. To inter-connect different Grid domains as different Koala
instances. Their policy is to use resources from a remote domain only if the local
one is saturated. They use delegated matchmaking (Iosup, Epema, Tannenbaum,
Farelle, & Livny, 2007) to obtain the matched resources from one of the peer
Koala instances without routing the jobs to the peer domains.

InterGrid (Assuncao, Buyya, & Venugopal, 2008) promotes interlinking differ-
ent Grid systems through peering agreements based on economic approaches to
enable inter-grid resource sharing. This is an economic-based approach, where
business application support is a primal goal, and this also supposed to establish
sustainability.

206 D. Villegas et al.

VIOLA MetaScheduling Service (Seidel, Waldrich, Zeigler, Wieder, &
Yahyapour, 2007) implements Grid interoperability via SLA mechanisms
(WS-Agreement) and provides co-allocation of multiple resources based on
reservation.

Other projects explore the interoperability of Grid systems through the
use of standard mechanisms, protocols and interfaces. For example, the Grid
Interoperability Project (GRIP) (Brooke, Fellows, Garwood, & Goble, 2004), the
Open Middleware Infrastructure Institute for Europe (OMII-Europe) project20

or the work done within the P-GRADE portal (Kacsuk, Kiss, & Sipos, 2008).
GRIP was one of the first proposals enabling interoperability between UNICORE
and Globus Toolkit. OMII-Europe aimed to influence the adoption and devel-
opment of open standards that facilitate interoperability between gLite (Lawre
et al., 2006) and UNICORE such as OGSA BES (Foster et al., 2008) or JSDL
(Anjomshoaa et al., 2005). The P-GRADE portal tries to bridge different Grid
infrastructures by providing access to standard-based interoperable middleware. The
Grid Interoperation Now Community Group (GIN-CG)21 and the Production Grid
Infrastructure Working Group (PGI-WG)22 of the OGF also address the problem
of Grid interoperability. In the former case, driving and verifying interoperation
strategies and, in the latter case, oriented to production Grid infrastructures.

While significant progress on interoperation has been achieved in Grid comput-
ing, interoperability among Cloud providers has yet to be explored. While enthu-
siasm in establishing Cloud interoperability is limited among the for-profit Cloud
providers, there are many pursuers in the academic and scientific communities.

The RESERVOIR project23 addresses Cloud interoperability with a modular,
extensible Cloud architecture based on federation of Clouds. In the RESERVOIR
model, each infrastructure provider is an autonomous business with its own busi-
ness goals. A provider federates with other providers based on policies aligned
with the site’s business goals. In the context of RESERVOIR, Grid interfaces and
protocols may enable the required interoperability between the Clouds or infras-
tructure providers. A similar initiative is the Nuba project24 whose main aim is the
development of a federated IaaS Cloud platform to facilitate the easy and auto-
matic deployment of Internet business services, allowing dynamic scaling based on
performance and business goals criteria.

Some Cloud standardization groups have started working on defining com-
mon interfaces for interoperation. The Open Grid Forum Open Cloud Computing
Interface (OCCI) working group25 of OGF is working on defining an API

20http://www.omii-europe.org
21http://forge.gridforum.org/sf/projects/gin
22http://forge.ogf.org/sf/projects/pgi-wg
23http://www.reservoir-fp7.eu/
24http://nuba.morfeo-project.org/
25http://forge.ogf.org/sf/projects/occi-wg

8 The Role of Grid Computing Technologies in Cloud Computing 207

specification for remote management of Cloud computing infrastructure, allowing
for the development of interoperable tools for common tasks including deploy-
ment, autonomic scaling and monitoring. Project OpenNebula and RESERVOIR
projects have provided OCCI-compiant implemenations. The Cloud Computing
Interoperability Forum (CCIF)26 is a vendor neutral, not for profit community of
technology advocates, and consumers dedicated to driving the rapid adoption of
global Cloud computing services.

While encouraging activities in the area of interoperable Clouds are occuring,
Grid technologies are more mature. Thus, it is promising to extend these to the
Cloud, particularly in the research and evaluation of scheduling and resource selec-
tion strategies. While Grid computing focuses on utilization, Cloud computing is
more atuned to factors such as QoS, cost, and energy efficiency. Finally, Clouds will
want to take advantage of elastic use of their resources in order to optimize both
resource usage (and thus, Cloud providers revenue) and QoS given to the users.

8.4.7 Security and User Management

Clouds currently lack many of the mechanisms required for fluid intersite operation
of which security is a key enabling factor. Interoperability mandates common secu-
rity mechanisms that can be translated to the models chosen by local administrators.
Additionally, users need to be able to submit requests regardless of the institutions
involved in the process of performing the requested task or providing the necessary
data. This requires introduction to the Cloud of a mechanism of privilege delegation
enabling single sign-on. Finally, collaboration between multiple institutions sharing
resources requires development of new methods to manage user privileges.

These challenges have already been addressed in Grid computing where a pri-
mary goal is to allow sharing of resources among Virtual Organizations. A VO
defines a group of people and resources that can spawn across multiple adminis-
trative domains, and allows the definition of fine grained security policies on those
resources. The Grid solutions are described in the context of Globus middleware
and show how the concepts can be applied to Clouds.

Users in the Grid are granted privileges by site administrators based on their cre-
dentials, which are provided by a trusted Certificate Authority. The Grid Security
Infrastructure (GSI) (Welch et al., 2003) is the component of the Globus middle-
ware responsible for orchestrating security across different sites. GSI is used by job
execution, file transfer, and resource discovery and monitoring protocols to ensure
that all operations started by a user are allowed in the target resources.

GSI uses X.509 Public Key Infrastructure (PKI) and SSL/TLS protocols for
transport encryption. This allows individuals belonging to organizations to trust
foreign credentials issued by a CA without affecting their organization’s security
measures. However, two additional requirements arise from the dynamic nature of
Grid systems.

26http://cloudforum.org/

208 D. Villegas et al.

Single sign-on: Users in the Grid need to access multiple resources and ser-
vices with different authentication models. It would be burdensome if each
time a user had to perform an action in a remote resource he had to enter a
passphrase to use his private key to authenticate himself. Possible solutions
such as caching the passphrase could lead to additional security problems.

Privilege delegation: Due to the dynamic nature of the Grid, users often need to
delegate their privileges to other services. This occurs when requests require
the orchestration of different resources, or when the user creates a new ser-
vice to perform a set of capabilities. Following the principle of least privilege,
a set of minimum capabilities should be transferred to these services so they
can execute.

These requirements are fulfilled by an extension to X.509 certificates called
proxy certificates (Welch et al., 2004). Proxy certificates are not issued by a CA,
which would be burdensome given their frequency of use and dynamic nature.
Instead, the issuer is identified by another public key certificate. This allows tempo-
rary certificates to be signed and used for short periods of time without the need to
access the user’s long time private keys. The relaxed security of proxy certificates
suffices as they have a short life cycle.

Proxy certificates are also used to create new certificates with delegated sub-
sets of privileges. The GSI architecture allows different levels of granularity when
defining which of the privileges are inherited by the created proxy. Finer levels of
granularity can be implemented by using policy languages to express delegation
policies. This opportunity is effectively exploited by more advance security services
built on the GSI such as the CAS service described below.

An example of the use of proxy certificates would be a computational job that
requires access to a storage server to pull datasets to be processed. In this case,
a new proxy would be created at the first site by delegating the user’s privileges
over the network, and in turn, the resource receiving the request would transfer the
credentials to the storage server which would perform the operation based on its
authorization policies.

One problem with x509 based proxy certificates is the need for users to initiate
requests from a machine that has their private keys stored, in addition to the required
software to generate a proxy and start a request to the Grid. Often, users access the
Grid through web portals, making it difficult to generate their proxy certificates.
The MyProxy credential repository was created to solve this issue and permit any
user to access Grid resources through a Grid portal using a web browser (Novotny,
Tuecke, & Welch, 2001). The MyProxy model adds a repository service where
users delegate their credentials and associate them to a user name and password.
Subsequently, users can log in to a MyProxy enabled web portal and retrieve and
use a previously stored Grid certificate. Certificates delegated to MyProxy reposi-
tories have longer lifetimes than usual proxies so users just need to generate them
occasionally.

The GSI infrastructure allows resource owners to define access policies in an ad-
hoc fashion: usually, site administrators are in charge of defining a mapping from
Distinguished Names (DNs) to the local security method. This poses a number of

8 The Role of Grid Computing Technologies in Cloud Computing 209

problems, specially when dealing with large VOs that are distributed across dif-
ferent institutions: the first problem is the burden added to administrators to include
access policies for all users, specially if there is a need of defining finer grained ones
that vary from one resource to another. Second, systems administrators in charge of
assigning access policies don’t have a big picture of the project’s needs in terms of
authorization structure.

The Community Authorization Service (CAS) (Pearlman, Welch, Foster, &
Kesselman, 2002) is an extension build on the GSI that provides additional
mechanisms to address the deficiencies mentioned above. The CAS abstracts the
complexity of access policies for a project into a central server that acts as a repos-
itory of policies and users, freeing local resource administrators from the task of
identifying authorization requirements. The immediate benefit of this separation of
concerns is that project administrators can define users and access rules in the CAS
server, and even create groups to define fine grained policies. Once users are added
to the CAS server, they contact it when access to a resource is needed, and the
CAS server confers them a capability that is equivalent to a proxy certificate. Site
administrators need only to validate that the intended operation is allowed for the
community the user belongs to and that the operation is allowed by the offered capa-
bility. This method scales independently from the number of users and resources. It
is directly built on the GSI, which allows its deployment with minimal changes to
existing technologies.

In the case of Cloud computing, the lack of standardization among vendors
results in multiple security models: for example, both Amazon EC2 and Eucalyptus
employ pairs of X.509 certificates and private keys for authentication. Google App
Engine, an example of PaaS solution, requires users to first log-in via Google
Accounts. The variety of methods makes it difficult to create new opportunities for
interoperation, and the fragmentation of security models hinders the reuse of newly
developed features.

The OGF Open Cloud Computing Interface Working Group (OCCI) has made
a step towards proposing a standardized set of operations, and in its specification
it suggests that implementations may require authentication using standard HTTP
mechanisms and/or encryption via SSL/TLS. The latest versions of OpenNebula
support this specification for communicating with their Cloud controller. This defi-
nition represents a possibility to create common grounds for IaaS implementations,
providing uniform security paradigms among different vendors.

However, there is still much work in order to achieve a good security infras-
tructure in Clouds. Methods to specify trust among certificate issuers and resource
owners have yet to be implemented, especially for scenarios in which different orga-
nizations participate in sharing them. Models such as the GSI infrastructure, where
different providers trust various Certifying Authorities without compromising the
rest of institutions, would allow the scaling of Clouds outside of single institution
boundaries. In those cases, additional techniques to manage users and their asso-
ciated privileges would be necessary to avoid centralization, and new distributed
methods for accounting would be required. Clouds can learn from these solutions in
order to define new, standardized interfaces that allow secure, inter-organizational
communication.

210 D. Villegas et al.

8.4.8 Modeling and Simulation of Clouds and Grids

Since it is difficult or even not feasible to evaluate different usages on real Grid
testbeds, different simulators have been developed in order to study complex scenar-
ios. Simulations allow us to research policies for large and complex configurations
with numerous jobs and high demand of resources and to easily include modifi-
cations and refinements in the policies. There are many rich simulation models
developed by the Grid community.

The GridSim (Sulistio, Cibej, Venugopal, Robic, & Buyya, 2008) simulator
has been widely used by many researchers to evaluate Grid scheduling strategies.
As described by the GridSim project team it provides a comprehensive facil-
ity to create different classes of heterogeneous resources that can be aggregated
using resource brokers. GangSim (Dumitrescu & Foster, 2005) allows the sim-
ulation of complex workloads and system characteristics. It is also capable of
supporting studies for controlled resource sharing based on SLAs. The SimGrid
toolkit (Legrand, Marchal, & Casanova, 2003) is a non workload based simulator
that allows the evaluation of distributed applications in heterogeneous distributed
environments. In these last models, almost all of them model how the jobs are
scheduled at the multi-site level (by a given broker or meta-scheduler) but not how
the jobs are scheduled and allocated once sent to the final computing resources.
In a different approach, the Alvio simulator (Guim, Corbalan, & Labarta, 2007)
and Teikoku (Grimme et al., 2007) model all the scheduling layers that are
involved in Grid architectures, from meta-brokering policies (see Section 8.4.6)
to local job scheduling strategies. DGSim (Iosup, Sonmez, & Epema, 2008) is
another relevant simulation framework, which also allows Grid simulation with
meta-brokering approaches but, as the former approaches, it does not model local
scenarios.

Simulation tools are specially important for Cloud computing research due to the
fact that many Clouds are also still in development. CloudSim (Buyya, Ranjan, &
Calheiros, 2009) models and simulates Cloud computing environments support-
ing multiple VMs within a data center node. In fact, VM management is the
main novelty of this simulator. It also allows simulation of multiple federated
data centers to enable studies of VM migration policies for reliability and auto-
matic scaling of applications. However, several aspects of Cloud computing have
not been addressed yet such as the simulation of multiple layers simultaneously.
Therefore, the lack of simulators for Cloud computing motivates the extension
of existing simulators that were developed for Grid systems and have similar
requirements. Some of the existing Grid simulators are described below. While
many Cloud simulation models are yet to be developed, leveraging some of the
simulation models and experiences would likely accelerate the development for
Clouds.

Workloads are crucial to evaluate policies using simulation tools. Although dif-
ferent workload models have been proposed, traces from logs of production systems
capture better the behavior of realistic scenarios. There are different publicly avail-
able workload traces from production system such as those provided by the Grid

8 The Role of Grid Computing Technologies in Cloud Computing 211

Observatory,27 which collects, publishes, and analyzes data on the behavior of
the EGEE Grid.28 This is currently one of the most complex public Grid traces
with higher frequency of application request arrivals than other large Grids such
as Grid5000. However, any of them captures the heterogeneous nature of virtual-
ized Cloud infrastructures with multiple geographically distributed entry points and
potential high job arrival rates.

Furthermore, since the traces from different systems are in different formats,
using standard formats is very important. Within the Parallel Workload Archive,29 as
well as providing detailed workload logs collected from large scale parallel systems
in production use such as San Diego Supercomputer Center or Los Alamos National
Lab, Feitelson et al. proposes the Standard Workload Format (SWF) (Chapin et al.,
1999) that was defined to ease the use of workload logs and models. Iosup et al.
extended this idea for Grids with the Grid Workload Archive (Iosup et al., 2008) and
with the Failure Trace Archive (Kondo, Javadi, Iosup, & Epema, 2010) to facilitate
the design, validation, and comparison of fault-tolerant models and algorithms.

There is a lack of workload traces and standard models for Clouds. This is an
important obstacle to model and simulate realistic Cloud computing scenarios due
to Cloud workloads may be composed of different application types, including ser-
vice requests that have different behavior than the modeled in the current public
traces. These existing approaches for parallel systems and Grid systems can be
extended to Cloud computing with a definition of a standard Cloud workload format.
Workload logs collected from production or research Cloud systems should be also
made publicly available to facilitate the research of Cloud computing techniques
through simulation.

8.5 Concluding Remarks

Grids and Clouds have many similarities in their architectures, technologies and
techniques. Nowadays, it seems Cloud computing is taking more significance as
a means to offer an elastic platform to access remote processing resources: this is
backed up by the blooming market interest on new platforms, the number of new
businesses that use and provide Cloud services and the interest of academia in this
new paradigm. However, there are still multiple facets of Cloud computing that
need to be addressed, such as vendor lock-in, security concerns, better monitoring
systems, etc. We believe that the technologies developed in Grid computing can be
leverage to accelerate the maturity of the Cloud, and the new opportunities presented
by the latter will in term address some of the shortcomings of the Grid.

As this chapter tries to convey, perhaps the area in which Clouds can gain the
most from Grid technologies is in multi-site interoperability. This comes naturally

27http://www.grid-observatory.org/
28http://www.eu-egee.org/
29http://www.cs.huji.ac.il/labs/parallel/workload/

212 D. Villegas et al.

from the fact that the main purpose of Grid systems is to enable remote sites under
different administration policies to establish efficient and orchestrated collaboration.
This is arguably one of the weakest points in Clouds, which usually are services
offered by single organizations that enforce their -often proprietary- protocols, lead-
ing for examples to the already identified problem of vendor lock-in. On the other
hand, Grid computing, through the use of well defined standards, has achieved site
interoperability as it can be seen by the multiple computing and data Grids used by
projects in fields as particle physics, earth sciences, genetics and economic sciences.

Another path worth diving into is the one exploring how the new paradigm
of Cloud computing can benefit existing technologies and solutions proposed by
the Grid community: the realization of utility computing, elastic provisioning of
resources, or the homogenization of heterogeneous resources (in terms of hardware,
operating systems and software libraries) through virtualization bring a new realm of
possible uses for vast, underutilized computing resources. New consolidation tech-
niques allow for studies on lower energy usage for data centers and diminished costs
for users of computing resources. There is effectively a new range of applications
that can be run on Clouds because of the improved isolation provided by virtual-
ization techniques. Thus, existing software that was difficult to run on Grids due
to hard dependencies on libraries and/or operating systems can now be executed
on many more resources that have been provisioned complying with the required
environment.

Finally, there are some outstanding problems that need to be considered which
prevent some users from switching to new Cloud technologies. These problems need
to be tackled before we can fully take advantage of all the mentioned opportunities.
Other authors, such as (Armbrust et al., 2009), have already listed several of such
problems. Some examples are:

1. In certain cases, when processes require intense use of I/O, virtualized envi-
ronments offer lower performance than native resources. There is a range of
scientific applications that have a high communication demand, such as those
that rely on synchronous message passing models. Those applications do not
offer good performance on Cloud systems.

2. Even though Clouds offer the promise of elasticity of computing resources that
would appear to users as endless supply, there are scenarios in the scientific
world for which the resources offered by a single Cloud would not be enough.
Once the demand for processing power reaches the maximum capacity for a
provider, there are no additional means to acquire new resources for the users,
if need be. Attempting to use different providers as a back up would mean dif-
ferent protocols, security schemas and new APIs to be employed. For example,
the Large Hadron Collider (LHC) project requires processing power not avail-
able by any single organization and if deployed to the Cloud, there is a need for
interoperability among different Cloud vendors.

We hope that the efforts being taken by numerous researchers in this area identify
and address these shortcomings and lead to better and more mature technologies that

8 The Role of Grid Computing Technologies in Cloud Computing 213

will improve the current Cloud computing practices. In these efforts, we believe
that a good knowledge of existing technologies, techniques and architectures such
as those developed in the field of Grid computing will greatly help accelerating the
pace of research and development of the Cloud, and will ensure a better transition
to this new computing paradigms.

Acknowledgments We would like to thank Hyunjoo Kim, from the NFS Center for Autonomic
Computing at Rutgers University, for her useful insights in Section 8.4.4. This work was partially
supported by the National Science Foundation under Grant No. OISE-0730065 and by IBM. Any
opinions, findings, and conclusions or recommendations expressed in this chapter are those of the
authors and do not necessarily reflect the views of the NSF or IBM.

References

Agarwal, A., Ahmed, M., Berman, A., Caron, B. L., Charbonneau, A., Deatrich, D., et al. (2007).
GridX1: A Canadian computational grid. Future Generation Computer Systems, 23, 680–687.

Alessandrini, V., & Niederberger, R. (2004). The deisa project: Motivations, strategies, technolo-
gies. 19th International Supercomputer Conference, Heidelberg, Germany.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., et al. (2001).
Secure, efficient data transport and replica management for high-performance data-intensive
computing. In Processings of IEEE Mass Storage Conference, IEEE Press, San Diego, CA,
USA.

Allcock, W., (2003). Gridftp protocol specification. Global grid forum recommendation GFD.20
(Tech. Rep., Open Grid Forum (OGF)).

Anjomshoaa, A., Drescher, M., et al. (2005). Job submission description language (JSDL)
specification version 1.0, GFD-R.056 (Tech. Rep., Open Grid Forum (OGF)).

Antonioletti, M., Krause, A., & Paton, N. W. (2005). An outline of the global grid forum data
access and integration service specifications. Data Management in Grids LNCS, 3836, 71–84.

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalandar, M., Krishnakumar, S., et al.
(2001). Oceano-sla based management of a computing utility. Proceeding of the 7th IFIP/IEEE
International Symposium on Integrated Network Management (IM 2001), Seattle, WA.

Armbrust, M., Fox, A., & Griffith, R., et al. (2009). Above the clouds: A berkeley view of
cloud computing (CoRR UCB/EECS-2009-28, EECS Department, University of California,
Berkeley).

Assuncao, M. D., Buyya, R., & Venugopal, S. (2008). InterGrid: A case for internetworking Islands
of grids. Concurrency and Computation: Practice and Experience, 20, 997–1024.

Badia, R., et al. (2007). High performance computing and grids in action, Chap. Innovative Grid
Technologies Applied to Bioinformatics and Hurricane Mitigation, IOS Press, Amsterdam,
436–462.

Badia, R. M., Labarta, J., Sirvent, R., Pérez, J. M., Cela, J. M., & Grima, R. (2003). Programming
grid applications with grid superscalar. Journal of Grid Computing, 1, 2003.

Balaton, Z., & Gombas, G. (2003). Resource and job monitoring in the grid. Euro-Par 2003
Parallel Processing, Volume LNCS 2790, Klagenfurt, Austria, 404–411.

Balis, B., Bubak, M., Funika, W., Wismüller, R., Radecki, M., Szepieniec, T., et al.
(2004). Performance evaluation and monitoring of interactive grid applications. Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Volume LNCS 3241
345–352.

Berlich, R., Hardt, M., Kunze, M., Atkinson, M., & Fergusson, D. (2006). Egee: building a pan-
european grid training organisation. ACSW Frontiers ’06: Proceedings of the 2006 Australasian
Workshops on Grid Computing and e-Research, Darlinghurst, Australia, 105–111.

214 D. Villegas et al.

Bobroff, N., Fong, L., Liu, Y., Martinez, J., Rodero, I., Sadjadi, S., et al. (2008). Enabling inter-
operability among meta-schedulers. IEEE International Symposium on Cluster Computing and
the Grid (CCGrid), Lyon, France, 306–315.

Brooke, J., Fellows, D., Garwood, K., & Goble, C., et al. (2004). Semantic matching of grid
resource descriptions. European Acrossgrids Conference, Volume LNCS 3165 Nicosia, Greece,
240–249.

Buyya, R., Ranjan, R., & Calheiros, R. N. (2009). Modeling and simulation of scalable cloud
computing environments and the cloudsim toolkit: Challenges and opportunities. 7th High
Performance Computing and Simulation Conference (HPCS 2009), Leipzig, Germany.

Buyya, R., Yeo, C. S., Srikumar Venugopal, J. B., & Brandic, I. (2009). Cloud computing and
emerging it platforms: Vision, hype and reality for delivery computing as the 5th utility. Future
Generation Computer Systems, 25, 599–616.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6), 599–616.

Catlett, C., Beckman, P., Skow, D., & Foster, I. (2006). Creating and operating national-scale
cyberinfrastructure services. Cyberinfrastructure Technology Watch Quarterly, 2, 2–10.

Chapin, S. J., Cirne, W., Feitelson, D. G., Jones, J. P., Leutenegger, S. T., Schwiegelshohn, U., et al.
(1999). Benchmarks and standards for the evaluation of parallel job schedulers. Job Scheduling
Strategies for Parallel Processing (JSSPP), Volume LNCS 1659, Klagenfurt, Austria,
66–89.

Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W., Iamnitchi, A., et al. (2002). Giggle: A
framework for constructing scalable replica location services. Conference on High Performance
Networking and Computing, IEEE Computer Society Press, San Jose, CA 1–17.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., & Tuecke, S. (2001). The data grid:
Towards an architecture for the distributed management and analysis of large scientific datasets.
Journal of Network and Computer Applications, 23, 187–200.

Chu, X., Nadiminti, K., Jin, C., Venugopal, S., & Buyya, R. (2007). Aneka: Next-generation enter-
prise grid platform for e-science and e-business applications. e-Science and Grid Computing,
IEEE International Conference, 151–159. DOI 10.1109/E-SCIENCE.2007.12.

Chunlin, L., & Layuan, L. (2008). Cross-layer optimization policy for qos scheduling in computa-
tional grid. Journal of Network and Computer Applications, 31(3), 1084–8055.

Czajkowski, K., Fitzgerald, S., Foster, I., & Kesselman, C. (2001). Grid information services for
distributed resource sharing. IEEE International Symposium on High-Performance Distributed
Computing (HPDC), Paris, France 181.

Dumitrescu, C. L., & Foster, I. (2005). Gangsim: a simulator for grid scheduling studies. Fifth
IEEE International Symposium on Cluster Computing and the Grid (CCGrid’05), Washington,
DC, USA, 1151–1158.

Ezenwoye, O., & Sadjadi, S. M. (2010). Developing effective service oriented architectures: con-
cepts and applications in service level agreements, quality of service and reliability, chap
Applying concept reuse for adaptive service composition. IGI Global (2010).

Ezenwoye, O., Sadjadi, S. M., Carey, A., & Robinson, M. (2007). Grid service composition
in BPEL for scientific applications. In Proceedings of the International Conference on Grid
computing, high-performAnce and Distributed Applications (GADA’07), Vilamoura, Algarve,
Portugal, 1304–1312.

Feitelson, D., & Rudolph, L. (1995). Parallel job scheduling: Issues and approaches. Job
Scheduling Strategies for Parallel Processing (JSSPP), Vol. LNCS 949, Santa Barbara, CA,
USA, 1–18.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid – enabling scalable virtual
organizations. International Journal of Supercomputer Applications, 15, 200–222.

Foster, I., Tuecke, S., & Unger, J. (2003). Osga data services. Global Grid Forum, 9.
Foster, I., et al. (2008). OGSA basic execution service version 1.0, GFD-R.108 (Tech. Rep., Open

Grid Forum (OGF)).

8 The Role of Grid Computing Technologies in Cloud Computing 215

Foster, I., Zhao, Y., Raicu, I., Lu, S. (2008). Cloud computing and grid computing 360-degree
compared. IEEE Grid Computing Environments Workshop, 1–10.

Gerndl, M., Wismuller, R., Balaton, Z., Gombas, G., Kacsuk, P., Nemeth, Z., et al. (2004).
Performance tools for the grid: State of the art and future. White paper, Shaker Verlag.

Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., Laszewski, G. V., Lee, C.,
Merzky, A., Rajic, H., & Shalf, J. (2006). SAGA: A Simple API for Grid Applications.
High-level application programming on the Grid. Computational Methods in Science and
Technology.

Grimme, C., Lepping, J., Papaspyrou, A., Wieder, P., Yahyapour, R., Oleksiak, A., et al. (2007).
Towards a standards-based grid scheduling architecture (Tech. Rep. TR-0123, CoreGRID
Institute on Resource Management and Scheduling).

Guim, F., Corbalan, J., & Labarta, J. (2007). Modeling the impact of resource sharing in
backfilling policies using the alvio simulator. Annual Meeting of the IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS), Istambul.

Guim, F., Rodero, I., Corbalan, J., Labarta, J., Oleksiak, A., Kuczynski, T., et al. (2007). Uniform
job monitoring in the hpc-europa project: Data model, api and services. International Journal
of Web and Grid Services, 3(3), 333–353.

Guim, F., Rodero, I., Tomas, M., Corbalan, J., & Labarta, J. (2006). The palantir grid meta-
information system. 7th IEEE/ACM International Conference on Grid Computing (Grid),
Washington, DC, USA 329–330.

Huedo, E., Montero, R., & Llorente, I. (2004). A framework for adaptive execution in grids.
Software—Practice & Experience, 34, 631–651.

Huedo, E., Montero, R., & Llorente, I. (2009). A recursive architecture for hierarchical grid
resource management. Future Generation Computer Systems, 25, 401–405.

Iosup, A., Epema, D., Tannenbaum, T., Farrelle, M., & Livny, M. (2007). Inter-operable grids
through delegated matchMaking. International Conference for High Performance Computing,
Networking, Storage and Analysis (SC07), Reno, Nevada.

Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., et al. (2008). The grid workloads
archive. Future Generation Computer Systems, 24, 672–686.

Iosup, A., Sonmez, O., & Epema, D. (2008) Dgsim: Comparing grid resource management
architectures through trace-based simulation. Euro-Par ’08: Proceedings of the 14th inter-
national Euro-Par conference on Parallel Processing, Las Palmas de Gran Canaria, Spain,
13–25.

Kephart, J. O., & Chess, D. M. (2001). The vision of autonomic computing. http://www.
research.ibm.com/autonomic/manifesto/. Accessed on July 22, 2010.

Kacsuk, P., Kiss, T., & Sipos, G. (2008). Solving the grid interoperability problem by P-GRADE
portal at workflow level. Future Generation Computer Systems, 24, 744–751.

Karlsson, M., & Mahalingam, M. (2002). Do we need replica placement algorithms in content
delivery networks. Proceedings of the International Workshop on Web Content Caching and
Distribution (WCW), Boulder, CA, USA, 117–128.

Karonis, N. T., Toonen, B., & Foster, I. (2003). Mpich-g2: a grid-enabled implementation of the
message passing interface. Journal of Parallel and Distributed Computing, 63(5), 551–563.
DOI http://dx.doi.org/10.1016/S0743-7315(03)00002-9.

Kertesz, A., & Kacsuk, P. (2008). Grid meta-broker architecture: Towards an interoperable grid
resource brokering service. CoreGRID Workshop on Grid Middleware in Conjunction with
Euro-Par, LNCS 4375, Desden, Germany, 112–116.

Kim, H., el Khamra, Y., Jha, S., & Parashar, M. (2009). An autonomic approach to integrated hpc
grid and cloud usage. e-Science, 2009. e-Science ’09. Fifth IEEE International Conference,
366–373. DOI 10.1109/e-Science.2009.58.

Kondo, D., Javadi, B., Iosup, A., & Epema, D. (2010). The failure trace archive: Enabling com-
parative analysis of failures in diverse distributed systems. 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), Melbourne, Australia.

216 D. Villegas et al.

Krauter, K., Buyya, R., & Maheswaran, M. (2002). A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and Experience (SPE), 32,
135–164.

Lamehamedi, H., Szymanski, B., Shentu, Z., & Deelman, E. (2002). Data replication strate-
gies in grid environments. Proceedings of the 5th International Conference on Algorithms
and Architectures for Parallel Processing (ICA3PP’02), IEEE Press, Beijing, China,
378–383.

Laszewski, G. V., Foster, I. T., Gawor, J., & Lane, P. (2001). A Java commodity grid kit.
Concurrency and Computation: Practice and Experience, 13(8–9), 645–662.

Laure, E., Fisher, S. M., Frohner, A., Grandi, C., Kunszt, P., Krenek, A., et al. (2006). Programming
the grid with glite. Computational Methods in Science and Technology, 12, 33–45.

Legrand, A., Marchal, L., & Casanova, H. (2003). Scheduling distributed applications: the sim-
grid simulation framework. 3rd International Symposium on Cluster Computing and the Grid
(CCGrid’03), Washington, DC, USA, 138.

Leutenegger, S., & Vernon, M. (1990). The performance of multiprogrammed multipro-
cessor scheduling algorithms. ACM SIGMETRICS Performance Evaluation Review, 18,
226–236.

Majumdar, S., Eager, D., & Bunt, R. (1988). Scheduling in multiprogrammed parallel systems.
ACM SIGMETRICS Performance Evaluation Review, 16, 104–113.

Massie, M. L., Chun, B. N., & Culler, D. E. (2004). The ganglia distributed monitoring system:
Design, implementation and experience. Parallel Computing, 30(5–6), 817–840.

Matsuoka, S., Shinjo, S., Aoyagi, M., Sekiguchi, S., Usami, H., & Miura, K. (2005). Japanese
computational grid research project: Naregi. Proceedings of the IEEE, 93(3), 522–533.

Mohamed, H., & Epema, D. (2008). KOALA: a Co-allocating grid scheduler. Concurrency and
Computation: Practice & Experience, 20, 1851–1876.

Moore, R., Prince, T. A., & Ellisman, M. (1998). Data-intensive computing and digital libraries.
Communications of the ACM, 41, 56–62.

Mu’alem, A., & Feitelson, D. (2001). Utilization, predictability, workloads, and user runtime
estimates in scheduling the ibm sp2 with backfilling. IEEE Transactions on Parallel and
Distributed Systems, 12, 529–543.

Nathuji, R., & Schwan, K. (2007). Virtualpower: Coordinated power management in virtualized
enterprise systems. ACM SIGOPS Symposium on Operating Systems Principles, Stevenson,
Washington, USA.

Newman, H., Legrand, I., Galvez, P., Voicu, R., & Cirstoiu, C. (2003). Monalisa: a distributed
monitoring service architecture. Computing in High Energy and Nuclear Physics (CHEP03),
La Jolla, CA.

Novotny, J., Tuecke, S., & Welch, V. (2001). An online credential repository for the grid:
Myproxy. Proceedings of the Tenth International Symposium on High Performance Distributed
Computing (HPDC-10), IEEE, San Francisco, CA, USA, 104–111.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al.
(2009). The eucalyptus open-source cloud-computing system. Cluster Computing and the
Grid, IEEE International Symposium, 0, 124–131. DOI http://doi.ieeecomputersociety.org/
10.1109/CCGRID.2009.93.

Oleksiak, A., Tullo, A., Graham, P., Kuczynski, T., Nabrzyski, J., Szejnfeld, D., et al. (2005). HPC-
Europa: Towards uniform access to European HPC infrastructures. IEEE/ACM International
Workshop on Grid Computing, Seattle, WA, USA, 308–311.

Parashar, M., Li, X., & Chandra, S. (2010). Advanced computational infrastructures for parallel
and distributed applications. New York, NY: Wiley.

Pearlman, L., Welch, V., Foster, I., & Kesselman, C. (2002). A community authorization service
for group collaboration. IEEE 3rd International Workshop on Policies for Distributed Systems
and Networks, George Mason University, USA, 50–59.

Podhorszki, N., & Kacsuk, P. (2001). Semi-on-line monitoring of p-grade applications. Parallel
and Distributed Computing Practices, 4(4), 43–60.

8 The Role of Grid Computing Technologies in Cloud Computing 217

Quiroz, A., Gnanasambandam, N., Parashar, M., & Sharma, N. (2009). Robust clustering analysis
for the management of self-monitoring distributed systems. Cluster Computing: The Journal of
Networks, Software Tools, and Applications, 12(1), 73–85.

Quiroz, A., Kim, H., Parashar, M., Gnanasambandam, N., & Sharma, N. (2009). Towards auto-
nomic workload provisioning for enterprise grids and clouds. 10th IEEE/ACM International
Conference on Grid Computing (Grid 2009), Banff, Alberta, Canada, 50–57.

Ranganathan, P., Leech, P., Irwin, D., & Chase, J. (2006). Ensemble-level power management for
dense blade servers. Annual International Symposium on Computer Architecture, New York,
NY, USA, 66–77.

Rodero, I., Guim, F., Corbalan, J., Fong, L., & Sadjadi, S. (2010). Broker selection strategies in
interoperable grid systems. Future Generation Computer Systems, 26(1), 72–86.

Ruth, P., McGachey, P., & Xu, D. (2005). Viocluster: Virtualization for dynamic com-
putational domains. Cluster Computing, 2005, IEEE International, DOI 1–10. 10.1109/
CLUSTR.2005.347064.

Samar, A., & Stockinger, H. (2001). Grid data management pilot (gdmp): A tool for wide area
replication. IASTED International Conference on Applied Informatics (AI2001), ACTA Press,
Calgary, Canada.

Schwiegelshohn, U., & Yahyapour, R. (1998). Analysis of first-come-first-serve parallel job
scheduling. 9th annual ACM-SIAM Symposium on Discrete Algorithms, Vol. 38, San Francisco,
CA, 629–638.

Schwiegelshohn, U., & Yahyapour, R. (1998). Improving first-come-first-serve job scheduling by
gang scheduling. Job Scheduling Strategies for Parallel Processing (JSSPP), Vol. LNCS 1459,
Orlando, FL, 180–198.

Seidel, J., Waldrich, O., Ziegler, W., Wieder, P., & Yahyapour, R. (2007). Using SLA for resource
management and scheduling – a Survey, TR-0096 (Tech. Rep., CoreGRID Institute on Resource
Management and Scheduling).

Sodan, A. (2009). Adaptive scheduling for qos virtual machines under different resource availabil-
ity first experiences. 14th Workshop on Job Scheduling Strategies for Parallel Processing, Vol.
LNCS 5798, Rome, Italy, 259–279.

Song, Y., Wang, H., Li, Y., Feng, B., & Sun, Y. (2009). Multi-tiered on-demand resource scheduling
for vm-based data center. IEEE International Symposium on Cluster Computing and the Grid
(CCGrid), Los Alamitos, CA, USA, 148–155.

Sotomayor, B., Keahey, K., & Foster, I. (2008). Combining batch execution and leasing using
virtual machines. HPDC ’08: Proceedings of the 17th International Symposium on High
Performance Distributed Computing, ACM, New York, NY, USA, 87–96. DOI http://doi.
acm.org/10.1145/1383422.1383434.

Sotomayor, B., Montero, R., Llorente, I., & Foster, I. (2008). Capacity leasing in cloud systems
using the opennebula engine. Workshop on Cloud Computing and its Applications (CCA08),
Chicago, IL, USA.

Stockinger, H., Samar, A., Allcock, B., Foster, I., Holtman, K., & Tierney, B. (2001). File and
object replication in data grids.

Sulistio, A., Cibej, U., Venugopal, S., Robic, B., & Buyya, R. (2008). A toolkit for modelling and
simulating data grids: An extension to gridsim. Concurrency and Computation: Practice and
Experience (CCPE), 20(13), 1591–1609.

Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., et al. (2002). A grid monitoring
architecture.

Vasilakos, A., Parashar, M., Karnouskos, S., & Pedrycz, W. (2010). Autonomic communication
(XVIII, pp. 374). ISBN: 978-0-387-09752-7. New York, NY: Springer.

Vecchiola, C., Chu, X., Buyya, R. (2009). Aneka: A Software Platform for .NET-based Cloud
Computing, Technical Report, GRIDS-TR-2009-4, Grid Computing and Distributed Systems
Laboratory, The University of Melbourne, Australia.

Venugopal, S., Buyya, R., & Ramamohanarao, K. (2006). A taxonomy of data grids for distributed
data sharing, management and processing. ACM Computing Surveys (CSUR), 38(1), 2006.

218 D. Villegas et al.

Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Gawor, J., et al. (2004). X.509
proxy certificates for dynamic delegation. Proceedings of the 3rd Annual PKI R&D Workshop,
Gaithersburg, MD, USA.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., et al. (2003). Security
for grid services. High-Performance Distributed Computing, International Symposium, 0, 48.
DOI http://doi.ieeecomputersociety.org/10.1109/HPDC.2003.1210015.

Wiseman, Y., & Feitelson, D. (2003). Paired gang scheduling. IEEE Transactions on Parallel and
Distributed Systems, 14(6), 581–592.

Wolski, R., Spring, N. T., Hayes, J. (1999). The network weather service: A distributed resource
performance forecasting service for metacomputing. Future Generation Computer Systems,
15(5–6), 757–768.

Zanikolas, S., & Sakellariou, R. (2005). A taxonomy of grid monitoring systems. Future
Generation Computer Systems, 21(1), 163–188.

Zhao, Y., Hategan, M., Clifford, B., Foster, I., von Laszewski, G., Nefedova, V., et al. (2007). Swift:
Fast, reliable, loosely coupled parallel computation. Services, IEEE Congress on 0, 199–206.
DOI http://doi.ieeecomputersociety.org/10.1109/SERVICES.2007.63.

Zhu, Y., & Ahuja, M. (1993). On job scheduling on a hypercube. IEEE Transactions on Parallel
and Distributed Systems, 4, 62–69.

Chapter 9
Cloudweaver: Adaptive and Data-Driven
Workload Manager for Generic Clouds

Rui Li, Lei Chen, and Wen-Syan Li

Abstract Cloud computing denotes the latest trend in application development for
parallel computing on massive data volumes. It relies on clouds of servers to han-
dle tasks that used to be managed by an individual server. With cloud computing,
software vendors can provide business intelligence and data analytic services for
internet scale data sets. Many open source projects, such as Hadoop, offer various
software components that are essential for building a cloud infrastructure. Current
Hadoop (and many others) requires users to configure cloud infrastructures via pro-
grams and APIs and such configuration is fixed during the runtime. In this chapter,
we propose a workload manager (WLM), called CloudWeaver, which provides auto-
mated configuration of a cloud infrastructure for runtime execution. The workload
management is data-driven and can adapt to dynamic nature of operator through-
put during different execution phases. CloudWeaver works for a single job and a
workload consisting of multiple jobs running concurrently, which aims at maximum
throughput using a minimum set of processors.

9.1 Introduction

Cloud Computing denotes the latest trend in application development for parallel
computing on massive data volumes. It relies on clouds of servers to handle tasks
that used to be managed by an individual server. With Cloud Computing, software
vendors can provide business intelligence and data analytic services for Internet
scale data sets.

R. Li (B) and L. Chen
Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
e-mails: {cslr; leichen}@cse.ust.hk

W.-S. Li
SAP Technology Lab, Shanghai, China
e-mail: wen-syan.li@sap.com

219B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_9, C© Springer Science+Business Media, LLC 2010

220 R. Li et al.

Due to the size of these data sets, traditional parallel database solutions can
be prohibitively expensive. To be able to perform this type of web-scale anal-
ysis in a cost-effective manner, several companies have developed distributed
data storage and processing systems on large clusters of shared-nothing com-
modity servers, including Google’s App Engine1 Antoshenkov (1996), Amazon’s
EC2/S3/SimpleDB2 Acker, Roth, and Bayer (2008), Microsoft’s SQL Server data
services3 DeWitt, Naughton, Schneider, and Seshadri (1992) and IBM’s “Blue
Cloud” service. At the same time, open source projects such as Hadoop offer various
software components that are essential for building a cloud infrastructure. Current
Hadoop (and many others) provides virtualization of data location, concurrent exe-
cution coordination, and load balance across servers; however, it requires users to
configure cloud infrastructures via programs and APIs, moreover, such a config-
uration is fixed during the runtime. For example, an Hadoop programmer needs to
manually set the ratio of the number of servers/tasks used by reducer functions to the
number of servers used by map functions/tasks4 Davlid, DeWitt, Shanker (2008). In
addition, Hadoop’s programming model is limited to SQL augmented user-defined
functions and stored procedures, which is less user-friendly and flexible compared to
SQL language supported by parallel databases. So far, Hadoop supports parallelism
to only simply tasks, instead of general purpose computation required by ETL and
DBMS.

In this chapter, motivated by the limitations of Hadoop, we deploy a work-
load manager (WLM), CloudWeaver, to provide automated configuration of a cloud
infrastructure for runtime execution. Thus, programmers do not need to set the ratio
between mappers and reducers while it is managed by CloudWeaver. Furthermore,
it is not feasible for the programmers to set such ratios when pipelining is enable
since there would be multiple tiers of servers/tasks running concurrently.

The load at each tier could change dynamically depending data distribution
and characteristics of operators. Thus, cloud computing is actually data-driven
and throughput of each operator/task changes during the phase of computation.
CloudWeaver can adapt to dynamic nature of operator throughput during different
execution phases, moreover, it works for both single job and a workload of multiple
jobs running concurrently aiming at maximum throughput with a minimum set of
processors.

The rest of the chapter is organized as follows: In Section 9.2, we provide an
overview of CloudWeaver system architecture and define the terminologies used
in this chapter. In Section 9.3, we describe the algorithm of core component of
CloudWeaver. We compare our approach with related work in Section 9.4 and
conclude and discuss some future work in Section 9.5.

1http://code.google.com/appengine/.
2http://aws.amazon.com/.
3http://www.microsoft.com/sql/dataservices/.
4http://hadoop.apache.org/core/docs/current/mapred_tutorial.htm#reducer.

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 221

9.2 System Overview

In this section, we describe the system architecture of CloudWeaver. We first briefly
review Hadoop and its components. Hadoop is an integrated system for Map/Reduce
jobs. It runs on a large cluster with HDFS (Hadoop Distributed File System). HDFS
has a single Namenode which manages the file system namespace and regulates
access to files by clients. Each machine has a Datanode which manages storage
attached to the machine. Each data file in HDFS is stored as many small data
blocks, typically of a fixed size. Each block has 2 or 3 replicas located in different
Datanodes. Using multiple copies of small data blocks provides better availability
and accessability. The Map/Reduce execution is built on top of HDFS. The user
submits a Map/Reduce job configuration through job client. A master node will
maintain a job tracker and fork many slave nodes to execute map/reduce tasks. Each
slave node has a task tracker which manages map or reduce tasks instances on that
node.

Compared to Hadoop, our new proposed system for generic clouds, called
CloudWeaver, has the following extensions:

• Cloud Monitor is added to monitor the resource utilization of a processor and
consumption status of processor output (i.e. results). It is also used to add new
servers to the cloud or shut down some computing utilities.

• The Hadoop cloud is extended to be more generic for general purpose computing
as a generic cloud. In order to enable a generic cloud, the jobs for CloudWeaver
is also extended from MapReduce job description to DAG with general purpose
operators.

• Workload Manager (WLM) is added to automate the assignment of processors to
tasks and map jobs to processors. More detail will be given in Section 9.3.

Figure 9.1 shows the system architecture of CloudWeaver, which consists of a
job client, a central workload manager (WLM), servers (or called workers or slave
nodes), a name node and a storage system (called data node).

The generic cloud is provided as hardware computing facility. The user may or
may not know the detail of its configurations, and the configuration can be changed.
The user will submit a query job to the generic cloud from a client computer. The
query job can be considered as a marked operator tree, so that we know the work
flow or the data flow. The name of input files of some of the nodes are also included.
We assume that these input files reside in the storage system of the generic cloud.
In other words, the cloud can read the files from their names.

We also relax the assumption of HDFS by supporting both shared file systems
and non-HDFS shared-nothing file systems. In shared-file systems, each processor
can access storage directly through some common interface. Other distributed file
systems may have different storage policy. We assume that the name node and data
node in CloudWeaver provide interface to access data as small blocks similar to
HDFS. Our scheduling algorithm is designed to run many tasks on small data blocks
to improve performance and to achieve load balance.

222 R. Li et al.

Master node
Job: DAG of general
purpose operators

Job Client Job Tracker

Slave node

Task Instance

Task Tracker

Operator

...
Slave node

Task Instance

Task Tracker

Operator

File block Directory

Name Node

Data Access

Data Node• HDFS

Cloud Monitor

Workload Manager

• General
File System

...

Fig. 9.1 Architecture of
cloudweaver

9.2.1 Components

In this section, we briefly discuss the extension components of Hadoop in
CloudWeaver, which are the workload manager, cloud monitor, and generic cloud.

9.2.1.1 Workload Manager

The workload manager will accept the query job and is responsible for processing
the query. It knows the status of whole system: where’s the name node, where are the
computing servers and where ’s the storage system. Any change to the cloud envi-
ronment will be noticed by workload manager. WLM looks at the operator tree of a
query job and process the job in a data driven model. That is, WLM will schedule
small tasks to run in servers. Each task will take a small block of input and gener-
ates some output files. WLM will schedule the intermediate result file to feed other
operators until the output of the query job is generated. In this process, WLM takes
care of the generic cloud change and the working progress, so it can dynamically
utilize all available resources.

The name node maintain a directory of all the files. It could be considered as a
file system interface. The source input files reside in the storage system. When the
server process job, it will ask the name node about the accessing address of the files
and then read them or write new files as result.

The storage system can be either shared storage or a share-nothing structure. We
assume that there’s central node to maintain all the related files in the generic cloud.

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 223

9.2.1.2 Cloud Monitor

Since the system is based on producer-consumer model, the output of lower tier
tasks is used as input for the tasks of upper tiers. Each task stores its output (i.e.
intermediate results) in the local disk by pre-defined block size. The intermediate
result blocks are then read by upper tier tasks.

If the number of intermediate result blocks is increasing, Cloud Monitor can
notice WLM to increase the number of upper tier tasks to consume increasing
number of blocks.

9.2.1.3 Generic Cloud

A generic cloud has a cluster of servers with computing power. The large data set is
either stored in the cloud or can be passed into the cloud to fulfill a data processing
job. Each data processing job is called a job for short in the rest of this chapter.
We mainly study the queries in this chapter. A task can be parallelized into small
jobs. Jobs are executed on different servers. The performance is improved by using
parallelism.

The servers can have different computing power and storage size. Scheduling
jobs in generic cloud to achieve best response time is a hard optimization problem.
A predefined scheduling algorithm is hard to deal with the changing environment.
In this chapter we solves the scheduling problem in run time. We check the data
processing requirement and cloud status in run time, determine the number of jobs
and the assignment of jobs to servers. Because each partition and scheduling step
is based on available data need to be processed, we believe that this data driven
method can best balance the workload of servers in the generic cloud and achieve
best performance.

We consider SQL like query processing for large data set with MapReduce
support.

Query Job

A user query job can be described by an operator graph. The operators include
Extract, Join, Aggregate functions and Map Reduce. The map and reduce function
is provided by user.

In the parallel environment, the behavior of an operator can be partitioned into
several small jobs and run in parallel on different servers. Each job can be run by
an executable file. The command takes some input files and generate output files.
In this way, we can direct data files and executable file to different servers, the the
executable file consume the input files and produce outputs.

Input

We assume that the input data are very large. The large input files may be considered
as tables in an RDMBS. We can consider each file as a big table.

224 R. Li et al.

In order for the WLM to make use of parallelism, WLM needs to know how each
operator can be parallelized. For example, a simple table extract can be arbitrarily
partitioned into many small files. Each file can be processed by an extract task on
any server. The sort operator can also be parallelized by many small sorting tasks
with a merger task, but the output can not be fixed unless all the input data has been
processed. This kind of operator is called a blocking operator.

The join operator is another complex example. We can partition the input and
use many servers to process join. When WLM wants to schedule more servers to
process join, the status of original join servers need to be migrated or changed.

The differences of our work compared with others is that we do not assume
SMP or cluster with identical servers. Instead, we deal with machines with different
power. We deal with dynamic data throughput nature. For example, when we have
a join, the processing speed is a constant, but the result output rate varies during the
whole processing period.

Our framework also has a big difference compared with Map/reduce or Hadoop.
The Hadoop system aims to provide abstraction (virtualization) for the underlying
hardware/file location/load balancing so that the application programs can focus
on writing maps and reduce functions. In our work, CloudWeaver provides similar
functionality but focuses on coordinating execution of complex jobs (virtualization
of execution flow management and optimization from the programmers). The exe-
cution of Map/Reduce or Hadoop is much simpler since the execution only have
two phases and does not involve complex data flow. This is similar to SQL: users
need to specify what they want using SQL and no need to specify how to execute
the queries and how to optimize it. The optimization and execution is done auto-
matically by the database system. Our system is a powerful implementation for data
processing under cloud environment.

A whole data processing system can have three important components on top
of each other. The first is user’s input to describe the job. The second is the paral-
lelization and execution. The third, like the storage is provided by the infrastructure.
In our system, the workload manager focuses on the second phase of execution by
conducting the processor/task mapping. We assume that how to select a set of right
servers is handled by the infrastructure. Hadoop and Map/Reduce provide all three
phases. This makes it not generic. Our system can deal with a user’s input job and
has good performance over arbitrary infrastructure.

Dryad is similar to our system in the sense that it parallelize a sequential data
flow, but it only has local optimization for operators that runs slower while our
algorithm schedule the whole job DAG in a data driven fashion, which is more
flexible and extensible. Besides, Dryad has not been extended to schedule multiple
jobs.

9.3 Workload Manager

In this section, we present the details of the proposed workload manager (WLM)
of the CloudWeaver. Different from the traditional parallel scheduling algorithms,
where the operator trees are extracted from the query plan and the basic execution

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 225

units are identified for each node, in cloud, the scheduling algorithms are data
driven. In other words, the scheduling algorithm does not know the execution units
for each operator. Only when data arrive, the scheduler maps the processors to
the “ready” nodes (i.e. the node with correct input data) and starts preparing pro-
cessors to accept the output from each node. Moreover, the processor nodes are
heterogenous (different processing power) and scanned data for each operator often
change. In order to address these issues, we propose a dynamic scheduler to achieve
minimum intermediate result size and balanced workload among processors. In the
rest of this section,we first present the terminologies used to describe job and then,
formalize the scheduling methods for single and multiple jobs.

9.3.1 Terminology

In this chapter, we describe the user’s specified job with a DAG, where each node
Ni is an operator that provides an abstraction of the sub-jobs and each edge Ei,j
between two operators Ni and Nj indicates the data flow from Ni to Nj. An example
is shown in the left of Fig. 9.2. It has six operators named as A to F and two branches
A → B → C and E → F, with the top most operator D. A and F are the leaf
nodes (I/O nodes) and B,C,D, E are non-leaf nodes (computing nodes). This input
job could be mapped to a query which performs join over two tables after some
selections and projections are done. The input job is a high level abstraction and
does not tell how to parallelize the data processing. In addition to this graph, the
cloud should know the input file name as well as the function of each operator.

We use intra-operator parallelism to speed up the execution of each operator. As
shown in the right part of Fig. 9.2, each operator can be executed by many small
tasks. Tasks are OS level processing units and can be viewed as threads/processes.

A

F

C

D

B

E

f3

f4

f1 f2

e3

e1 e2

d1 d2 d3

Processor 1

Processor 2

Processor 3

Processor 4

Job

Operator

Operator

Tasks

Operator

Fig. 9.2 Job, operator, processor and task

226 R. Li et al.

Tasks are independent and shared nothing. A task can be assigned the whole pro-
cessor or part of the processor shared with other tasks. We use the term processor
for being more general. Depending on the environment which the job runs, the
processor could be a server (for cluster), a node (for grid/cloud), or a CPU/core
for SMP/CMP setting. We allocate tasks to processors in the cloud. This step is
called processor/tasks mapping. Each processor can run one or more tasks from
same operator or different operators.

An example of our data driven parallelization algorithm for the example user job
is illustrated in Fig. 9.3. In this running example, we assume a share-nothing archi-
tecture. Each processor has its local disks. The input is stored in some of the disks.
A node can process files stored in other node by file transferring through networks.
Our target is to schedule the progress of the all operators so that the intermediate
result files can be minimized and the processors in the cloud can be maximally
utilized.

a1 a2 a3 f3 f4

b1 b2 b3

c1 c2

b4

e3

f1 f2

e1 e2

d1 d2 d3

1

2

3

7

6

5

4

local disk

Fig. 9.3 Example machine assignment by workload management

9.3.2 Operator Parallelization Status

Workload manager will maintain status for each operator. Specifically in our data
driven approach, it manages two sets of an operator O: an input queue of input
data file names Q.input and output queue of output data file names Q.output. User
specification will describe how the input data could be processed (for example join

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 227

or aggregation), specifically by a particular kind of operator. Input files (data) will be
broken down into many data blocks as that have been done in Hadoop. Many data
blocks from an operator can be executed concurrently by many tasks in different
processors. A snapshot of all the input/output data and running tasks related to an
operator is treated as the operator status. Specifically, the operator status could be:
waiting for data (not started), in processing or finished. In addition to the operator
status, we should also record how the operator is parallelized, how many tasks is
assigned for each operator as well as the parameters. For example, we have assign 5
processors to execute a scanning operator at the beginning. The workload manager
will record how much has been done by each processor. Later, when more resources
(e.g. processors) are available, the workload manager may decide to distribute the
remaining to-be-scanned data to a total of 10 processors. Decision should be made
according to the operator status.

By monitoring an operator’s status, the workload manager will know how to
parallelize and schedule the execution of each operator. The input queue to each
operator will be monitored as an input buffer. When the input buffer grows rapidly,
it indicates that more computing power is needed at the operator and if possible,
workload manager should assign more processors to consume the input. The running
statistics can be collected from running tasks on different processors, which can be
used by the workload manager to map appropriate processors to operator/task in
order to achieve better processor usage.

9.3.3 Job Execution Algorithm

Our data driven algorithm is to determine the processors and the schedule of tasks
for each operator. Given a data processing job, we have two types of operators:
blocking operators and non-blocking operators. If an operator can not generate any
output before all its input data are ready, we call it a blocking operator. The successor
operators of a blocking operator can not be started until the blocking operator is
finished, for example a sorting operator. On the contrary, a non-blocking operator
and its success operators can be execute in a pipelined fashion, for example a scan
operator followed by a join operator.

Given an operator tree corresponding to a user job description, we consider three
scenarios that our algorithm will target. The first two are discussed for non-blocking
operators and the last one is presented for blocking operators. Workload manager
aims at dynamically assigning a set of processors to each operator, called candi-
date processor set of an operator. The tasks of the operator is scheduled within the
candidate processor set. By controlling the size of candidate processor set, work-
load manager actually controls the power of execution for a specific operator. An
operator with no task to execute will have an empty candidate processor set.

1. Assume that we have sufficient resources and operators are non-blocking ones. In
this case, whenever an operator has a certain amount of input, the workload man-
ager will give a non-empty candidate processor set to the operator and schedule

228 R. Li et al.

tasks. Workload manager will aims at full usage of each processor. When the
data arrival rate change and the current candidate processor set does not match to
input data queue, the workload manager can increase/reduce candidate processor
set size.

2. Assume that we have limited resources and operators are non-blocking ones. In
this case, when an operator has a certain amount of input, the workload manager
may not always be able to find available processors for the operator. Assume
that all the operators are non-blocking operators and data driven execution will
start from the leaf operator. When there are data for other operators, workload
manager will start the operator if possible candidate processor set can be found.
The workload manager will try to schedule more operators at the same time in a
pipeline fashion, not one by one. If resources are limited, we can reduce the size
of candidate set for each leaf node operator and assign processors to operators in
the data tree. After an operator finished all its work, its candidate processor set
can be released and used by other operators.

3. Assume that some of the operators are blocking operators. In this case, we could
not extend pipeline execution further to parent operators of blocking operators.
For an operator Ni, all the operators under its node in the operator tree have been
assigned candidate processor set. We refer to the all the processors assigned to
this branch as branch processor set. If Ni is a blocking operator, the workload
manager can start to assign processors to new branches in the operator tree which
have input. If there are no other branch, the remaining available processors can
be added to the branch of Ni. We add processor from the leaf node until Ni, which
means that we assign more CPU power to the source operators and push data in a
bottom up style. When a leaf operator is complete, limited resource can be moved
to upper level operators.

There may exist many possible approaches to determine which operators to
schedule first. Many optimization solutions may be used. In our work, we first
focus on a simple bottom up manner and choose operators in a particular order (for
example post order), as long as the operator can be started. We aim to achieve full
usage of CPU power and better progress management of pipeline along the operator
tree.

9.3.4 Dynamic Parallelization for Job Execution

Given a job DAG with n operators, N1, . . . , Nn, and a set of m processors with pro-
cessing power, P1, . . . , Pm, respectively, we assume that the edge Ei,j between Ni and
Nj is a pipeline edge if Nj is not a blocking operator. A pipeline edge indicates that
operator Ni’s partial output can be passed to Nj for the next level execution. If Nj is a
blocking operator, we call the edge Ei,j as a blocking edge, which indicates that oper-
ator Nj has to wait all the data from its input operations until any result can be given.
The dynamic scheduler aims to maximize the parallelism and balance the workloads

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 229

among processors. Since the required processors for each operator(except for the
leaf nodes) are unknown before the data is ready, the dynamic scheduler has to per-
form an “exploration” phase to estimate the input and output rate of each operator.
Specifically, the scheduler first assigns one processor Pi to each scan operator (a.k.a
leaf operator) Ni. For this step, we can randomly pick a processor and assign to a
leaf level operator’s tasks. Assume the output rate of operator Ni running on proces-
sor Pj is Ri,k, and the output results are fed into another operator Nk as its input. If
the edge between Ni and Nk is a pipeline edge, in order to make the two operators
Ni and Nk run concurrently, the scheduler needs to assign processors to consume the
output from Ni with an approximately the same rate Ri,k. Similarly, after process-
ing operator Nk, the scheduler will know the output rate of Nk and do the processor
assignment accordingly. The same procedure is repeated until a blocking edge is
encountered. In this case, the blocking operator, such as sort/aggregation, will wait
until all the source data from its child operators arrive. Once all the sources are
ready for processing, we schedule appropriate tasks to match the input of blocking
operator.

The processor assignment discussed so far only assumes that there are enough
processors to be assigned. Once the processors are not enough, the scheduler should
reduce the processors assigned to the leaf nodes and adjust the processor assignment
to non-leaf nodes accordingly.

Now we briefly describe how the workload manager schedule the tasks of the
example job in Fig. 9.2 in a cloud with X machines. Each operator can be paral-
lelized and executed by multiple tasks. A→ B→ C or E → F can be executed as
a pipeline and D can run as long as long as the corresponding data from C and E is
available.

The job is scheduled as Fig. 9.3 in real time by the workload manager. We explain
how data driven approach will deal with potential I/O bound by utilizing pipeline
and overlapping I/O and CPU tasks. It is executed in following steps.

Step 1: identify the tasks for the operator A.
Step 2: select appropriate server nodes a1, a2, a3 to execute tasks of A
Step 3: the nodes a1, a2, a3 execute operator A’s tasks and can be viewed as a

single node “1”.
Step 4: find a set of servers to handle output from the node “1”. Say, we allocate

b1, b2, b3, b4.
Step 5: those 7 nodes can be viewed together as a node “2”.
Step 6: find a set of servers enough to handle the output from the node “2”.
Step 7: all the server in the left branch can be viewed as the node “3” and in

this node 3, all servers are busy since data inflow and processing power are
matched, thus, the resource utilization is high.

Step 8: construct node “4”, “5” similar to the way we construct node “3”.
Step 9: then the nodes 3 and 5 can be combined to node “6”
Step 10: find a set of servers to handle the output of node “6”, which are

d1, d2, d3.

230 R. Li et al.

Note that we try to find a set of right “ratios” for servers between adjacent tiers
illustrated by the numerical nodes. Once we can find such set of ratios, for any num-
ber of machines, we know how to assign servers (or computing powers by sharing
servers) for each operator.

This approach ideally produces the best response time using a minimal number
of servers (most of time during the execution) since all machines are fully utilized.
Alternatively, we can use a lot of machines for operator A and F and then finish
B, C, E,D one by one. This naive approach is apparently inefficient if we can not
utilize all the machines for one of the operators.

To determine the best ratio between two tiers, we are aiming at balancing the
input/output, or the size of the middle result. In other words, we want to keep the
volume of waiting data blocks under a threshold T. When there are more data blocks
than the threshold, we try to add more resources, so that more data blocks will be
processed. When number of data blocks is smaller than threshold, we could reduce
the number of processors. So finally the ratio can be reached around the threshold.
Apparently, for small value of T, the whole job will be pipelined faster.

9.3.5 Balancing Pipelined Operators

In a general work flow, we could eliminate intermediate results if we can extend the
execution of operators of a pipeline. If the computing resources are unlimited, we
can always assign new tasks to processors. In general, computing resources for one
job is limited. In such case, WLM has to assign tasks intelligently among limited
number of resources.

Figure 9.4 give a real example. Three operators has different processing speeds
for the same size of data. We cannot know exactly how fast data will be generated
before the job start so the resource allocation is best to be done in real time. We focus

Op1 Op2 Op3

Input queue 1
Output queue 1

Input queue 2
Output queue 2

Input queue 3
Output queue 3

Producer/Consumer(balancing Op1 & Op2)

Speed: 3:4

Resource: 4:3

Workers: 6(3:Op1,2:Op2,1:Shared)Fig. 9.4 Pipeline

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 231

on the first two operators. Op1 and Op2 have a producer/consumer relationship, the
output data of Op1 will be passed to Op2. After initial execution, WLM finds that
the computing power should be configured into 4:3 for two operators to match the
input/output. If we have 7 equivalent servers, this can be fulfilled easily. Suppose
we have only 6 equivalent servers, we propose following shared-worker scheme: we
assign 3 workers dedicated for Op1’s task, 2 workers for Op2’s task, the remaining
for tasks from both workers (interleaving). The balancing target here is to reduce the
size of the intermediate result and shared-worker can execute the unbalanced tasks
in real time.

To summarize, our data driven model will monitor input/output queues between
neighboring operators and adjust the task assignment. If resources are limited we
can request new workers or slow down the source input. The ratio in pipeline can be
changed because of variation in the selectivity, our scheduling can quickly response
to such change.

9.3.6 Balancing Tiers

Next, we show how to select servers to balance the workload between adjacent tiers.
Because it is data driven, the easiest way is – assign one server or minimum number
of servers for I/O related sub-jobs (say, operators A and B) – then we can figure out
how many servers should be assigned to B,C,E,D respectively handle output from
A and F respectively. The idea is something like: assign one I/O node; traverse from
the leaf node to top until reach a join node at the join node, multiple branches need
to be “synchronized” across all branches; to do so, the servers need to be added to
traverse down the branches; after all branches at the join node are in sync (balanced),
then continue to traverse upward; after we reach to the top, we have determine the
ratios between servers between adjacent tiers. We can multiple a number (i.e. 2, 3,
4,) to the numbers of servers in each node and expand the execution graph.

We mention “ratio” for numerical nodes in the example. The actual ratio will
change during run time and change from one run to another. The ratio may not
mean anything unless all computation units are “normalized”.

The ratio gives us a reference as how to allocation cpu power to different sub-job
so that the workload can be balanced.

9.3.7 Scheduling Multiple Jobs

To schedule multiple jobs, we first map a certain number of processors for each job,
which can be considered as its individual processor pool. For each job, the workload
manager will only assign its task to the machines in its own pool. This processor/job
mapping is done by WLM when a job is initialized. If resource is limited, we allow
a processor to be shared by multiple jobs since some of processor may be powerful.
Figure 9.5 shows an example of two jobs. Processor 2 is shared by both jobs.

232 R. Li et al.

Shared Processors

Processor/job mapping

Jobs 1
pool

Job 2
pool

Job1 tasks Job2 tasks

Processor/task mapping

Workload Manager

b1a3a1 a2

Processor 2

b2

Processor 1 Processor 3

… …

Fig. 9.5 Multiple jobs scheduling

The approach of initial worker pool is good for large scale cloud since we can
then easily control the resources used by each job. The pool can be dynamically
changed during run time to achieve a lot of scheduling purposes. For example, we
can simply suspend a job by cleaning its worker pool. We can speed up/slow down
the processing by adding/reducing processors in a job’s worker pool. The initial
pool size may not be suitable for all jobs. In real time, WLM may assign more/less
workers to the job which has more/less tasks to be scheduled. For example, if a job
is first executed by 10 machines to do I/O scan and the final step is done by a single
task on one machine, the unused processors can be released early to the process
other jobs with limited resources.

We list the internal design of WLM for scheduling a DAG job in Algorithm 1.
The WLM is run as a central scheduler.When a new job request is submitted, WLM
will first initialize the job and request an initial worker set of the job, then, WLM
will schedule the job. When a scheduled task finished, WLM will schedule other
tasks of its corresponding job.

9.4 Related Work

9.4.1 Parallel Databases

Parallelized processing on multi processors or shared-nothing architecture has been
shown to have a high degree of scale up and speed up (DeWitt & Gray, 1992). Some
of oldest systems include: GAMMA, Bubba, PRISMA/DB.

Parallelism can be done by using inter-operator parallelism (use pipeline or par-
allelize bushy-tree) and intra-operator parallelism (partition and parallelize inside a

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 233

relational operator). Great efforts has been put in parallelizing relational operators,
such as join algorithm (Schneider & DeWitt, 1989).

The optimization of parallelized query plan and scheduling has been widely stud-
ied (Hasan, 1995), such as scheduling pipelined query operators (Hasan & Motwani,
1994; Liu & Rundensteiner, 2005), static task scheduling and resource allocation
(Kwok & Ahmad, 1999; Garofalakis & Ioannidis, 1996; Lo, Chen, Ravishankar, &
Yu, 1993), load balancing (Bouganim, Florescu, & Valduriez, 1996) with skew han-
dling (DeWitt, Naughton, Schneider, & Seshadri, 1992), managing intra-operator
parallelism with multi-users (Mehta & DeWitt, 1995), dynamic query plan opti-
mization and migration according to running statistics (Antoshenkov, 1996). For the
dynamic query plan optimization, we can also prepare many different query plans
and select one in runtime (Hsiao, Chen, & Yu, 1994) or use parameters (Ioannidis,
Ng, Shim, & Sellis, 1992).

There also exist efforts on improving database performance on other computer
architectures, such as parallelizing the query processing in a multi-core environment
(Acker, Roth, & Bayer, 2008), database processing designed for simultaneous multi-
threading processors (Zhou, Cieslewicz, Ross, & Shah, 2005), etc.

In nowadays’ real internet applications, large data analysis is needed over
streaming of data. A lot of effort has been put to fulfil such query requirement
(Shah, Hellerstein, Chandrasekaran, & Franklin, 2003; Madden, Shah, Hellerstein,
& Raman, 2002; Zhu, Rundensteiner, & Heineman, 2004; Liu, Zhu, Jbantova,
Momberger, & Rundensteiner, 2005).

9.4.2 Data Processing in Cluster

Google’s MapReduce (Dean & Ghemawat, 2004) is deployed in a large cluster run-
ning Google Files System. In this system, a large data set is stored as multiple copies

234 R. Li et al.

of small standard blocks in different locations in the cluster. The MapReduce is a
standard programming model, executing two user provided functions for Map tasks
and Reduce tasks. Many data processing problems can be transformed into this pro-
gramming model, and the scheduling of tasks over the specifically designed system
improve the performance very well. But because the programming model limitation,
it’s not suitable for all kinds of jobs such as a relation join which takes two files as
input. Because of its usefulness and simplicity, many pioneering database systems
are beginning to integrate its functionality, including Aster Data5 and GreenPlum.6

An open source implementation of MapReduce is provided by Hadoop.7

Dyrad (Isard, Budiu, Yu, Birrell, & Fetterly, 2007) implements a general-purpose
data parallel execution engine over a cluster. It uses low-level programming lan-
guage to represent a DAG of data flow. The static plan will be given to a runtime
executor to schedule over a cluster. However it has some drawbacks. First, the user
need to master a complex graph description language. It also requires the user to
know the detail of cluster to specify degree of parallelism (at least as a suggestion).
The optimization is through changing the shape of predetermined graph plan during
runtime. Currently it can only deal with one user task or query.

Recently, data driven workflow planning in cluster is proposed in Robinson
and DeWitt (2007) and Shankar and DeWitt (2007). Clustera (Davlid, DeWitt, &
Shankar, 2008) is a recently developed prototype of an integrated computation and
data management system. It has good extensibility and can execute computationally
intensive tasks, MapReduce task, as well as SQL queries in a parallel environment.
It will first compile any kind of task description into a DAG of concrete jobs, then
the job scheduler will optimize the execution in the cloud. It also adopts the idea of
using database for the cluster management problem. It has comparable performance
compared to Hadoop on the performance of MapReduce task and good scalability
for SQL like queries.

Inspired by MapReduce, it has been realized that a descriptive language for SQL
like data processing is needed for the parallel processing in a share-nothing envi-
ronment. Industries have proposed their idea, like Yahoo’s Pig Latin (Olston, Reed,
Srivastava, Kumar, & Tomkins, 2008) and Microsoft’s SCOPE (Ronnie Chaiken,
Jenkins, & Zhou, 2008).

9.5 Conclusion

Cloud computing denotes the latest trend in application development for parallel
computing on massive data volumes. It relies on clouds of servers to handle tasks
that used to be managed by individual server. We observe that current Hadoop (and
many others) require users to configure cloud infrastructures via programs and APIs

5http://www.asterdata.com/index.php.
6http://www.greenplum.com/.
7http://hadoop.apache.org/core/.

9 Cloudweaver: Adaptive and Data-Driven Workload Manager 235

and such configuration is fixed during the runtime. We argue that such ad hoc con-
figurations may result in less utilization and efficiency of the whole system. In this
chapter, we provide automated configuration of a cloud infrastructure adaptive to
runtime execution as well as extend supported set of operators. We evaluate the pro-
posed framework on both synthetic computational jobs. The future work includes
automated translation of SQL to Hadoop APIs (or extended APIs if required) in a
prototype system for further evaluation.

References

Acker, R., Roth, C., & Bayer, R. (2008). Parallel query processing in databases on multicore
architectures. ICA3PP, 2–13.

Antoshenkov, G. (1996). Dynamic optimization of index scans restricted by booleans. ICDE,
430–440.

Bouganim, L., Florescu, D., & Valduriez, P. (1996). Dynamic load balancing in hierarchical parallel
database systems. VLDB, 436–447.

Davlid, E. R., DeWitt, J., & Shankar, S. (2008). Clustera: An integrated computation and data
management system. VLDB.

Dean, J., & Ghemawat, S. (2004). Mapreduce: Simplified data processing on large clusters. OSDI,
137–150.

DeWitt, D. J., & Gray, J. (1992). Parallel database systems: The future of high performance
database systems. Communications of the ACM, 35(6), 85–98.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., & Seshadri, S. (1992). Practical skew handling in
parallel joins. VLDB, 27–40.

Garofalakis, M. N., & Ioannidis, Y. E. (1996). Multi-dimensional resource scheduling for parallel
queries. SIGMOD Conference, 365–376.

Hasan, W. (1995). Optimization of sql queries for parallel machines. (Doctoral Thesis, Standford
University, 1995).

Hasan, W., & Motwani, R. (1994). Optimization algorithms for exploiting the parallelism-
communication tradeoff in pipelined parallelism. VLDB, 36–47.

Hsiao, H.-I., Chen, M.-S., & Yu, P. S., (1994). On parallel execution of multiple pipelined hash
joins. SIGMOD Conference, 185–196.

Ioannidis, Y. E., Ng, R. T., Shim, K., & Sellis, T. K. (1992). Parametric query optimization. VLDB,
103–114.

Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: distributed data-parallel
programs from sequential building blocks. EuroSys, 59–72.

Kwok, Y.-K., & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Computing Surveys, 31(4), 406–471.

Liu, B., & Rundensteiner, E. A., (2005). Revisiting pipelined parallelism in multi-join query
processing. VLDB, 829–840.

Liu, B., Zhu, Y., Jbantova, M., Momberger, B., & Rundensteiner, E. A. (2005). A dynamically
adaptive distributed system for processing complex continuous queries. VLDB, 1338–1341.

Lo, M.-L., Chen, M.-S., Ravishankar, C. V., & Yu, P. S. (1993). On optimal processor allocation to
support pipelined hash joins. SIGMOD Conference, 69–78.

Madden, S., Shah, M. A., Hellerstein, J. M., & Raman, V. (2002). Continuously adaptive
continuous queries over streams. SIGMOD Conference, 49–60.

Mehta, M., & DeWitt, D. J. (1995). Managing intra-operator parallelism in parallel database
systems. VLDB, 382–394.

Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (2008). Pig latin: A not-so-foreign
language for data processing. SIGMOD Conference, 1099–1110.

236 R. Li et al.

Robinson, E., & DeWitt, D. J. (2007). Turning cluster management into data management; A
system overview. CIDR, 120–131.

Ronnie Chaiken, P.-A. L. B. R. D. S. S. W., Jenkins, B., & Zhou, J. (2008). Scope: Easy and
efficient parallel processing of massive data sets. VLDB.

Schneider, D. A., & DeWitt, D. J. (1989). A performance evaluation of four parallel join algorithms
in a shared-nothing multiprocessor environment. SIGMOD Conference, 110–121.

Shah, M. A., Hellerstein, J. M., Chandrasekaran, S., & Franklin, M. J. (2003). Flux: An adaptive
partitioning operator for continuous query systems. ICDE, 25–36.

Shankar, S., & DeWitt, D. J. (2007). Data driven workflow planning in cluster management
systems. HPDC, 127–136.

Zhou, J., Cieslewicz, J., Ross, K. A., & Shah, M. (2005). Improving database performance on
simultaneous multithreading processors. VLDB, 49–60.

Zhu, Y., Rundensteiner, E. A., & Heineman, G. T. (2004). Dynamic plan migration for continuous
queries over data streams. SIGMOD Conference, 431–442.

Part II
Architectures

Chapter 10
Enterprise Knowledge Clouds:
Architecture and Technologies

Kemal A. Delic and Jeff A. Riley

10.1 Introduction

This chapter outlines the architectural foundations of Enterprise Knowledge Clouds
(EKC) (Delic & Riley, 2009), describing the underlying technological fabrics and
then pointing at the key capabilities of the (hypothetical) intelligent enterprise oper-
ating in constantly evolving, dynamic market conditions. Our aim is to give readers
of this chapter a better understanding of knowledge cloud architectural aims and
practical insights into EKC technological components. Thanks to knowledge, the
enterprise will know more, will act better and react sooner in changing environment
conditions, ultimately improving its performance and enabling it to show better
behaviour and measurable improvements.

The Enterprise is an organisational structure which may take varying forms
in different domains and circumstances. For our purposes here, we consider that
the enterprise is an operating business employing 5000 or more people, operating
globally with revenues in excess of $1Billion, and supported by appropriate IT capa-
bilities and facilities. There is a long, ongoing debate over the value and impact of
IT use in business operations, but we can easily imagine what would happen if a
business enterprise suddenly finds itself without any IT systems.

Knowledge gives distinctive capabilities to living creatures, with humans being at
the top of the hierarchical tree of life. Tacit knowledge enables perception, reflection
and action as the basic features of any intelligent behaviour. Technology, on the
other hand, enables capturing and reuse of tacit knowledge in explicit form. Much of
what we know as ‘knowledge management’ is about transforming tacit knowledge
into explicit and vice-versa. Intuitively is clear that knowledge plays the key role
in each and every part of the business enterprise. Knowledge takes various forms,
has variable value and makes varying impact, and requires different technologies to

K.A. Delic and J.A. Riley (B)
Hewlett-Packard Co., New York, NY, USA
e-mails: {kemal.delic; jeff.riley}@hp.com

239B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_10, C© Springer Science+Business Media, LLC 2010

240 K.A. Delic and J.A. Riley

deal with its entire, continues life cycle. It is ‘enterprise knowledge’ which makes
the difference in operational tasks (automation) and strategic situations (decision
making).

Cloud computing is an emerging architectural paradigm driven by the sharp drop
of technology costs followed by radically improved performance (commoditisation)
(ITU, 2010). Social changes and economic advances have created a huge number of
consumers and producers of various content artefacts (text, photo, music, video,
etc.) representing huge user clouds and large communities (in the order of 100s of
millions people). Thus we see cloud computing developing on an unprecedented
scale and dynamics on a global basis (CLOUDSCAPE, 2009).

Highly abstracted, company operations are described as the interplay between
people, machines and processes, providing either tangible goods or consumable ser-
vices (Delic, 2003). Depending upon the business context, one component might be
dominant over others, while each will contain something which we could label as
‘knowledge’. It is important to observe is that approximately 75% of the economic
activity in most advanced countries is created by service industries where knowledge
is the primary resource or ingredient, thus we have been hearing about ‘knowledge-
based economies’ for many years now. We may conclude that the services economy
is driven by the power of knowledge.

We postulate that Knowledge Clouds (KC) will enable the global spread of eco-
nomic growth, efficient delivery of services, smoother exchange and profitable trade
of goods and services.

10.2 Business Enterprise Organisation

The typical business enterprise is an hierarchical organisation which has certain
characteristics of military command-control layout with executives at the top of the
hierarchy (numbered in tens) senior managers and managers at the next level (num-
bered in hundreds) and employees at the base (numbered in thousands). Depending
upon the industry branch and regional specifics, it might be that certain functions are
global and others regional. This usually leads to a characteristics matrix organisation
which is marked by high complexity.

At the conceptual level, we can talk about key entities as Clients and Customers,
Partners and Suppliers, interconnected to the business enterprise via distribu-
tion channels and supply chains (Fig. 10.1). Internally, the enterprise will have
shared functions such as Human Resources, Finance, R&D Labs, IT, Sales and
Marketing synchronised with Production and Services. Specialised enterprise soft-
ware (e.g. CRM, ERP, SCM etc.) enables smooth operations of the enterprise and
represent typical enterprise software applications today. For large enterprises, those
are key systems requiring many years to perfect and require a large effort to oper-
ate. Each system encompasses knowledge embodied either as human expertise,
business processes, software algorithms or analytical models. Enterprise IT plays
a special, technological role for which KM will have distinctive value and lasting
importance.

10 Enterprise Knowledge Clouds 241

Clients

SuppliersPartners

ERP
Products

CRM

SCM

E
nt

er
pr

is
e

Enterprise IT

Services

S
ha

re
d

O
rg

s

Customers

Fig. 10.1 Conceptual business enterprise organisation

From the perspective of technology components, Enterprise IT can be abstracted
with the key components having their own operational indicators, such as dollars-
per-call for the help-desk or cents-per-event for processing, enabling management
and administrators to grasp inefficiencies and estimate the overall cost (Fig. 10.2).
The ultimate objective is to minimise the cost while maximising the efficiency of
the each IT unit, considering that data centres are machine intensives, help-desks are

Corporate Network

User Clouds

Data Centres

Operations Centres

Consumers
Customers

Clients

Partners
Suppliers

Enterprise IT Infrastructure

$/callc/event

kwh/head

Help Desks

Fig. 10.2 Conceptual enterprise IT organisation

242 K.A. Delic and J.A. Riley

labour intensive, and operational centres and corporate networks are event intensive
units.

To enable synchronised and orchestrated changes, enterprise architecture cap-
tures the overall state of the enterprise business and IT infrastructure and provides
guidance expressed with a set of architecting principles.

Enterprise infrastructure used for business operations represents interconnecting,
mediation fabrics which improve operational behaviour captured and indicated via
key performance indicators. Removal of the IT fabrics will cripple business oper-
ations, demonstrating that today’s business operations are not imaginable without
the deployment of IT. In fact, the majority of businesses consider IT as a business-
critical component which must be cleverly architected and well designed as a highly
dependent part of the business.

10.3 Enterprise Architecture

Enterprise architecture is a strategic framework that captures the current state of
the enterprise business and supporting IT, and outlines an evolutionary path towards
the future state of the business and IT (Delic, 2002b). It is a very hard challenge
to provide synchronised development of business and IT in dynamic and unpre-
dictable market conditions. Thus, having a sound enterprise architecture that charts
evolutionary change over 3–5 years is an important, competitive advantage. In sim-
plistic terms, enterprise architecture is a model depicting the evolution of business,
infrastructure, applications and data landscapes over 3–5 years. Each artefact of the
enterprise architecture has a very high monetary value, a strong proprietary nature,
and a vital importance for the future of the enterprise.

In a simplistic fashion, these artefacts can be represented in an hierarchical man-
ner, implying the type of models appropriate for each layer, characteristic entities
and key metrics (Fig. 10.3). Enterprise architecture can be viewed as a global strate-
gic plan which will synchronise business evolution with IT development and ensure
that future needs are properly addressed. As such, enterprise architecture represents
the most valuable strategic planning item for enterprise executives and management:
business can plan underlying technology changes after observing forthcoming tech-
nology shifts (Zachman, 1999). Such technology changes will critically improve
or cripple business performance, and mature businesses should keep those plans
private, current and sound.

The expanded landscape shown in Fig. 10.4 indicates some characteristic opera-
tional figures for the very large, global business enterprise, and illustrates the scope,
scale and complexity of operations (Delic, 2002a). It is intuitively clear that such
a complex environment contains several points of inefficiency and structural weak-
ness which could be best dealt with via deployment of KM techniques. A more
developed enterprise landscape (e.g. Delic, Greene, & Kirsch, 2010) will also con-
tain data points, indicate the dynamics and spread of data flows, and show the key
technological, business and market indicators.

10 Enterprise Knowledge Clouds 243

Business

Tools
&

Systems

Data

&
Information

Policies

Processes

Models

Simplicity
Reliability

Accuracy
Quality

Scope
Impact

Stratified Enterprise Architecture

Key Enterprise Artifacts
Characteristics

Key Performance
Indicators

Events, Notifications,
Warnings, Alarms

Cases, Transactions,
Problems

Customers, Clients,
Accounts, Analytic

Revenue,
Profit, Market

Share, Size

Cost/Item,
Speed, Support

Effort

Cost, Value,
Volume, Speed

Delic: Copyright 01/03.

Zachman
Framework

ITSM

CIM/DTMF
RM-ODB

Enterprise Entities, Objects

Fig. 10.3 Simplified enterprise/business/IT artefacts

Infrastructure

Users
Enterprise
Services

Help Desk

Operational Center

Enterprise Network Reporting

Monitoring &
Control

Monitoring &
Control

Fi
rs

t L
in

e
A

ge
nt

s

Te
ch

ni
ci

an
s

E
ng

in
ee

rs

R
ou

tin
g

Network

Servers

Access Devices

Security

ENTERPRISE IT/IS DEPARTMENTENTERPRISE IT/IS FABRICS

ENTERPRISE BUSINESS

Web
Server

Database

Server

Application
Server

PCs

PDAs

Note
books

Alarm Suppression

Event Correlation

Heavy Coding &
Customization

Fig. 10.4 Simplified enterprise/business/IT architecture landscape

244 K.A. Delic and J.A. Riley

As an example, for an enterprise business to efficiently handle in the order of
100 million calls per year, it should capture and deploy knowledge about callers,
encountered problems and solution procedures. Similarly, to configure, manage and
maintain in the order of 40,000 network devices, an enterprise business needs deep
and reliable knowledge about network topology, fault behaviours and overall traf-
fic flows. For each domain, knowledge will have different capture paradigms and
technology, and will have a different impact on internal IT performances and cost.

10.4 Enterprise Knowledge Management

Enterprises as large, distributed and complex entities have several points of inter-
operations with their environment which could be improved via deployment of KM
applications. Knowledge about clients and customers will improve financial results
and customer satisfaction. Knowing partners and suppliers better will help improve
cooperation. Internal systems may help harvest employees ideas which then might
be transformed into valuable intellectual property. As previously indicated, the IT
domain is especially suitable for the deployment of KM systems, and this is an
area in which the authors both have many years experience. We describe in detail
three examples of KM deployment for internal IT operations, decision support, and
knowledge harvesting.

An example of KM deployment in the IT domain is in the use of various knowl-
edge repositories and systems to resolve a range of IT problems (Delic et al., 2010).
Following a problem event from the IT infrastructure we see from Fig. 10.5 that

IS/IT INFRASTRUCTURE

BUSINESS

MONITORING & MANAGEMENT

Business Events

IT/IS Events Problem
Recognition

Problem
Solution

Yes - Problem Recognized

Automatic Action

No Match - Find
Human
Expert

Human Intervention
Problem Recognized
and Solved

Problem Not Solved

AUTOMATIC

HUMAN SOLVED

SEMI - AUTOMATIC

Group of Human
Experts + Tools

Problem

Group Decision

Seconds/Cents
Minutes/Dollars

Hours/100sDollars

IT PROBLEMS TAXONOMY

Events

Business
Events

IT Events

Net

Server

Client HW

OS

APP

Simulation Analytics

Diagnostic Knowledge Problem Solving Knowledge 1 2

3

Fig. 10.5 Knowledge for IT problem solving

10 Enterprise Knowledge Clouds 245

(1) problem recognition software will search a knowledge base containing problem
solving knowledge, and if it recognises and identifies the problem it will deploy
the solution found in the knowledge base; otherwise, (2) a knowledgeable human
expert will be identified and, after deploying the diagnostic procedure, knowledge
will be forwarded into automatic problem solving layer. For more complex, intri-
cate or inter-dependent problems, (3) a group of human experts will be engaged to
use knowledge captured in simulation analytics to resolve the problem via group
decision making.

As millions of problems are solved daily, it is clear that the cost and speed of
problem resolution are important parameters that illustrate the value of KM deploy-
ment for IT operations. At the very high level of abstraction, we see transformation
of the raw data into information and then into knowledge and problem-solving acts,
having measurable business impact and monetary value. It is important to note that
KM techniques serve important roles in support and services, and that technologies
deployed mainly originated from the field of Artificial Intelligence.

Another example of knowledge deployment is in decision support systems for
enterprise operations, based on Enterprise Management Analytics (Casati et al.,
2004; Cerri et al., 2008). We depict a layered IT architecture serving the business
to orchestrate operations with clients and customers while being supported by sup-
pliers and partners (Fig. 10.6). Those layers have distinctive architectures dictated
by the general intent, so that all events from the instrumentation layer are served in

Business Cockpit IT Cockpit

INSTRUMENTATION

INTEGRATION

ANALYTICS

VIEW RENDERING
INTERACTIONS

Enterprise Management Analytics

Repositories, Data & Information Sets

Visualization, Calculation, Simulation Engines

Msg. Bus Msg.
Broker

Networks
Servers

Applications

Clients
Access

Devices/
Appliances

LAYERED ANALYTIC ARCHITECTURE

CEO, CFO
et. al.

CIO, COO
et. al.

Millions of events per
each business day

Hundreds of thousands
transactions per each

business day

Thousands of predictions,
forecasts, estimates per

each business day

Thousands of views & reports
+ millions of interactions each

business day

Tools

Systems

B
U

S I
N

E
S S

 M
A

N
A

G
E

M
E

N
T

 A
N

A
L

Y
T

I C
S

B
U

S I
N

E
SS

 M
A

N
A

G
E

M
E

N
T

 A
N

A
L

Y
T

IC
S

E
N

T
E

R
P

R
I S

E
 I

T
 M

A
N

A
G

E
M

E
N

T
 A

N
A

L
Y

T
I C

S
E

N
T

E
R

P
R

IS
E

 I
T

 M
A

N
A

G
E

M
E

N
T

 A
N

A
L

Y
T

IC
S

Delic – Dayal – C - March 2004

Fig. 10.6 Enterprise knowledge for decision support via analytics

246 K.A. Delic and J.A. Riley

timely manner and never missed; transactions in the integration layer are captured
and never lost; and analytics in the interaction layer are always delivered and never
inaccurate.

Decision support is provided via portals embodied as business and IT cockpits
for executives, an operational workbench for managers, and working spaces for
employees. Knowledge is captured in enterprise management analytics. This is yet
another enterprise architecture landscape which combines the three-layers stratifica-
tion principle with analytics technologies to illustrate the current state of enterprise
KM systems for dependable and effective decision support.

Harvesting of employees’ ideas represents an important activity as it may spawn
the seeds of valuable new processes, inventive technologies, or innovative solutions.
After initial triage and assessment, ideas could be suitable for transformation into
valuable intellectual property – as patents for example. Figure 10.7 depicts a hypo-
thetical example, illustrating that a large brainstorming exercise, or grand challenge,
can create big idea clouds which could be harvested, transformed and potentially
monetised. It is an illustration of KM deployed for innovation on a mass scale,
where emerging cloud computing facilities may enable rescaling of these processes
by orders of magnitude (Delic & Fulgham, 2004).

Looking systematically for good ideas Looking systematically for good ideas

Delic & Fulgham – Dec 2004

IDEA CLOUDS BRAINSTORMING
BULLETIN BOARD

CLUSTERING
ALGORITHM

INDEX OF
INTERESTINGNESS

HAND ADJUSTED

PARALLEL SEARCH
LAUNCHED

US PTO, EU PTO

IEEE, ACM, DIG-LIB

INTERNET

CLICKABLE, ORDERED
LIST - CLICKABLE

REINJECTED INTO
BULLETIN BOARD

IDEA CLUSTER 1

IDEA CLUSTER 2

IDEA CLUSTER 3

KEYWORDS EXTRACTED
1.

2.

3.

1.

2.

3.

ASSESSED BY HUMAN

1 2

34

Fig. 10.7 Knowledge harvesting and transformation: conceptual IP architecture

10 Enterprise Knowledge Clouds 247

Figure 10.7 depicts, in stylised form, that (1) ideas are created, spawned and
enriched; (2) the ideas are then organized and ordered by potential value or interest-
ingness; then (3) the ideas are compared and measured against similar ideas in patent
repositories, document libraries or internet documents; and finally, (4) the ideas are
either refined and formalised or re-injected into yet another round of brainstorming.

Some large companies have arranged intensive sessions or grand challenges cre-
ating more than 100,000 ideas in a very short period of time – so the next possible
challenge will be in the automation of processes related to triage, evaluation, val-
uation and formalization of the assessments of ideas. Due to this automation, the
amount of innovation knowledge captured will be extremely large, and the power
of scope and scale of such a system and its potential monetary value can only be
imagined.

10.5 Enterprise Knowledge Architecture

Contemporary enterprise applications usually reside in data centres and have a
typical stacked architecture (Fig. 10.8). Web servers manage interactions, deliver
content and capture traces (front-end system) for enterprise applications residing
in application servers (middleware). It is common for the databases capture events,
transactions and analytics in the back-end system. To deal with high load and tran-
sient peaks, load-balancers are installed on the front-end and SAN (Storage Area
Networks) for archiving in the back-end.

G
en

er
ic

 E
nt

er
pr

is
e

A
pp

lic
at

io
n

(E
A

)
S

ta
ck

Web
Servers

App
Server

DB
Servers

Firewalls

Storage Area Networks

Load Balancing

M
an

ag
em

en
t L

oo
ps

Operational Knowledge Store

Knowledge Mart

Knowledge Warehouse

Search
Visual
Search

Diagnostic

P
U

B
L

IC

P
R

IV
A

T
E

KNOWLEDGE DELIVERY

CONTENT MANAGAMENT

K
N

O
W

L
E

D
G

E
 M

A
N

A
G

E
M

N
T

Knowledge

Data
Information

Machine Learning
Data/Text Mining
Genetic Algorithms
Neural Networks
Rule-Based Systems
Graph-Probabilistic M.
Intelligent Agents
Logic Programming
Fuzzy Logic Systems
Natural Language P.
Search ..

Q/A

Fig. 10.8 Enterprise knowledge management stack

The abstracted enterprise knowledge management system can also be shown with
a stacked architecture (Fig. 10.8), and here we recognise three characteristic layers:
front-end, middle/application layer and back-end. We indicate a whole slew of tech-
nologies (middle/application layer) originating from Artificial Intelligence research
which represent the essence of many KM applications (Cannataro & Talia, 2003;

248 K.A. Delic and J.A. Riley

Delic, Riley, Bartolini, & Salihbegovic, 2007). Knowledge is delivered via various
types of portals, either to registered internal or external users or anonymous web
consumers. It is typically the case that knowledge users can become knowledge
producers via various discussion forums. Another channel of delivery and exchange
of knowledge is via machine-to-machine exchanges.

The knowledge (idea) harvesting system described previously can be imple-
mented as an enterprise application with three layers in which content (as exter-
nalised knowledge) is being processed and stored within three logical knowledge
layers. The Operational Knowledge Store provides rapid access; the Knowledge
Mart is an intermediate knowledge repository; and archived knowledge is stored in
the Knowledge Warehouse.

We should stress that all conceptual drawings show an architecture which can
be materialised with different logical and physical architectures, depending on the
deployment domain and choice of key technologies – KM technologies such as
content management, enterprise search, delivery portals, discussion forums as key
enterprise components glued together via Service Oriented Architecture (SOA) into
service delivery fabrics.

10.6 Enterprise Computing Clouds

Cloud computing is the next evolutionary step in the distributed computing field
enabled by:

• radical price/performance improvement leading to commoditization
• technology advances with multi-core and energy-aware chip designs
• architectural interplay of warehouse-scale computing and huge number of intel-

ligent edge devices

Large business enterprises have strong incentives to consider their architecture
plans in light of developments in cloud computing (Sun Microsystems, 2009).

A possible instance of cloud computing serving billions of users can be depicted
as the next wave internet in which the number of devices, gadgets and things can
easily surpass 10 billion items (Delic, 2005; Delic & Walker, 2008) (Fig. 10.9).
It will be served by strategically placed data centres federated into grids via effi-
cient communication fabrics. In data centres clusters of various sizes (hundred to
thousands of machines) will be dynamically allocated to handle varying enterprise
workloads. At the chip level, programming of multi-core will become the principal
preoccupation of designers aiming at energy efficient designs.

The entire chain from the chips, via racks, clusters and data centres should be
designed with cloud computing in mind. The same should apply for the software
design. At the level of large aggregation of grids, entirely new economics and legal
concerns can govern traffic flows, data storage and choice of application execution

10 Enterprise Knowledge Clouds 249

Commercial
Grids Academic

Grids

Data Centers

End User Devices

Web Gadgets

10s

1000s

Billions

10s of Billions

Computing Cloud LayoutComputing Cloud Layout Cloud Cloud
DirectoryDirectory

AccessAccess

Cloud Cloud
ExchangeExchange
ServicesServices

Cloud Cloud
MonitoringMonitoring

BillingBilling

Fig. 10.9 Computing cloud layout

location. This represents a wide number of unresolved issues and particularly hard
challenges.

The business reality of the enterprise and constantly changing market conditions
will dictate specific choices of the Enterprise Knowledge Clouds, which we describe
in the next section.

10.7 Enterprise Knowledge Clouds

Taking into account the current organisational layout of the typical enterprise, we
can outline a generic architecture for enterprise clouds. This generic architecture has
three principal architectural layers: private, partner and public cloud. We postulate
that knowledge management techniques will be appropriately spread over the each
and every enterprise cloud. This natural separation is dictated by the required capa-
bility of each cloud: security and privacy is a must for the private cloud; availability
and reliability is a precondition for the partner cloud; and rescaling and coverage
is important for the public cloud (Fig. 10.10). These requirements will be not only
guiding principles but also design criteria for enterprise clouds.

We can easily imagine that Finance, Human Resources and R&D Labs will
be the prime candidates for the private enterprise KM cloud. The Supply Chain
and Delivery organisations will naturally fall into the partner cloud; while Sales,
Marketing, Public Relations and Publicity would be natural fits for the public cloud.

250 K.A. Delic and J.A. Riley

Clients Customers

Partners Suppliers

ProductsE
nt

er
pr

is
e Services

S
ha

re
d

O
rg

s

PRIVATE CLOUD

PUBLIC CLOUD

PARTNER CLOUD

Secure

Scalable

Dependable

Fig. 10.10 Enterprise clouds stratified

The private, partner and public enterprise clouds should have the facility to inter-
operate and exchange data, information and knowledge on a regular and intensive
basis. The choice of technologies for the enterprise clouds will be critical, and the
emergence of suitable standards is keenly anticipated.

It is not expected that the large enterprises will switch overnight onto cloud
computing fabrics, but we expect they will start to gradually deploy cloud-based
applications for a few, carefully selected domains. Each previous wave of enterprise
technologies has gone through the prototype-test-deploy cycle, and cloud technol-
ogy will not be different. It is also during this time that choices of key cloud
technologies respecting the ultimate capability for each cloud type will be made.

Monitoring, measurement and calculation of key performance parameters for
each enterprise cloud should be undertaken in order to measure the impact of the
new cloud architecture on enterprise performance, and justify investment in the new
technologies.

10.8 Enterprise Knowledge Cloud Technologies

Figure 10.11 depicts an abstracted cloud architecture and shows three principal
groups of technologies that provide virtualisation, automation and scheduling.
Virtualisation (of hardware and software) will provide better use of resources;
Automation will lower support costs and improve dependability of the clouds; and
Scheduling will enable economics-based reasoning about the use of resources and

10 Enterprise Knowledge Clouds 251

Cloud
Infrastructure

Cloud
Management

Services

App
1

App
2

App
3

VirtualizationVirtualization

Conceptual Cloud ArchitectureConceptual Cloud Architecture Global Cloud LayoutGlobal Cloud Layout

WAN

DCs
Europe

DCs
Americas

DCs
Asia

SchedulingScheduling

AutomationAutomation

InnovationInnovation

Fig. 10.11 Cloud computing technologies

dispatching of the enterprise workloads. Finally, we assume that the innovation in
communication part of the clouds should lead to breakthrough improvements.

All these technologies could be categorised as open-source, proprietary or
hybrid. It is beyond the scope of this discussion to delve deeper into detail, but
we point out that these choices are critical for real-world deployment. Intuitively
we would suggest open-source technology for the public cloud, proprietary for the
private cloud, and hybrid for the partner cloud, but we also recognise that this is
a difficult problem and once put into a real-world application context, the choices
might not be right nor will alternatives be obvious.

The choice of technologies for enterprise clouds will be the difference between
success and failure. We expect that the private, public and partner clouds will inter-
operate, so the choice of technology should take into account existing or emerging
standards which will enable future flows among clouds. All interested parties in
this domain have reasons to participate in establishing standards: some self-serving,
some altruistic. We expect to see some robust negotiations between the “proprietary”
and “open” camps.

Looking back over the short history of cloud computing, we can identify some
early platforms on which a very high number of users have developed and deployed
a large number of applications. Thus we expect that the leading vendors will try to
create very large scale platforms that will attract millions of developers. Platform
development usually means the choice of programming language and associated
framework. This has advantages for developers and consumers, but also for the

252 K.A. Delic and J.A. Riley

vendors in that it tends to lock developers into a single platform. Interoperability
of platforms will pose some of the greatest challenges for cloud computing in the
future.

Ongoing technology developments are especially noticeable, and sometimes tar-
geted, by small companies which aim to exit the business via a sale to an established,
global vendor. We have seen this happen already with some small companies having
been sold for (up to) several hundreds of million of dollars. This is an area for future
and exciting developments.

Automation, especially of data centres, will represent the most intricate part of
the cloud, as it must address multiple engineering issues and big challenges in which
the ultimate goal is multi-objective: the maximisation of utilisation and monetary
benefits, and the minimisation of energy cost. All this is to be done whilst guaran-
teeing dependability and achieving performance objectives. We see here a long road
of future research, engineering development and technology innovation (Armbrust
et al., 2009). All this will be a critical path to see enterprises running the majority
of their business in the cloud.

10.9 Conclusion: Future Intelligent Enterprise

If we take a longer perspective look into past technology developments and busi-
ness evolution, we observe some distinct phases characterised by a single word to
describe an entire technology epoch (Delic & Dayal, 2002). For the automotive
industry automation of production was the key technological advance; integra-
tion for the aviation industry and aircraft production; optimisation for e-commerce;
and for the forthcoming service industry, it is adaptation (Delic & Greene, 2006)
(Fig. 10.12).

Adaptive behaviour is a characteristic of living systems, while businesses are
hybrid systems combining people, technology and processes into orchestrated
whole. We believe that the injection of technologies will improve interconnec-
tivity, reduce latencies and increase speeds while improving the problem solving
capabilities based on a higher ‘knowledge density’. We call such an enterprise an
Intelligent Enterprise to denote improved behaviour and the ability to adapt and
survive in changing circumstances. While we do not (yet) compare this artefact to
intelligent living creatures, the analogy is clear.

We postulate that the synergy among big data, big mobile crowds and large
infrastructures will lead to unprecedented improvements in the key indicators above
(Fig. 10.12).

The emerging cloud computing paradigm embodied in useful applications for the
enterprise knowledge management offers:

• radical cost reduction
• a great ability to scale
• much improved agility

10 Enterprise Knowledge Clouds 253

The Big Picture : OnThe Big Picture : On--going Evolutiongoing Evolution
…… and the rise of the Intelligent Enterpriseand the rise of the Intelligent Enterprise

automation

integration

optimization

adaptation

car production

airplanes production

e-commerce

service industry

1960 020200020391

KEY INDICATORS

+ interconnectivity
+ speed/latency
+ knowledge density
+ problem solving

TIME

EGAECIVRESEGALAIRTSUDNI

Fig. 10.12 Ninety years of technology evolution – market view

As such, it might be a good showcase for cloud computing success. In prac-
tical terms, enterprise architecture will evolve towards cloud architecture, and all
architectural components and layers will be impacted and adapted accordingly.

New technologies will enable the next wave of business models, impact market
developments, and see the rise of much changed business enterprise.

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G., Patterson,
D. A., Rabkin, A., Stoica, I., & Zaharia, M. (2009). Above the clouds: A Berkeley view of cloud
computing (University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28).

Cannataro, M., & Talia, D. (2003). The knowledge grids. Communications of the ACM, 46(1),
89–93.

Casati, F., Castellanos, M., Chan, P. K., Dayal, U., Delic, K. A., Greene, W. M., et al.
(2004). Enterprise management analytics. Proceedings of the Eleventh OpenView University
Association Workshop (OVUA04), Paris, France.

Cerri, D., Valle, E. D., Marcos, D. D. F., Giunchiglia, F., Naor, D., Nixon, L., Teymourian, K.,
Obermeier, P., Rebholz-Schuhmann, D., Krummenacher, R., & Simperl, E. (August 2008).
Towards knowledge in the cloud (Tech. Rep. DISI-08-30, University of Trento, Italy).

CLOUDSCAPE (October 2009). The 451 group and Tier1 research. The cloud codex,
CLOUDSCAPE. Available from: http://www.the451group.com/cloudscape/451_
cloudscape.php.

Delic, K. A. (2002a). Enterprise IT complexity. ACM Ubiquity, 2002(Issue January). Available
from: http://www.acm.org/ubiquity/views/k_delic_1.html.

254 K.A. Delic and J.A. Riley

Delic, K. A. (2002b). Enterprise models, strategic transformations and possible solu-
tions. ACM Ubiquity, 2002(Issue July). Available from: http://www.acm.org/ubiquity/
views/k_delic_2.html.

Delic, K. A. (2003). IT Services = People + Tools + Processes. ACM Ubiquity, 4(37). Available
from: http://www.acm.org/ubiquity/views/v4i37_delic.html.

Delic, K. A. (2005). Science and engineering of large-scale complex systems. ACM Ubiquity,
2005(Issue March). Available from: http://www.acm.org/ubiquity/views/v6i8_delic.html.

Delic, K. A., & Dayal, U. (2002). The rise of the intelligent enterprise. ACM Ubiquity, 2002(Issue
December). Available from: http://www.acm.org/ubiquity/views/k_delic_4.pdf.

Delic, K. A., & Dayal, U. (2004). Adaptation in large-scale enterprise systems:
Research and challenges. ACM Ubiquity, 2004(Issue August). Available from:
http://www.acm.org/ubiquity/views/v5i23_delic.html.

Delic, K. A., & Fulgham, M. T. (2004). Corporate innovation engines: Tools and pro-
cesses. Proceedings of the 5th International Conference on Practical Aspects of Knowledge
Management (PAKM2004), Vienna, Austria, 220–226 .

Delic, K. A., & Greene, W. M. (2006). Emerging sciences of service systems. Proceedings of the
R&D Management Conference, New Delhi, 140–144.

Delic, K. A., & Riley, J. A. (2009). Enterprise knowledge clouds: Next generation KM sys-
tems?. Proceedings of the 2009 International Conference Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, 49–53.

Delic, K. A., & Walker, M. A. (2008). Emergence of the academic com-
puting clouds. ACM Ubiquity, 2008(Issue August). Available from:
http://www.acm.org/ubiquity/volume_9/v9i31_delic.html.

Delic, K. A., Greene, W. M., & Kirsch, H.-J. (2004). Intelligent routing of enterprise
IT Events. InfoManagement direct, February 2004, Retrieved March 10, 2010, from
http://www.information-management.com/infodirect/20040227/8166-1.html.

Delic, K. A., Riley, J. A., Bartolini, C., & Salihbegovic, A. (2007). Knowledge-based self-
management of apache web servers. Proceedings of the 21st International Symposium on
Information, Communication and Automation Technologies (ICAT′07), Sarajevo, Bosnia, and
Herzegovena.

International Communication Union ITU (2009). Distributed computing: utilities, grids
& clouds (ITU-T Tech. Watch Rep. 9, 2009). Retrieved 10 March 2010, from
http://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000090001PDFE.pdf.

Sun Microsystems (2009). Introduction to cloud computing architecture. White Paper.
Zachman, J. (December 1999). Enterprise architecture: The past and the future.

Information Management Magazine. Available from: http://www.information-
management.com/issues/19991201/1702-1.html.

Chapter 11
Integration of High-Performance Computing
into Cloud Computing Services

Mladen A. Vouk, Eric Sills, and Patrick Dreher

Abstract High-Performance Computing (HPC) projects span a spectrum of
computer hardware implementations ranging from peta-flop supercomputers, high-
end tera-flop facilities running a variety of operating systems and applications, to
mid-range and smaller computational clusters used for HPC application develop-
ment, pilot runs and prototype staging clusters. What they all have in common is
that they operate as a stand-alone system rather than a scalable and shared user re-
configurable resource. The advent of cloud computing has changed the traditional
HPC implementation. In this article, we will discuss a very successful production-
level architecture and policy framework for supporting HPC services within a more
general cloud computing infrastructure. This integrated environment, called Virtual
Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly
8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty
and students during 2009. In addition, we present and discuss operational data that
show that integration of HPC and non-HPC (or general VCL) services in a cloud can
substantially reduce the cost of delivering cloud services (down to cents per CPU
hour).

11.1 Introduction

The concept of cloud computing is changing the way information technology (IT)
infrastructure is being considered for deployment in businesses, education, research

M.A. Vouk (B)
Department of Computer Science, Box 8206, North Carolina State University, Raleigh,
NC 27695, USA
e-mail: vouk@ncsu.edu

E. Sills
North Carolina State University, Raleigh, NC 27695, USA
e-mail: edsills@ncsu.edu

P. Dreher
Renaissance Computing Institute, Chapel Hill, NC 27517, USA
e-mail: dreher@renci.org

255B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_11, C© Springer Science+Business Media, LLC 2010

256 M.A. Vouk et al.

and government. General interest in this technology has been increasing over the
past several years as can be seen in a Google trends comparison graph of the num-
ber of search citations and references among grid computing, high performance
computing and cloud computing (Fig. 11.1). This trend dramatically increased after
about October 2007 when Google and IBM announced “cloud computing” research
directions (Lohr, Google, & IBM, 2007) and IBM announced its cloud computing
initiative (IBM, 2007).

Fig. 11.1 The rise of cloud computing

This level of interest has made “cloud computing” a popular term that gener-
ally describes a flexible system providing users with access to hardware, software,
applications and services. However, because there is no one generic user and the
hardware, software, and services may be grouped in various combinations, this
cloud computing concept has quickly fractured into many individualized descrip-
tions and perspectives. As a result, it is very difficult to agree on one common
definition of cloud computing (Dreher, Vouk, Sills, & Averitt, 2009; see also
Armbrust et al., 2009; Vouk et al., 2009) that describes the number and types of
cloud computing systems that are being deployed.

In the context of this chapter, we consider “cloud computing” as referring to a
seamless component-based architecture that can deliver an integrated, orchestrated
and rich suite of both loosely and tightly coupled on-demand information technol-
ogy functions and services, significantly reduce overhead and total cost of ownership
and services, and at the same time empower the end-user in terms of control. Some
more obvious advantages of cloud computing are server consolidation, hardware
abstraction via virtualization, better resource management and utilization, service
reliability and availability, improved security and cost effectiveness.

While some organizations are still debating (e.g., Armbrust et al., 2009; Golden,
2009) if or how this technology might be applied, early adopters, such as NC State

11 Integration of High-Performance Computing into Cloud Computing Services 257

University, have been providing cloud-based services to their students, faculty and
staff with great success since 2004 (Dreher et al., 2009; Averitt et al., 2007; Seay
& Tucker, 2010; Vouk et al., 2008, 2009; Vouk, 2008). Unlike some cloud comput-
ing deployments that tend to be equated to delivery of a single type or category of
desktop service, specific server functionalities, applications, or application environ-
ments, the NC State cloud computing deployment (Virtual Computing Laboratory or
VCL, http://vcl.ncsu.edu) offers capabilities that are very flexible and diverse rang-
ing from Hardware-as-a-Service all the way to highly complex Cloud-as-a-Service.
These capabilities can be combined and offered as individual and group IT services,
including true High-Performance Computing (HPC) services. The VCL HPC imple-
mentation very successfully integrates HPC into the cloud computing paradigm by
managing not only resource capabilities and capacity, but also resource topology,
i.e., appropriate level of network/communication coupling among the resources.

In the remainder of the chapter we describe NC State University (NC State
or NCSU) cloud computing environment (Section 11.2), the VCL cloud architec-
ture (Section 11.3), integration of HPC into the VCL cloud architecture (Section
11.4), and the economic performance of the solution (Section 11.5). A summary is
provided in Section 11.6.

11.2 NC State University Cloud Computing Implementation

A cloud computing system should be designed based on a service-oriented archi-
tecture (SOA) that can allocate resources on-demand in a location and device
independent way. The system should incorporate technical efficiency and scalability
through appropriate level of centralization, including sharing of cloud resource and
control functions, and through explicit or implicit self-provisioning of resources and
services by users to reduce administration overhead (Dreher et al., 2009; Vouk et al.,
2009). One of the principal differences between “traditional” and cloud computing
configurations is in the level of control delegated to the user. For example, in a tra-
ditional environment, control of resource use and management lies primarily with
the service delivery site and provider, whereas in a cloud environment this control is
for most part transferred to users through self-provisioning options and appropriate
user delegated privileges and access controls. Similarly, other traditional functions
such as operating system and environment specifications and mode of access and
prioritizations now become explicit user choices. While this can increase manage-
ment efficiency and reduce provisioning costs, the initial base-line configuration of
a cloud computing system is more complex.

At NC State University VCL is a high performance open-source award-winning1

cloud computing technology initially conceived and prototyped in 2004 by NC
State’s College of Engineering, Office of Information Technology, and Department

12007 Computerworld Honors Program Laureate Medal (CHPLM) for Virtual Computing
Laboratory (VCL), 2009 CHPLM for NC State University Cloud Computing Services

258 M.A. Vouk et al.

of Computer Science. Since then, VCL development has rapidly progressed in col-
laboration with industry, higher education, and K-12 partners to the point that today
it is a large scale, production-proven system which is emerging as a dominant force
in the nascent and potentially huge open-source private-cloud market (Seay et al.,
2010; Schaffer et al., 2009; Vouk et al., 2009).

The experience at NC State University has shown that for education and research
cloud computing implementations a flexible and versatile environment is needed to
provide a range of differential services from Hardware-as-a-Service all the way to
Cloud-as-a-Service and Security-as-a-Service. In the context of NC State’s VCL we
distinguish we define each of these services as follows

• Hardware as a Service (HaaS) – On-demand access to a specific computational,
storage and networking product(s) and/or equipment configuration possibly at a
particular site

• Infrastructure as a service (IaaS) – On-demand access to user specified hardware
capabilities, performance and services which may run on a variety of hardware
products

• Platform as a service (PaaS) – On-demand access to user specified combination
of hypervisors (virtualizations), operating system and middleware that enables
user required applications and services running on either HaaS and/or IaaS

• Application as a Service (AaaS) – On-demand access to user specified applica-
tion(s) and content. Software as a Service (SaaS) may encompass anything from
PaaS through AaaS

• Higher level services – A range of capabilities of a cloud to offer a composition
of HaaS, IaaS, PaaS and AaaS within an envelope of particular policies, such as
security policies – for example Security-as-a-Service. Another example are com-
posites and aggregates of lower-level service such as a “Cloud-as-a-Service” –
a service that allows a user to define sub-clouds (clusters of resources) that the
user controls in full.

At some level all of the above services are available to the NC State VCL users,
commensurate with the level and type of privileges granted to the user (Vouk et al.,
2008; Vouk et al., 2009). If one wishes to construct high-performance computing
(HPC) services within VCL with a particular topology, or to have the ability to
deliver specific end-to-end quality of service, including application performance, it
is essential to grant users both HaaS and IaaS access. We find that a carefully con-
structed cloud computing implementation offering the basic services listed above
can result in good technical performance and increased productivity regardless of
whether the cloud computing system is serving commercial customers, educational
institutions, or research collaboration functions.

Campus use of VCL has expanded exponentially over the last five years
(Fig. 11.2). We now have over 30,000+ users and deliver over 100,000 reservations
per semester through over 800 service environments (amounting about 500,000
CPU hours annually). In addition, we deliver over 8.500,000 HPC CPU hours annu-
ally. In-state initiatives include individual UNC-System universities (e.g., ECU,

11 Integration of High-Performance Computing into Cloud Computing Services 259

Fig. 11.2 VCL usage

NCCU, UNC-CH, UNCG, WCU – technically all UNC System campuses which
implement Shibboleth authentication have access to VCL), the NC Community
College System (production and pilots in 15 colleges: Beaufort County, Brunswick,
Cape Fear, Catawba Valley, Central Piedmont, Cleveland, Edgecombe, Fayetteville
Tech, Forsyth Tech, Guilford Tech, Nash, Sandhills, Surry, Wake Tech), and several
K-12 pilots and STEM initiatives.

In addition to multiple VCL deployments in the State of North Carolina, regional,
national and international interest in VCL has increased dramatically after VCL was
accepted as an incubator technology and posted as an open source implementation
through the Apache Software Foundation (Apache VCL, 2010). Educational insti-
tutions such as George Mason University (GMU) have become a VCL leader and
innovator for the Virginia VCL Consortium, recently winning the 2009 Virginia
Governor’s award for technology innovation, schools such as Southern University
Baton Rouge and California State University East Bay are in the process of imple-
menting VCL-based clouds. In addition to numerous deployments within the United
States, VCL cloud computing implementations, including HPC configurations, have
now been deployed world-wide and are providing a rich mix of experiences working
with HPC in a cloud computing environment.

VCL’s typical base infrastructure (preferred but not required) is an HPC blade
system. This type of system architecture provides capabilities for HPC delivery
either as a whole or “sliced and diced” dynamically into smaller units/clusters.
This allows the VCL cloud to be appropriately “packaged” to partition research

260 M.A. Vouk et al.

clusters and sub-clouds and true high-performance computing from other sets
of highly individualized requirements such as single desktop services, groups of
“seats” in classrooms, servers and server farms. These flexible configurations per-
mit hardware infrastructure and platforms as services to be simultaneously delivered
to users within the overall VCL cloud computing cyberinfrastructure, with each of
these services being capable of customized provisioning of software and application
as a service.

Figure 11.2 shows the number of VCL reservations made per day by users over
last five years. This includes reservations made by individual students for Linux
or Windows XP desktops along with some specific applications, but also reserva-
tions that researchers may make to construct their own computational sub-clouds,
or specialized resource aggregations – including high-performing ones. Figure 11.2
inset is the number of such concurrent reservations per day. What is not included in
the data shown in these figures are the reservations that deliver standard queue-based
VCL HPC services. We therefore label these as non-HPC (or general-VCL) services,
although self-constructed high-performance sub-clouds are still in this category of
services.

NC State’s VCL currently has about 2000 blades distributed over three produc-
tion data centers and two research and evaluation data centers. About one third of
the VCL blades are in this non-HPC service delivery mode, some of the remain-
ing blades are in our experimental test-beds and in maintenance mode, and the
rest (about 600–800) operate as part of the VCL-HPC (http://hpc.ncsu.edu) and are
controlled through a number of LSF2 queues.

There three things to note with reference to Fig. 11.2:

1. VCL usage, and by implication that of the NC State Cloud Computing environ-
ment, has been growing steadily

2. Resource capacity (virtual or bare-machine loaded) kept on the non-HPC side at
any one time is proportional to the needed concurrency

3. Non-HPC usage has clear gaps

The number of VCL reservations tends to decrease during the night, student vaca-
tions and holidays. On the other hand, if one looks at the NC State demand for HPC
cycles we see that it has been growing (Fig. 11.3), but that it is much less subject to
seasonal variations (Fig. 11.4).

An in depth analysis of the economics of cloud computing (Dreher et al., 2009)
shows one of the key factors is average utilization level of the resources. Any
of our resources that are in VCL-HPC mode are fully utilized (with job backlog
queues as long as two to three times the number of jobs running on the clusters).
In 2009 (including maintenance down time) VCL-HPC recorded nearly 8.5 million
HPC CPU-hours which is greater than a 95+% utilization level, while desktop aug-
mentation and similar non-HPC usage recorded 550,000 CPU-hours (over 220,000
individual reservations) yielding about a 10–15% utilization.

2http://www.platform.com/Products

11 Integration of High-Performance Computing into Cloud Computing Services 261

Fig. 11.3 NC State HPC usage over years

Fig. 11.4 NC State HPC usage over March 2008 – February 2009

To satisfy high demand for HPC, VCL is designed to shift hardware resources
from the non-HPC desktop to HPC. To balance workloads during the times when
non-HPC use is lower, such as during summer holidays, VCL can automatically
move the resources into its HPC mode where they are readily used. When there is
again need for non-HPC use, these resources are again automatically moved back in
that use pool. As a result, the combined HPC/non-HPC resource usage runs at about
70% level. This is both a desirable and cost-effective strategy requiring an active
collaboration of the underlying (cloud) components.

262 M.A. Vouk et al.

11.3 The VCL Cloud Architecture

The first level architecture of VCL is shown in Fig. 11.5. A user accesses VCL
through a web interface, selecting a combination of applications, operating systems
and services. These combinations are available in image repositories. The images
can be either a bare-metal or a virtual machine service environment consisting of
the operating system (with possibly a hypervisor), middleware, application stack
along with security management, and access and storage tools and agents.

Fig. 11.5 Top level VCL architecture (Vouk et al., 2009)

If a specific combination of services and applications are not available as an
“image” a user with appropriate authorizations can construct a customized image
from the VCL library components. The VCL manager software then maps the
request from the user onto available software application images and available hard-
ware resources. The manager then schedules the user request for either immediate
use (on demand) or for later use. The VCL manager software was developed by
NCSU using a combination of off-the-shelf products (such as IBM xCAT3) and in-
house developed open-source “glue” software (about 50,000+ lines of code – now
available through Apache (2010)).

3http://xcat.sourceforge.net/

11 Integration of High-Performance Computing into Cloud Computing Services 263

All components of the VCL can be (and are) distributed. A site installation
will typically have one resource management node (Node Manager in Fig. 11.5)
for about 100 physical blades. This ensures adequate image load times as well
as resource fail-over redundancy. In the context of our architecture we distinguish
between dirrerentiated and undifferentiated resources. Undifferentiated resources
are completely malleable and can be loaded with any service environment designed
for that platform. Differentiated resources can only be used “as is” without any
modifications beyond the configured user access permissions. For example, during
the night VCL users are allowed to use NC State computing lab Linux machines
remotely, but they are not allowed to modify their images since lab machines are
considered a differentiated resource. In contrast, when they make a “standard” VCL
Linux or Windows reservation, students get full root/administrator privileges and
can modify the image as much as they wish. However, once they are finished (typ-
ically our student reservations last 1–2 h) that resource is “wiped” clean and a
fresh image is reloaded. Students save their data either onto our network-attached
corporate storage or on their own laptops.

In this fashion VCL provides the ability to deliver scheduled and on-demand,
virtualized and “bare-metal” infrastructures, and differentiated and undifferenti-
ated services consistent with established NC State policy and security requirements
which may vary by user and/or application. VCL dynamically constructs and decon-
structs computing environments thereby enabling near continuous use of resources.
These environments, consisting of intelligent software-stack image(s) and metadata
specifications for building the environment, can be created, modified, and trans-
ferred as policy and authorization permit. VCL security capabilities enable wide
latitude in the assignment of these permissions to faculty, staff, and students.

VCL code version 2.x has been available for about a year as part of the Apache
offering (Apache VCL, 2010). Version 2.x of VCL represents a major rewrite
of the base code and moves VCL to a modular software framework in which
functional elements can be modified, replaced or optioned without attendant code
changes elsewhere. It greatly empowers both community contribution and non dis-
ruptive customization. In addition, its already excellent security profile is being
constantly enhanced through a federally funded Secure Open Source Initiative
(http://sosi.ncsu.edu).

VCL environments are stored in on-line repositories, providing a low-cost high-
volume retention capability that not only supports extreme scaling of access and
reuse but also enables the breath of scale and scope required for intelligent real-time
sequencing of multi-stage workflows. The benefit of this advance varies depend-
ing on the limitations of use imposed by software licensing agreements. Absent
these limitations VCL empowers a new paradigm of build once well and perva-
sively reuse. In fact, one of the special characteristics of VCL is that its provenance
and meta-data collection is sufficiently fine-grained and thorough that it allows very
detailed metering of the software usage – by user, by department, by duration,
by location, etc. That in itself offers an opportunity to implement a metering-
based license management model that, given appropriate vendor agreements, allows
porting and exchange of service environments across/among clouds.

264 M.A. Vouk et al.

11.3.1 Internal Structure

Figure 11.6 shows more of the internals of the VCL architecture. At the heart of
the solution are (a) a user interface (including a GUI and a remote service API), (b)
an authorization, provenance and service tracking data-base, (c) a service environ-
ment “image” library, and (d) a service environment management and provisioning
engine.

Fig. 11.6 VCL architecture – internal details (http://cwiki.apache.org/VCL/vcl-architecture.html)

Provisioning engine deploys service environments on demand either at the phys-
ical layer (bare-machine loads are typically done using xCAT, but other loaders can
be used, including IBM Director), or at a virtual layer (e.g., VMWare, Xen, KVM
“images”), or through a specially defined mechanism, e.g., a new service interface, a
remote service, a service API to another cloud. Deployed service environments can
consist of a single bare-metal image or a virtual software stack “image,” such as a
Windows or Linux desktop loaded onto undifferentiated resources, or it can consist
of a collection of images (including their interconnection topology) loaded onto a set
of (possibly) hybrid resources, or it can consist of set of HPC images loaded onto
VCL resources being moved into differentiated HPC mode, and so on. In the NC

11 Integration of High-Performance Computing into Cloud Computing Services 265

State implementation, physical server manager loads images to local disk via kick-
start (only Linux environments), copies images to local disk (Linux and Windows),
or loads images to local memory (stateless). For loading of virtual machine images,
VCL leverages command-line management tools that come with hypervisors.

11.3.1.1 Storage

Where information is stored in the cloud is very important. Secure image storage
is part of the core VCL architecture, however end-user storage is more flexible.
It can range from storage on the physical VCL resource, to secure NAS or SAN
accessed via the storage access utilities on the image itself, to storage on the end-
user access station (e.g., laptop storage or memory key storage), etc. At NC State
most of our images are equipped with agents that can connect in a secure way to
our corporate storage (AFS based) and thus access backed-up storage space that
students and faculty are assigned, and tools (such as visual sftp) that can access
other on-line storage. Our HPC images are constructed so that they all have access
to HPC scratch and permanent storage via NFS. Figure 11.7 illustrates the current
extent of that storage. It is interesting to comment on the part of the storage marked
as “Partners”.

Fig. 11.7 NC State (baseline
VCL-HPC services) and
Partner storage

11.3.1.2 Partner’s Program

NC State researchers have the option of purchasing VCL-HPC compatible hard-
ware and any specialized or discipline-specific software licenses. NC State Office
of Information Technology (OIT) provides space in an appropriate and secure
operating environment, all necessary infrastructure (rack, chassis, power, cooling,
networking, etc.), and the system administration and server support.

In return for infrastructure and services provided by OIT, when partner compute
resources are not being used by the partner they are available to the general NC State
HPC user community. This program has been working very well for us as well as
for our researchers. As can be seen from Figs. 11.7 and 11.8, a large fraction of our
HPC resources are partner resources.

266 M.A. Vouk et al.

Fig. 11.8 NC State
VCL-HPC distributed
memory computing resources
(HPC), Partner computational
resources and resources
acquired through gifts and
joint projects with IBM and
Intel

11.3.2 Access

As part of our cloud HPC services we have both distributed memory (typically IBM
BladeCenter clusters) and shared memory computing resources (typically 4-socket
quad core Opteron servers with at least 2 GB of memory per core). We also pro-
vide items such as resource manager/scheduler, compilers, debuggers, application
software, user training and support, consulting, code porting and optimization help,
algorithm development support, and general collaboration. There are two ways of
reaching those resources – through VCL-based reservation of one’s own login node,
or through the use of a communal login node. Personal login nodes make sense if
end-users wish to monitor their runs in real time. One submits jobs in the usual fash-
ion using job queues, in our case controlled via LSF. Queue priority depends on the
resources requested and partnership privileges. Partners get absolute and immediate
priority on the resources they own (or an equivalent set of resources), and they get
additional priority towards adding common resources beyond what they own.

11.3.2.1 Standard

All VCL-HPC resources run the same HPC service environment (typically RedHat-
based), and have access to a common library of applications and middleware.
However, users can add their own applications to the computational resources they
are given access to. All our standard VCL-HPC nodes are bare-metal loaded for sole
use on VCL blades. They are managed as differentiated resources, i.e., users have
full control over them, but they cannot re-load them or change them (except for the
software in the user’s home directories), and they must be used with the NC State
maintained scheduler and file system. Most of our HPC nodes operate in this mode
and as such they are very similar to any other HPC cluster. Nodes are tightly cou-
pled with 1 Gbps or better interconnects. A user with sufficient privileges can select
appropriate run queues that then map the jobs onto the same BladeCenter chassis
or same rack if that is desired, or onto low latency interconnects (e.g., Infiniband
interconnected nodes).

11 Integration of High-Performance Computing into Cloud Computing Services 267

11.3.2.2 Special needs

If a user does not wish to conform to the “standard” NC State HPC environment,
a user has the option of requesting the VCL cloud to give him/her access to a
customized cluster. In order to do that, the user needs to have “image creation” priv-
ileges (Vouk et al., 2008; Vouk et al., 2009), and the user needs to take ownership
of that sub-cluster or sub-cloud service environment. First the user creates a “child
image” – a data node or computational node image – running operating system of
their choice as well as tools that allow communications with the cluster controller
and access to the data exchange bus of their choice, e.g., NFS-based delivery of
directories and files. The user saves that image.

Then the user creates a “parent image” in the VCL-cloud aggregation mode.
Again the user picks the base-line operating system, and adds to it a cluster con-
troller, such as an HPC scheduler of choice, e.g., PBS, or a cloud controller such as
Hadoop’s controller, or similar. Now the user attaches to this any number of “child
images”. Typically child images are of the same type, e.g., a computational HPC
Linux image, if the user wishes to operate a homogenous cluster. But, the user can
also attach different child images, say 20 computational Linux images, one Linux-
based data-base image, one Windows web-services image, and so on. Then the user
saves the “parent image”. From now on, when the user loads the “parent or control
image” all the children are also loaded into virtual or bare-machine resource slots,
depending on how the child-images were defined. All Linux-based child images
that are part of such a VCL aggregate know about each others IP numbers through a
VCL placed/etc file. “Parent image” control software needs to know how to access
that information and communicate with the children.

Default custom topology is random and loosely coupled, i.e., VCL maps the
“parent” or anchor image, and its children onto resources on which the images can
run, but it does not pay attention to inter-node latency or topology. If a specific
topology is desired, such as tight low latency inter-image communication coupling
suitable for HPC, and the image owner has appropriate privileges, mapping of the
images onto nodes that conform to a particular topology or interconnect latency is
possible.

11.3.3 Computational/Data Node Network

There are some important differences between the “standard” queue-based batch-
mode VCL-HPC offering and a user-constructed user-owned cloud or HPC cluster.
Following (Vouk et al., 2009):

One of the key features of the undifferentiated VCL resources is their networking set-up. It
allows for secure dynamic reconfiguration, loading of images, and for isolation of individual
images and groups of images. Every undifferentiated resource is required to have at least
two networking interfaces. One on a private network, and the other one on either public

268 M.A. Vouk et al.

Public
Network
Public

Network

eth1

eth0

BladeCenter Chasis

ESM

ESM

VLAN 3

MM

Management Network Switch
e.g., 172.30.1 subnet

VCL
Management
Node

Cluster/Cloud Network Switch
e.g., 10.1 subnet

MM – Management Module
ESM – Ethernet Switch Module

Blade

(VLAN x)

(VLAN y)
Chassis

Fig. 11.9 Undifferentiated general resource node network configuration

or private network depending on the mode in which the resource operates. Also, for full
functionality, undifferentiated resources need to have a way of managing the hardware state
through an external channel –for example through the BladeCenterTM chassis Management
Module (MM).

Figure 11.9 illustrates the configuration where seats/services are assigned individually or
in synchronized groups, or when we want to assign/construct an end-user image aggregate
or environment where every node in the environment can be accessed from a public network
(e.g., an image of a web server, plus an image of a data-base, plus an image of an application,
or a cluster of relatively independent nodes). Typically eth0 interface of a blade is connected
to a private network (10.1 subnet in the example) which is used to load images. Out-of-
band management of the blades (e.g., power recycling) is effected through the management
network (172.30.1 in the example) connected to the MM interface. The public network is
typically connected to eth1 interface. The VCL node manager (which could be one of the
blades in the cluster, or an external computer) at the VCL site has access to all three links,
that is, it needs to have three network interfaces. If it is a stand-alone server, this means
three network interface cards. If management node is a blade, the third interface is virtual
and possibly on a separate VLAN.

It is worth noting that the external (public) interface is on a VLAN to provide isolation
(e.g., VLAN 3 for the public interface in Fig. 11.9). This isolation can take several levels.
One is just to separate resources, another one is to individually isolate each end-user within
the group by giving each individual resource or group of resources a separate VLAN –
and in fact end-to-end isolation through addition of VPN channels. This isolation can be
effected for both real and virtual hardware resources, but the isolation of physical hardware
may require extra external switching and routing equipment. In highly secure installations
it is also recommended that both the private network (eth0) and the MM link be on separate
VLANs. Currently, one node manager can effectively manage about 100 blades operating
in the non-HPC mode.

11 Integration of High-Performance Computing into Cloud Computing Services 269

11.4 Integrating High-Performance Computing into the VCL
Cloud Architecture

“Figure 11.10 illustrates the VCL configuration when the blades are assigned to
a tightly coupled VCL-HPC cluster environment, or to a large overlay (virtual)
“cloud” that has relatively centralized public access and computational manage-
ment. In this case the node manager is still connected to all three networks (i.e.,
public, management, and image-loading and preparation private network) but now
eth1 is connected to what has now become a Message Passing Interface (MPI)
network switch (VLAN 5 in Fig. 11.10). This network now carries intra-cluster
communications needed to effect tightly coupled computing tasks usually given to
an HPC cloud. Switching between non-HPC mode and this HPC mode takes place
electronically, through VLAN manipulation and table entries; the actual physical
set-up does not change. We use different VLANs to eth1 to separate Public Network
(external) access to individual blades, when those are in the Individual-Seat mode
(VLAN 3 in Fig. 11.9), from the MPI communications network to the same blade,
when it is in the HPC mode (VLAN 5 in Fig. 11.10).”

Public
Network
Public

Network

eth1

eth0

BladeCenter Chasis

ESM

ESM

VLAN 5

MM

Management Network Switch
e.g., 172.30.1 subnet

VCL Management
Node

Cluster/Cloud Network Switch
e.g., 10.1 subnet

MM – Management Module
ESM – Ethernet Switch Module

Blade

(VLAN z)

(VLAN q)

MPI Network Switch
e.g., 192.168.1 subnet

HPC Login Node
Or Cloud Controller

Chassis

Fig. 11.10 Differentiated HPC node network configuration

The VCL code to construct this HPC configuration in a cloud computing envi-
ronment is available from Apache.org (2010). While the current version of VCL can
operate on any X86 hardware, we have been using primarily IBM’s BladeCenters
because of their reliability, power savings, ease of maintenance, and compact
footprint.

When building a “starter” non-HPC version of VCL one could limit the instal-
lation to virtual environments only, e.g., all resources operate as VMWare servers,

270 M.A. Vouk et al.

Fig. 11.11 A small “starter”
VCL cloud installation

and VCL controls and provisions only virtual images using the virtual version of
the VCL non-HPC configuration in Fig. 11.9. This is quick and works well, but is
probably less appealing for those who wish to have the HPC option. The HPC com-
munity is still wary of having true HPC computations run on virtualized resources.
Furthermore, some of the large memory and CPU footprint engineering applications
also may not behave best in a virtualized environment. In those cases, installation of
VCL’s bare-machine load capabilities (via XCat) is recommended.

Figures 11.12 and 11.13 show a rack of BladeCenter chasses with additional
racks interconnected in a similar way. The differences between the two images are
logical, i.e., switching from one mode to another is done electronically in softwareby
VCL based on the image characteristics. One can mix non-HPC and HPC configu-
rations at the granularity of chasses. An important thing to note is that in order to
maintain good performance characteristics, we do not want to daisy-chain internal
chassis switches. Instead, we provide an external switch, such as Cisco 6509e (or
equivalent from any vendor) that is used to interconnect different chasses on three
separate networks and VLANs. In non-HPC mode, one network provides public
access, one network is used for managing image loads and for accessing back-end
image storage, and the third one is for direct management of the hardware (e.g.,
power on/off, reboot). In HPC mode, the public network becomes MPI network,
and special login nodes are used to access the cluster from outside. While we can
use one VCL web-server and data-base for thousands of blades, with references to
Figs. 11.5 and 11.6, in a scalable environment we need one resource management
node for every 100 or so computational blades to insure good image reservation
response times – especially when image clusters are being loaded. We also need
physical connection(s) to a storage array – we typically run a shared file system
(such as GFS4 or GPFS5) for multiple management nodes at one site.

4http://sources.redhat.com/cluster/gfs/
5http://www-03.ibm.com/systems/software/gpfs/index.html

11 Integration of High-Performance Computing into Cloud Computing Services 271

Fig. 11.12 Scaling VCL cloud

Fig. 11.13 Scalable HPC configuration

When VCL provides distributed and shared memory compute service for HPC,
this is done through tightly coupled aggregation of computational resources with
appropriate CPU, memory and interconnect capacity. In our case, distributed mem-
ory compute services take the form of a logical Linux cluster of different sizes with
Gigabit or 10 Gigabit Ethernet interconnects. A subset of our nodes have additional

272 M.A. Vouk et al.

Myrinet or InfiniBand low-latency interconnects. Nodes which can be allocated for
shared memory computations have large number of cores and plenty of memory.

To operate VCL in HPC mode, we dedicate one private network to message pass-
ing (Fig. 11.10) – for that we use the blade network interface that would have
been used for public user access in VCL standard mode (Fig. 11.9). Also on a
HPC BladeCenter chassis we configure two VLANs in one switch module, one for
public Internent and for message passing interface. VCL management node makes
those changes automatically based on image metadata. An HPC service environment
image “knows” through its meta-data that it requires VCL-HPC network configu-
ration (Fig. 11.10) and those actions are initiated before it is loaded. VCL-HPC
environment consists of one or more login nodes, and any number of compute nodes.
LSF6 resource manager is part of a login node.

Both login nodes and compute nodes are given permanent reservations (until
canceled) – as opposed to time-limited resource reservations that typically occur
on the non-HPC side. An HPC compute node image consists of a minimal Linux
with LSF client that, when it becomes available, automatically registers with the
LSF manager. All HPC compute images also automatically connect to user home
directory and to shared scratch storage for use during computations. An HPC login
node image contains full Linux and LSF server. There are usually two to three login
nodes through which all users access HPC facility to launch their jobs. However it
is also possible to reserve, using VCL web page, a “personal” login node on a tem-
porary basis. On these “personal” nodes users can run heavy duty visualization and
analytics without impacting other users. All login nodes have access to both HPC
scratch storage and user HPC home directories (with appropriate permissions), as
well as long-term HPC data storage. While compute nodes conform to configura-
tion in Fig. 11.10 – two private networks, one for MPI traffic, the other for image
load and management, login nodes conform to Fig. 11.9 topology, and have a public
interface to allow access from the outside, and a private side to access and control
compute nodes.

If we wish to add low latency interconnects for HPC workloads, we need to make
additional changes in chasses and servers that will be used for that. Chassis net-
work modules for low-latency interconnects (Myrinet, InfiniBand) need an optical
pass-through and an appropriate external switch is needed (e.g., InfiniBand). Blade
servers need to be equipped with a low-latency interconnect daughtercards.

11.5 Performance and Cost

VCL delivers classroom, lab and research IT services for faculty and students. On
the one hand, if users are to rely on VCL, then the VCL system must have sufficient
available resources to satisfy the peak demand loads. On the other hand, if VCL is
to operate cost effectively it is essential that it is not over provisioned to the point

6http://www.platform.com/Products

11 Integration of High-Performance Computing into Cloud Computing Services 273

where the system is uneconomical to deploy. In order to provide VCL capabilities
to users across widely varying demand loads, NC State decided to make a capital
investment to assure that its “on-demand” level of service is available when needed.
The user demand for these computing services is governed by the academic calendar
of the university. The present VCL implementation delivers service availability that
exceeds 99%.

One way of assuring this high level of user availability, i.e., servicing of peak
loads (see Fig. 11.2), is for the university to maintain a pool of equipment in standby
or idle mode for long periods of time. The consequence of this policy however
would be an overall low average utilization of the resources. This is an expensive
and uneconomical total cost of ownership option for the university. Therefore, one
of the key VCL non-HPC – HPC design considerations is resource sharing. In a
research university, such as NC State, HPC is a very useful and needed workload.
Because HPC jobs are primarily batch jobs, HPC can act as an excellent “filler” load
for idle computational cycles thereby providing an option to markedly decrease the
total cost of ownership for both systems.

An analysis of the NC State HPC usage pattern shows that researchers who
actively use HPC computational systems, do so year round and do not have their
computational workloads strongly fluctuating with the academic calendar. Because
HPC jobs usually have large requirements for computational cycles, they are an
excellent resource utilization backfill, provided that the cloud can dynamically trans-
fer resources between single-“seat” and HPC use modes. Furthermore, it turns out
that the demand for HPC cycles increases during holidays, and when classes are
not in session, since then both faculty and graduate students seem have more time to
pursue computational work. In NC State’s case, co-location of complementary com-
putational workloads, i.e. on-demand desktop augmentation and HCP computations,
results in a higher and more consistent utilization and in an overall savings.

In this context, one has to understand that although for most part HPC operates in
“batch” mode, HPC requests are as demanding as those of the “on-demand” desk-
top users. HPC users expect their clusters to have very low interconnect latency,
sufficient memory, and the latest computational equipment. The ability to utilize
bare-machine loads for HPC images is essential, as is the ability to map onto an
appropriate interconnect topology. Therefore, running HPC on virtualized resources
is not really an option.. This need has recently been confirmed through a detailed
comparison of NAS Parallel Benchmarks run on Amazon’s EC2 cloud and NCSA
clusters. Results showed wide variations in levels of degraded performance when
HPC codes were loaded onto Amazon EC2 resources (Walker, 2008). While the
specific results depended on the particular application and the cloud computing con-
figuration used, the general lesson learned was that one needs to have both control
over what one is running on (virtual or real machines) and low interconnect latency
times among the cluster nodes. VCL was designed to allow sharing of resources
while retaining full performance capability for HPC..

The VCL operational statistics over the past several years strongly support this
design choice and suggest that by building a coherent integrated campus IT layer
for faculty and student academic and research computational needs allows the

274 M.A. Vouk et al.

institution flexibility in servicing both of these university functions. It also allows
the educational institution itself to maximize the return on their capital investment
in the IT equipment and facilities and decrease the total cost of ownership.

IT staff supporting VCL see advantages as well because the systems is scalable
and serviceable with fewer customization requests and less personnel (NC State
uses 2 FTEs to maintain 2000 blade system). Because the VCL hardware may be
remotely located outside the classroom or laboratory, there is also better physical
security of the hardware and a more organized program for computer security of the
systems.

Commercial cloud computing firms are beginning to venture into the educa-
tional and research space using the pay-per-use model. Examples are Amazon EC2
services, and more recently Microsoft’s Azure.7 However, none of them (in our
opinion), currently offer a viable integration of high-end low latency HPC services
into their clouds (Dreher, Vouk, Averitt, & Sills, 2010).

“In the case of Amazon Web Services, they have positioned their EC28 cloud
offering in a way that is strongly focused on marketing rental of physical hardware,
storage and network components. Although Amazon’s EC2 enables users to acquire
on-demand compute resources, usually in the form of virtual machines, the user
must configure this hardware into a working cluster at deployment time, including
loading and linking the appropriate applications. Using the Amazon web service
users can create and store an image containing their applications, libraries, data and
associated configuration settings or load pre-configured template images from an
image library. Amazon implements “availability zones” to allow users some degree
of control over instance placement in the cloud. Specifically, EC2 users can choose
to host images in different availability zones if they wish to try and ensure indepen-
dent execution of codes and protection from a global failure in case of difficulties
with their loaded image. They also have choices when to run their images, the
quantity of servers to select and how to store their data. Amazon bills customers
on a pay-as-you-go basis for the time rented on each component of their cloud
infrastructure.”

There are a number of possible open-source solutions. Very few, if any, except
for VCL, offer the full HaaS to CaaS suite of cloud computing services. One exam-
ple is Eucalyptus.9 Eucalyptus has an interface that is compatible with Amazon
Web Services cloud computing but treats availability zones somewhat differently.
With Eucalyptus, each availability zone corresponds to a separate cluster within the
Eucalyptus cloud. Under Eucalyptus, each availability zone is restricted to a single
“machine” (e.g., cluster) where at Amazon, the zones are much broader.

7http://www.microsoft.com/azure/windowsazure.mspx
8http://aws.amazon.com/ec2/
9http://www.eucalyptus.com/

11 Integration of High-Performance Computing into Cloud Computing Services 275

11.6 Summary

The Virtual Computing Laboratory open source cloud implementation was initially
developed and implemented at NC State University in 2004. Since then, it has
been documented to show that this combined non-HPC and HPC cloud computing
architecture can provide both of these types of cloud services in a cost effective man-
ner. This successful cloud computing architecture is now growing rapidly and has
since been adopted regionally, nationally and internationally and is now delivering
state-of-the-art cloud computing services to users world-wide.

Acknowledgments This work is supported in part by IBM Corp., Intel Corp., SAS Institute,
NetApp, EMC, NC State University, State of North Carolina, UNC General Administration, and
DOE (DE-FC02-07)ER25809. The authors would like thank the NC State VCL team for their
advice, support and input.

References

Apache VCL (2010). Retrieved March 2010, from http://cwiki.apache.org/VCL/.
Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, Gunho.,

Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (February 2009). Above the
clouds: A Berkeley view of cloud computing (Tech. Rep. No. UCB/EECS-2009-28), at
http://www.berkeley.edu/Pubs/TechRpts.EECS-2009-28.html.

Averitt, S., Bugaev, M., Peeler, A., Schaffer, H., Sills, E., Stein, S., et al. (May 2007). The vir-
tual computing laboratory. Proceedings of the International Conference on Virtual Computing
Initiative, IBM Corporation, Research Triangle Park, NC, http://vcl.ncsu.edu/news/papers-
publications/virtual-computing-laboratory-vcl-whitepaper, 1–16.

Dreher, P., Vouk, M. A., Sills, E., & Averitt, S. (2009). Evidence for a cost effective cloud com-
puting implementation based upon the NC state virtual computing laboratory model. In W.
Gentzsch, L. Grandinetti, & G. Joubert (Eds.), Advances in parallel computing, high speed and
large scale scientific computing (Vol. 18, pp. 236–250), ISBN 978-1-60750-073-5.

Dreher, P., Vouk, M., Averitt, S., & Sills, E. “An Open Source Option for Cloud Computing in
Education and Research”, In: S. Murugesan (ed.) Cloud Computing: Technologies, Business
Models, Opportunities and Challenges, CRC Press/Chapman and Hall, 2010.

Golden, B. (2009). The case against cloud computing, CIO Magazine.
IBM (2007). IBM introduces ready-to-use cloud computing. Retrieved November 15, 2007, from

http://www-03.ibm.com/press/us/en/pressrelease/22613.wss.
Lohr, S., Google, & I.B.M. (October 2007). Join in ‘Cloud Computing’ research, The New York

Times.
Schaffer, H. E., Averitt, S. F., Hoit, M. I., Peeler, A., Sills, E. D., & Vouk, M. A. (July 2009).

NCSUs virtual computing lab: A cloud computing solution. IEEE Computer, 42(7), 94–97.
Seay, C., & Tucker, G. (March 2010). Virtual computing initiative at a small public university.

Communications of the ACM, 53(3), 75–83.
Vouk, M., Averitt, S., Bugaev, M., Kurth, A., Peeler, A., Rindos, A., et al. (May 2008). ‘Powered

by VCL’ – Using virtual computing laboratory (VCL) technology to power cloud com-
puting. Proceedings of the 2nd International Conference on Virtual Computing (ICVCI),
RTP, NC, May 15–16, 1–10. http://vcl.ncsu.edu/news/papers-publications/powered-vcl-using-
virtual-computing-laboratory-vcl.

Vouk, M. (2008). Cloud computing – Issues, research and implementations. Journal of Computing
and Information Technology, 16(4), 235–246.

276 M.A. Vouk et al.

Vouk, M., Rindos, A., Averitt, S., Bass, J., Bugaev, M., Peeler, A., et al. (2009). Using VCL tech-
nology to implement distributed reconfigurable data centers and computational services for
educational institutions. IBM Journal of Research and Development, 53(4), 1–18.

Walker, E. (2008). Benchmarking Amazon EC2 for high-performance scientific computing. Usenix
Magazine, 33(5). http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf.
Accessed Sep 3, 2010.

Chapter 12
Vertical Load Distribution for Cloud Computing
via Multiple Implementation Options

Thomas Phan and Wen-Syan Li

Abstract Cloud computing looks to deliver software as a provisioned service to
end users, but the underlying infrastructure must be sufficiently scalable and robust.
In our work, we focus on large-scale enterprise cloud systems and examine how
enterprises may use a service-oriented architecture (SOA) to provide a streamlined
interface to their business processes. To scale up the business processes, each SOA
tier usually deploys multiple servers for load distribution and fault tolerance, a sce-
nario which we term horizontal load distribution. One limitation of this approach is
that load cannot be distributed further when all servers in the same tier are loaded.
In complex multi-tiered SOA systems, a single business process may actually be
implemented by multiple different computation pathways among the tiers, each with
different components, in order to provide resilience and scalability. Such multiple
implementation options gives opportunities for vertical load distribution across tiers.
In this chapter, we look at a novel request routing framework for SOA-based enter-
prise computing with multiple implementation options that takes into account the
options of both horizontal and vertical load distribution.

12.1 Introduction

Cloud computing looks to have computation and data storage moved away from
the end user and onto servers located in data centers, thereby relieving users of the
burdens of application provisioning and management (Dikaiakos, Pallis, Katsaros,
Mehra, & Vakali, 2009; Cloud Computing, 2009). Software can then be thought of
as purely a service that is delivered and consumed over the Internet, offering users
the flexibility to choose applications on-demand and allowing providers to scale out
their capacity accordingly.

T. Phan (B)
Microsoft Corporation, Washington, DC, USA
e-mail: thomas.phan@acm.org

W.-S. Li
SAP Technology Lab, Shanghai, China
e-mail: wen-syan.li@sap.com

277B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_12, C© Springer Science+Business Media, LLC 2010

278 T. Phan and W.-S. Li

As rosy as this picture seems, the underlying server-side infrastructure must be
sufficiently robust, feature-rich, and scalable to facilitate cloud computing. In this
chapter we focus on large-scale enterprise cloud systems and examine how issues
of scalable provisioning can be met using a novel load distribution system.

In enterprise cloud systems, a service-oriented architecture (SOA) can be used to
provide a streamlined interface to the underlying business processes being offered
through the cloud. Such an SOA may act as a programmatic front-end to a variety of
building-block components distinguished as individual services and their supporting
servers (e.g. (DeCandia et al., 2007)). Incoming requests to the service provided by
this composite SOA must be routed to the correct components and their respective
servers, and such routing must be scalable to support a large number of requests.

In order to scale up the business processes, each tier in the system usually deploys
multiple servers for load distribution and fault tolerance. Such load distribution
across multiple servers within the same tier can be viewed as horizontal load distri-
bution, as shown in Fig. 12.1. One limitation of horizontal load distribution is that

Fig. 12.1 Horizontal load distribution: load is distributed across a server pool within the same tier

12 Vertical Load Distribution for Cloud Computing 279

load cannot be further distributed when all servers in the given tier are loaded as a
result of mis-configured infrastructures – where too many servers are deployed at
one tier while too few servers are deployed at another tier.

An important observation is that in complex multi-tiered SOA systems, a sin-
gle business process can actually be implemented by multiple different computation
pathways through the tiers (where each pathway may have different components)
in order to provide resiliency and scalability. Such SOA-based enterprise com-
puting with multiple implementation options gives opportunities for vertical load
distribution across tiers.

Although there exists a large body of research and industry work focused on
request provisioning by balancing load across the servers of one service (Cisco; F5
Networks), there has been little work on balancing load across multiple implementa-
tions of a composite service, where each service can be implemented via pathways
through different service types.

A composite service can be represented as multiple tiers of component invo-
cations in an SOA-based IT infrastructure. In such a system, we differentiate
horizontal load distribution, where load can be spread across multiple servers for
one service component, from vertical load distribution, where load can be spread
across multiple implementations of a given service. The example in Fig. 12.2 illus-
trates these terms. Here a composite online analytic task can be represented as a
call to a Web and Application Server (WAS) to perform certain pre-processing, fol-
lowed by a call from the WAS to a database server (DB) to fetch required data set,
after which the WAS forwards the data set to a dedicated analytic server (AS) for
computationally-expensive data mining tasks.

This composite task can have multiple implementations in a modern IT data cen-
ter. An alternative implementation may invoke a stored procedure on the database
to perform data mining instead of having the dedicated analytic server perform this
task. This alternative implementation provides vertical load distribution by allow-
ing the job scheduler to select the WAS-and-DB implementation when the analytic
server is not available or heavily loaded. Multiple implementations are desirable for
the purpose of fault tolerance and high flexibility for load balancing. Furthermore,
it is also desirable for a server to be capable of carrying out multiple instances of
the same task for the same reasons.

Reusability is one of the key goals of the SOA approach. Due to the high
reusability of application components, it is possible to define a complex workflow in
multiple ways. However, it is hard to judge in advance which one is the best imple-
mentation, since in reality the results depend on the runtime environment (e.g. what
other service requests are being processed at the same time). We believe that hav-
ing multiple implementations provides fault tolerance and scalability, in particular
when dealing with diverse runtime conditions and missed configured infrastruc-
tures. In this respect, an SOA plays an important role in enabling the feasibility
and applicability of multiple implementations.

In this chapter we propose a framework for request-routing and load bal-
ancing horizontally and vertically in SOA-based enterprise cloud computing

280 T. Phan and W.-S. Li

Fig. 12.2 Vertical load distribution: load can be spread across multiple implementations of the
same composite service. This figure illustrates three different implementations of the same service
that was shown in Fig. 12.1

infrastructures. We show that a stochastic search algorithm is appropriate to explore
a very large solution space.

In our experiments, we show that our algorithm and methodology scale well up
to a large scale system configuration comprising up to 1000 workflow requests to a
complex composite web services with multiple implementations. We also show that
our approach that considers both horizontal and vertical load distribution is effective
in dealing with a misconfigured infrastructure (i.e. where there are too many servers
in one tier and too few servers in another tier).

The key contributions of this paper are the following:

• We identify the need for QoS-aware scheduling in workloads that consist of
composite web services. Our problem space lies in the relationship between
consumers, service types, implementation options, and service providers.

12 Vertical Load Distribution for Cloud Computing 281

• We provide a framework for handling both horizontal and vertical load distribu-
tion.

• We provide a reference implementation of a search algorithm that is able to pro-
duce optimal (or near-optimal) schedules based on a genetic search heuristic
(Holland, 1992).

The rest of this chapter is organized as follows. In Section 12.2, we describe
the system architecture and terminology used in this paper. In Section 12.3, we
describe how we model the problem and our algorithms for scheduling load
distribution for composite web services. In Section 12.4 we show experimental
results, and in Section 12.5 we discuss related work. We conclude the paper in
Section 12.6.

12.2 Overview

In this section we give a system architecture overview and discuss the terms that
will be used in this paper. Consider a simplified cloud computing example (shown
in Fig. 12.3) in which an analytic process runs on a Web and Application Server
(WAS), a Database Server (DB), and a specialized Analytic Server (AS). The

SLA for S1, S3, S5 by M1

Composite Service (CS)

S1

S7

S2

S4 S3

S5 S6 S7

WAS service type provider DB service type provider Analytic Server service
type provider

S5

S1

S5

S3

S1

S5

S3

S1

S6

S4

S6

S4

S2

M1 M2 M3

Scheduler

Deriv
ed

M5M4 M6

Implementations for CS

Option 2

Option 1

Option 3

SLA for S1, S5 by M2

SLA for S7 by M6

SLA for S1, S3, S5 by M3

SLA for S4, S6 by M4

SLA for S2, S4, S6 by M5

SLA published by providers

M3

S5

M4

S6

M6

S7

SLA for CS by Scheduler

WAS service instances DB service instances

Analytic Server
service instances

Request Routing Logic

Fig. 12.3 Request routing for SOA-based enterprise computing with multiple implementation
options

282 T. Phan and W.-S. Li

analytic process can be implemented by one of three options (as shown in the
upper-right of the figure):

• Executing some lightweight pre-processing at WAS (S1) and then having the DB
to complete most of expensive analytic calculation (S2); or

• Fetching data from the DB (S4) to the WAS and then completing most of the
expensive analytic calculation at the WAS (S3); or

• Executing some lightweight pre-processing at the WAS (S5), then having the
DB fetch necessary data (S6), and finally having the AS perform the remaining
expensive analytic calculation (S7).

The analytic process requires three different service types; namely, the WAS ser-
vice type, the DB service type, and the AS service type. S1, S3, and S5 are instances
of the WAS service type since they are the services provided by the WAS. Similarly,
S2, S4, and S6 are instances of the DB service type, and S7 is an instance of the AS
service type.

Furthermore, there are three kinds of servers: WAS servers (M1, M2, and M3);
DB servers (M4 and M5); and AS servers (M6). Although a server can typically
support any instance of its assigned service type, in general this is not always the
case. Our example reflects this notion: each server is able to support all instances
of its service type, except M2 and M4 are less powerful servers so that they cannot
support computationally expensive service instances, S3 and S2.

Each server has a service level agreement (SLA) for each service instance it
supports, and these SLAs are published and available for the scheduler. The SLA
includes information such as a profile of the load versus response time and an upper
bound on the request load size for which a server can provide a guarantee of its
response time.

The scheduler is responsible for routing and coordinating execution of compos-
ite services comprising one or more implementations. A derived SLA can only
be deployed with its corresponding routing logic. Note that the scheduler can
derive SLA and routing logic as well as handle the task of routing the requests.
Alternatively, the scheduler can be used solely for the purpose of deriving SLA and
routing logic while configuring a content aware routers, such as (Cisco System Inc),
for high performance and hardware-based routing.

The scheduler can also be enhanced to perform the task of monitoring actual
QoS achieved by workflow execution and by individual service providers. If the
scheduler observes failure of certain service providers to their QoS published, it
can re-compute feasible SLA and routing logic on demand to adapt to the runtime
environment.

In this paper, we focus on the problem of automatically deriving the routing
logic of a composite service with consideration of both horizontaland vertical load
distribution options. The scheduler is required to find an optimal combination of
a set of variables illustrated in Fig. 12.3 for a number of concurrent requests. We
discuss our scheduling approach next.

12 Vertical Load Distribution for Cloud Computing 283

12.3 Scheduling Composite Services

12.3.1 Solution Space

In this section, we formally define the problem and describe how we model its
complexity. We assume the following scenario elements:

• Requests for a workflow execution are submitted to a scheduling agent.
• The workflow can be embodied by one of several implementations, so each

request is assigned to one of these implementations by the scheduling agent.
• Each implementation invokes several service types, such as a web application

server, a DBMS, or a computational analytics server.
• Each service type can be embodied by one of several instances of the service

type, where each instance can have different computing requirements. For exam-
ple, one implementation may require heavy DBMS computation (such as through
a stored procedure) and light computational analytics, whereas another imple-
mentation may require light DBMS querying and heavy computational analytics.
We assume that these implementations are set up by administrators or engineers.

• Each service type is executed on a server within a pool of servers dedicated to
that service type.

Each service type can be served by a pool of servers. We assume that the servers
make agreements to guarantee a level of performance defined by the completion
time for completing a web service invocation. Although these SLAs can be com-
plex, in this paper we assume for simplicity that the guarantees can take the form of
a linear performance degradation under load, an approach similar to other published
work on service SLAs (e.g. (DeCandia et al., 2007)). This guarantee is defined by
several parameters: α is the expected completion time (for example, on the order of
seconds) if the assigned workload of web service requests is less than or equal to β,
the maximum concurrency, and if the workload is higher than β, the expected com-
pletion for a workload of size ω is α+ γ (ω− β) where γ is a fractional coefficient.
In our experiments we vary α, β, and γ with different distributions.

We would like to ideally perform optimal scheduling to simultaneously distribute
the load both vertically (across different implementation options) and horizontally
(across different servers supporting a particular service type). There are thus two
stages of scheduling, as shown in Fig. 12.4.

In the first stage, the requests are assigned to the implementations. In the sec-
ond stage each implementation has a known set of instances of a service type, and
each instance is assigned to servers within the pool of servers for the instance’s
service type. The solution space of possible scheduling assignments can be found
by looking at the possible combinations of these assignments. Suppose there are R
requests and M possible implementations. There are then MR possible assignments
in the first stage. Suppose further there are on average T service type invocations per

284 T. Phan and W.-S. Li

Fig. 12.4 The scheduling and assignment spans two stages. In the first stage, requests are assigned
to implementations, and in the second stage, service type instances are assigned to servers

implementation, and each of these service types can be handled by one of S on aver-
age possible servers. Across all the implementations, there are then ST combinations
of assignments in the second stage. It total, there are MR · ST combinations.

Clearly, an exhaustive search through this solution space is prohibitively costly
for all but the smallest configurations. In the next section we describe how we use a
genetic search algorithm to look for the optimal scheduling assignments.

12.3.2 Genetic algorithm

Given the solution space of MR · ST , the goal is to find the best assignments
of requests to implementations and service type instances to servers in order to

12 Vertical Load Distribution for Cloud Computing 285

minimize the running time of the workload, thereby providing our desired ver-
tical and horizontal balancing. To search through the solution space, we use a
genetic algorithm (GA) global search heuristic that allows us to explore por-
tions of the space in a guided manner that converges towards the optimal solutions
(Holland, 1992; Goldberg, 1989). We note that a GA is only one of many possible
approaches for a search heuristic; others include tabu search, simulated annealing,
and steepest-ascent hill climbing. We use a GA only as a tool.

A GA is a computer simulation of Darwinian natural selection that iterates
through various generations to converge toward the best solution in the problem
space. A potential solution to the problem exists as a chromosome, and in our case,
a chromosome is a specific mapping of requests-to-implementations and instances-
to-servers along with its associated workload execution time. Genetic algorithms
are commonly used to find optimal exact solutions or near-optimal approximations
in combinatorial search problems such as the one we address. It is known that a
GA provides a very good tradeoff between exploration of the solution space and
exploitation of discovered maxima (Goldberg, 1989). Furthermore, a genetic algo-
rithm does have an advantage of progressive optimization such that a solution is
available at any time, and the result continues to improve as more time is given for
optimization.

Note that the GA is not guaranteed to find the optimal solution since the
recombination and mutation steps are stochastic.

Our choice of a genetic algorithm stemmed from our belief that other search
heuristics (for example, simulated annealing) are already along the same lines as
a GA. These are randomized global search heuristics, and genetic algorithms are a
good representative of these approaches. Prior research has shown there is no clear
winner among these heuristics, with each heuristic providing better performance
and more accurate results under different scenarios (Lima, Francois, Srinivasan, &
Salcedo, 2004; Costa & Oliveira, 2001; Oliveira & Salcedo, 2005). Furthermore,
from our own prior work, we are familiar with its operations and the factors that
affect its performance and optimality convergence. Additionally, the mappings in
our problem context are ideally suited to array and matrix representations, allow-
ing us to use prior GA research that aid in chromosome recombination (Davis,
1985). There are other algorithms that we could have considered, but scheduling
and assignment algorithms are a research topic unto themselves, and there is a very
wide of range of approaches that we would have been forced to omit.

Pseudo-code for a genetic algorithm is shown in Algorithm 1. The GA executes
as follows. The GA produces an initial random population of chromosomes. The
chromosomes then recombine (simulating sexual reproduction) to produce children
using portions of both parents. Mutations in the children are produced with small
probability to introduce traits that were not in either parent. The children with the
best scores (in our case, the lowest workload execution times) are chosen for the
next generation. The steps repeat for a fixed number of iterations, allowing the GA
to converge toward the best chromosome. In the end it is hoped that the GA explores
a large portion of the solution space. With each recombination, the most beneficial
portion of a parent chromosome is ideally retained and passed from parent to child,

286 T. Phan and W.-S. Li

so the best child in the last generation has the best mappings. To improve the GA’s
convergence, we implemented elitism, where the best chromosome found so far is
guaranteed to exist in each generation.

12.3.2.1 Chromosome Representation of a Solution

We used two data structures in a chromosome to represent each of the two schedul-
ing stages. In the first stage, R requests are assigned to M implementations, so its
representative structure is simply an array of size R, where each element of the array
is in the range of [1, M], as shown in Fig. 12.5.

Fig. 12.5 An example
chromosome representing the
assignment of R requests to M
implementations

The second stage where instances are assigned to servers is more complex. In
Fig. 12.6 we show an example chromosome that encodes one scheduling assign-
ment. The representation is a 2-dimensional matrix that maps {implementation,

Fig. 12.6 An example chromosome representing a scheduling assignment of (implementa-
tion,service type instance)→ service provider. Each row represents an implementation, and each
column represents a service type instance. Here there are M workflows and T service types
instances. In workflow 1, any request for service type 3 goes to server 9

12 Vertical Load Distribution for Cloud Computing 287

service type instance} to a service provider. For an implementation i utilizing ser-
vice type instance j, the (i, j)th entry in the table is the identifier for the server to
which the business process is assigned.

12.3.2.2 Chromosome Recombination

Two parent chromosomes recombine to produce a new child chromosome. The hope
is that the child contains the best contiguous chromosome regions from its parents.

Recombining the chromosome from the first scheduling stage is simple since the
chromsomes are simple 1-dimensional arrays. Two cut points are chosen randomly
and applied to both the parents. The array elements between the cut points in the
first parent are given to the child, and the array elements outside the cut points from
the second parent are appended to the array elements in the child. This is known as
a 2-point crossover and is shown in Fig. 12.7.

Fig. 12.7 An example recombination between two parents to produce a child for the first stage
assignments. This recombination uses a 2-point crossover recombination of two one-dimensional
arrays. Contiguous subsections of both parents are used to create the new child

For the 2-dimensional matrix, chromosome recombination was implemented by
performing a one-point crossover scheme twice (once along each dimension). The
crossover is best explained by analogy to Cartesian space as follows. A random
location is chosen in the matrix to be coordinate (0, 0). Matrix elements from quad-
rants II and IV from the first parent and elements from quadrants I and III from the
second parent are used to create the new child. This approach follows GA best prac-
tices by keeping contiguous chromosome segments together as they are transmitted
from parent to child, as shown in Fig. 12.8.

The uni-chromosome mutation scheme randomly changes one of the service
provider assignments to another provider within the available range. Other recom-
bination and mutation schemes are an area of research in the GA community, and
we look to explore new operators in future work.

288 T. Phan and W.-S. Li

Fig. 12.8 An example recombination between two parents to produce a child for the second stage
assignments. Elements from quadrants II and IV from the first parent and elements from quadrants
I and III from the second parent are used to create the new child

12.3.2.3 GA Evaluation Function

The evaluation function returns the resulting workload execution time given a chro-
mosome. Note the function can be implemented to evaluate the workload in any way
so long as it is consistently applied to all chromosomes across all generations.

Our evaluation function is shown in Algorithm 2. In lines 6–8, it initialises the
execution times for all the servers in the chromosome. In lines 11–17, it assigns
requests to implementations and service type instances to servers using the two
mappings in the chromosome. The end result of this phase is that the instances are
accordingly enqueued the servers. In lines 19–21 the running times of the servers
are calculated. In lines 24–26, the results of the servers are used to compute the
results of the implementations. The function returns the maximum execution time
among the implementations.

12.3.3 Handling Online Arriving Requests

As mentioned earlier, the problem domain we consider is that of batch-arrival
request routing. We take full advantage of such a scenario through the use of the
GA, which has knowledge of the request population. We can further extend this
approach to online arriving requests, a lengthy discussion which we omit here due
to space limits. A typical approach is to aggregate the incoming requests into a

12 Vertical Load Distribution for Cloud Computing 289

queue, and when a designated timer expires, all requests in the queue at that time
are scheduled. There may still be uncompleted requests from the previous execution,
so the requests may be mingled together to produce a larger schedule. An alterna-
tive approach is to use online stochastic optimization techniques commonly found
in online decision-making systems (Van Hentenryck & Bent, 2006).

First, we can continue to use the GA, but instead of having the complete collec-
tion of requests available to us, we can allow requests to aggregate into a queue first.
When a periodic timer expires, we can run the GA on those requests while aggregat-
ing any more incoming requests into another queue. Once the GA is finished with the
first queue, it will process the next queue when the periodic timer expires again. If
the request arrival rate is faster than the GA’s processing rate, we can take advantage
of the fact that the GA can be run as an incomplete, near-optimal search heuristic:
we can go ahead and let the timer interrupt the GA, and the GA will have ∗some∗

290 T. Phan and W.-S. Li

solutions that, although sub-optimal, is probabilistically better than a greedy solu-
tion. This typical methodology is also shown in (Dewri, Ray, Ray, & Whitley, 2008),
where requests for broadcast messages are queued, and the messages are optimally
distributed through the use of an evolutionary strategies algorithm (a close cousin
of a genetic algorithm).

Second (and unrelated to genetic algorithms), we can use online stochastic opti-
mization techniques to serve online arrivals. This approach approximates the offline
problem by sampling historical arrival data in order to make the best online decision.
A good overview is provided in (Bent & Van Hentenryck, 2004). In this technique,
the online optimizer receives an incoming sequence of requests, gets historical data
over some period of time from a sampling function that creates a statistical distri-
bution model, and then calculates and returns an optimized allocation of requests
to available resources. This optimization can be done on a periodic or continuous
basis.

12.4 Experiments and Results

We ran experiments to show how our system compared to other well-known algo-
rithms with respect to our goal of providing request routing with horizontal and
vertical distribution. Since one of our intentions was to demonstrate how our sys-
tem scales well up to 1000 requests, we used a synthetic workload that allowed
us to precisely control experimental parameters, including the number of available
implementations, the number of published service types, the number of service type
instances per implementation, and the number of servers per service type instance.
The scheduling and execution of this workload was simulated using a program we
implemented in standard C++. The simulation ran on an off-the-shelf Red Hat Linux
desktop with a 3.0 GHz Pentinum IV and 2 GB of RAM.

In these experiments we compared our algorithm against the following alterna-
tives:

• A round-robin algorithm that assigns requests to an implementation and service
type instances to a server in circular fashion. This well-known approach provides
a fast and simple scheme for load-balancing.

• A random-proportional algorithm that proportionally assigns instances to the
servers. For a given service type, the servers are ranked by their guaranteed com-
pletion time, and instances are assigned proportionally to the servers based on the
servers’ completion time. (We also tried a proportionality scheme based on both
the completion times and maximum concurrency but attained the same results, so
only the former scheme’s results are shown here.) To isolate the behavior of this
proportionality scheme in the second phase of the scheduling, we always assigned
the requests to the implementations in the first phase using a round-robin scheme.

• A purely random algorithm that randomly assigns requests to an implementation
and service type instances to a server in random fashion. Each choice was made
with a uniform random distribution.

12 Vertical Load Distribution for Cloud Computing 291

• A greedy algorithm that always assigns business processes to the service provider
that has the fastest guaranteed completion time. This algorithm represents a naive
approach based on greedy, local observations of each workflow without taking
into consideration all workflows.

In the experiments that follow, all results were averaged across 20 trials, and to
help normalize the effects of any randomization used during any of the algorithms,
each trial started by reading in pre-initialized data from disk. In Table 12.1 we list
our experimental parameters for our baseline experiments. We vary these parameters
in other experiments, as we discuss later.

Table 21.1 Experiment parameters

Experimental parameter Comment

Requests 1 to 1000
Implementations 5, 10, 20
Service types used per implementation uniform random: 1 – 10
Instances per service type uniform random: 1 – 10
Servers per service type uniform random: 1 – 10
Server completion time (α) uniform random: 1 – 12 seconds
Server maximum concurrency (β) uniform random: 1 – 12
Server degradation coefficient (γ) uniform random: 0.1 – 0.9
GA: population size 100
GA: number of generations 200

12.4.1 Baseline Configuration Results

In Figs. 12.9, 12.10, and 12.11 we show the behavior of the algorithms as they
schedule requests against 5, 10, and 20 implementations, respectively. In each graph,
the x-axis shows the number of requests (up to 1000), and the y-axis is average
response time upon completing the workload. This response time is the makespan,
the metric commonly used in the scheduling community and calculated as the max-
imum completion time across all requests in the workload. As the total number
of implementations increases across the three graphs, the total number of service
types, instances, and servers scaled as well in accordance to the distributions of
these variables from Table 12.1. In each of the figures, it can be see that the GA is
able to produce a better assignment of requests to implementations and service type
instances to servers than the other algorithms. The GA shows a 45% improvement
over its nearest competitor (typically the round-robin algorithm) with a configura-
tion of 5 implementations and 1000 requests and a 36% improvement in the largest
configuration with 20 implementations and 1000 requests.

The relative behavior of the other algorithms was consistent. The greedy algo-
rithm performed the worst while the random-proportional and random algorithms
were close together. The round-robin came the closest to the GA.

292 T. Phan and W.-S. Li

100 200 300 400 500 600 700

700

600

500

400

300

200

100

0
800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 5 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.9 Response time with 5 implementations

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.10 Response time with 10 implementations

12 Vertical Load Distribution for Cloud Computing 293

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 20 implementations

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.11 Response time with 20 implementations

To better understand these results, we looked at the individual behavior of the
servers after the instance requests were assigned to them. In Fig. 12.12 we show
the percentage of servers that were saturated among the servers that were actually
assigned instance requests. These results were from the same 10-implementation
experiment from Fig. 12.10. For clarity, we focus on a region with up to 300
requests.

We consider a server to be saturated if it was given more requests than its max-
imum concurrency parameter. From this graph we see the key behavior that the
GA is able to find assignments well enough to delay the onset of saturation until
300 requests. The greedy algorithm, as can be expected, always targets the best
server from the pool available for a given service type and quickly causes these cho-
sen servers to saturate. The round robin is known to be a quick and easy way to
spread load and indeed provides the lowest saturation up through 60 requests. The
random-proportional and random algorithms reach saturation points between that of
the greedy and GA algorithms.

12.4.2 Effect of Service Types

We then varied the number of service types per implementation, modeling a scenario
where there is a heavily skewed number of different web services available to each
of the alternative implementations. Intuitively, in a deployment where there is a large

294 T. Phan and W.-S. Li

 0

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250 300

P
er

ce
nt

ag
e

of
 s

er
ve

rs

Number of requests

Servers saturated

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.12 Percentage of servers that were saturated. A saturated server is one whose workload is
greater than its maximum concurrency

number of services types to be invoked, the running time of the overall workload will
increase.

In Fig. 12.13 we show the results where we chose the numbers of service types
per implementation from a Gaussian distribution with a mean of 2.0 service types;
this distribution is in contrast to the previous experiments where the number was
selected from a uniform distribution in the inclusive range of 1–10. As can be seen,
the algorithms show the same relative performance from prior results in that the GA
is able to find the scheduling assignments resulting in the lowest response times.
The worst performer in this case is the random algorithm. In Fig. 12.14 we skew
the number of service types in the other direction with a Gaussian distribution with
a mean of 8.0. In this case the overall response time increases for all algorithms, as
can be expected. The GA still provides the best response time.

12.4.3 Effect of Service Type Instances

In these experiments we varied the number of instances per service type. We imple-
mented a scheme where each instance incurs a different running time on each
server; that is, a unique combination of instance and server provides a different
response time, which we put into effect by a Gaussian random number generator.
This approach models our target scenario where a given implementation may run

12 Vertical Load Distribution for Cloud Computing 295

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.13 Average response time with a skewed distribution of service types per implementation.
The distribution was Gaussian (λ = 2.0, σ = 2.0 service types)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of service types per implementation

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.14 Average response time with a skewed distribution of service types per implementation.
The distribution was Gaussian (λ = 8.0, σ = 2.0 service types)

296 T. Phan and W.-S. Li

an instances that performs more or less of the work associated with the instance’s
service type. For example, although two implementations may require the use of a
DBMS, one implementation’s instance of this DBMS task may require less compu-
tation than the other implementation due to the offload of a stored procedure in the
DBMS to a separate analytics server. Our expectation is that having more instances
per service type allows a greater variability in performance per service type.

Figure 12.15 shows the algorithm results when we skewed the number of
instances per service type with a Gaussian distribution with a mean of 2.0 instances.
Again, the relative ordering shows that the GA is able to provide the lowest work-
load response among the algorithms throughout. When we weight the number of
instances with a mean of 8.0 instances per service type, as shown in Fig. 12.16,
we can see that the the GA again provides the lowest response time results. In this
larger configuration, the separation between all the algorithms is more evident with
the greedy algorithm typically performing the worst; its behavior is again due the
fact that it assigns jobs only to the best server among the pool of servers for a service
type.

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.15 Average response time with a skewed distribution of instances per service type. The
distribution was Gaussian (λ = 2.0, σ = 2.0 instances)

12.4.4 Effect of Servers (Horizontal Balancing)

Here we explored the impact of having more servers available in the pool of servers
for the service types. This experiment isolates the effect of horizontal balancing.

12 Vertical Load Distribution for Cloud Computing 297

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of instances per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.16 Average response time with a skewed distribution of instances per service type. The
distribution was Gaussian (λ = 8.0, σ = 2.0 instances)

Increasing the size of this pool will allow assigned requests to be spread out and
thus reduce the number of requests per server, resulting in lower response times
for the workload. In Figs. 12.17 and 12.18 we show the results with Gaussian dis-
tributions with means of 2.0 and 8.0, respectively. In both graphs the GA appears
to provide the lowest response times. Furthermore, it is interesting to note that in
the random, random-proportional, and round-robin algorithms, the results did not
change substantially between the two experiments even though the latter experi-
ment contains four times the average number of servers. We believe this result may
be due to the fact that the first-stage scheduling of requests to implementations is not
taking sufficient advantage of the second-stage scheduling of service type instances
to the increased number of servers. Since the GA is able to better explore all com-
binations across both scheduling stages, it is able to produces its better results. We
will explore this aspect in more detail in the future.

12.4.5 Effect of Server Performance

In this section we look at the impact on the servers’ individual performance on the
overall workload running time. In previous sections we described how we modeled
each server with variables for the response time (α) and the concurrency (β). Here
we skewed these variables to show how the algorithms performed as a result.

298 T. Phan and W.-S. Li

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.17 Average response time with a skewed distribution of servers per service type. The
distribution was Gaussian (λ = 2.0, σ = 2.0 instances)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers per service type

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.18 Average response time with a skewed distribution of servers per service type. The
distribution was Gaussian (λ = 8.0, σ = 2.0 instances)

12 Vertical Load Distribution for Cloud Computing 299

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.19 Average response time with a skewed distribution of servers’ completion time. The
distribution was Gaussian (λ = 2.0, σ = 2.0 s)

In Figs. 12.19 and 12.20 we skewed the completion times with Gaussian dis-
tributions with means of 2.0 and 9.0, respectively. It can be seen that the relative
orderings of the algorithms are roughly the same in each, with the GA providing
best performance, the greedy algorithm giving the worst, and the other algorithms
running in between. Surprisingly, the difference in response time between the two
experiments was much less than we expected, although there is a slight increase in
all the algorithms except for the GA. We believe that the lack of a dramatic rise in
overall response time is due to whatever load balancing is being performed by the
algorithms (except the greedy algorithm).

We then varied the maximum concurrency variable for the servers using Gaussian
distributions with means of 2.0 and 9.0, as shown in Figs. 12.21 and 12.22. From
these results it can be observed that the algorithms react well with an increas-
ing degree of maximum concurrency. As more requests are being assigned to the
servers, the servers respond with faster response times when they are given more
headroom to run with these higher concurrency limits.

12.4.6 Effect of Response Variation Control

We additonally evaluated the effect of having the GA minimize the variation in the
requests’ completion time. As mentioned earlier, we have been been calculating the

300 T. Phan and W.-S. Li

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ completion time

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.20 Average response time with a skewed distribution of servers’ completion time. The
distribution was Gaussian (λ = 9.0, σ = 2.0 s)

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.21 Average response time with a skewed distribution of servers’ maximum concurrency.
The distribution was Gaussian (λ = 4.0, σ = 2.0 jobs)

12 Vertical Load Distribution for Cloud Computing 301

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with skewed distribution of servers’ maximum concurrency

Greedy
Proportional

Random
Round-robin

GA

Fig. 12.22 Average response time with a skewed distribution of servers’ maximum concurrency.
The distribution was Gaussian (λ = 11.0, σ = 2.0 jobs)

workload completion as the maximum completion time of the requests in that work-
load. While this approach has been effective, it produces wide variation between
the requests’ completion times due to the stochastic packing of requests by the GA.
This variation in response time, known as jitter in the computer networking commu-
nity, may not be desirable, so we further provided an alternative objective function
that minimizes the jitter (rather than minimizing the workload completion time).
In Fig. 12.23 we show the average standard deviations resulting from these differ-
ent objective functions (using the same parameters as in Fig. 12.10). With variation
minimization on, the average standard deviation is always close to 0, and with vari-
ation minimization off, we observe an increasing degree of variation. The results
in Fig. 12.24 show that the reduced variation comes at the cost of longer response
times.

12.4.7 Effect of Routing Against Conservative SLA

We looked at the GA behavior when its input parameters were not the servers’ actual
parameters but rather the parameters provided by a conservative SLA. In some sys-
tems, SLAs may be defined with a safety margin in mind so that clients of the service
do not approach the actual physical limits of the underlying service. In that vein, we
ran an experiment similar to that shown in Fig. 12.10, but in this configuration we

302 T. Phan and W.-S. Li

 0

 5

 10

 15

 20

 25

S
ta

nd
ar

d
de

vi
at

io
n

of
 r

eq
ue

st
 r

es
po

ns
e

tim
e

Number of requests

Request response time standard deviation, with/without variation minimization

GA, variation minimization on
GA, variation minimization off

100 200 300 400 500 600 700 800 900 1000

Fig. 12.23 Average standard deviation from the mean response for two different objective
functions

 0

 100

 200

 300

 400

 500

 600

 700

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time of GA with/without variation minimization

GA, variation minimization on
GA, variation minimization off

100 200 300 400 500 600 700 800 900 1000

Fig. 12.24 Average response time for two different objective functions

12 Vertical Load Distribution for Cloud Computing 303

 0

 100

 200

 300

 400

 500

 600

 700

100 200 300 400 500 600 700 800 900 1000

W
or

kl
oa

d
ru

nn
in

g
tim

e
[s

ec
on

ds
]

Number of requests

Workload running time with 10 implementations, with and without SLA-based routing

Greedy
GA

Fig. 12.25 Response time with 10 implementations with configurations for SLA and without SLA

used parameters for the underlying servers with twice the expected response time
and half the available parallelism, mirroring a possible conservative SLA. As can
be seen in Fig. 12.25, the GA converges towards a scheduling where the extra slack
given by the conservative SLA results in a slower response time.

12.4.8 Summary of Experiments

In this section we evaluated our GA reference implementation of a scheduler that
performs request-routing for horizontal and vertical load distribution. We showed
that the GA consistently produces lower workload response time than its competi-
tors. Furthermore, as can be expected, the scheduler is sensitive to a number of
parameters, including the number of service types in each implementation, the num-
ber of service type instances, the number of servers, the per-server performance, the
desired degree of variation, and the tightness of the SLA parameters.

12.5 Related Work

Shankar, De Miguel, and Liu (2004) described a distributed quality of service (QoS)
management architecture and middleware that accommodates and manages differ-
ent dimensions and measures of QoS. The middleware supports the specification,

304 T. Phan and W.-S. Li

maintenance and adaptation of end-to-end QoS (including temporal requirements)
provided by the individual components in complex real time application systems.
Using QoS negotiation, the middleware determines the quality levels and resource
allocations of the application components. This work focused on analysis tradeoff
between QoS and cost instead of ensuring QoS requirements in our paper.

Yu and Lin (2005) presented two algorithms for finding replacement services
in autonomic distributed business processes when web service providers fail to
response or meet the QoS requirement: following alternative predefined routes
or finding alternative routes on demand. The algorithms give the QoS brokerage
service fault tolerance capability and is complementary to our work.

Yu et al. developed a set of algorithms for Web services selection with end-to-end
QoS constraints (Yu & Lin, 2005b, 2006; Yu, Zhang, & Lin, 2007). A key difference
between our work and theirs is that they simplify and reduce the complexity space
considerably, something which we do not do. They take all incoming workflows,
aggregate them into one singe workflow, and then schedule that one workflow onto
the underlying service providers. We do not do this aggregation, and therefore our
approach provides a higher degree of scheduling flexibility.

Consider the two workflows shown on the left of Fig. 12.26 where each task in
the workflow invokes a particular service type. In their work, they aggregate the
workflows into a single function graph, resulting in a simplified form shown on the
right of Fig. 12.26.

Workflow 1

Workflow 2

S0

S1 S3

S2 S3

S4 S1

S0 S2 S3 S4aggregation

Fig. 12.26 Aggregation of service workflows

Each service type is then mapped onto a service provider chosen from the pool
of service providers for that type. It is important to note that each service type is
assigned to the same chosen provider, even though the instances of that service type
are different. For example, because both workflow 1 and workflow 2 use S3, both
instances are mapped to the same provider.

In our work, we do not do this aggregation to reduce the complexity space. We
consider unique combinations of {workflow, service type} and map these to a ser-
vice provider. Thus, in our work, S3 in workflow 1 may map to a different provider
than S3 in workflow 2. This distinction allows for more flexible scheduling and
potentially better turnaround time than their work.

In the work (Phan & Li, 2008b), the GA algorithm was used for load distribu-
tion for database cluster. In this work, the analytic workloads are distributed across
a database cluster. The load distribution algorithm needs to consider collocation
of MQTs (i.e. materialized views) with queries which can utilize them to improve
performance, collocation of MQTs and the base tables which are needed to con-
struct the MQTs, and minimizing the execution time of the whole workload on the
database cluster. This work is a kind of horizontal load distribution. Similarly, the

12 Vertical Load Distribution for Cloud Computing 305

GA algorithm is also used in (Phan & Li, 2008a) to schedule query execution and
view materialization sequence for minimal overall execution time.

Our work is related to prior efforts in web service composition, web service
scheduling, and job scheduling. A web service’s interface is expressed in WSDL,
and given a set of web services, a workflow can be specified in a flow language such
as BPEL4WS (2005) or WSCI (Josephraj, 2007). Several research projects have
looked to provide automated web services composition using high-level rules (e.g.
eFlow (Casati, Ilnicki, & Jin, 2000), SWORD (Ponnekanti & Fox, 2004)). Our work
is complementary to this area, as we schedule business processes within multiple,
already-defined workflows to the underlying service providers.

In the context of service assignment and scheduling, (Zeng, Benatallah, Dumas,
Kalagnanam, & Sheng, 2003) maps web service calls to potential servers but
their work is concerned with mapping only single workflows; our principal focus
is on scalably scheduling multiple workflows (up to one thousand). Urgaonkar,
Shenoy, Chandra, and Goyal (2005) presents a dynamic provisioning approach
that uses both predictive and reactive techniques for multi-tiered Internet applica-
tion delivery. However, the provisioning techniques do not consider the challenges
faced when there are alternative query execution plans and replicated data sources.
Soundararajan, Manassiev, Chen, Goel, and Amza (2005) presents a feedback-based
scheduling mechanism for multi-tiered systems with back-end databases, but unlike
our work, it assumes a tighter coupling between the system components.

The work in (Jin & Nahrstedt, 2004) creates end-to-end paths for services (such
as transcoding) and assigns servers on a hop-by-hop basis by minimising network
latency between hops. Our work is complementary in that service assignment is
based on business value metrics defined by agreed-upon service level agreements.

An SLA can be complex, requiring IT staff to translate from the legal document
level description to system-specific requirement for deployment and enforcement.
Ward et al. (2005) proposed a framework for configuring extensible SLA manage-
ment systems. In this work, an SLA is represented in XML format. In Buco et al.
(2003), an SLA execution manager (SAM) is proposed to manage cross-SLA exe-
cution that may involve an SLA with different terms. The work provides metadata
management functionality for SLA aware scheduling presented in this paper. Thus,
it is complementary to our work.

Tang, Chang, and So (2006) and Gu, Nahrstedt, Chang, and Ward (2003) applied
peer-to-peer technology for support real time services, such as data dissemination
across internet with QoS assurance. In their context, they create an application-layer
network route across multiple service nodes in order to provide some end-to-end
service. This routing occurs in two steps: the user’s high-level request is mapped
to a service template, and then the template is mapped to a route of servers. This
approach is similar to ours in that our business processes request service from the
service types, and the service types must instantiated by assigning the business
processes to an underlying server. The key differences are that: (1) their work is
constrained by the topology of the application-layer network. Their work looks at
pipelines of service nodes in a line. The problem is finding routes through a network
by adapting Dijkstra’s algorithm for finding shortest path whereas our problem is

306 T. Phan and W.-S. Li

assigning business processes to servers; Their work looks at pipelines of service
nodes in a line; whereas our work looks at a more flexible workflow condition that
may involve branches, including AND and OR; (3) their primary metrics are avail-
ability and latency, whereas we use a more flexible and generalizable business value
to evaluate assignments. Furthermore, our work supports an infrastructure where a
server can support multiple service types (c.f. our scenario is that business processes
within a workflow must be scheduled onto web service providers). The salient dif-
ferences are that the machines can process only one job at a time (we assume servers
can multi-task but with degraded performance and a maximum concurrency level),
tasks within a job cannot simultaneously run on different machines (we assume
business processes can be assigned to any available server), and the principal met-
ric of performance is the makespan, which is the time for the last task among all
the jobs to complete. As we showed, optimizing on the makespan is insufficient for
scheduling the business processes, necessitating different metrics.

12.6 Conclusion

Cloud computing aims to do the dirty work for the user: by moving issues of mange-
ment and provisioning away from the end consumer and into the server-side data
centers, users are given more freedom to pick and choose the applications that suit
their needs. However, computing in the clouds depends heavily on the scalablity and
robustness of the underlying cloud architecture.

We discussed enterprise cloud computing where enterprises may use a service-
oriented architecture to publish a streamlined interface to their business processes.
In order to scale up the number of business processes, each tier in the provider’s
architecture usually deploys multiple servers for load distribution and fault tol-
erance. Such load distribution across multiple servers within the same tier can
be viewed as horizontal load distribution. One limitation of this approach is that
load cannot be distributed further when all servers in the same tier are fully
loaded. Another approach for providing resiliency and scalabilty is to have multiple
implementation options that give opportunities for vertical load distribution across
tiers.

We described in detail a request routing framework for SOA-based enterprise
cloud computing that takes into account both these options for horizontal and ver-
tical load distribution. Experiments showed that our algorithm and methodology
can scale well up to a large-scale system configuration comprising up to 1000 work-
flow requests directed to a complex composite service with multiple implementation
options available. The experimental results also demonstrate that our framework is
more agile in the sense that it is effective in dealing with mis-configured infrastruc-
tures in which there are too many or too few servers in one tier. As a result, our
framework can effectively utilize available multiple implementations to distribute
loads across tiers.

12 Vertical Load Distribution for Cloud Computing 307

References

Bent, R., & Van Hentenryck, P. (2004). Regrets Only! Online stochastic optimization under time
constraints. Nineteenth National Conference on Artificial Intelligence, San Jose, CA.

Buco, M. J., Chang, R. N., Luan, L. Z., Ward, C., Wolf, J. L., Yu, P. S., et al. (2003). Managing
ebusiness on demand sla contracts in business terms using the cross-sla execution manager sam.
ISADS, Washington, DC, 157–164.

Business Process Execution Language for Web Services (Version 1.1), (2005). www-128.ibm.com/
developerworks/library/ws-bpel/.

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., & Shan, M.-C. (2000). Adaptive and Dynamic
Service Composition in eFlow. Proceedings of CAISE, Stockholm, Sweden, 13–31.

Cisco. Ace application-level load balancer. http://www.cisco.com/en/US/products/ps6906/.
Accessed July 29, 2010.

Cisco. Scalable Content Switching. http://www.cisco.com/en/US/products/hw/contnetw/ps792/
products_white_paper09186a0080136856.shtml. Accessed July 29, 2010.

Cloud Computing (2009). Clash of the clouds. The Economist.
Costa, L., & Oliveira, P. (2001). Evolutionary algorithms approach to the solution of mixed integer

nonlinear programming problems. Computers and Chemical Engineering, 25(2–3), 257–266.
Davis, L. (1985). Job shop scheduling with genetic algorithms. Proceedings of the International

Conference on Genetic Algorithms, Pittsburgh, PA.
DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A.,

Sivasubramanian, S., Vosshall, P., & Vogels, W. (2007). Dynamo: Amazon’s highly available
key-value store. Proceedings of SOSP, Washington D.C., 205–220.

Dewri, R., Ray, I., Ray, I., & Whitley, D. (2008). Optimizing on-demand data broadcast scheduling
in pervasive environments. Proceedings of EDBT, Nantes, France, 559–569.

Dikaiakos, M., Pallis, G., Katsaros, D., Mehra, P., & Vakali, A. (2009). Cloud computing:
Distributed internet computing for it and scientific research. IEEE Internet Computing, 13(5),
10–13.

F5 Networks. Big-ip application-level load balancer. http://www.f5.com/products/big-ip/.
Accessed July 29, 2010.

Goldberg, D. (1989). Genetic algorithms in searth, optimization, and machine learning. Dordrecht:
Kluwer.

Gu, X., Nahrstedt, K., Chang, R. N., & Ward, C. (2003). Qos-assured service composition in
managed service overlay networks. Proceedings of ICDCS, Providence, Rhode Island, USA,
194–203.

Holland, J. (1992). Adaptation in natural and artificial systems. Cambridge, MA: MIT Press.
Jin, J., & Nahrstedt, K. (2004). On exploring performance optimisations in web service composi-

tion. Proceedings of Middleware, Toronto, Canada.
Josephraj, J. (2007). Web services choreography in practice. www-128.ibm.com/developerworks/

library/ws-choreography. Accessed July 29, 2010.
Lima, R., Francois, G., Srinivasan, B., & Salcedo, R. (2004). Dynamic optimization of batch emul-

sion polymerization using MSIMPSA, a simulated-annealing-based algorithm. Industrial and
Engineering Chemistry Research, 43(24), 7796–7806.

Oliveira, R., & Salcedo, R. (2005). Benchmark testing of simulated annealing, adaptive ran-
dom search and genetic algorithms for the global optimization of bioprocesses. International
Conference on Adaptive and Natural Computing Algorithms, Coimbra, Portugal.

Phan, T., & Li, W.-S. (2008a). Dynamic materialization of query views for data warehouse
workloads. Proceedings of the International Conference on Data Engineering, Long Beach,
CA.

Phan, T., & Li, W.-S. (2008b). Load distribution of analytical query workloads for database cluster
architectures. Proceedings of EDBT, Nantes, France, 169–180.

Ponnekanti, S., & Fox, A. (2004). Interoperability among Independently Evolving Web Services.
Proceedings of Middleware, Toronto, Canada.

308 T. Phan and W.-S. Li

Shankar, M., De Miguel, M., & Liu, J. W.-S. (2004). An end-to-end qos management architecture.
Proceedings of the Fifth IEEE Real Time Technology and Applications Symposium, Vancouver,
British Columbia, Canada, p. 176.

Soundararajan, G., Manassiev, K., Chen, J., Goel, A., & Amza, C. (2005). Back-end databases in
shared dynamic content server clusters. Proceedings of ICAC, Dublin, Ireland.

Tang, C., Chang, R. N., & So, E. (2006). A distributed service management infrastructure for
enterprise data centers based on peer-to-peer technology. IEEE SCC, Chicago, IL, 52–59.

Urgaonkar, B., Shenoy, P., Chandra, A., & Goyal, P. (2005). Dynamic provisioning of multi-tier
internet applications. Proceedings of ICAC, Seattle, WA.

Van Hentenryck, P., & Bent, R. (2006). Online stochastic combinatorial optimization. Cambridge,
MA: MIT Press.

Ward, C., Buco, M. J., Chang, R. N., Luan, L. Z., So, E., & Tang, C. (2005). Fresco: A web services
based framework for configuring extensible sla management systems. ICWS, Sunshine Coast,
Australia 237–245.

Yu, T., & Lin, K.-J. (2005a). Adaptive algorithms for finding replacement services in autonomic
distributed business processes. Proceedings of the 7th International Symposium on Autonomous
Decentralized Systems, Chengdu, China.

Yu, T., & Lin, K.-J. (2005b). Service selection algorithms for web services with end-to-end qos
constraints. Information Systems and E-Business Management, 3(2), 103–126.

Yu, T., & Lin, K.-J. (2006). Qcws: An implementation of qos-capable multimedia web services.
Multimedia Tools and Applications, 30(2), 165–187.

Yu, T., Zhang, Y., & Lin, K.-J. (2007). Efficient algorithms for web services selection with end-
to-end qos constraints. ACM Transactions on the Web (TWEB), 1(1). http://portal.acm.org/
citation.cfm?id=1232722.1232728. Accessed July 29, 2010.

Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., & Sheng, Q. (2003). quality driven web
services composition. Proceedings of WWW, Helsinki, Finland.

Chapter 13
SwinDeW-C: A Peer-to-Peer Based Cloud
Workflow System

Xiao Liu, Dong Yuan, Gaofeng Zhang, Jinjun Chen, and Yun Yang

13.1 Introduction

Workflow systems are designed to support the process automation of large scale
business and scientific applications. In recent years, many workflow systems have
been deployed on high performance computing infrastructures such as cluster,
peer-to-peer (p2p), and grid computing (Moore, 2004; Wang, Jie, & Chen, 2009;
Yang, Liu, Chen, Lignier, & Jin, 2007). One of the driving forces is the increasing
demand of large scale instance and data/computation intensive workflow appli-
cations (large scale workflow applications for short) which are common in both
eBusiness and eScience application areas. Typical examples (will be detailed in
Section 13.2.1) include such as the transaction intensive nation-wide insurance
claim application process; the data and computation intensive pulsar searching pro-
cess in Astrophysics. Generally speaking, instance intensive applications are those
processes which need to be executed for a large number of times sequentially within
a very short period or concurrently with a large number of instances (Liu, Chen,
Yang, & Jin, 2008; Liu et al., 2010; Yang et al., 2008). Therefore, large scale
workflow applications normally require the support of high performance comput-
ing infrastructures (e.g. advanced CPU units, large memory space and high speed
network), especially when workflow activities are of data and computation intensive
themselves. In the real world, to accommodate such a request, expensive comput-
ing infrastructures including such as supercomputers and data servers are bought,
installed, integrated and maintained with huge cost by system users. However, since
most of these resources are self-contained and organised in a heterogeneous way,
resource scalability, i.e. how easily a system can expand and contract its resource
pool to accommodate heavier or lighter work loads, is very poor. Due to such a
problem, on one hand, it requires great cost, if not impossible, to recruit external
resources to address “resource insufficiency” during peak periods; on the other hand,

X. Liu (B), D. Yuan, G. Zhang, J. Chen, and Y. Yang
Faculty of Information and Communication Technologies, Swinburne University of Technology,
Hawthorn, Melbourne, Australia 3122
e-mails: {xliu@groupwise.swin.edu.au; dyuan@groupwise.swin.edu.au;
gzhang@groupwise.swin.edu.au; jchen@swin.edu.au; yyang@groupwise.swin.edu.au}

309B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_13, C© Springer Science+Business Media, LLC 2010

310 X. Liu et al.

it cannot provide services to others during off-peak periods to make full advantage
of the investment. In current computing paradigms, workflow systems have to main-
tain their own high performance computing infrastructures rather than employ them
as services from a third party according to their real needs. Meanwhile, most of the
resources are idled except for bursting resource requirements of large scale work-
flow applications at peak periods. In fact, many workflow systems also need to deal
with a large number of conventional less demanding workflow applications for large
proportion of the time. Therefore, resource scalability is becoming a critical problem
for current workflow systems. However, such an issue has not been well addressed
by current computing paradigms such as cluster and grid computing.

In recent years, cloud computing is emerging as the latest distributed computing
paradigm and attracts increasing interests of researchers in the area of Distributed
and Parallel Computing (Raghavan, Ramabhadran, Yocum, & Snoeren, 2007),
Service Oriented Computing (Ardagna & Pernici, 2007) and Software Engineering
(SECES, 2008). As proposed by Ian Foster in (Foster, Zhao, Raicu, & Lu, 2008) and
shared by many researchers and practitioners, compared with conventional com-
puting paradigms, cloud computing can provide “a pool of abstracted, virtualised,
dynamically-scalable, managed computing power, storage, platforms, and services
are delivered on demand to external customers over the Internet”. Therefore,
cloud computing can provide scalable resources on demand to system requirement.
Meanwhile, cloud computing adopts market-oriented business model where users
are charged according to the usage of cloud services such as computing, storage and
network services like conventional utilities in everyday life (e.g. water, electricity,
gas and telephony) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). Evidently,
it is possible to utilise cloud computing to address the problem of resource scala-
bility for managing large scale workflow applications. Therefore, the investigation
of workflow systems based on cloud computing, i.e. cloud workflow systems, is a
timely issue and worthwhile for increasing efforts.

Besides scalable resources, another principal issue for large scale workflow appli-
cations is decentralised management. In order to achieve successful execution,
effective coordination of system participants (e.g. service providers, service con-
sumers and service brokers) is required for many management tasks such as resource
management (load management, workflow scheduling), QoS (Quality of Service)
management, data management, security management and others. One of the con-
ventional ways to solve the coordination problem is centralised management where
coordination services are set up on a centralised machine. All the communications
such as data and control messages are transmitted only between the central node
and other resource nodes but not among them. However, centralised management
depends heavily on the central node and thus can easily result in the performance
bottleneck. Some others common disadvantages also include: single point of failure,
lack of scalability and the advanced computation power required for the coordina-
tion services. To overcome the problems of centralised management, decentralised
management where the centralised data repository and control engine are aban-
doned, and both data and control messages are transmitted between all the nodes
through general broadcast or limited broadcast communication mechanisms. Thus

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 311

the performance bottlenecks are likely eliminated and the system scalability can be
greatly enhanced. Peer to Peer (p2p) is a typical decentralised architecture. However,
without any centralised coordination, pure p2p (unstructured decentralised) where
all the peer nodes are communicating with each other through complete broadcast-
ing suffers from low efficiency and high network load. Evidently, neither centralised
nor unstructured decentralised management is suitable for managing large scale
workflow applications since massive communication and coordination services are
required. Therefore, in practice, structured p2p architecture is often applied where a
super node acts as the coordinator peers for a group of peers. Through those super
nodes which maintain all the necessary information about the neighbouring nodes,
workflow management tasks can be effectively executed where data and control
messages are transmitted in a limited broadcasting manner. Therefore, structured
decentralised management is more effectively than other for managing workflow
applications.

Based on the above analysis, it is evident that cloud computing is a promising
solution to address the requirement of scalable resource, and structured decen-
tralised architecture such as structured p2p is an effective solution to address the
requirement of decentralised management. Therefore, in this chapter, we present
SwinDeW-C (Swinburne Decentralised Workflow for Cloud), a peer to peer based
Cloud workflow system for managing large scale workflow applications. SwinDeW-
C is not built from the scratch but based on our existing SwinDeW-G (Yang
et al., 2007) (a peer-to-peer based grid workflow system) which will be intro-
duced later in Section 13.3. As agreed among many researchers and practitioners,
the general cloud architecture includes four basic layers from top to bottom:
application layer (user applications), platform layer (middleware cloud services to
facilitate the development/deployment of user applications), unified resource layer
(abstracted/encapsulated resources by virtualisation) and fabric layer (physical hard-
ware resources) (Foster et al., 2008). In order to support large scale workflow
applications, a novel SwinDeW-C architecture is presented where the original fab-
ric layer of SwinDeW-G is inherited with the extension of external commercial
cloud service providers. Meanwhile, significant modifications are made to the other
three layers: the underlying resources are virtualised at the unified resource layer;
functional components are added or enhanced at the platform layer to support the
management of large scale workflow applications; the user interface is modified to
support Internet (Web browser) based access.

This chapter describes the novel system architecture and the new features of
SwinDeW-C. Specifically, based on a brief introduction about SwinDeW-G, the
architecture of SwinDeW-C as well as the architecture of SwinDeW-C peers (includ-
ing both ordinary peers and coordinator peers) is proposed. Meanwhile, besides
common features for cloud computing and workflow systems, additional new func-
tional components are enhanced or designed in SwinDeW-C to facilitate large
scale workflow applications. In this chapter, three new functional components
including QoS Management, Data Management and Security Management are pre-
sented as the key components for managing large scale workflow applications.
The SwinDeW-C prototype system is demonstrated to verify the effectiveness of

312 X. Liu et al.

SwinDeW-C architecture and the feasibility of building cloud workflow system
based on existing grid computing platform.

The remainder of the paper is organised as follows. Section 13.2 presents the
motivation and system requirements. Section 13.3 introduces our SwinDeW-G grid
computing environment. Section 13.4 proposes the architecture for SwinDeW-C as
well as SwinDeW-C peers. Section 13.5 presents the new components in SwinDeW-
C for managing large scale workflow applications. Section 13.6 presents SwinDeW-
C system prototype. Section 13.7 introduces the related work. Finally, Section 13.8
addresses the conclusion and feature work.

13.2 Motivation and System Requirement

In this section, we first present some examples to illustrate the motivation for util-
ising cloud computing to facilitate large scale workflow applications. Afterwards,
based on the introduction of our existing SwinDeW-G grid computing environment,
system requirements for cloud workflow systems are presented.

13.2.1 Large Scale Workflow Applications

Here, we present two examples, one is from the business application area (insurance
claim) and the other one is from the scientific application area (pulsar searching).

Insurance claim: Insurance claim process is a common business workflow which
provides services for processes of such as insurance under employee benefits includ-
ing, for example, medical expenses, pension, and unemployment benefits. Due to
the distributed geographic locations of a large number of applicants, the insurance
offices are usually deployed at many locations across a wide area serving for a
vast population. Despite the differences among specific applications, the following
requirements are often seen in large/medium sized insurance companies: (1) sup-
porting a large number of processes invoked from anywhere securely on the Internet,
the privacy of applicants and confidential data must be protected; (2) avoiding man-
agement of the system at many different locations due to the high cost for the setting
and ongoing maintenance; (3) being able to serve for a vast population involving
processes at the minimum scale of tens of thousands per day, i.e. instance inten-
sive; and (4) for better quality of service, needing to handle workflow exceptions
appropriately, particularly in the case of instance-intensive processes.

Pulsar searching: The pulsar searching process is a typical scientific workflow
which involves a large number of data intensive and computation intensive activi-
ties. For a single searching process, the average data volume (not including the raw
stream data from the telescope) can be over terabytes and the average execution
time can be about one day. In a single searching process, many parallel execution
paths need to be executed for the data collected from different beams of the tele-
scope, and each execution path includes four major segments: data collection, data

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 313

pre-processing, candidate searching and decision making. Take the operation of de-
dispersion in the data pre-processing segment as an example. De-dispersion is to
generate a large number of de-dispersion files to correct the pulsar signals which
are dispersed by the interstellar medium. A large number of de-dispersion files need
to be generated according to different choices of trial dispersion and normally take
many hours on high performance computing resources. After the generation of large
volume of de-dispersion files, different pulsar candidate seeking algorithms such as
FFT seek, FFA seek, and single pulse seek will be further implemented. Finally, the
results will be visualised to support the decision of human experts on whether a pul-
sar has been found or not. Generally speaking, the pulsar searching process often has
the following requirements: (1) easy to scale up and down the employed computing
resources for data processing at different stages; (2) for better QoS, especially effi-
cient scheduling of parallel computing tasks so that every pulsar searching process
can be finished on time; (3) decreasing the cost on data storage and data transfer,
specific strategies are required to determine the allocation of generated data along
workflow execution; (4) selecting trustworthy service nodes, ensuring the security
of data storage, especially for those need to be stored for long term.

13.2.2 System Requirements

Based on the introduction about the above two examples, here, we present the
system requirements for managing large scale workflow applications. Besides the
two fundamental requirements, namely scalable resource and decentralised man-
agement, which have been discussed in the introduction section, there are three
important system requirements, including: QoS Management, Data Management,
and Security Management.

13.2.2.1 QoS Management

It is critical to deliver services with user satisfied quality of service (QoS) in cloud
computing environment, otherwise, the reputation of the service providers will be
deteriorated and finally eliminated from the cloud market. Generally speaking, there
are 5 major dimensions of QoS constraints including time, cost, fidelity, reliability
and security (Yu & Buyya, 2005). Among them, time, as the basic measurement
for system performance, is probably the most general QoS constraint in all appli-
cation systems. Especially for large scale workflow applications, temporal QoS is
very important since any large delays may result in poor efficiency or even system
bottlenecks. Therefore, in this paper, we mainly focus on temporal constraints as the
example for QoS management.

For a general cloud workflow application, both global and local temporal con-
straints are assigned at workflow build time through service level agreement (SLA)
(Erl, 2008). Then, at workflow run time, due to the highly dynamic system perfor-
mance (activity durations with large deviations (Liu, Chen, Liu, & Yang, 2008)),
workflow execution is under constant monitoring against the violations of these

314 X. Liu et al.

temporal constraints (Chen & Yang, 2008a, 2010, 2008b). If a temporal violation is
detected (i.e. the workflow execution time exceeds the temporal constraint), excep-
tion handling strategies will be triggered to compensate the occurring time delays.
Therefore, to deliver satisfactory temporal QoS (as well as other QoS constraints),
a set of strategies should be adopted or designed to facilitate at least the following
three tasks: the setting of QoS constraints, the monitoring of workflow execution
against QoS constraint violations, and the handling of QoS constraint violations.

13.2.2.2 Data Management

Large scale workflow applications often come along with data intensive comput-
ing (Deelman, Gannon, Shields, & Taylor, 2008), where workflow tasks will access
large datasets for query or retrieving data, and during the workflow execution similar
amounts or even larger datasets will be generated as intermediate or final products
(Deelman & Chervenak, 2008). Data management in cloud workflow systems has
some new requirements, which becomes an important issue. Firstly, new data stor-
age strategy is required in cloud workflow systems (Yuan, Yang, Liu, & Chen, in
press). In a cloud computing, theoretically, the system can offer unlimited storage
resources. All the application data can be stored, including the intermediate data, if
we are willing to pay for the required resources. Hence, we need a strategy to cost-
effectively store the large application data. Secondly, new data placement strategy is
also required (Yuan, Yang, Liu, & Chen, 2010). Cloud computing platform contains
different cloud service providers with different pricing models, where data transfers
between service providers also carry a cost. The cloud workflows are usually dis-
tributed, and the data placement strategy will decide where to store the application
data, in order to reduce the total system cost. Last but not least, new data replica-
tion strategy should also be designed for cloud workflow systems (Chervenak et al.,
2007). A good replication strategy can not only guarantee the security of application
data, but also further reduce the system cost by replicating frequently used data in
different locations. Replication strategy in the cloud should be dynamic based on
the application data’s usage rate.

13.2.2.3 Security Management

Security always plays an important role in distributed computing systems (Lin,
Varadharajan, Wang, & Pruthi, 2004). To ensure high QoS of these systems, we
focus on the security problems brought by different types of components, large
volume of heterogeneous data, and unpredictable execution processes. Since some
general aspects of system security such as service quality and data security are par-
tially included in the previous QoS and data management components, this chapter
emphasises the trust management which plays an important role in the management
of SwinDeW-C peers. In the large scale workflow applications, to meet the high
requirements of quality and scalability, an efficient and adaptive trust management is
an indispensable part of the SwinDeW-C platform (Bhargav-spantzel, Squicciarini,
& Bertino, 2007; Winsborough & Li, 2006). Besides, User management is essential

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 315

to guarantee system security and avoid illegal usage. Facing the complex network
structures in the cloud environment, we also need encryption technology to protect
privacy, integrity, authenticity and undeniableness.

Given these basic system requirements, cloud computing is a suitable solution
to address the issue of resource scalability and p2p is an effective candidate for
decentralised management. Meanwhile, to adapt the system requirements of large
scale workflow applications, functional components for Data Management, QoS
Management and Security Management are required to be designed or enhanced
to guarantee satisfactory system performance.

13.3 Overview of SwinDeW-G Environment

Before we present SwinDeW-C, some background knowledge about SwinDeW-G
needs to be introduced. SwinDeW-G (Swinburne Decentralised Workflow for Grid)
is a peer-to-peer based scientific grid workflow system running on the SwinGrid
(Swinburne service Grid) platform (Yang et al., 2007).

An overall picture of SwinGrid is depicted in Fig. 13.1 (bottom plane). SwinGrid
contains many grid nodes distributed in different places. Each grid node contains
many computers including high performance PCs and/or supercomputers composed
of significant numbers of computing units. The primary hosting nodes include the

Fig. 13.1 SwinDeW-G environment

316 X. Liu et al.

Swinburne CS3 (Centre for Complex Software Systems and Services) Node, the
Swinburne ESR (Enterprise Systems Research laboratory) Node, the Swinburne
Astrophysics Supercomputer Node, and the Beihang CROWN (China R&D envi-
ronment Over Wide-area Network) Node in China. They are running either Linux,
GT4 (Globus Toolkit) or CROWN grid toolkit 2.5 where CROWN is an extension
of GT4 with more middleware, and thus is compatible with GT4. The CROWN
Node is also connected to some other nodes such as those at the Hong Kong
University of Science and Technology, and at the University of Leeds in the UK. The
Swinburne Astrophysics Supercomputer Node is cooperating with the Australian
PfC (Platforms for Collaboration) and VPAC (Victorian Partnership for Advanced
Computing). Currently, SwinDeW-G is deployed at all primary hosting nodes as
exemplified in the top plane of Fig. 13.1. In SwinDeW-G, a scientific workflow
is executed by different peers that may be distributed at different grid nodes. As
shown in Fig. 13.1, each grid node can have a number of peers, and each peer
can be simply viewed as a grid service. In the top plane of Fig. 13.1, we show
a sample of how a scientific workflow can be executed in the grid computing
environment.

The basic service unit in SwinDeW-G is a SwinDeW-G peer which runs as a grid
service along with other grid services. However, it communicates with other peers
via JXTA (http://www.sun.com/software/jxta/), a platform for p2p communication.
As Fig. 13.2 shows, a SwinDeW-G peer consists of the following components:

The Task Component manages the workflow tasks. It has two main functions.
First, it provides necessary information to the Flow Component for scheduling and
stores received tasks to Task Repository. Second, it determines the appropriate time
to start, execute and terminate a particular task. The resources that a workflow task
instance may require are stored in the Resource Repository.

The Flow Component interacts with all other modules. First, it receives the work-
flows definition and then creates the instance definition. Second, it receives tasks
from other peers or redistributes them. Third, it decides whether to pass a task to

Fig. 13.2 Architecture of a SwinDeW-G Peer

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 317

the Task Component to execute locally or distribute it to other peers. The decision
is made according to the capabilities and load of itself and other neighbours. And
finally, it makes sure that all executions conform to the data dependency and control
dependency of the process definitions which are stored in the Process Repository
and the Task Repository.

The Group Manager is the interface between the peer and JXTA. In JXTA, all
communications are conducted in terms of peer group, and the Group Manager
maintains the peer groups the peer has joined. The information of the peer groups
and the peers in them is stored in the Peer Repository. While a SwinDeW-G peer
is implemented as a grid service, all direct communications between peers are con-
ducted via p2p. Peers communicate to distribute information of their current state
and messages for process control such as heartbeat, process distribution, process
enactment etc.

The User component is the interface between the corresponding workflow users
and the workflow environment. In SwinDeW-G, its primary function is to allow
users to interfere with the workflow instances when exceptions occur.

Globus Toolkit serves as the grid service container of SwinDeW-G. Not only a
SwinDeW-G peer itself is a grid service located inside Globus Toolkit, the capabili-
ties which are needed to execute certain tasks are also in forms of grid services that
the system can access. That means when a task is assigned to a peer, Globus Toolkit
will be used to provide the required capability as grid service for that task.

13.4 SwinDeW-C System Architecture

In this section, the system architecture of SwinDeW-C is introduced. SwinDeW-C
(Swinburne Decentralised Workflow for Cloud) is built on SwinCloud cloud com-
puting infrastructure. SwinDeW-C inherits many features of its ancestor SwinDeW-
G but with significant modifications to accommodate the novel cloud computing
paradigm for managing large scale workflow applications.

13.4.1 SwinCloud Infrastructure

SwinCloud is a cloud computing simulation environment, on which SwinDeW-C
is currently running. It is built on the computing facilities in Swinburne University
of Technology and takes advantage of the existing SwinGrid systems. We install
VMWare (VMware, 2009) on SwinGrid, so that it can offer unified computing and
storage resources. Utilising the unified resources, we set up data centres that can host
applications. In the data centres, Hadoop (2009) is installed that can facilitate Map-
Reduce computing paradigm and distributed data management. The architecture of
SwinCloud is depicted in Fig. 13.3.

318 X. Liu et al.

Swinburne Computing Facilities

Astrophysics
Supercomputer

VMware

Cloud Simulation Environment

Data Centres with Hadoop

GT4
SuSE Linux

Swinburne
CS3

…...

…...

GT4
CentOS Linux

Swinburne
ESR

…...

…...

GT4
CentOS Linux

Fig. 13.3 SwinCloud Infrastructure

13.4.2 Architecture of SwinDeW-C

The architecture of SwinDeW-C is depicted in Fig. 13.4. As discussed earlier,
the general cloud architecture includes four basic layers from top to bottom:
application layer (user applications), platform layer (middleware cloud services to
facilitate the development/deployment of user applications), unified resource layer
(abstracted/encapsulated resources by virtualisation) and fabric layer (physical hard-
ware resources). Accordingly, the architecture of SwinDeW-C can also be mapped
to the four basic layers. Here, we present the lifecycle of an abstract workflow
application to illustrate the system architecture. Note that here we focus on the
system architecture, the introduction on the cloud management services (e.g. bro-
kering, pricing, accounting, and virtual machine management) and other functional
components are omitted here and will be introduced in the subsequent sections.

Users can easily get access to SwinDeW-C Web portal (as demonstrated in
Section 13.6) via any electronic devices such as PC, laptop, PDA and mobile
phone as long as they are connected to the Internet. Compared with SwinDeW-G
which can only be accessed through a SwinDeW-G peer with pre-installed pro-
grams, the SwinDeW-C Web portal has greatly improved its usability. At workflow
build-time stage, given the cloud workflow modelling tool provided by the Web
portal on the application layer, workflow applications are modelled by users as

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 319

Activity

Workflow Execution

UK
VPAC

Hong
Kong

Swinburne
CS3

SwinDeW-G
GT4
CentOS Linux

Beihang
CROWN

SwinDeW-G
CROWN
Linux

Swinburne
ESR

SwinDeW-G
GT4
CentOS Linux

Astrophysics
Supercomputer

SwinDeW-G
GT4
SuSE Linux

PfC

na 1na

2na

3na 4na

5na 6na Na

ma 1ma

2ma

3ma 4ma

5ma 6ma Ma

Amazon
Data Centre

Google
Data Centre

Microsoft
Data Centre

SwinDeW-G
Grid Computing
Infrastructure

Commercial
Cloud

Infrastructure

VMVMVM VM VMVMVM VMVMVMVMVM

……..

……..

……..
Application

Layer

Platform
Layer

Unified
Resource

Layer

Fabric
Layer

SwinCloud
……..

VM

SwinDeW-C Peer

SwinDeW-C Coordinator Peererr

Fig. 13.4 Architecture of SwinDeW-C

cloud workflow specifications (consist of such as task definitions, process structures
and QoS constraints). After workflow specifications are created (static verification
tools for such as structure errors and QoS constraints may also be provided), they
will be submitted to any one of the coordinator peers on the platform layer. Here,
an ordinary SwinDeW-C peer is a cloud service node which has been equipped
with specific software services similar to a SwinDeW-G peer. However, while a
SwinDeW-G peer is deployed on a standalone physical machine with fixed comput-
ing units and memory space, a SwinDeW-C peer is deployed on a virtual machine of
which the computing power can scale dynamically according to task request. As for
the SwinDeW-C coordinator peers, they are super nodes equipped with additional
workflow management services compared with ordinary SwinDeW-C peers. Details
about SwinDeW-C peers will be introduced in the next section.

At the run-time instantiation stage, the cloud workflow specification can be
submitted to any of the SwinDeW-C coordinator peers. Afterwards, the workflow
tasks will be assigned to suitable peers through peer to peer based communication
between SwinDeW-C peers. Since the peer management such as peer join, peer
leave and peer search, as well as the p2p based workflow execution mechanism,
is the same as in SwinDeW-G system environment. Therefore, the detailed intro-
duction is omitted here but can be found in (Yang et al., 2007). Before workflow

320 X. Liu et al.

execution, a coordinator peer will conduct an evaluation process on the submitted
cloud workflow instances to determine whether they can be accepted or not given
the specified non-functional QoS requirements under the current pricing model. It
is generally assumed that functional requirements can always be satisfied given the
theoretically unlimited scalability of cloud. In the case where users need to run their
own special programs, they can upload them through the Web portal and these pro-
grams will be automatically deployed in the data centre by the resource manager.
Here, a negotiation process between the user and the cloud workflow system may be
conducted if the user submitted workflow instance is not acceptable to the workflow
system due to the unacceptable offer on budgets or deadlines. The final negotiation
result will be either the compromised QoS requirements or a failed submission of the
cloud workflow instance. If all the task instances have been successfully allocated
(i.e. acceptance messages are sent back to the coordinator peer from all the allocated
peers), a cloud workflow instance may be completed with satisfaction of both func-
tional and non-functional QoS requirements (if without exceptions). Hence, a cloud
workflow instance is successfully instantiated.

Finally, at run-time execution stage, each task is executed by a SwinDeW-C peer.
In cloud computing, the underlying heterogeneous resources are virtualised as uni-
fied resources (virtual machines). Each peer utilises the computing power provided
by its virtual machine which can easily scale according to the request of workflow
tasks. As can be seen in the unified resource layer of Fig. 13.4, the SwinCloud is
built on the previous SwinGrid infrastructure at the fabric layer. Meanwhile, some
of the virtual machines can be created with external commercial IaaS (infrastructure
as service) cloud service providers such as Amazon, Google and Microsoft. During
cloud workflow execution, workflow management tasks such as QoS management,
data management and security management are executed by the coordinator peers in
order to achieve satisfactory system performance. Users can get access to the final
results as well as the running information of their submitted workflow instances at
any time through the SwinDeW-C Web portal.

13.4.3 Architecture of SwinDeW-C Peers

In this section we will introduce the architecture of a SwinDeW-C peer. As
we described above, SwinDeW-C is developed based on SwinDeW-G, where a
SwinDeW-C peer has inherited most of the SwinDeW-G peer’s components, includ-
ing the components of task management, flow management, repositories, and the
group management. Hence the SwinDeW-G peer plays as the core of a SwinDeW-C
peer, which provides the basic workflow management components and commu-
nication components between peers. However, some improvements are also made
on SwinDeW-C peers to accommodate the cloud computing environment. The
architecture of the SwinDeW-C peers is depicted in Fig. 13.5.

Firstly, different from a SwinDeW-G peer, a SwinDeW-C peer runs on the cloud
platform. The cloud platform is composed of unified resources, which means the

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 321

JX
T

A

Cloud Platform

SwinDeW-G Peer

Data Management
Components

QoS Management
Components

Security Management
Components

Pricing

Provisioning

Auditing

Provisioning

SwinDeW-G
Peer

SwinDeW-G
Peer

Provisioning

SwinDeW-C Peer

SwinDeW-C Peer
SwinDeW-C Coordinator Peer

…

Cloud Development Tools: VMWare Hadoop, etc.

Fig. 13.5 Architecture of SwinDeW-C peers

computation and storage capabilities a SwinDeW-C peer can dynamically scale up
or down based on the applications’ requirements. Unified resources are offered by
cloud service providers and managed in resource pools, hence every SwinDeW-
C peer has a provisioning component to dynamically apply and release the cloud
resources.

Secondly, in cloud computing environment, different cloud service providers
may have different cost model, hence we have to set up a coordinator peer within
every cloud service provider. The coordinator peer has the pricing and auditing com-
ponents, which can coordinate the resource provisioning of all the peers that reside
in this service provider.

Last but not least, the coordinator peer of SwinDeW-C also has new func-
tional components related to cloud workflow management. As introduced in Section
13.2.2, the system has new requirements for handling the large scale workflow appli-
cations. To meet these new requirements, components of QoS management, data
management and security management are added to the SwinDeW-C coordinator
peer. More detailed descriptions of these components will be given in the following
section.

13.5 New Components in SwinDeW-C

In this section, we introduce the new components in SwinDeW-C. As the three
system requirements presented in Section 13.2.2, the three new functional com-
ponents including QoS Management, Data Management and Security Management
are introduced.

322 X. Liu et al.

13.5.1 QoS Management in SwinDeW-C

The basic requirement for delivering satisfactory temporal QoS (as well as other
QoS constraints) includes three basic tasks: the setting of QoS constraints, the mon-
itoring of workflow execution against QoS constraint violations, and the handling
of QoS constraint violations. Here, take temporal QoS constraints for example, the
new QoS management component in SwinDeW-C is introduced.

Temporal Constraint Setting: In SwinDeW-C QoS management component, a
probabilistic strategy is designed for setting temporal QoS constraints at workflow
build time (Liu, Chen, & Yang, 2008). Specifically, with a probability based tempo-
ral consistency model, the one global or several coarse-grained temporal constraints
are assigned based on the negotiation result between clients and service providers.
Afterwards, fine-grained temporal constraints for individual workflow activities can
be derived automatically based on these coarse-grained ones.

Checkpoint Selection and Temporal Verification: At workflow run time, a check-
point selection strategy and a temporal verification strategy are provided to monitor
the workflow execution against the violation of temporal constraints. Temporal veri-
fication is to check the temporal correctness of workflow execution states (detecting
temporal violations) given a temporal consistency model. Meanwhile, in order to
save the overall QoS management cost, temporal verification should be conducted
only on selected activity points. In SwinDeW-C, a minimum time redundancy based
checkpoint selection strategy (Chen & Yang, 2010, 2007b) is employed which can
select only necessary and sufficient checkpoints (those where temporal violations
take place).

Exception Handling: After a temporal violation is detected, exception handling
strategies are required to recover the error states. Unlike functional errors which
are normally prevented by duplicated instances or handled by roll back and re-
execution, non-functional QoS errors such as temporal violations can only be
recovered by compensation, i.e. to reduce or ideally remove the current time delays
by decreasing the durations of the subsequent workflow activities. Since the pre-
vious activities have already been finished, there is no way in the real world that
any action can reduce their running time. In SwinDeW-C, for minor temporal viola-
tions, the TDA (time deficit allocation) strategy (Chen & Yang, 2007a) is employed
which can remove the current time deficits by borrowing the time redundancy of the
subsequent activities. As for major temporal violations, the ACOWR (ant colony
optimisation based two stage workflow local rescheduling) strategy (Liu et al., 2010)
is employed which can decrease the duration of the subsequent workflow segments
through ant colony optimisation based workflow rescheduling.

In SwinDeW-C, by constant monitoring of the workflow instance and effective
handling of temporal violations along workflow execution, satisfactory temporal
QoS can be delivered with low violation rates of both global and local temporal con-
straints. Similar to temporal QoS management, the management tasks for other QoS
constraints are being investigated. Meanwhile, since some of them such as cost and
security are partially addressed in the data management and security management
components, some functions will be shared among these components.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 323

13.5.2 Data Management in SwinDeW-C

Data management component in SwinDeW-C consists of three basic tasks: data
storage, data placement and data replication.

Data Storage: In this component, a dependency based cost-effective data storage
strategy is facilitated to store the application data (Yuan et al., 2010). The strategy
utilises the data provenance information of the workflow instances. Data provenance
in workflows is a kind of important metadata, in which the dependencies between
datasets are recorded (Simmhan, Plale, & Gannon, 2005). The dependency depicts
the derivation relationship between the application datasets. In cloud workflow sys-
tems, after the execution of tasks, some intermediate datasets may be deleted to
save the storage cost, but sometimes they have to be regenerated for either reuse
or reanalysis (Bose & Frew, 2005). Data provenance records the information of
how the datasets have been generated. Furthermore, regeneration of the intermedi-
ate datasets from the input data may be very time consuming, and therefore carry
a high computation cost. With data provenance information, the regeneration of
the demanding dataset may start from some stored intermediated datasets instead.
In a cloud workflow system, data provenance is recorded during workflow exe-
cution. Taking advantage of data provenance, we can build an Intermediate data
Dependency Graph (IDG) based on data provenance (Yuan et al., 2010). All the
intermediate datasets once generated in the system, whether stored or deleted, their
references are recorded in the IDG. Based on the IDG, we can calculate the genera-
tion cost of every dataset in the cloud workflows. By comparing the generation cost
and storage cost, the storage strategy can automatically decide whether a dataset
should be stored or deleted in the cloud system to reduce the system cost, no matter
this dataset is a new dataset, regenerated dataset or stored dataset in the system.

Data Placement: In this component, a data placement strategy is facilitated to
place the application data that can reduce the data movement during the work-
flows’ execution. In cloud computing systems, the infrastructure is hidden from
users (Weiss, 2007). Hence, for application data, the system will decide where to
store them. In the strategy, we initially adapt the k-means clustering algorithm for
data placement in cloud workflow systems based on data dependency (Yuan et al.,
in press). Cloud workflows can be complex, one task might require many datasets
for execution; furthermore, one dataset might also be required by many tasks. If
some datasets are always used together by many tasks, we say that these datasets
are dependant on each other. In our strategy, we try to keep these datasets in one
data centre, so that when tasks were scheduled to this data centre, most, if not all, of
the data needed are stored locally. Our data placement strategy has two algorithms,
one for the build-time stage and one for the run time stage of scientific workflows. In
the build-time stage algorithm, we construct a dependency matrix for all the applica-
tion data, which represents the dependencies between all the datasets. Then we use
the BEA algorithm (McCormick, Sehweitzer, & White, 1972) to cluster the matrix
and partition it that datasets in every partition are highly dependent upon each other.
We distribute the partitions into k data centres, which are initially as the partitions
of the k-means algorithm at run time stage. At run time, our clustering algorithm

324 X. Liu et al.

deals with the newly generated data that will be needed by other tasks. For every
newly generated dataset, we calculate its dependencies with all k data centres, and
move the data to the data centre that has the highest dependency with it.

Data Replication: In this component, a dynamic data replication strategy is facil-
itated to guarantee data security and the fast data access of the cloud workflow
systems. Keeping some replicas of the application data is essential for data security
in cloud storage. Static replication can guarantee the data reliability by keeping a
fixed number of replicas of the application data, but in a cloud environment, differ-
ent application data have different usage rates, where the strategy has to be dynamic
to replicate the application data based on their usage rates. In large scale workflow
applications, many parallel tasks will simultaneously access the same dataset on
one data centre. The limitation of computing capacity and bandwidth in that data
centre would be a bottleneck for the whole cloud workflow system. If we have sev-
eral replicas in different data centres, this bottleneck will be eliminated. Hence the
data replication will always keep a fix number of copies of all the datasets in differ-
ent data centres to guarantee reliability and dynamically add new replicas for each
dataset to guarantee data availability. Furthermore, the placement of the replicas is
based on data dependency, which is the same as the data placement component, and
how many replicas a dataset should have is based on the usage rate of this dataset.

13.5.3 Security Management in SwinDeW-C

To address the security issues for the safe running of SwinDeW-C, the security
management component is designed. As a type of typical distributed computing
system, trust management for SwinDeW-C peers is very important and plays the
most important role in security management. Besides, there are some other security
issues that we should consider from such as user and data perspective. Specifically,
there are three modules in the security management component: trust management,
user management and encryption management system.

Trust management: The goal of the trust management module is to manage the
relations between one SwinDeW-C peer and its neighbouring peers. For example,
to process a workflow instance, a SwinDeW-C peer must cooperate with its neigh-
bouring peers to run this instance. Due to the high level QoS requirements of large
scale workflow applications, peer management in SwinDeW-C should be supported
by the trust management during workflow run time. The trust management module
acts like a consultant. This module can evaluate some tasks and give some advices
about the cooperated relation between one peer and other peers for each instance of
a specific task. Firstly, peer evaluation makes trust assessment of other neighbouring
peers. Secondly, task evaluation makes assessment of re-assignment of the task to
other peers. Then the two evaluation scores will be combined by the trust evaluation
to reach the conclusion whether this neighbouring peer has adequate trust to take
this task. Besides, we design a rule base. For instance, a specific task must not be
assigned to one specific neighbouring peer, and this is a simple rule. The rule base

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 325

is a complement to the previous value-based trust evaluation to fit the real situation
(Hess, Holt, Jacobson, & Seamons, 2004).

User management: the user management module is an essential piece in every
system. In SwinDeW-C, a user base is a database which stores all user identity
and log information that submit service requests. In addition, an authority manager
controls the permissions for users to submit some special service requests.

Encryption management System: Given SwinDeW-C peers are located within
different geographical local networks, it is important to ensure the data security in
the process of data transfer by encryption. In SwinDeW-C, we choose the PGP tool
GnuPG (http://www.gnupg.org) to ensure secure commutation.

To conclude, besides the above three new functional components, SwinDeW-C
also includes the common cloud functional components such as brokering, pricing,
auditing and virtual machine management. Detailed description can be found in
(Calheiros, Ranjan, De Rose, & Buyya, 2009) and hence omitted in this paper.

13.6 SwinDeW-C System Prototype

Based on the design discussed above, we have built a primitive prototype of
SwinDeW-C. The prototype is developed in Java and currently running on the
SwinCloud simulation environment. In SwinDeW-C prototype, we have inherited
most of SwinDeW-G functions, and further implemented the new components of
SwinDeW-C, so that it can adapt to the cloud computing environment. Furthermore,
we have built a Web portal for SwinDeW-C, by which users and system admin-
ister can access the cloud resources and manage the applications of SwinDeW-C.
The Web portal provides many interfaces to support both system users and
administrators with the following tasks, specifically for the system user:

(a) browse the existing datasets that reside in different cloud service providers’ data
centres;

(b) upload their application data to and download the result data from the cloud
storage;

(c) create and deploy workflows to SwinDeW-C system using the modelling tools;
(d) monitor the workflows’ execution.

For system administers:

(a) coordinate the workflows’ execution by triggering the scheduling strategies;
(b) manage the application datasets by triggering the data placement strategies;
(c) handle the execution exceptions by triggering the workflow adjustment

strategies.

Some interfaces of the Web portal are shown in Fig. 13.6.

326 X. Liu et al.

Fig. 13.6 SwinDeW-C web portal

13.7 Related Work

Since the research on cloud workflow management systems is at its initial stage, it is
difficult to conduct direct comparison between SwinDeW-C with others at present.
Most of the current projects are either on the general implementation of cloud com-
puting or focus on some specific aspects such as data management in the cloud.
There exists some research into data-intensive applications on the cloud (Moretti,
Bulosan, Thain, & Flynn, 2008), such as early experiences like Nimbus (Keahey,
Figueiredo, Fortes, Freeman, & Tsugawa, 2008) and Cumulus (Wang, Kunze, &
Tao, 2008) projects. Comparing to the distributed computing systems like cluster
and grid, a cloud computing system has a cost benefit (Armbrust et al., 2009).
Assunção et al. (2009) demonstrate that cloud computing can extend the capac-
ity of clusters with a cost benefit. Using Amazon clouds’ cost model and BOINC
volunteer computing middleware, the work in (Kondo, Javadi, Malecot, Cappello,
& Anderson, 2009) analyses the cost benefit of cloud computing versus grid com-
puting. In terms of the cost benefit, the work by Deelman, Singh, Livny, Berriman,
& Good (2008) shows that cloud computing offers a cost-effective solution for data-
intensive applications, such as scientific workflows (Hoffa et al., 2008). The work
in (Hoffa et al., 2008) explores the use of cloud computing for scientific workflows,
focusing on a widely used astronomy application-Montage. The Cloudbus project
(http://www.gridbus.org/cloudbus/) being conducted in the CLOUDS Laboratory
at the University of Melbourne are working on a new generalised and extensible
cloud simulation framework named CloudSim (Calheiros et al., 2009) which can
enable seamless modelling, simulation, and experimentation of cloud computing
infrastructures and management services.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 327

With the existing projects for many grid workflow systems developed in recent
years, it is agreed by many researchers and practitioners that cloud workflow sys-
tems might be built on grid computing environments rather than from scratch. For
example, the CloudSim toolkit used in the Cloudbus project is implemented by pro-
grammatically extending the core functionalities exposed by the GridSim used in
the Gridbus project (2010). Therefore, in this chapter, we review some represen-
tative grid workflow system and focus on the related features discussed in this
paper such as workflow scheduling architecture, QoS, data and security manage-
ment. Specifically, we investigate Gridbus (2010), Pegasus (2010), Taverna (2010),
GrADS (2010), ASKALON (2010), GridAnt (2010), Triana (2010), GridFlow
(2010) and Kepler (2010). For the architecture of the workflow scheduling, Pegasus,
Taverna, GrADS, and Kepler use a centralised architecture; Gridbus and GridFlow
use a hierarchical architecture; ASKALON and Triana use a decentralised architec-
ture. It is believed that centralised schemes produce more efficient schedules and
decentralised schemes have better scalabilities, while hierarchical schemes are their
compromises. Similar to SwinDeW-G, SwinDeW-C uses a structured decentralised
scheme for workflow scheduling. SwinDeW-G aims at using a performance-driven
strategy to achieve an overall load balance of the whole system via distributing tasks
to least loaded neighbours.

As far as QoS (quality of service) constraints are concerned, most grid work-
flow systems mentioned above do not support this feature. Gridbus supports QoS
constraints including task deadline and cost minimisation, GrADS and GridFlow
mainly use estimated application execution time, and ASKALON supports con-
strains and properties specified by users or predefined. Right now, SwinDeW-C
supports QoS constraints based on task deadlines. When it comes to fault toler-
ance, at the task level, Gridbus, Taverna, ASKALON, Karajan, GridFlow and Kepler
use alternate resource; Taverna, ASKALON and Karajan use retry; GrADS uses
rescheduling. At the workflow level, rescue workflow is used by ASKALON and
Kepler; user-defined exception handling is used by Karajan and Kepler. Pegasus,
GridAnt and Triana use their particular strategies respectively. As a compari-
son, SwinDeW-C uses effective temporal constraint verification for detecting and
handling temporal violations.

As for data management, Kepler has its own actor-oriented data modelling
method that for large data in the grid environment. It has two Grid actors, called
FileFetcher and FileStager, respectively. These actors make use of GridFTP to
retrieve files from, or move files to, remote locations on the Grid. Pegasus has
developed some data placement algorithms in the grid environment and uses the
RLS (Replica Location Service) system as data management at runtime. In Pegasus,
data are asynchronously moved to the tasks on demand to reduce the waiting time
of the execution and dynamically delete the data that the task no longer needs to
reduce the use of storage. In Gridbus, the workflow system has several scheduling
algorithms for the data-intensive applications in the grid environment based on a
Grid Resource Broker. The algorithms are designed based on different theories (GA,
MDP, SCP, Heuristic), to adapt to different use cases. Taverna proposed a new pro-
cess definition language, Sculf, which could model application data in a dataflow. It

328 X. Liu et al.

considers workflow as a graph of processors, each of which transfers a set of data
inputs into a set of data outputs. ASKALON is a workflow system designed for
scheduling. It puts the computing overhead and data transfer overhead together to
get a value “weight”. It dose not discriminate the computing resource and data host.
ASKALON also has its own process definition language called AGWL. Triana is a
workflow system which is based on a problem-solving environment that enables the
data-intensive scientific application to execute. For the grid, it has an independent
abstraction middleware layer, called the Grid Application Prototype (GAP), enables
users to advertise, discover and communicate with Web and peer-to-peer (p2p) ser-
vices. Triana also uses the RLS to manage data at runtime. GridFlow is a workflow
system which uses an agent-based system for grid resource management. It consid-
ers data transfer to computing resources and archive to storage resources as kinds of
workflow tasks.

As for security management, Globus uses public key cryptography (also known
as asymmetric cryptography) as the basis for its security management, which repre-
sents the main stream in the grid security area. Globus uses the certificates encoded
in the X.509 certificate format, an established standard data format. These certifi-
cates can be shared among public key based software, including commercial Web
browsers from Microsoft and Netscape. The International Grid Trust Federation
(IGTF) (http://www.igtf.net/) is a third-party grid trust service provider which
aims to establish common policies and guidelines between its Policy Management
Authorities (PMAs) members. The IGTF does not provide identity assertions
but ensures that within the scope of the IGTF charter, the assertions issued by
accredited authorities of any of its PMAs member can meet or exceed an authenti-
cation profile relevant to the accredited authority. The European GridTrust project
(http://www.gridtrust.eu/gridtrust/) is a novel and ambitious project, which provides
new security services at the GRID middleware layer. GridTrust is developing a
Usage Control Service to monitor resource usage in dynamic Virtual Organisations
(VO), enforce usage policies at run-time, and report usage control policy viola-
tions. This service brings dynamic usage control to Grid security in traditional,
rigid authorisation models. Other services of the security framework include a Grid
Security Requirements editor to allow VO owners and users to define security poli-
cies; a Secure-Aware Resource Broker Service to help create VOs based on services
with compatible security policies; and a sophisticated Reputation Manager Service,
to record past behaviour of VO owners and users as reputation credentials.

13.8 Conclusions and Feature Work

Large scale sophisticated workflow applications are commonly seen in both e-
Business and e-Science areas. Workflow systems built on high performance com-
puting infrastructures such as cluster, p2p and grid computing are often applied to
support the process automation of large scale workflow applications. However, two

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 329

fundamental requirements including scalable resources and decentralised manage-
ment have not been well addressed so far. Recently, with the emergence of cloud
computing which is a novel computing paradigm that can provide virtually unlim-
ited, easy-scale computing resources, cloud workflow system is a promising new
solution and thus deserves systematic investigation. In this chapter, SwinDeW-C,
a novel peer-to-peer based cloud workflow system has been presented. SwinDeW-
C is not built from scratch but on its predecessor SwinDeW-G (a p2p based grid
workflow system). In order to accommodate the cloud computing paradigm and
facilitate the management of large scale workflow applications, significant modifica-
tions have been made to the previous SwinDeW-G system. Specifically, the original
fabric layer of SwinDeW-G is inherited with the extension of external commer-
cial cloud service providers. Meanwhile, the underlying resources are virtualised at
the unified resource layer; functional components including QoS management, data
management and security management are added or enhanced at the platform layer
to support the management of large scale workflow applications; the user interface
is modified to support Internet (Web browser) based access.

This chapter has described the system architecture of SwinDeW-C and its new
features for managing instance and data/computation intensive workflow applica-
tions. The SwinDeW-C prototype system has been demonstrated but still under
further development. In the future, more functional components will be designed
and deployed to enhance the capability of SwinDeW-C. Meanwhile, comparison
will also be conducted between SwinDeW-C and other workflow systems based on
the statistics of performance measurements such as success rate, temporal violation
rate, system throughput and others.

Acknowledgment This work is partially supported by Australian Research Council under
Linkage Project LP0990393.

References

Ardagna, D., & Pernici, B. (2007). Adaptive service composition in flexible processes. IEEE
Transactions on Software Engineering, 33(6), 369–384.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., Konwinski, A., et al. (2009).
Above the clouds: A Berkeley view of cloud computing (Tech. Rep., University of California,
Berkeley).

de Assuncao, M. D., di Costanzo, A., & Buyya, R. (2009). Evaluating the cost-benefit of using
cloud computing to extend the capacity of clusters. Proceedings of the 18th ACM International
Symposium on High Performance Distributed Computing, Garching, Germany, 1–10.

Bhargav-spantzel, A., Squicciarini, A. C., & Bertino, E. (2007). Trust negotiation in identity
management. IEEE Security & Privacy, 5(2), 55–63.

Bose, R., & Frew, J. (2005). Lineage retrieval for scientific data processing: A survey. ACM
Computing Surveys, 37(1), 1–28.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6), 599–616.

Calheiros, R. N., Ranjan, R., De Rose, C. A. F., & Buyya, R. (2009). CloudSim: A novel framework
for modeling and simulation of cloud computing infrastructures and services (Tech. Rep., Grid

330 X. Liu et al.

Computing and Distributed Systems (GRIDS) Laboratory, Department of Computer Science
and Software Engineering,The University of Melbourne).

Chen, J., & Yang, Y. (2007). Multiple states based temporal consistency for dynamic verification
of fixed-time constraints in grid workflow systems. Concurrency and Computation: Practice
and Experience (Wiley), 19(7), 965–982.

Chen, J., & Yang, Y. (2008). A taxonomy of grid workflow verification and validation. Concurrency
and Computation: Practice and Experience, 20(4), 347–360.

Chen, J., & Yang, Y. (2010). Temporal dependency based checkpoint selection for dynamic
verification of temporal constraints in scientific workflow systems. ACM Transactions on
Software Engineering and Methodology, to appear. Retrieved 1st February 2010, from
http://www.swinflow.org/papers/TOSEM.pdf.

Chen, J., & Yang, Y. (2007). Adaptive selection of necessary and sufficient checkpoints for
dynamic verification of temporal constraints in grid workflow systems. ACM Transactions on
Autonomous and Adaptive Systems, 2(2), Article 6.

Chen, J., & Yang, Y. (2008). Temporal dependency based checkpoint selection for dynamic verifi-
cation of fixed-time constraints in grid workflow systems. Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany, 141–150.

Chervenak, A., Deelman, E., Livny, M., Su, M. H., Schuler, R., Bharathi, S., et al. (2007). Data
placement for scientific applications in distributed environments. Proceedings of the 8th Grid
Computing Conference, 267–274.

Deelman, E., Gannon, D., Shields, M., & Taylor, I. (2008). Workflows and e-Science: An overview
of workflow system features and capabilities. Future Generation Computer Systems, 25(6),
528–540.

Deelman, E., & Chervenak, A. (2008). Data management challenges of data-intensive scientific
workflows. Proceedings of the IEEE International Symposium on Cluster Computing and the
Grid, 687–692.

Deelman, E., Singh, G., Livny, M., Berriman, B., & Good, J. (2008). The cost of doing sci-
ence on the cloud: The montage example. Proceedings of the ACM/IEEE Conference on
Supercomputing, Austin, TX, 1–12.

Erl, T. (2008). SOA: Principles of service design. Upper Saddle River, NJ: Prentice Hall.
Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing 360-degree

compared. Proceedings of the Grid Computing Environments Workshop, 2008, GCE ′08, 1–10.
Hadoop (2009). Retrieved 1st September 2009 from http://hadoop.apache.org/.
Hess, A., Holt, J., Jacobson, J., & Seamons, K. E. (2004). Content-triggered trust negotiation. ACM

Transactions on Information and System Security, 7(3), 428–456.
Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., et al. (2008). On the

use of cloud computing for scientific workflows. Proceedings of the 4th IEEE International
Conference on e-Science, 640–645.

Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., & Tsugawa, M. (2008). Science clouds: Early
experiences in cloud computing for scientific applications. Proceedings of the First Workshop
on Cloud Computing and its Applications (CCA′08), 1–6.

Kondo, D., Javadi, B., Malecot, P., Cappello, F., & Anderson, D. P. (2009). Cost-benefit analysis
of cloud computing versus desktop grids. Proceedings of the IEEE International Symposium
on Parallel & Distributed Processing, IPDPS′09, 1–12.

Lin, C., Varadharajan, V., Wang, Y., & Pruthi, V.t. (2004). Enhancing grid security with trust
management. Proceedings of the 2004 IEEE International Conference on Services Computing
(SCC04), 303–310.

Liu, K., Chen, J. J., Yang, Y., & Jin, H. (2008). A throughput maximization strategy for scheduling
transaction-intensive workflows on SwinDeW-G. Concurrency and Computation: Practice and
Experience, 20(15), 1807–1820.

Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D., & Yang, Y. (2010). A compromised-time-cost schedul-
ing algorithm in SwinDeW-C for instance-intensive cost-constrained workflows on cloud
computing platform. International Journal of High Performance Computing Applications.

13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System 331

Liu, X., Chen, J., Liu, K., & Yang, Y. (2008). Forecasting duration intervals of scientific workflow
activities based on time-series patterns. Proceedings of the 4th IEEE International Conference
on e-Science (e-Science08), Indianapolis, IN, USA, 23–30.

Liu, X., Chen, J., Wu, Z., Ni, Z., Yuan, D., & Yang, Y. (2010). Handling recoverable temporal vio-
lations in scientific workflow systems: A workflow rescheduling based strategy. Proceedings
of the 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid10), Melbourne, Australia.

Liu, X., Chen, J., & Yang, Y. (September 2008). A probabilistic strategy for setting temporal con-
straints in scientific workflows. Proceedings of the 6th International Conference on Business
Process Management (BPM08), Lecture Notes in Computer Science, Vol. 5240, Milan, Italy,
180–195.

McCormick, W. T., Sehweitzer, P. J., & White, T. W. (1972). Problem decomposition and data
reorganization by a clustering technique. Operations Research, 20, 993–1009.

Moore, M. (2004). An accurate parallel genetic algorithm to schedule tasks on a cluster. Parallel
Computing, 30, 567–583.

Moretti, C., Bulosan, J., Thain, D., & Flynn, P. J. (2008). All-Pairs: An abstraction for data-
intensive cloud computing. Proceedings of the IEEE International Parallel and Distributed
Processing Symposium, IPDPS′08, 1–11.

Askalon Project (2010). Retrieved 1st February 2010, from http://www.dps.uibk.ac.at/projects/
askalon.

GrADS Project (2010). Retrieved 1st February 2010, from http://www.iges.org/grads/.
GridBus Project (2010). Retrieved 1st February 2010, from http://www.gridbus.org.
Kepler Project (2010). Retrieved 1st February 2010, from http://kepler-project.org/.
Pegasus Project (2010). Retrieved 1st February 2010, from http://pegasus.isi.edu/.
Taverna Project (2010). Retrieved 1st February 2010, from http://www.mygrid.org.uk/tools/

taverna/.
Triana Project (2010). Retrieved 1st February 2010, from http://www.trianacode.org/.
Raghavan, B., Ramabhadran, S., Yocum, K., & Snoeren, A. C. (2007). Cloud control with

distributed rate limiting. Proceedings of the 2007 ACM SIGCOMM, Kyoto, Japan, 337–348.
SECES (May 2008). Proceedings of the 1st International Workshop on Software Engineering for

Computational Science and Engineering, in conjuction with the 30th International Conference
on Software Engineering (ICSE2008), Leipzig, Germany.

Simmhan, Y. L., Plale, B., & Gannon, D. (2005). A survey of data provenance in e-Science.
SIGMOD Rec. 34(3), 31–36.

VMware (2009). Retrieved 1st September 2009, from http://www.vmware.com/.
Wang, L. Z., Kunze, M., & Tao, J. (2008). Performance evaluation of virtual machine-based grid

workflow system. http://doi.wiley.com/10.1002/cpe.1328, 1759–1771.
Wang, L. Z., Jie, W., & Chen, J. (2009). Grid computing: Infrastructure, service, and applications.

Boca Raton, FL: CRC Press, Talyor & Francis Group.
Weiss, A. (2007). Computing in the cloud. ACM Networker, 11(4), 18–25.
Winsborough, W. H., & Li, N. H. (2006). Safety in automated trust negotiation. ACM Transactions

on Information and System Security, 9(3), 352–390.
Yang, Y., Liu, K., Chen, J., Lignier, J., & Jin, H. (December 2007). Peer-to-peer based grid work-

flow runtime environment of swinDeW-G. Proceedings of the 3rd International Conference on
e-Science and Grid Computing (e-Science07), Bangalore, India, 51–58.

Yang, Y., Liu, K., Chen, J., Liu, X., Yuan, D., & Jin, H. (December 2008). An algo-
rithm in swinDeW-C for scheduling transaction-intensive cost-constrained cloud work-
flows. Proceedings of the 4th IEEE International Conference on e-Science (e-Science08),
Indianapolis, IN, USA, 374–375.

Yu, J., & Buyya, R. (2005). A taxonomy of workflow management systems for grid computing.
Journal of Grid Computing, (3), 171–200.

Yuan, D., Yang, Y., Liu, X., & Chen, J. (2010). A cost-effective strategy for intermediate data
storage in scientific cloud workflow systems. Proceedings of the 24th IEEE International

332 X. Liu et al.

Parallel & Distributed Processing Symposium, Atlanta, GA, USA, to appear. Retrieved
1st February 2010, from http://www.ict.swin.edu.au/personal/yyang/papers/IPDPS10-
IntermediateData.pdf.

Yuan, D., Yang, Y., Liu, X., & Chen, J. A data placement strategy in cloud scientific work-
flows. Future Generation Computer Systems, in press. http://dx.doi.org/10.1016/j.future.
2010.02.004.

Part III
Services

Chapter 14
Cloud Types and Services

Hai Jin, Shadi Ibrahim, Tim Bell, Wei Gao, Dachuan Huang, and Song Wu

14.1 Introduction

The increasing popularity of Internet services such as the Amazon Web Services,
Google App Engine and Microsoft Azure have drawn a lot of attention to the Cloud
Computing paradigm. Although the term “Cloud Computing” is new, the technology
is an extension of the remarkable achievements of grid, virtualization, Web 2.0 and
Service Oriented Architecture (SOA) technologies, and the convergence of these
technologies. Moreover, interest in Cloud Computing has been motivated by many
factors such as the prevalence of multi-core processors and the low cost of system
hardware, as well as the increasing cost of the energy needed to operate them. As
a result, Cloud Computing, in just three years, has risen to the top of the IT rev-
olutionary technologies as shown in Fig. 14.1, and has been announced as the top
technology to watch in the year 2010 (Gartner – Gartner Newsroom, 2010).

The name “Cloud Computing” is a metaphor for the Internet. A Cloud shape
is used to represent the Internet in network diagrams to hide the flexible topology
and to abstract the underlying infrastructure. Cloud Computing uses the internet
to deliver different computing services including hardware, programming environ-
ments and software while keeping users unaware of the underlying infrastructure
and location.

Despite the popularity and interest in cloud computing, a lot of confusion remains
about what it is, and there is no formal definition of Cloud Computing. Two of the
main definitions that are being used by the Cloud community have been provided
by Ian Foster and Jeff Kapalan. Ian Foster gives a detailed definition of the term

H. Jin (B), S. Ibrahim, W. Gao, D. Huang, and S. Wu
Services Computing Technology and System Lab; Cluster and Grid Computing Lab, Huazhong
University of Science and Technology, Wuhan, China
e-mails: {hjin@hust.edu.cn; shadi@hust.edu.cn; gaowei715@gmail.com; hdc1112@gmail.com;
wusong@mail.hust.edu.cn}
T. Bell
Department of Computer Science and Software Engineering, University of Canterbury,
Christchurch, New Zealand
e-mail: tim.bell@canterbury.ac.nz

335B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_14, C© Springer Science+Business Media, LLC 2010

336 H. Jin et al.

Fig. 14.1 Top 10 strategic technology areas for 2010 and their evolution for the last three Years
(based on Gartner (Gartner – Gartner Newsroom, 2010) and Google Trends (2010))

Cloud Computing: “A large-scale distributed computing paradigm that is driven
by economies of scale, in which a pool of abstracted, virtualized, dynamically-
scalable, managed computing power, storage, platforms, and services are delivered
on demand to external customers over the Internet” (Foster, Zhao, Raicu, & Lu,
2008).

Jeff Kaplan views cloud computing as “a broad array of web-based services
aimed at allowing users to obtain a wide range of functional capabilities on
a “pay-as-you-go” basis that previously required tremendous hardware/software
investments and professional skills to acquire. Cloud computing is the realiza-
tion of the earlier ideals of utility computing without the technical complexities
or complicated deployment worries” (Twenty Experts Define Cloud Computing,
2008).

Cloud Computing enables users to access various computing resources simply,
including computing cycles, storage space, programming environments and soft-
ware applications (all you need is a web browser). Moreover, Cloud computing
promises to provide other benefits:

14 Cloud Types and Services 337

• Less investment. Clouds provide affordable solutions that handle peaks, or scale
easily at a fraction of the traditional costs of space, time and financial investment.

• Scale. Cloud vendors have vast data centers full of tens of thousands of server
computers, offering computing power and storage of a magnitude never before
available – cloud computing promises virtually unlimited resources.

• Manageability. The user experience is simplified as no configuration or backup
is needed

However, Cloud Computing also raises many concerns, mainly about security,
privacy, compliance and reliability. When users move their data to the service
provider data center, there is no guarantee that nobody else has access to this data. If
the data is being stored in a different country, there can also be issues about jurisdic-
tions for legal rights, and control of the data. Moreover, to date, there are no clearly
defined Service Level Agreements (SLA) offered by the cloud providers.

There has been relatively little unification of the Cloud Computing concept.
Consequently, it is useful to take a step back, consider the variety of Clouds offered
by leading vendors, and describe them in a unified way, putting the different use and
types of clouds in perspective; this is the main purpose of this book chapter.

The rest of this chapter is organized as follows: In Section 14.2 we present the
different types of Clouds. Then we briefly introduce the three main Cloud service
categories. We then describe the variety of Clouds in leading projects in each cate-
gory, IaaS, PaaS and SaaS, in Sections 14.4, 14.5, and 14.6 respectively. To complete
our survey, we present the Amazon cloud family and the different enterprises that
are using the Amazon infrastructure, in Section 14.7. A conclusion is provided in
Section 14.8.

14.2 Cloud Types

Clouds can be classified in terms of who owns and manages the cloud; a common
distinction is Public Clouds, Private Clouds, Hybrid Clouds and Community Clouds
(see Fig. 14.2).

14.2.1 Public Cloud

A public cloud, or external cloud, is the most common form of cloud computing,
in which services are made available to the general public in a pay-as-you-go man-
ner. Customers – individual users or enterprises – access these services over the
internet from a third-party provider who may share computing resources with many
customers. The public cloud model is widely accepted and adopted by many enter-
prises because the leading public cloud vendors as Amazon, Microsoft and Google,
have equipped their infrastructure with a vast amount of data centers, enabling users

338 H. Jin et al.

Fig. 14.2 Cloud types:
public, private and hybrid
clouds

to freely scale and shrink their rented resources with low cost and little management
burden. Security and data governance are the main concern with this approach.

14.2.2 Private Cloud

A Private Cloud, or internal cloud, is used when the cloud infrastructure, propri-
etary network or data center, is operated solely for a business or organization, and
serves customers within the business fire-wall. Most of the private clouds are large
company or government departments who prefer to keep their data in a more con-
trolled and secure environment. Table 14.1 presents a comparison between public
and private clouds.

Table 14.1 Public vs. private cloud

Public cloud Private cloud

Infrastructure
Owner

Third party (Cloud provider) Enterprise

Scalability Unlimited and On-Demand Limited to the installed Infrastructure
Control and

Management
Only manipulate the virtual

machines, resulting in less
management burden

High level of control over the
resources, and need more expertise
to mange them.

Cost Lower cost High cost including: space, cooling,
energy consumption and hardware
cost

Performance Unpredictable multi-tenant
environment makes it hard to
achieve guaranteed
performance

Guaranteed performance

Security Concerns regarding data privacy Highly secure

14 Cloud Types and Services 339

14.2.3 Hybrid Cloud

A composition of the two types (private and public) is called a Hybrid Cloud, where
a private cloud is able to maintain high services availability by scaling up their
system with externally provisioned resources from a public cloud when there are
rapid workload fluctuations or hardware failures. In the Hybrid cloud, an enterprise
can keep their critical data and applications within their firewall, while hosting the
less critical ones on a public cloud.

14.2.4 Community Cloud

The idea of a Community Cloud is derived from the Grid Computing and Volunteer
Computing paradigms. In a community cloud, several enterprises with similar
requirement can share their infrastructures, thus increasing their scale while shar-
ing the cost (Wikipedia – Cloud Computing, 2010). Another form of community
cloud may be established by creating a virtual data center from virtual machines
instances deployed on underutilized users machines (Briscoe & Marinos, 2009).

14.3 Cloud Services and Cloud Roles

A Cloud is essentially a class of systems that deliver IT resources to remote users
as a service. The resources encompass hardware, programming environments and
applications. The services provided through cloud systems can be classified into
Infrastructure as a service (IaaS), Platform as a Service (PaaS) and Software as a
service (SaaS).

Different enterprises play different roles in building and using cloud sys-
tems (Fig. 14.3). These roles range from cloud technology enablers (enabling the

Fig. 14.3 Cloud services and cloud roles

340 H. Jin et al.

underlying technologies used to build the cloud, such as hardware technologies,
Virtualization technology, web services and so on), to cloud providers (deliver-
ing their infrastructure and platform to customers), to cloud customers (using the
providers’ services to improve their web applications), and users (who use the web
applications, possibly unaware that it is being delivered using cloud technologies).

14.4 Infrastructure as a Service

Infrastructure as a Service (IaaS) is one of the “Everything as a Service” trends.
IaaS is easier to understand if we refer it as Hardware as a Service (i.e. instead
of constructing our own server farms, a small firm could consider paying to use
infrastructure provided by professional enterprises). Companies such as Google,
Microsoft and IBM are involved in offering such services. Large-scale computer
hardware and high computer network connectivity are essential components of an
effective IaaS.

The IaaS is categorized into: (1) Computation as a Service (CaaS), in which
virtual machine based servers are rented and charged per hour based on the virtual
machine capacity – mainly CPU and RAM size, features of the virtual machine, OS
and deployed software; and (2) Data as a Service (DaaS), in which unlimited storage
space is used to store the user’s data regardless of its type, charged per GByte for
data size and data transfer.

In this section we will describe some popular IaaS systems such as Amazon EC2
(2010), GoGrid (2010), Amazon S3 (2010) and Rackspace (2010). We then compare
three widely used CaaS systems (Table 14.2).

14.4.1 Amazon Elastic Compute Cloud (EC2)

Amazon has provided a popular universal and comprehensive solution to Cloud
Computing, called the Amazon Elastic Compute Cloud (EC2) (2010). This solu-
tion was released as a limited public beta on August 25, 2006, but grew rapidly in
the following years. After Amazon added many important and powerful features to
EC2, it dropped the beta label on October 23, 2008. Today EC2 provides complete
control over a customer’s computing resources, so new server instances can be set
up and booted in minutes, and their capacity can be scaled quickly through a simple
web service interface.

EC2 provides many useful features for customers, including a mature and inex-
pensive billing system able to charge for computing at a very fine-grained level
(memory usage, CPU usage, data transfer, etc.), deployment between multiple loca-
tions, elastic IP addresses, connection to a customer’s existing infrastructure through
a Virtual Private Network, monitoring services by Amazon CloudWatch, and elas-
tic load balancing. EC2 has deployed such fine granularity and precision that it has
become a benchmark and model in cloud computing.

14 Cloud Types and Services 341

Table 14.2 A comparison of three widely used CaaS (prices from Feb 2010)

CaaS Amazon EC2 GoGrid
Rackspace (cloud
server)

Virtualization Xen Xen VMware
OS support Linux, Windows Linux, Windows Linux, Windows
Server RAM 1.7 GB and going up

to 68.4 GB
0.5 GB and going up

to 8 GB
256 MB and going up

to 16 GB
Load Balancer Amazon Elastic Load

Balancer
Free F5 Load

Balancer
No

Persistent Block
Storage

Yes Yes No

Hybrid Hosting No Yes Yes
24/7 Support No Yes Yes
Pricing Billed $0.085 – $3.18

per hour (vary for
different Instance
and Regions). The
Data Transfer rates
vary based on
where the data goes
out to and comes in
from with pricing
between $0.00 to
$0.15 per GB
transferred.

Billed $0.19 per GB
of deployed RAM
per hour and
60 GB of disk,
$0.50 per GB of
outbound data
transferred, and
all inbound data
transfer is free.

Billed $0.06 per GB of
deployed RAM per
Hour and 40 GB of
disk, $0.05 per GB
of inbound data
transfer and $0.22
per GB of outbound
data transfer.

Amazon’s EC2 provides virtual machine based computation environments. It
uses the Xen hypervisor (2010) to manage their Amazon Machine Image (AMI)
instance. AMI (Amazon EC2, 2010) is “an encrypted machine image that contains
all information necessary to boot instances of your software”. Using simple web
service interfaces, users can launch, run, monitor and terminate their instances as
shown in Fig. 14.4. Moreover they can, on the fly, add any of the abovementioned
features to their configuration as they desire.

14.4.2 GoGrid

GoGrid (2010) shares many common characteristics with Amazon in the classic
cloud computing areas: supporting multiple operating systems through its own
image management, and supporting load balancing, cloud storage, and so on. In
addition, GoGrid provides customers with a user-friendly web service interface,
easy-to-understand video demonstrations, and a strict but inexpensive billing sys-
tem. Thus both EC2 and GoGrid provide basic and common features of cloud
computing. The difference between the services they provide mainly derives from
their respective business models. For example, GoGrid provides free cloud and
persistent storage, slightly different from Amazon.

342 H. Jin et al.

Fig. 14.4 Lifecycle of amazon machine image

GoGrid also provides Hybrid Hosting, which is a distinguishing feature. Many
applications simply don’t run well in a pure multi-tenant server environment.
Databases perform better on a dedicated server where they don’t have to compete
for input/output resources, and the situation is similar with web server applications.
GoGrid provides these special applications with dedicated servers that also have
high security assurance.

14.4.3 Amazon Simple Storage Service (S3)

The Amazon Simple Storage Service (2010) (S3) is an online storage web service
offered by Amazon Web Services. S3 is accessible to users through web services,
REST-style HTTP interfaces,1 or by involving a SOAP interface. Like other cloud
computing services, users can request small or large amounts of storage on the fly,
providing a highly scalable storage system.

Amazon S3 organizes the storage space into many “buckets”, with each bucket
being given a global unique namespace to help locate data addresses, identify the
user account for payments, and gathering usage information (ASSSDG, 2010). S3
deals with all type of data as objects and stores them with their metadata into
the bucket chosen by the data owner. An object can be accessed through a URL
composed of its key and version ID with its bucket namespace as the prefix.

Amazon S3’s users are spread across countless fields, for example, SmugMug
(2010), Slideshare (2010) and Twitter (2010) use Amazon S3 to host images,

1REST stands for “Representational state transfer”, a software architecture for distributed
hypermedia.

14 Cloud Types and Services 343

Apache Hadoop (2010) uses S3 to store computation data, and online synchroniza-
tion utilities such as Dropbox (2010) and Ubuntu One (2010) use S3 as their storage
and transfer facility.

14.4.4 Rackspace Cloud

Rackspace (2010) Cloud was originally launched on March 4, 2006 under the name
“Mosso”. In the following three years, it has changed his name from “Mosso LLC”
to “Mosso: The Hosting Cloud”, and then finally “Rackspace Cloud” on June 17,
2009. This company provides services including a cloud server, cloud files, and
cloud site.

The cloud files service is a cloud storage service providing unlimited online
storage and a Content Delivery Network (CDN) for media on a utility computing
basis. In addition to the online control panel, this company provides an API service
that can be accessed over a RESTful API with open source client code. Rackspace
solves the security problem by replicating three full copies of data across multiple
computers in multiple zones, with every action protected by SSL.

14.5 Platform as a Service

Platform as a Service (PaaS) cloud systems provide a software execution environ-
ment that application services can run on. The environment is not just a pre-installed
operating system but is also integrated with a programming-language-level plat-
form, which users can be used to develop and build applications for the platform.
From the point of view of PaaS clouds’ users, computing resources are encapsulated
into independent containers, they can develop their own applications with certain
program languages, and APIs are supported by the container without having to take
care of the resource management or allocation problems such as automatic scal-
ing and load balancing. In this section we introduce three typical PaaS : Google
App Engine (2010), Microsoft Azure (2010), and Force.com (2010), and then we
compare them in Table 14.3.

14.5.1 Google App Engine

Google App Engine (GAE)’s main goal is to efficiently run users’ web applica-
tions. As shown in Fig. 14.5, it maintains Python and Java runtime environments on
application servers, along with some simple APIs to access Google services.

The front ends spread HTTP requests with load balancing and routing strategies
based on the contents. Runtime systems running on application servers deal with
the logic processing of applications and provide dynamic web content, while static
pages are served by the shared Google infrastructure (Alon, 2009). To decouple the

344 H. Jin et al.

Table 14.3 Survey of four PaaS provides

PaaS provider
Programming
environment Infrastructure Hosted application

Google Python and Java Google Data Center Socialwok (2010),
Gigapan (2010),
LingoSpot (2010)

Azure .Net (Microsoft
Visual Studio)

(Virtual Machine Based)
Microsoft Data Centers

Microsoft Pinpoint (2010)

Force.com Apex Programming
and Java1

Saleforce Data Center EA (2010), Author
Solutions (2010), The
Wall Street Journal
(2010)

Heroku (2010) Ruby Amazon EC2 and S3 Übermind (2010),
Kukori.ca (2010), act.ly
(2010), Cardinal Blue
(2010)

Fig. 14.5 The Architecture of Google App Engine

persistent data from application servers, GAE puts them into the Datastore instead
of a local file system. Applications can integrate data services and other Google
App Services, such as email, image storage and so on through APIs provided by
the GAE.

In addition to the services, Google also provides some tools for developers to
help them build web applications easily on GAE. However, since they are tightly
connected to the Google infrastructure, there are some restrictions that limit the
functionality and portability of the applications.

14.5.2 Microsoft Azure

Microsoft’s cloud strategy is to construct a cloud platform that users can move their
applications to in a seamless way, and ensure its managed resources are accessi-
ble to both cloud services and on-premises applications. To achieve this, Microsoft
introduced the Windows Azure Platform (WAP), which is composed of a cloud oper-
ating system named Windows Azure, and a set of supporting services, as shown in
Fig. 14.6.

14 Cloud Types and Services 345

Fig. 14.6 The architecture of the windows azure platform

Windows Azure is the main part of the WAP. It employs virtual machines as its
runtime environments. The applications in Microsoft’s cloud offerings are divided
into two types: Web role instances, which can serve web requests via the internet
information services (IIS); and Worker role instances, which can only receive mes-
sages from other Web role instances or on-premises applications (David, 2009a).
Windows Azure employs a “fabric controller” to manage all virtual machines and
storage servers on the physical machines in a Microsoft data center (David, 2009b).
Similar to the GAE’s datastore, WAP also provides a database service called SQL
Azure, to store data in the cloud. One feature of SQL Azure is that it provides
a tool for data synchronization across on-premises and/or off-premises databases.
Infrastructure services supported by WAP through .NET services currently include
access control and exposing services. Both are available for cloud and on-premises
applications.

14.5.3 Force.com

Force.com is an enterprise cloud computing platform offered by Salesforce. It
helps service venders develop and deliver stable, secure and scalable applica-
tions. Two key enabling technologies of Force.com are multi-tenancy and metadata
(Force.com, 2009a). The multi-tenancy approach allows different users to share
application templates on a public physical computing resource pool, while the appli-
cation instances are independent from each other. For customized applications, a
metadata driven architecture that generates application components according to its
own description has been proposed (Force.com, 2009b). Other technologies and ser-
vices of the Force.com platform include service delivery infrastructure, a database,
logic services, user interfaces, and developer tools (Force.com, 2009a).

346 H. Jin et al.

The idea of the Force.com cloud solution is that it should take care of all
common underlying requirements so that users need only focus on the design
of their applications. One potential problem of this is that the applications rely
heavily on the infrastructure and services of Force.com, which compromises their
portability.

14.6 Software as a Service

Software-as-a-Service (SaaS) is based on licensing software use on demand, which
is already installed and running on a cloud platform. These on-demand applica-
tions may have been developed and deployed on the PaaS or IaaS layer of a
cloud platform. SaaS replaces traditional software usage with a Subscribe/Rent
model, reducing the user’s physical equipment deployment and management costs.
The SaaS clouds may also allow users to compose existing services to meet their
requirements. This section presents some SaaS clouds and applications.

14.6.1 Desktop as a Service

Desktop as a Service is a special variant of Software as a Service that provides a
virtualized desktop-like personal workspace, and sends its image to the user’s real
desktop. Instead of a local desktop, the user can access their own desktop-on-the-
cloud from different places for convenience, and receive the benefit of SaaS at same
time.

The “Global Hosted Operating SysTem” (G.ho.st) (2010) is a free and complete
Internet-based Virtual Computer (VC) service suite including a personal desktop,
files and applications (G.ho.st, 2009). It offers users an operating system image
simulated in a web browser using Flash and Javascript, which can be accessed
through any browser. The G.ho.st application services are hosted by the Amazon
Web Services (AWS) platform, so users can utilize EC2 and S3 resources through
their G.ho.st desktops. One limitation of G.ho.st is, as a lightweight desktop ser-
vice, it only supports on-line applications, and users cannot run legacy programs
on it.

Unlike G.ho.st’s browser-based desktop image, the Desktone Virtual-D Platform
(2010) implements a desktop as a service by encapsulating a virtual machine
based desktop, called Virtual Desktop Infrastructure (VDI), into a service. The
advantage of VDI is that it can offer the same environment as a native operating
system, and allows users to install their own software. The Desktone Virtual-D
Platform integrates all desktop virtualization layers and simplifies desktop manage-
ment, improving security and compliance (The Desktone Virtual-D Platform – Fact
Sheet, 2009). This solution delivers desktops as a cost-effective subscription service
deployed on cloud.

14 Cloud Types and Services 347

14.6.2 Google Apps

Google Apps (2010) is a typical SaaS implementation. It provides several Web
applications with similar functionality to traditional office software (word process-
ing, spreadsheets etc.), but also enables users to communicate, create and collaborate
easily and efficiently. Since all the applications are kept online and are accessed
through a web browser, users can access their accounts from any internet-connected
computer, and there is no need to install anything extra locally.

Google Apps has several components. The communication components con-
sist of Google mail and Google Talk, which allow for communication through
email, instant messaging and voice calls. The office components include docs and
spreadsheets, through which users can create online documents that also facilitate
searching and collaboration. Google Calendar is a flexible calendar application for
organizing meetings and events. With Google’s “Web Pages”, administrators can
easily publish web pages, while “Start Pages” provide users with a rich array of
content and applications that can be personalized.

Google Apps has several significant features. First, it provides an easy-to-use
control panel which facilitates the most common administration tasks such as
enabling/disabling applications, managing accounts, and customizing interfaces.
Second, although hosted on Google, the user can control the branding on all inter-
faces – email addresses will have only the user’s domain name with no mention
of Google in the message body (Wikipedia, Google App, 2010), and users can
customize their web interfaces, layouts and colors on web and start pages. Third,
administrators can integrate with existing platforms as well as extend the func-
tionality of the core Google Apps applications with the Application Programming
Interfaces (APIs) that are offered. There are APIs available for provisioning, report-
ing, and migration, as well as manipulating data in Calendar and Spreadsheets, and
integrating with Single Sign On (SSO) systems (Google Apps Products Overview,
2010).

14.6.3 Salesforce

Salesforce (2010) is a business SaaS cloud platform that provides customizable
applications, mostly Customer Relationship Management (CRM) services, to con-
sumers. There are two major products presented by Salesforce. Sales Cloud is a
group of comprehensive applications to improve the convenience and efficiency
of business activities; and Service Cloud is provided to integrate social network
applications like Facebook and Twitter, to construct a users’ customer service
community.

Saleforce CRM services are deployed on the Force.com cloud platform, which
operates a multi-tenancy oriented metadata-driven architecture (Force.com, 2009b).
Multi-tenancy enables sharing the same version of an application among many
users, but each user can only access their own private data, which keeps their

348 H. Jin et al.

activities isolated. All applications’ functionalities and configurations are described
with metadata, so users can customize applications as they want.

Although the shared application model could cause interference between users,
the Salesforce SaaS cloud has these advantages: (1) service providers can develop
only one version of application, and don’t need to worry about heterogeneous exe-
cution environments; (2) the sharing of the physical computing resource, operating
system and runtime environment lowers the cost of the application service; and (3)
service consumers are free to choose their preferred version of the application and
customize it to fit their business.

14.6.4 Other Software as Service Examples

As cloud computing technology spreads, more and more Software as a Service
implementations have been released. Table 14.4 gives some other SaaS examples.
The services cover many fields in addition to personal file processing and business
administration.

Table 14.4 Some SaaS examples

SaaS provider Important services

A2Zapps.com (2010) Marketing Automation, School Automation (ERP)
Envysion.com (2010) Video Management
Learn.com (2010) Training, HR, Online Courses
Microsoft (2010) Office Live Meeting, Dynamics CRM, SharePoint
OpenID (2010) Log in Identification
Zoho (2010) Mail, Docs, Wiki, CRM, Meeting, Business

14.7 The Amazon Family

Since the early stage of Cloud Computing, Amazon has dominated the Cloud market
by providing scalable on-demand infrastructure, in particular EC2 and S3, making
it easy for enterprises to obtain computing power and storage as a service (“The net-
work world – 10 cloud computing companies to watch”, http://www.networkworld.
com/supp/2009/ndc3/051809-cloud-companies-to-watch.html).

One of the first success stories about the effectiveness of cloud computing for
providing low-cost and fast solutions on-demand for an enterprise was the case of
the New York Times. In order to make their articles from 1851 to 1922 available to
the public, they were able to create PDF versions of their archives using 100 EC2
instances. This was a large job – in some cases they needed to take several TIFF
images and scale and glue them to create one PDF file in less than 24 hours. Once
the archive was created, they stored it in the S3, using 4 TB of storage (The New
York Times Blog, 2010).

Recently Amazon has equiped their IT infrastructure services with new services
as shown in Table 14.5, motivating many businesses, enterprises and academia to

14 Cloud Types and Services 349

Ta
bl

e
14

.5
T

he
A

m
az

on
W

eb
se

rv
ic

es
(p

ri
ce

s
fr

om
Fe

b
20

10
)

A
m

az
on

w
eb

se
rv

ic
e

B
ri

ef
de

sc
ri

pt
io

n
G

eo
gr

ap
hi

ca
l

re
gi

on
s1

Pr
ic

in
g

ra
ng

e

A
m

az
on

E
la

st
ic

C
om

pu
te

C
lo

ud
(A

m
az

on
E

C
2)

“A
m

az
on

E
la

st
ic

C
om

pu
te

C
lo

ud
(A

m
az

on
E

C
2)

is
a

w
eb

se
rv

ic
e

th
at

pr
ov

id
es

re
si

za
bl

e
co

m
pu

te
ca

pa
ci

ty
in

th
e

cl
ou

d”
(A

m
az

on
E

C
2,

20
10

).

U
S

–
N

.V
ir

gi
ni

a
U

S
–

N
.C

al
if

or
ni

a
E

U
–

Ir
el

an
d

$0
.0

85
–

$3
.1

8
pe

r
ho

ur
(v

ar
y

fo
r

di
ff

er
en

t
In

st
an

ce
an

d
re

gi
on

s)
A

m
az

on
Si

m
pl

e
St

or
ag

e
Se

rv
ic

e
(A

m
az

on
S3

)
“A

m
az

on
S3

pr
ov

id
es

a
si

m
pl

e
w

eb
se

rv
ic

es
in

te
rf

ac
e

th
at

ca
n

be
us

ed
to

st
or

e
an

d
re

tr
ie

ve
an

y
am

ou
nt

of
da

ta
,a

ta
ny

tim
e,

fr
om

an
yw

he
re

on
th

e
w

eb
”

(A
m

az
on

S3
,2

01
0)

.

U
S

–
N

.V
ir

gi
ni

a
U

S
–

N
.C

al
if

or
ni

a
E

U
–

Ir
el

an
d

0.
05

5
–

0.
15

0
Pe

r
G

B
(v

ar
y

fo
r

di
ff

er
en

t
re

gi
on

s)
A

m
az

on
Si

m
pl

eD
B

(2
01

0)
“A

m
az

on
Si

m
pl

eD
B

is
au

to
m

at
ic

al
ly

in
de

xi
ng

yo
ur

da
ta

an
d

pr
ov

id
in

g
a

si
m

pl
e

A
PI

fo
r

st
or

ag
e

an
d

ac
ce

ss
an

d
re

qu
ir

in
g

no
sc

he
m

a”
(A

m
az

on
Si

m
pl

eD
B

,2
01

0)
.

U
S

–
N

.V
ir

gi
ni

a
U

S
–

N
.C

al
if

or
ni

a
E

U
–

Ir
el

an
d

$0
.1

40
–

$0
.1

54
pe

r
H

ou
r

(v
ar

y
to

di
ff

er
en

t
re

gi
on

s)
A

m
az

on
C

lo
ud

Fr
on

t(
20

10
)

“A
m

az
on

C
lo

ud
Fr

on
ti

s
a

w
eb

se
rv

ic
e

fo
r

co
nt

en
td

el
iv

er
y.

It
de

liv
er

s
th

e
st

at
ic

an
d

st
re

am
in

g
co

nt
en

tu
si

ng
a

gl
ob

al
ne

tw
or

k
of

ed
ge

lo
ca

tio
ns

.
B

y
ro

ut
in

g
th

e
re

qu
es

ts
fo

r
an

y
ob

je
ct

s
to

th
e

ne
ar

es
te

dg
e

lo
ca

tio
n,

so
co

nt
en

ti
s

de
liv

er
ed

w
ith

th
e

be
st

po
ss

ib
le

pe
rf

or
m

an
ce

.A
m

az
on

C
lo

ud
Fr

on
tw

or
ks

se
am

le
ss

ly
w

ith
(A

m
az

on
S3

)”
(A

m
az

on
C

lo
ud

Fr
on

t,
20

10
).

U
ni

te
d

St
at

es
E

ur
op

e
H

on
g

K
on

g
Ja

pa
n

$0
.0

50
–

$0
.2

21
pe

r
G

B
(v

ar
y

fo
r

di
ff

er
en

tD
at

a
tr

an
sf

er
pe

r
m

on
th

an
d

re
gi

on
s)

A
m

az
on

Si
m

pl
e

Q
ue

ue
Se

rv
ic

e
(A

m
az

on
SQ

S)
(2

01
0)

“A
m

az
on

Si
m

pl
e

Q
ue

ue
Se

rv
ic

e
(A

m
az

on
SQ

S)
of

fe
rs

a
re

lia
bl

e,
hi

gh
ly

sc
al

ab
le

,h
os

te
d

qu
eu

e
fo

r
st

or
in

g
m

es
sa

ge
s

as
th

ey
tr

av
el

be
tw

ee
n

co
m

pu
te

rs
.A

m
az

on
SQ

S
m

ak
es

it
ea

sy
to

bu
ild

an
au

to
m

at
ed

w
or

kfl
ow

,w
or

ki
ng

in
cl

os
e

co
nj

un
ct

io
n

w
ith

th
e

A
m

az
on

E
C

2”
(A

m
az

on
SQ

S,
20

10
).

U
S

–
N

.V
ir

gi
ni

a
U

S
–

N
.C

al
if

or
ni

a
E

U
–

Ir
el

an
d

$0
.0

1
pe

r
10

,0
00

A
m

az
on

SQ
S

R
eq

ue
st

s
($

0.
00

00
01

pe
r

R
eq

ue
st

)

350 H. Jin et al.

Ta
bl

e
14

.5
(c

on
tin

ue
d)

A
m

az
on

w
eb

se
rv

ic
e

B
ri

ef
de

sc
ri

pt
io

n
G

eo
gr

ap
hi

ca
l

re
gi

on
s1

Pr
ic

in
g

ra
ng

e

A
m

az
on

E
la

st
ic

M
ap

R
ed

uc
e

(2
01

0)
“A

m
az

on
E

la
st

ic
M

ap
R

ed
uc

e
is

a
w

eb
se

rv
ic

e
th

at
en

ab
le

s
bu

si
ne

ss
es

,
re

se
ar

ch
er

s,
da

ta
an

al
ys

ts
,a

nd
de

ve
lo

pe
rs

to
ea

si
ly

an
d

co
st

-e
ff

ec
tiv

el
y

pr
oc

es
s

va
st

am
ou

nt
s

of
da

ta
.I

tu
til

iz
es

a
ho

st
ed

H
ad

oo
p

fr
am

ew
or

k
ru

nn
in

g
on

th
e

w
eb

-s
ca

le
in

fr
as

tr
uc

tu
re

of
A

m
az

on
E

C
2

an
d

A
m

az
on

S3
”

(A
m

az
on

E
la

st
ic

M
ap

R
ed

uc
e,

20
10

).

U
S

–
N

.V
ir

gi
ni

a
U

S
–

N
.C

al
if

or
ni

a
E

U
–

Ir
el

an
d

$0
.0

15
–

$0
.4

2
pe

r
ho

ur
(v

ar
y

fo
r

di
ff

er
en

t
in

st
an

ce
an

d
re

gi
on

s)

A
m

az
on

R
el

at
io

na
l

D
at

ab
as

e
Se

rv
ic

e
(A

m
az

on
R

D
S)

(2
01

0)

“A
m

az
on

R
el

at
io

na
lD

at
ab

as
e

Se
rv

ic
e

(A
m

az
on

R
D

S)
gi

ve
s

yo
u

ac
ce

ss
to

th
e

fu
ll

ca
pa

bi
lit

ie
s

of
a

fa
m

ili
ar

M
yS

Q
L

da
ta

ba
se

.T
hi

s
m

ea
ns

th
e

co
de

,a
pp

lic
at

io
ns

,a
nd

to
ol

s
yo

u
al

re
ad

y
us

e
to

da
y

w
ith

yo
ur

ex
is

tin
g

M
yS

Q
L

da
ta

ba
se

s
w

or
k

se
am

le
ss

ly
w

ith
A

m
az

on
R

D
S”

((
A

m
az

on
R

D
S,

20
10

).

U
S

R
eg

io
n

$0
.1

1
–

$3
.1

0∗
(v

ar
y

fo
r

di
ff

er
en

t
in

st
an

ce
s)

1
A

m
az

on
w

eb
se

rv
ic

es
pr

ov
id

e
m

ul
tip

le
re

gi
on

s
an

d
“a

va
ila

bi
lit

y
zo

ne
s”

so
cu

st
om

er
s

ca
n

co
nn

ec
tt

o
th

e
m

os
tc

on
ve

ni
en

ts
er

vi
ce

,a
nd

al
so

ch
oo

se
se

rv
ic

es
in

m
ul

tip
le

zo
ne

s
to

m
ax

im
iz

e
fa

ilu
re

-i
nd

ep
en

de
nc

e.

14 Cloud Types and Services 351

Fig. 14.7 The Amazon Family: Amazon Web services and their Different Solutions and customers
(Amazon AWS, 2010)

join the Amazon Web Services using the always-improving IT infrastructure ser-
vices suite to build their business and applications (Fig. 14.7). Furthermore, some
enterprises use the Amazon cloud services to provide new cloud services, including
RightScale (Cloud Computing Management Platform by RightScale, 2010) provid-
ing IaaS, Heroku (2010) providing PaaS, Animoto (Animoto, 2010) and G.ho.st
(2010) providing SaaS.

14.7.1 RightScale: IaaS Based on AWS

Rightscale (2010) is a web based solution for deploying and managing services on
top of IaaS cloud providers such as Amazon and GoGrid. RightScale enables users
to simply build, monitor and auto-scale their virtual infrastructure. It has been listed
among the top 10 companies to watch in cloud computing (Appistry/CloudCamp
Survey, 2009) especially after its huge success in managing the Amazon EC2
services for companies such as Animoto (Rightscale, 2010) and G.ho.st (2010).
RightScale also provides management tools for deployments across multiple clouds,
providing flexibility in the choice of all kinds of services.

Recently, many enterprises have joined Rightscale, running different applica-
tions such as scalable websites (ShareThis (2010)), grid applications (Animoto

352 H. Jin et al.

(RightScale, 2010)), Test & Development, and Social Gaming Applications
(PlayFish (2010)).

14.7.2 HeroKu: Platform as a Service Using Amazon Web Service

Heroku (2010) is a Ruby platform-as-a-service, which offers an in-browser Ruby on
Rails multi-tenant development environment associated with cloud-based hosting
services. Heroku’s platform is entirely based on Amazon Web Services such as EC2
and S3. Thus, they can scale their infrastructure to satisfy their customers’ demands
at fraction of the traditional cost.

In Heroku, the users’ code is compiled into self-contained, read only “slugs”,
which are then run inside a number of “dynos”, depending on the application’s
need. Furthermore, to scale up an application, new dynos can be started in under
two seconds for most apps. A Dyno is an independent process spread across multiple
servers. Recently, Heroku has been used by many developers; at the time of writ-
ing it was hosting more than 45,000 applications, including websites and facebook
applications.

14.7.3 Animoto Software as Service Using AWS

Animoto (RightScale, 2010) is a web application that automatically generates fast,
free (for video up to 30 s), and unique video pieces from users’ photos, video
clips and music. It is based around their own patent-pending technology and high-
end motion design. Their system is built on top of Amazon Web Services, namely
EC2, S3 and SQS. EC2 is used for web servers, application servers, upload servers,
“director” servers, and database servers. All the music and photos are stored and
served by Amazon S3. Amazon’s SQS is used to connect all the operations during
the video creation process.

Earlier, Animoto were regularly using a 50 virtual machine instance of EC2,
but after the huge success of their Facebook application, they scaled up to 3,500
instances using RightScale, within just three days (at its peak RightScale was
launching and configuring 40 new instances per minute (Rightscale Blog, 2010)).

14.7.4 SmugMug Software as Service Using AWS

SmugMug (2010) is a photo sharing company that offers unlimited storage using
the Amazon S3. In early 2006, SmugMug (with 15 employees and 1 program-
mer), moved its storage to S3, and became fully operational on Amazon S3 in one
week, with around 100 Terabytes of customer photos (70,000,000 original images
and six display copies of each). This saved them roughly $500,000 compared with
increasing the space in their data center.

14 Cloud Types and Services 353

14.8 Conclusion

Cloud computing is a very flexible paradigm for delivering computational power.
It will mean many things to many people. For some it means being able to set up
a new start-up company knowing that initial resources will be inexpensive but a
sudden increase in demand from users won’t make the company a victim of its
own success, as has happened in some cases in the past where servers have been
unable to cope with demand, and the company loses clients as they become unhappy
with poor response times. For other people, cloud computing means easier admin-
istration, with issues such as licensing, backup and security being taken care of
elsewhere. In other cases, cloud computing means having a powerful computational
environment available anywhere that the user can access a web browser.

With this flexibility, scalability and ease of maintenance, it is little wonder that
cloud computing is being touted as a technology to watch. Of course, there are
issues: privacy of data can be a concern, good internet connectivity is required,
and some organizations may wish to maintain control over their own resources.
However, these problems can usually be addressed, and using a cloud remains a
very attractive way to set up a powerful system very quickly.

The various forms of service – infrastructure, platform, and software as a ser-
vice – provide exciting ways to deliver new products that innovators might come up
with. Already there are examples of widely used products and web sites that have
sustained remarkable growth because creative ideas could be implemented quickly,
and because the subsequent demand could be met easily through the flexibility of
cloud computing.

The future seems to be limited only by the imaginations of innovators who can
think of applications that will help people communicate, store and process vast
quantities of information, whether it is millions of individuals with small collec-
tions of personal information, or a single large organization with large collections
of data to be processed.

Acknowledgment This work is supported by National 973 Key Basic Research Program under
Grant No. 2007CB310900, NSFC under Grant No.60673174, Program for New Century Excellent
Talents in University under Grant NCET-07-0334, Information Technology Foundation of MOE
and Intel under Grant MOE-INTEL-09-03NSFC, and National High-Tech R&D Plan of China
under Grant 2006AA01A115.

References

act.ly Homepage (2010). http://act.ly/. Accessed on July 13, 2010.
A2Zapps.com Homepage (2010). http://www.a2zapps.com. Accessed on July 13, 2010.
Alon, L. (2009). From spark plug to drive train: Life of an app engine request. Google I/O

Developer Conference, http://code.google.com/events/io/2009/.
Amazon AWS – AWS Solutions (2010). http://aws.amazon.com/solutions/aws-solutions/.

Accessed on July 13, 2010.
Amazon Elastic Compute Cloud (Amazon EC2) (2010). http://aws.amazon.com/ec2. Accessed on

July 13, 2010.

354 H. Jin et al.

Amazon Elastic MapReduce (2010). http://aws.amazon.com/elasticmapreduce/. Accessed on
July 13, 2010.

Animoto Homepage (2010). http://animoto.com/. Accessed on July 13, 2010.
Amazon Relational Database Service (RDS) (2010). http://aws.amazon.com/rds/. Accessed on

July 13, 2010.
Amazon SimpleDB (2010). http://aws.amazon.com/simpledb/. Accessed on July 13, 2010.
Amazon CloudFront (2010). http://aws.amazon.com/cloudfront/. Accessed on July 13, 2010.
Amazon Simple Queue Service (SQS) (2010). http://aws.amazon.com/sqs/. Accessed on July 13,

2010.
Amazon Simple Storage Service (Amazon S3) (2010). http://aws.amazon.com/s3. Accessed on

July 13, 2010.
Amazon Simple Storage Service Developer Guide (2010). http://docs.amazonwebservices.com/

AmazonS3/latest/index.html?Introduction.html. Accessed on July 13, 2010.
Apache Hadoop (2010). http://hadoop.apache.org/. Accessed on July 13, 2010.
Appistry/CloudCamp Survey (2009). Inside the cloud. www.appistry.com/go/inside-the-cloud.

Accessed on July 13, 2010.
Author Solutions Homepage (2010). http://www.authorsolutions.com/. Accessed on July 13, 2010.
Briscoe, G., & Marinos, A. (2009). Towards community cloud computting. Proceedings of the

IEEE Digital EcosystemS and Technologies (DEST 2009), Istanbul, Turkey.
Cardinal Blue Homepage (2010). http://cardinalblue.com/. Accessed on July 13, 2010.
Cloud Computing Management Platform by RightScale (2010). http://www.rightscale.com/.

Accessed on July 13, 2010.
David, C. (2009a). Introducing the windows azure platform. http://view.atdmt.com/action/

mrtyou_FY10AzurewhitepapterIntroWindowsAzurePl_1. Accessed on July 13, 2010.
David, C. (2009b). Introducing windows azure. http://view.atdmt.com/action/mrtyou_FY10Azure

WhitepaperIntroWindowsAzureSec_1. Accessed on July 13, 2010.
Dropbox Homepage (2010). http://www.dropbox.com/. Accessed on July 13, 2010.
EA Video Games – Electronic Arts (EA) Homepage (2010). http://www.ea.com/. Accessed on

July 13, 2010.
Envysion.com (2010). http://www.envysion.com. Accessed on July 13, 2010.
Force.com homepage (2010). www.salesforce.com/platform/. Accessed on July 13, 2010.
Force.com Whitepaper (2009a). A comprehensive look at the force.com cloud platform. http://wiki.

developerforce.com/index.php/A_Comprehensive_Look_at_the_Force.com_Cloud_Platform.
Accessed on July 13, 2010.

Force.com Whitepaper (2009b). The Force.com multitenant architecture. http://www.apexdevnet.
com/media/ForcedotcomBookLibrary/Force.com_Multitenancy_WP_101508.pdf. Accessed
on July 13, 2010.

Foster, I., Zhao, Y., Raicu, I., & Lu, S. Y. (2008). Cloud computing and grid computing 360-degree
compared. Proceedings of the Grid Computing Environments Workshop (GCE’08), Austin, TX.

Gartner – Gartner Newsroom (2010). http://www.gartner.com/it/page.jsp?id=1210613. Accessed
on July 13, 2010.

G.ho.st Homepage (2010). http://g.ho.st/. Accessed on July 13, 2010.
G.ho.st Whitepaper (2009). The G.ho.st virtual computer. http://g.ho.st/HomePageResources/PDF/

GhostWhitePaper.pdf. Accessed on July 13, 2010.
Gigapan Homepage (2010). http://www.gigapan.org/. Accessed on July 13, 2010.
GoGrid homepage (2010). http://www.gogrid.com/index.v2.php. Accessed on July 13, 2010.
Google App (2010). http://www.google.com/apps/intl/en/business/index.html.
Google App Engine (2010). http://code.google.com/appengine/.
Google Apps Products Overview (2010). http://services.google.com/apps/resources/overviews_

breeze/Apps/index.html.
Google Trends (2010). http://www.google.com/trends, Accessed on February 23rd 2010.
Heroku (2010). Ruby cloud platform as a service. http://heroku.com/. Accessed on July 13, 2010.
Kukori.ca Homepage (2010). http://kukori.ca/. Accessed on July 13, 2010.

14 Cloud Types and Services 355

Learn.com (2010). http://learn.com. Accessed on July 13, 2010.
LingoSpot Homepage (2010). http://www.lingospot.com/. Accessed on July 13, 2010.
Microsoft Online Services (2010). http://www.microsoft.com/online/products.mspx. Accessed on

July 13, 2010.
Microsoft Pinpoint Homepage (2010). http://pinpoint.microsoft.com/en-US/. Accessed on July 13,

2010.
OpenID Homepage (2010). http://openid.net/. Accessed on July 13, 2010.
PlayFish Homepage (2010). http://www.playfish.com/. Accessed on July 13, 2010.
Rightscale Blog – Animoto’s Facebook Scale-up (2010). http://blog.rightscale.com/2008/04/23/

animoto-facebook-scale-up/. Accessed on July 13, 2010.
Salesforce Homepage (2010). http://www.salesforce.com/crm/. Accessed on July 13, 2010.
ShareThis Homepage (2010). http://sharethis.com/. Accessed on July 13, 2010.
Slideshare homepage (2010). http://www.slideshare.net/. Accessed on July 13, 2010.
Smugmug homepage (2010). http://www.smugmug.com/. Accessed on July 13, 2010.
Socialwok Homepage (2010). http://www.socialwok.com/. Accessed on July 13, 2010.
The Desktone Virtual-D Platform – Fact Sheet (2009). http://www.desktone.com/

downloads/public/collateral/Virtual-D-Fact-Sheet.pdf. Accessed on July 13, 2010.
The Desktone Virtual-D Platform Homepage (2010). http://www.desktone.com/platform/index.php.

Accessed on July 13, 2010.
The New York Times Blog, – Service (2010). Prorated super computing fun! http://open.blogs.

nytimes.com/2007/11/01/self-service-prorated-super-computing-fun/. Accessed on July 13,
2010.

The Rackspace Cloud (2010). http://www.rackspacecloud.com/. Accessed on July 13, 2010.
The Wall Street Journal Homepage (2010). http://online.wsj.com. Accessed on July 13, 2010.
Twenty Experts Define Cloud Computing (2008). SYS-CON Media Inc., http://cloudcomputing.

sys-con.com/read/612375_p.htm. Accessed on July 13, 2010.
Twitter homepage (2010). http://twitter.com/. Accessed on July 13, 2010.
Übermind Homepage (2010). http://www.ubermind.com/. Accessed on July 13, 2010.
Ubunto One (2010). https://one.ubuntu.com/. Accessed on July 13, 2010.
Wikipedia – Cloud Computing (2010). http://en.wikipedia.org/wiki/Cloud_computing. Accessed

on July 13, 2010.
Wikipedia, Google App (2010). http://en.wikipedia.org/wiki/Google_Apps. Accessed on July 13,

2010.
Windows Azure platform (2010). http://www.microsoft.com/windowsazure/. Accessed on July 13,

2010.
Xen Hyper visor (2010). http://xen.org/. Accessed on July 13, 2010.
Zoho Homepage (2010). http://www.zoho.com/. Accessed on July 13, 2010.

Chapter 15
Service Scalability Over the Cloud

Juan Cáceres, Luis M. Vaquero, Luis Rodero-Merino, Álvaro Polo,
and Juan J. Hierro

15.1 Introduction

Cloud Computing promises an easy way to use and access to a large pool of vir-
tualized resources (such as hardware, development platforms and/or services) that
can be dynamically provisioned to adjust to a variable workload, allowing also
for optimum resource utilization. This pool of resources is typically exploited by
a pay-per-use model in which guarantees are offered by means of customized SLAs
(Vaquero, Rodero-Merino, Caceres, & Lindner, 2009). Therefore, Cloud Computing
automated provisioning mechanisms can help applications to scale up and down sys-
tems in the way that performance and economical sustainability are balanced. So,
what does it mean to scale?

Basically, scalability1 can be defined “as the ability of a particular system to fit
a problem as the scope of that problem increases (number of elements or objects,
growing volumes of work and/or being susceptible to enlargement)”. For example,
increasing system’s throughput by adding more software or hardware resources to
cope with an increased workload (Schlossnagle, 2007; Bondi, 2000). The ability to
scale up a system may depend on its design, the types of data structures, algorithms
or communication mechanisms used to implement the system components. A char-
acterization of different types of scalability is reported by Bondi (2000), here we
summarize some relevant examples:

• Load Scalability: when a system has the ability to make good use of available
resources at different workload levels (i.e. avoiding excessive delay, unproduc-
tive consumption or contention). Factors that affect load scalability may be a bad

J. Cáceres (B), L.M. Vaquero, Á. Polo, and J.J. Hierro
Telefónica Investigación y Desarrollo, Madrid, Spain
e-mails: {caceres; lmvg; apv; jhierro}@tid.es

L. Rodero-Merino
INRIA-ENS, INRIA, Lyon, France
e-mail: luis.rodero-merino@ens-lyon.fr

1http://en.wikipedia.org/wiki/Scalability

357B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_15, C© Springer Science+Business Media, LLC 2010

358 J. Cáceres et al.

use of parallelism, inappropriate shared resources scheduling or excessive over-
heads. For example, a web server maintains a good level of load scalability if the
performance of the system is maintained in an acceptable level when the number
of threads that executes HTTP requests is increased in a workload peak.

• Space Scalability: The system has the ability to keep the consumption of sys-
tem’s resources (i.e. memory or bandwidth) between acceptable levels when the
workload increases. For example, an operating system scales gracefully using a
virtual memory mechanism that swaps unused virtual memory pages from phys-
ical memory to disk, avoiding physical memory exhaustion. Another example
would be when the number of user accounts of a web 2.0 service like a social
network grows from thousands to millions.

• Structural scalability: The implementation of standards at the system allows for
the increase of the number of managed objects or at least it will do so within a
given time frame. For example, the size of a data type could affect the number
of elements that can be represented (using a 16 bit integer as an entity identifier
only allows representing 65,536 entities).

It would be desirable that the scaling capabilities of a system remained both,
short and long term; having short term reactivity to respond to high and low rate of
incoming works. As important as scaling up is scaling down, this impacts directly in
the sustainability of business, reducing exploitation cost of unused resources when
the workload decreases avoiding over-provisioning.2

The factors that could improve or diminish scalability could be hard to identify
and even specific for target system. Sometimes the actions taken to improve one
of these capabilities could spoil others. For example, the introduction of compres-
sion algorithms to improve Space scalability (i.e. bandwidth reduction compressing
messages) impacts on load scalability (i.e, increase of use of processor when
compressing messages). The actions to scale may be classified in:

• Vertical scaling: by adding more horsepower (more processors, memory, band-
width, etc.) to equipments used by the systems. This is the way applications are
deployed on large shared-memory servers.

• Horizontal scaling: by adding more of the same software or hardware resources.
For example, in a typical two-layer service, more front-end nodes are added (or
released) when the number of users and workload increases (decreases). This is
the way applications are deployed on distributed servers.

Scalability has to be kept in mind from the very beginning when designing the
architecture of a system. Although appropriate time-to-market, fast prototyping or
targeting small number of users could require quick developments, the architec-
ture of the solution should have scalability into account. This implies the system

2http://rationalsecurity.typepad.com/blog/2009/01/a-couple-of-followups-on-my-edos-economic-
denial-of-sustainability-concept.html

15 Service Scalability Over the Cloud 359

could increase the number of users from hundreds to thousands or even to millions
or it could increase in complexity. By this doing, the risk of failure and system
reimplementation would be minimized.

The Cloud is a computational paradigm which aims, among other major targets,
to ease the way a service is provisioned helping service providers by delivering
the illusion of infinite underlying resources and automatic scalability. This arti-
cle describes how Cloud Computing may help to build scalable applications by
automating the service provisioning process with IaaS (Infrastructure as a Service)
Clouds (reducing the management costs and optimizing the use of resources) and
providing PaaS (Platform as a Service) frameworks (with scalar execution environ-
ments, service building blocks and APIs) to build Cloud-aware applications in a
Software as a Service (SaaS) model.

15.2 Foundations

Having made clearer what is currently understood by scalability and briefly outlined,
the Cloud scalability is based in three basic pillars:

• Virtualization: it reduces systems complexity, standardizing the hardware plat-
form and then reducing resource management costs.

• Resource sharing: sharing computing resources among different applications
and/or organizations will allow optimizing their use avoiding sparse or idle occu-
pation times. In this sense, virtualization helps to consolidate server in the same
physical machine.

• Dynamic provisioning: resources should be provided in an on-demand way, they
should be also automatically refigured on the fly. Dynamic provisioning implies
the need of monitoring the service performance and automating the decisions and
actions to respond to an in/decreasing workload.

Through this section, we will analyze the evolution of Information Technology
(IT) services from mainframes to Clouds, which explains how scalability has
been tackled, and some dynamic resource allocation techniques that could help to
implement automatic scalability.

15.2.1 History on Enterprise IT Services

Since the 60’s decade, mainframes (Ebbers et al., 2009) have been present at busi-
nesses back-office in finance, health care, insurance, government and other public
and private enterprises. Starting processing batch tasks, introduced with punch
cards, paper tape or magnetic tapes, during last decades it has evolved adding
interactive terminals, and supporting multiple Operating System (OS) instances
supported by virtual machines.

360 J. Cáceres et al.

Mainframes (Ebbers et al., 2009) are centralized computers designed for han-
dling and processing very large amounts of data quickly with high reliability,
availability and serviceability. Mainframes scale vertically by adding more com-
puting, storage or connectivity resources. Thanks to continuing compatibility of
hardware and Operating Systems, upgrades in the OS, architecture family or model
allow to scale systems without having to change the applications that run on top
of it.

Decentralized applications, and more particularly client/server architectures
(Orfali, Harkey, & Edwards, 1996), were implemented in the late 80’s as an alter-
native to mainframes. An application is composed by autonomous computational
entities with their own memory and communicated by a network using message-
passing protocols (such as the Remote Procedure Call Protocol, RPC, which is
“itself is a message-passing protocol”).3 A server provides a set of functions to
one of many clients which invoke requests for such functions. Distributed systems
present some advantages over mainframes:

• Cost reduction: A mainframe price was by $2–3 M (now it cost around $1 M).
Mid-size applications could be deployed with only a few thousands of dollars.

• Flexibility: Server nodes, typically hosted in dedicated computers (mostly UNIX)
can be developed, configured and tested separately from the rest of the system and
plugged when ready.

• Latency reduction: Server nodes can be distributed among different datacenters
to be as close of end-users as possible.

• Interactive services: Initially mainframes were batch processing-oriented but
client/server is mainly interactive.

• Unlimited resource addition: Mainframes present platform-dependent limits
when adding more resources (CPU, disk, memory. . .). Distributed systems allow
the addition of more servers to increase the whole system capacity.

Client/server architectures are the base model for the network computing such
Internet Services (web, mail, ftp, streaming, etc), telecommunication systems (IMS,
VoIP, IPtv, etc.) and enterprise applications (information services, databases, etc.).
Figure 15.1 shows how client/server architectures (Orfali et al., 1996) have evolved
from two-tier (the client and the server hosted in different machines) to three-tier
(client, application logic and data layer) and multi-tier (client, presentation logic
layer, business logic layer, and data layer). As the applications grow in complexity
and most of the business processes have been automated, datacenters have taken
up more and more physical space. Distributed Systems can scale vertically (adding
more resources to a host node), horizontally (adding new nodes of the same type)
or both (from hosting all the service nodes in the same server to distribute them in
dedicated servers taking advantage of transparency of location that communication
protocols typically grant). Horizontal scale could require redesigning the application

3http://www.ietf.org/rfc/rfc1831.txt

15 Service Scalability Over the Cloud 361

Fig. 15.1 Basic client/server architectures (Orfali et al., 1996)

to introduce parallelization, load-balancing, etc. But, during the 90’s, distributed
systems presented some disadvantages as compared to mainframes:

• Low use of server nodes: Typically server nodes are dedicated to a single appli-
cation node, as it requires specific OS, libraries, isolation from other software
components, etc.

• More operation costs: Distributed systems are more complex, they require more
management task performed by human operators.

• Less energy efficiency: Wasted power on dedicated servers may increase the
energy consumed by the hosts and the cooling systems.

• More physical space required: Even grouped in racks or blades servers, they need
more space that integrated mainframes.

• Potentially less performance with I/O: Data storage is centralized in mainframes,
but distributed systems that access through the network to a centralized storage
present latency on accessing them.

• Potentially more difficult to be fault tolerant: As network and the number of
service nodes introduce more failure points. Unless hardware components in
mainframes are vulnerable too, they implement redundancy mechanisms to
minimize the impact of failures.

362 J. Cáceres et al.

• Inability to share resources in distributed nodes: spare CPU capacity in one node
may not be used by others nodes. Here, the ability to consolidate the number
of CPUs in a single mainframe also had a relevant economic impact in terms
of middleware software licenses costs savings (since most middleware license
prices scale up based on the number of CPUs.)

At the beginning of the 2000’s these disadvantages made some IT managers
reconsider coming back to renewed mainframes architectures which enabled to
consolidate hardware resources while being able to run multiple OS instances.
These architectures introduced virtualization technologies (such as IBM’s z/Virtual
Machine and z/Virtual Storage Extended) and logical partitions which can host
UNIX (mostly Linux) or native mainframe OS (VMS, z/OS, etc.). Modern main-
frames can also dynamically reconfigure the resources assigned to a virtual machine
or logical partition (processors, memory, device connections, etc.).

In the world of distributed systems, clustering technologies, virtualization
(VMware4 or Xen5) and datacenter automation tools (IBM’s Tivoli6 or HP’s
OPSware7) make datacenters much easier to manage, minimizing complexity and
operational costs of distributed systems provisioning (allocation of network and
computing resources, OS and software components installation, etc.) and manage-
ment (OS patches, software updates, monitoring, power, etc.). Modern datacenters
are organized in clusters. A cluster is a group of commodity computers, working
together closely so that in many respects they form a single computer. The com-
ponents of a cluster are commonly, but not always, connected through fast local
area networks. Clusters are usually deployed to improve performance (by scaling
the available computing power) and/or availability over that of a single computer,
while typically being much more cost-effective than single computers of comparable
speed or availability.8 However, putting commodity (often computational) resources
together in a cluster often resulted not to be enough for the high computational
demand required by some applications and experiments (Bote Lorenzo, Dimitriadis,
& Gómez Sánchez, 2004). Further scaling was needed to absorb increasing demand.
The need to aggregate sparse and separately managed computational resources
gave rise to the concept of Virtual Organizations. These are separate administrative
domains that set the means for using unused resourced belonging to other collab-
orating organizations as if they were locally located. Indeed, virtualization allows
consolidating different Virtual Machines in the same physical host reducing waste
of computing power and energy.

Indeed, from the computer architecture point of view, the evolution of computers
makes not very clear the difference between dedicated servers and mainframes, as

4http://www.vmware.com
5http://www.xen-source.com
6http://www.ibm.com/software/tivoli
7http://www.hp.com
8http://en.wikipedia.org/wiki/Cluster_%28computing%29

15 Service Scalability Over the Cloud 363

mainframes could be consider the topmost model of a computer family. Then, the
key issue in an IT Service strategy can be either to scale horizontally with low-cost
servers (in the way of clusters or small servers) or vertically with “big” shared-
memory servers. As usual, there is no silver bullet and the decision may depend
on the application. Anyway, by introducing virtualization the underlying physical
hardware layer is transparent for service nodes that potentially may scale vertically
to the maximum capacity of the physical machines and horizontally to the maxi-
mum capacity of the datacenter. Some studies, see (Michael, Moreira, Shiloach, &
Wisniewski, 2007; Barroso & Hölzle, 2009) for example, conclude that horizon-
tal scaling offers better price/performance, although at an increase in management
complexity, for Web-centric applications. In addition, horizontal scaling is deemed
by some authors as the only solution for supercomputers.9

15.2.2 Warehouse-Scale Computers

Internet companies, such as Google, Amazon, Yahoo and Microsoft’s online
services division, have transformed their datacenters using Warehouse-scale
Computers (WSCs) (Barroso & Hölzle, 2009) which differ from traditional data-
centers on:

• Datacenters belong to a single company.
• Use of relatively homogeneous hardware and software platforms.
• Large cluster considered as a single computing unit, not only a set of wired

individual servers.
• Often much of the software platform (applications, middleware and system soft-

ware) is build in-house and adapted to the services they provide (search engines,
media warehouses, e-commerce, etc.) instead of using third-party software
(standard application servers, middleware, OS, etc.).

• They run a smaller number of very large applications.
• Use of a common management layer that flexibly controls the deployment of

applications among shared resources.
• High availability achieved assuming large number of component faults with little

or no impact on service level performance.

Figure 15.2 shows the typical warehouse-scale systems architecture (Barroso &
Hölzle, 2009) which basic elements are low-cost 1U or blade enclosure servers
mounted within a rack. Servers are interconnected by a rack-level 1–10 Gbps
Ethernet switches with uplink connections to one or more cluster or datacenter level
Ethernet switches. Disk drives can be managed by a Network Attached Storage
(NAS) connected directly to the cluster switches, or be connected to each individual

9http://www.top500.org

364 J. Cáceres et al.

Fig. 15.2 Warehouse-scale system architecture (Barroso & Hölzle, 2009)

Table 15.1 Mainframe vs. datacenters scaling points

Scale type Mainframes Clusters

Vertical • Add more CPUs, Memory or Disk
• Upgrade to a bigger model
• Add/improve software concurrency,

compression, etc.

• Add more CPUs, Memory or Disk to
servers
• Add more bandwidth to network
• Upgrade to a bigger server model
• Redistribute Application components
• Add/improve software concurrency,

compression, etc.
Horizontal None • Add more server nodes

• Add/improve parallelization
algorithms

server and managed by a global distributed file system such as Google’s File System
(GFS).10

As shown above, resource management tools are key to control the dynamic
resource provisioning and application deployment, and hence, to scale in a graceful
manner. Again, specific distributed application architectures and technologies are
used as well to scale the systems: distributed file systems, parallelization algorithms,
message passing, etc. Datacenters can be replicated among different geographies to
reduce user latency and improve the service performance.

Table 15.1 summarizes scaling solutions used in modern datacenters.

10http://labs.google.com/papers/gfs.html

15 Service Scalability Over the Cloud 365

15.2.3 Grids and Clouds

In contrast to warehouse-scale systems, Grid and Cloud technologies have emerged
to allow resource sharing between organizations. Also called Service-Oriented
Infrastructures, their aim is more “general-purpose” as they have to host a number of
different applications from different domains and types of organizations (research,
governance or enterprise). Anyway, most of functions they should provide are in
common, and “public” functions could be adopted by “private” infrastructures and
viceversa.

The Grid is one of such technologies extending the scale of computing systems
by aggregating commodity resources belonging to different administrative domains
into one or more virtual organizations. More formally, the Grid is defined as a “sys-
tem that coordinates resources which are not subject to centralized control, using
standard, open, general-purpose protocols and interfaces to deliver nontrivial qual-
ities of service” (Foster, 2002). More recent definitions emphasize the ability to
combine resources from different organizations for a common goal (Bote Lorenzo
et al., 2004). In Kurdi, Li, and Al-Raweshidy (2008) and Stockinger (2007) the
concern is about coordination of resources from different domains and how those
resources must be managed.

Apart from aggregating more organizations into a single virtual organization, a
given service was hard to scale and the Grid, as it is traditionally conceived, offered
no mechanisms for helping Grid Service developers to scale their systems in accor-
dance with changes in demand. In this regard, the Grid was no different to previous
information technology (IT) systems: an administrator should detect service over-
loads and manually scale the system relying on performance metrics relevant for
the service in question. Also, the number of nodes a Virtual Organization comprises
may be well below the number needed to accomplish the intended task.

Recently, another paradigm, the Cloud, came into the scene to help increase the
scalability provided to the end user. However, the distinctions are not clear maybe
because Clouds and Grids share similar visions: reducing computing costs and in-
crease flexibility and reliability by using third-party operated hardware (Vaquero
et al., 2009). For example, Grids enhance fair sharing of resources across orga-
nizations, whereas Clouds provide the required resources on demand, making the
impression of a single dedicated resource. Hence, there is no actual sharing of
resources due to the isolation provided through virtualization. Nevertheless, virtual-
ization technologies are also being used to help Grids scale at the vertical level (e.g.
adding more re-sources to a virtual machine). Other important difference between
traditional Grids and the Cloud has to do with the employed programming model.
For example, a Cloud user can deploy Enterprise Java Beans-based applications
just as he can deploy a set of Grid services instead. The Cloud will treat them both
equally. However, by definition, Grids accept only “gridified” applications (Vaquero
et al., 2009; Stockinger, 2007), thus imposing hard requirements to developers.
Although virtual organizations share the hardware (and its management) costs, they
are still higher than “renting” the required capacity right when it is needed. This is

366 J. Cáceres et al.

Fig. 15.3 Grid vs cloud provisioning models

indicating that the provisioning model is a very important element when it comes to
determine the potential scalability of our IT system.

In the Grid, left hand side of the Fig. 15.3 below, a job request (1) was match-
maker by a broker to some available resources found in an information service (2),
resources are reserved to guarantee appropriate execution (3) and arranged in a
workflow system (4) controlling the coordinated action of the allocated resources
(5). On an infrastructure as a service Cloud, the user is in charge of providing the
packaged software stack (1), and the Cloud manager finds available resources (2,3)
to host the virtual machines containing the software stack (4). These represent two
completely different provision and management philosophies.

Cloud computing paradigm shifts the location of computing resources to the net-
work to reduce the costs associated with the management of hardware and software
resources. On-demand provision of resources and scalability are some essential fea-
tures of the Cloud. The Cloud offers many of the typical scaling points that an
application may need including servers, storage and networking service underlying
resource resizing (in an Infrastructure as a Service, IaaS, Cloud), or advanced devel-
opment and maintenance platforms for reduced service time to market (in Platform
and Software as a Service, PaaS/SaaS, Clouds). Thus, the Cloud could arguably be
defined not as a technological advance, but as a model for dynamic service provi-
sion, where a service is anything that can be offered as a networked service (XaaS)
(Vaquero et al., 2009).

The on-demand nature of Cloud computing combined with the aforementioned
pay-per-actual-use model means that as application demand grows, so can the re-
sources you use to service that demand. In this situation, the system eventually
reaches a balance and allocated capacity equals demand as long as your applica-
tion was designed properly and its architecture is amenable to appropriate scaling.
Ideally applications in IaaS Cloud deployments should operate in terms of high-
level goals and not present specific implementation details to administrators (Eyers,
Routray, Zhang, Willcocks, & Pietzuch, 2009). Existing strategies require develop-
ers to rewrite their applications to leverage the on-demand resource utilization, thus
locking applications to a specific Cloud infrastructure. Some approaches structure

15 Service Scalability Over the Cloud 367

servers into a hierarchical tree to achieve scalability without significantly restruc-
turing the code base (Song, Ryu, & Da Silva, 2009). Also, profiles are used to
capture experts’ knowledge of scaling different types of applications. The profile-
based approach automates the deployment and scaling of applications in Cloud
without binding to specific Cloud infrastructure (Yang, Qiu, & Li, 2009; Wang,
2009). Similar methods can be employed that analyze communication patterns
among service operations and the assignment of the involved services to the avail-
able servers, thus optimizing the allocation strategy to improve the scalability of
composite services (Wu, Liang, & Bertino, 2009).

The need for the above strategies and code rewriting clearly indicates the difficul-
ties in scaling an application in the Cloud. Although some remarkable attempts have
been made that try to add automatic scaling capabilities to service-based systems
(see (Poggi, Moreno, Berral, Gavaldà, & Torres, 2009) for example), these are often
hard to develop, too dependent on the specific application, and hardly generaliz-
able to be offered as a general-purposed service. Thus, current commercial Grid and
Cloud systems rely also on user know-how on the ‘maximum’ capacity and build
out to that capacity. This implies that the system is usually in one of two modes:
either under-buying or overbuying (see Fig. 15.4). Unlike the Grid and previous
provisioning methods for IT systems, the Cloud allows service providers to simply
add capacity as needed, typically with lead times of minutes. The pay-per-actual-use
model lets one pay only for what is actually provisioned.

In spite of the flexible provision and billing models, the degree of automa-
tion and integration with underlying monitoring systems offered by most existent

Fig. 15.4 Cloud computing
techniques to reduce over-
and under-provisioning

368 J. Cáceres et al.

Cloud systems are to be further developed. The key to effective on-demand scal-
ing is accurate utilization metrics. At the forefront, Amazon’s Cloud Watch and
Auto-scale11 features allow some integration of the underlying monitoring system
(providing infrastructure metrics, such as CPU usage) and a service for reacting on
user-defined conditions. Also, RightScale12 allows automating some trigger actions
based on infrastructure metrics or on user-defined scripts put in the deployed servers.
However, the degree of customization of the scaling rules by users is based on and
application–level metrics are hard to be included, resulting in low automation for
high level rules or metrics (e.g. service requests over a time period), which are closer
to the Cloud user mindset.

Besides, adding more machines on demand, the underlying virtualization tech-
nologies inherent to the Cloud, allow one to include vertical scaling (more resources
can be added on the fly to a virtual machine). Unfortunately, this very desirable fea-
ture is no yet supported by most operating systems (they need a fixed CPU and
memory size at boot time).

Summing up, although IaaS Clouds have taken system scalability a step further
(see Table 15.2), defining automatic scalability actions based on custom service
metrics is not supported as of today. In fact, no Cloud platform supports the config-
uration of certain business rules, as for example limits on the maximum expenses
the SP is willing to pay so she does not go bankrupt due for example to Economic
Denial of Sustainability (EDoS) attacks.

Table 15.2 Scaling potential of current grid and IaaS clouds

Grid Cloud

• Adding new organizations (and their shared
resources) to the virtual organization.
•Manual service scaling.

• “Renting” resources on-demand.
• Preliminary automation means to enforce

scaling rules.
• Horizontal scaling thanks to hypervisor

technology.

While IaaS Clouds and Grids can be different with regard to their scalability
potential (see Table 15.2), PaaS/SaaS13 Clouds still need to make huge progress
towards helping to increase the required levels of automation and abstraction.

Just-in-time scalability is not achieved by simply deploying applications in the
Cloud. SaaS scaling is not just about having a scalable underlying (virtual) hard-
ware, but also about writing scalable applications. Valuable rules of thumb have
been provided by PaaS platforms such as Google’s App Engine.14 These include
minimizing work, paging through large datasets, avoiding datastore contention,

11http://aws.amazon.com/
12http://www.rightscale.com/
13http://cloudtechnologies.morfeo-project.org/archives/a-cloud-architecture-how-do-we-fill-the-
gap-of-real-scalability/lng/es
14http://code.google.com/appengine/articles/scaling/overview.html

15 Service Scalability Over the Cloud 369

sharding counters, and effective memory cache. These techniques indicate that, as
of today, traditional techniques for helping applications scale need to arise from
programmers crafting the scaling points.

More sophisticated means are being called upon for avoiding customers to have
to become experts in thread management or garbage-collection schemes. The Cloud,
itself, should provide such facilities for programmers as a service (PaaS). One of
the big advantages of the Cloud is that it could be used to split up a program so
that different instructions can be processed at the same time. But it is hard to write
the code needed to do that with most programming languages. For instance, C and
other programming languages offered MPI APIs for performing the parallelization
of instructions within a computational cluster. However, traditional programming
environments provide inadequate tools, because they place the burden to developers
who should operate at a too low level of abstraction.

One such effort is the BOOM (Berkeley Orders Of Magnitude) project, which
aims to build easily scalable distributed with less code including GFS, Map/Reduce
and Chubby, and then allow these components to be reconfigured and recomposed
to enable new distributed systems to be easily constructed at low cost (Boom09,
2009).

Lacking such mechanisms results in particular solutions that can hardly be gener-
alized and offered as a service. More general approaches tackle application domain
knowledge to increase application scalability by minimizing the changes need to be
done to the application’s code. This has been applied, for example, to online social
networks by getting advantage of the graph structure. Groups are separated in differ-
ent servers and the nodes belonging to several groups are replicated in all the group
servers (Pujol, Siganos, Erramilli, & Rodríguez, 2009).

15.2.4 Application Scalability

The example above (Pujol et al., 2009) clearly indicates that not all the applica-
tions are well suited to scale in the Cloud. While this is an ideal environment for
Web applications, transactional applications, cannot be “cloudified” in such an easy
manner.

Web applications can be scaled horizontally and vertically and spread over sev-
eral datacenters without firewalls (or any other network related) problems. Web
applications are usually stateless, which implies that migrating services from a loca-
tion to another does not imply any shortcoming for application performance. Also,
as new replicas are added (horizontal scaling), load balancers can evenly reroute
requests to any available replica.

Databases cannot be ported to the Cloud so easily, though. They do not rely on
Internet-ready protocols (such as HTTP), so problems are to be found in a highly
distributed and multi-tenant environment such as the Cloud. Also, they are inher-
ently stateful and rollbacks and commits are needed features for an appropriate
service behavior. This latter premise implies that services cannot be migrated or

370 J. Cáceres et al.

located anywhere. Legal restrictions also restrict the migration and actual location of
some very sensitive data (although these not technical implications fall beyond this
Chapter’s scope). Database replication is usually done by expert administrators and
is very often dependent on the specific data model. The replication strategy affects
load balancing, which further complicates providing transactional applications with
automated scalability.

New transactional-like SaaS applications should rely on some basic program-
ming concepts that web applications have been using to achieve high performance
or high availability in large-scale deployments (Barroso & Hölzle, 2009), not trying
to emulate traditional transactional architectures:

• Data Replication (this makes updates more complex)
• Sharding (partitioning) data set into smaller fragments and distributing them

among a large number of servers.
• Dynamic Load Balancing by biasing the sharding policy to equalize the workload

per node.
• Health checking and watchdog timers: it is critical to know if a server is too slow

or unreachable to take actions as soon as possible. Timeouts to remote requests
and heartbeat techniques should be used.

• Integrity checks to avoid data corruption
• Application-specific compression
• Eventual Consistency: large-scale systems relax data consistency during limited

periods that will return eventually to a stable consistent state.

15.2.5 Automating Scalability

Automatic scalability at the application level can be implemented in several
manners. The two most significant ones are:

1. Users provide a set of rules in a well-defined language (e.g. see Galán et al.
(2009)) that feeds an “application controller” acting on behalf of the user and in
charge of enforcing the specified scalability rules.

2. Design and implement application-specific algorithms or statistical methods for
the controller to know when the application should scale without having to resort
to users direct actions in an expert system.

As for the first approach above, a very relevant example will be given below
(see Section 15.3.2). Suffice to say here that rule-based systems provide meaningful
descriptions on the appropriate conditions to scale and datamining techniques can be
employed to extract relevant rules and help users (service providers) to gain runtime
knowledge on their application performance and optimization techniques. On the
other hand, algorithmic techniques (by this, we also mean statistical tools, neural

15 Service Scalability Over the Cloud 371

Fig. 15.5 Control loop for a web server process (Abdelzaher et al., 2002)

networks, or traditional control theory techniques) provide a degree of control for
real-time response that cannot be attained by rule-based systems yet. This section is
focused on some of these systems’ features.

Figure 15.5 describes a QoS (Quality-of-Service) management solution for a
Web application based in Control-Theory (Abdelzaher, Shin, & Bhatti, 2002).
Extending these concepts to an application in an IaaS Cloud, the control loop
that tries to avoid system overloads and meet the individual response time and
throughput guarantees would be:

• Service Application: the service application to be executed in one or more virtual
machines in the Cloud.

• Monitor: it provides feedback about resources utilization based on available
measures such as CPU, disk memory and network bandwidth.

• Controller: given the difference between the desirable QoS and resources utiliza-
tion (as measured by the monitor component), the controller has to decide on
the corrective actions to meet the QoS target. Thus, control theory offers analytic
techniques for closing the loop such us modelling the system as a gain function
that maximizes the resource utilization between acceptable margins.

• Actuator: it translates abstract controller outputs into concrete actions taken by
the Cloud middleware to scale up/down the service components to change its
load.

Here, we highlight an open challenge for dynamic scalability in the cloud: finding
a controller that could model a service deployed in a Cloud and make the system to
scale as expected.

In Roşu, Schwan, Yalamanchili, and Jha (1997) the authors proposed the use
of Adaptative Resource Allocation (ARA) in real-time for embedded system plat-
forms. ARA mechanisms promptly adjust resource allocation (vertical scalability) to
changes in runtime variations of the application needs whenever there is a risk of not
meeting its timing constrains avoiding “over-sizing” real-time systems to meet the
worst-case scenario. ARA models an application as a set of interconnected software
components which execution is driven by event streams:

• Resource Usage Model: describes an application’s expected computational and
communication needs and the runtime variations of them.

372 J. Cáceres et al.

• Adaption Model: acceptable configurations in terms of expected resource needs
and application-specific configuration overheads.

This model could be generated by static and dynamic profiling tools that analyze
the source code and the application runtime under different workloads, respec-
tively. The ARA controller, then, detects a risk of not meeting performance targets,
so that it calculates an acceptable configuration and a more appropriate resource
allocation. Resource needs estimations are done based on node characteristics (pro-
cessor speed factor, communication links speed, communications overhead) and the
application static (parallelism level, execution time, number of interchanged mes-
sages and processor speed factor) and dynamic (execution factor, intra-component
message exchange factors) resource usage models.

Similar real-time techniques based on mathematical application profiling and
negative feedback loops, such us ARA, could be adapted to the Cloud scala-
bility automation problem and represent future research challenges. Indeed, time
series prediction is a very complex process and very specific for certain application
domains (or even very specific applications).

15.3 Scalable Architectures

15.3.1 General Cloud Architectures for Scaling

Several architectures have been proposed to structure the Cloud and its applica-
tions. Buyya et al. proposed a QoS-enabling architecture for the Cloud, which
presented accounting, pricing, admission control and monitoring as key enablers
for its realization (Buyya, Yeo, & Venugopa, 2008). Based on this one, a more com-
plete architectural model has recently been proposed by Brandic, Music, Leitner,
and Dustdar (2009). Although these architectures were too QoS oriented (a cru-
cial element for Clouds to become a real option for big enterprises), some essential
shared elements have been identified (Lenk, Klems, Nimis, Tai, & Sandholm, 2009).
Based on these common elements, an integrated Cloud computing stack architec-
ture to serve as a reference point has been proposed. Based on this one, we further
generalize it (see Fig. 15.6) to give a clear overview.

In spite of its widespread acceptance, this architecture is too general for illus-
trating the major points raised so far. Throughout this section we have been dealing
with the problems of scalability at the different layers of the Cloud. Here we summa-
rize the major mechanisms for Cloud-enabled scalability as of today (see Table 15.3
below).

While scalability and basic automation low level mechanisms have already been
implemented for IaaS clouds (and many more are to be developed towards full
automation and appropriate abstraction level). At the PaaS level, a “Cambrian”
period is still to happen in order to increase the number of techniques to help scale

15 Service Scalability Over the Cloud 373

Fig. 15.6 General architecture of the cloud

Table 15.3 Architectural comparison of the cloud scaling status

Scalability today Scalability evolution

IaaS Infrastructure level metrics
Limited automation
Virtual machine rules

Service level metrics
Full automation
Whole service rules

PaaS Few available techniques Great expansion potential by providing
advanced development environments
helping to develop Cloud applications.

Help to exploit inherent parallelism in the
developed code that can benefit from
distributed architectures.

SaaS Traditional development techniques.
Huge burden for programmers

Services built on top of the PaaS-offered
scaling techniques

the applications in the Cloud in a seamless backwards-compatible manner. These
techniques are expected to be implemented by the developer herself, rather than
helping to build really advanced scaling services by relying on platform-offered ser-
vices. This change will shift current SaaS scaling efforts from programmers to the
underlying platform.

374 J. Cáceres et al.

15.3.2 A Paradigmatic Example: Reservoir Scalability

Resources and Services Virtualization without Barriers is a European Union FP7
co-funded project enabling massive scale deployment and management of complex
services across administrative domains (Rochwerger et al., 2009). RESERVOIR15

is structured in a layered architecture that can essentially be comprised in the
IaaS layer above (managing virtualized and physical resources and cluster of these
resources). One of the essential innovations of this effort with regard to scalability
is the definition of techniques and technology for federation several independently-
operated RESERVOIR sites. Federation allows a given Cloud provider to outsource
some services and “rent” external resources in a seamless manner.

However, this scalability strategy is somewhat similar to that employed by
Clouds as compared to Grids. Additional means are required to enable an appro-
priate architecture for networked services scalability. In order to overcome current
IaaS scalability limitations (see Table 15.2 above), RESERVOIR proposes a new
abstraction layer closer to the lifecycle of services that allows for their automatic
deployment and escalation depending on the service status (not only on the infra-
structure status). These features exceed pure IaaS capabilities, but remain essential
for actual scalability across layers.

RESERVOIR Service Management (SM) layer automatically handles the ser-
vice lifecycle and automatically scales services depending on service-level scaling
“rules” and metrics. This is done with an abstraction closer to that managed by the
service programmer. In the example below, a rule consists of a condition (number of
tasks per executor node greater than 50, and there are less than 3 executors running)
and an associated action if the rule is meet (create a new replica). This is specified
in a to-be standard manner (Galán et al., 2009):

<rsrvr:Rule>

<rsrvr:RuleName>rule2</rsrvr:RuleName>

<rsrvr:RuleType>AgentMeasureEvent</rsrvr:RuleType>

<rsrvr:Trigger checkingPeriod="5000ms"
condition="(@{kpis.QueueLength}/(@{components.VEEBigExecutor.
replicas.amount}*3 + @{components.VEEExecutor.replicas.

amount} +1)> 50) && (@{components.VEEExecutor.

replicas.amount} < 3)"/>

<rsrvr:Action run="createReplica(components.VEEExecutor)"/>
</rsrvr:Rule>

In spite of these significant advances for IaaS Clouds, RESERVOIR does not deal
with PaaS nor SaaS scalability, letting an important part of the problem to be solved
by future research efforts.

15http://www.reservoir-fp7.eu

15 Service Scalability Over the Cloud 375

15.4 Conclusions and Future Directions

Scalability has followed a twisted line being applied to mainframes, distributed
systems, back to mainframes and back to a “centralized” Cloud which is dis-
tributed and heterogeneous, but seen as a single entity by edge devices accessing
the Cloud through standardized interfaces in order to execute services. Scaling
capabilities have, thus, meandered between horizontal and vertical scalability, fol-
lowing the preponderant trend to systems design and implementation. This Chapter
has very briefly reviewed the major features with regard to scalability as offered
by some of the most salient centralized and distributed systems appeared as of
today.

Here we have shown some of the most prominent examples of Cloud-enabled
scalability at the different Cloud layers. It is important to note that this scalability
is offered in a transparent manner for the end user (either a service provider or a
service consumer).

Virtual Machines in IaaS Clouds can scale horizontally (by adding more service
replicas to a given service) or vertically (by assigning more resources to a single
Virtual Machine). IaaS Clouds themselves can be scaled vertically (by adding more
clusters or network resources) or by attaining federation features with other exter-
nally managed datacenters (Cloud federation). Users are kept totally unaware of
these scaling features and delivered with the illusion of infinite resources.

However, IaaS scalability is still too service-level oriented, meaning that scaling
decisions are made on the basis of pure infrastructural metrics. Thus, user’s involve-
ment in service management is still required (not quite so with regard to Virtual
Machine management in which a relevant degree of automation has been reached).
Full automation and application of scalability rules (or load profile–based models)
to control services in a holistic manner are granted for future developments on top
of IaaS Clouds. These advanced high-level management automation capabilities lay
close to the aforementioned PaaS features. However, they deal with deployment and
runtime service lifecycle stages only. More elements helping to reduce services’
time to market and provide further support for application design, development,
debugging, versioning, updating, etc. are still very much needed. For example,
some benchmarks specific for Cloud environments are already under way (Wang,
2009). Specific benchmarks for the scaling potential of applications on the Cloud
are also to be developed. Generally speaking, the scaling applications in the Cloud
will face some “old-fashioned challenges”, detecting code parallelism (which could
be offered as a PaaS Cloud service), distributing application components in clusters
and service operations in cores (for multi-core architectures) will remain subject to
massive research in future Clouds supporting actually scalable applications on the
Cloud.

These whole service lifecycle facilities, including service scalability, will help to
deliver advanced services in a shorter time and minimizing management burdens.

Some other issues remain to be solved, though. In order to scale Cloud ser-
vices reliably to millions of service developers and billions of end users the next

376 J. Cáceres et al.

generation cloud computing and datacenter infrastructure will have to follow an
evolution similar to the one that led to the creation of scalable telecommunication
networks (Mikkilineni & Sarathy, 2009).

References

Abdelzaher, T. F., Shin, K. G., & Bhatti, N. (January 2002). Performance guarantees for web server
end-systems: A control-theoretical approach. IEEE Transactions on Parallel and Distributed
Systems, 13(1), 80–96.

Barroso, L. A., & Hölzle, U. (2009). The datacenter as a computer: And introduction to the
design of warehouse-scale machines. Synthesis Lectures on Computer Architecture, Morgan &
Claypool Publishers. ISBN: 9781598295573, URL http://www.morganclaypool.com/doi/abs/
10.2200/S00193ED1V01Y200905CAC006.

Boom09 (2009). BOOM: Data-centric programming in the datacenter (UC Berkeley EECS Tech.
Rep. No. UCB/EECS-2009-113 August 11, 2009).

Bondi, A. B. (September 2000). Characteristics of scalability and their impact on performance.
ACM WOSP’00 Proceedings of the 2nd International Workshop on Software and Performance,
New York, NY.

Bote Lorenzo, M. L., Dimitriadis, Y., & Gómez Sánchez, E. (February 2004). Grid characteristics
and uses: A grid definition. (Postproceedings extended and revised version) First European
Across Grids Conference, ACG′03, Springer, LNCS 2970, Santiago de Compostela, Spain,
291–298.

Buyya, R., Yeo, C. S., & Venugopa, S. (2008). Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities. Proceedings of the 10th IEEE
International Conference on High Performance Computing and Communications, IEEE CS
Press, Oslo, Norway.

Brandic, I., Music, D., Leitner, P., & Dustdar, S. (2009). Vieslaf framework: Enabling adaptive and
versatile SLA-management. The 6th International Workshop on Grid Economics and Business
Models 2009 (Gecon09). In Conjunction with Euro-Par 2009, Delft, The Netherlands, 25–28.

Ebbers, M., Ketner, J., O’Brien, W., Ogden, B., Ayyar, R., Duhamel, M., et al. (August 2009).
Introduction to the new mainframes: z/OS Basics. IBM Redbooks. http://www.redbooks.
ibm.com/redbooks.nsf/RedbookAbstracts/sg246366.html.

Eyers, D. M., Routray, R., Zhang, R., Willcocks, D., & Pietzuch, P. (2009). Towards a middle-
ware for configuring large-scale storage infrastructures. Proceedings of the 7th International
Workshop on Middleware for Grids, Clouds and E-Science, Urbana Champaign, IL, MGC ′09,
November 30–December 01.

Foster, I. (2002). What is the grid? – A three point checklist, Grid Today.
Galán, F., Sampaio, A., Rodero-Merino, L., Loy, I., Gil, V., Vaquero, L. M., et al. (June 2009).

Service specification in cloud environments based on extensions to open standards. Fourth
International Conference on COMmunication System softWAre and middlewaRE (COMSWARE
2009), Dublin, Ireland.

Kurdi, H., Li, M., & Al-Raweshidy, H. (2008). A classification of emerging and traditional grid
systems. IEEE DS Onlinearch.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T. (2009). What’s inside the cloud? An
architectural map of the cloud landscape. Proceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing, IEEE Computer Society. 23–31.

Michael, M., Moreira, J. E., Shiloach, D., & Wisniewski, R. W. (2007). Scale-up x scale-out:
A case study using Nutch/Lucene. IEEE International Parallel and Dis-tributed Processing
Symposium, IPDPS, Rome, Italy.

Mikkilineni, R., & Sarathy, V. (2009). Cloud computing and the lessons from the past. Wetice, 18th
IEEE International Workshops on Ena-bling Technologies: Infrastructures for Collaborative
Enterprises, Paris, France, 57–62.

15 Service Scalability Over the Cloud 377

Orfali, R., Harkey, D., & Edwards, J. (1996). The essential client/server survival guide (2nd ed.).
New York, NY: Wiley.

Poggi, N., Moreno, T., Berral, J. L., Gavaldà, R., & Torres, J. (July 2009). Self-adaptive utility-
based web session management. Computer Networks, 53(10), 1712–1721.

Pujol, J. M., Siganos, G., Erramilli, V., & Rodríguez, P. (2009). Scaling online social net-works
without pains, NetDB 2009. 5th International Workshop on Networking Meets Databases, Co-
located with SOSP 2009, Big Sky, MT.

Rochwerger, B., Galis, A., Levy, E., Cáceres, J. A., Breitgand, D., Wolfsthal, Y., et al. (June 2009).
RESERVOIR: Man-agement technologies and requirements for next generation service ori-
ented infrastructures. 11th IFIP/IEEE International Symposium on Inte-Grated Management,
New York, NY, USA, 1–5.

Roşu, D., Schwan, K., Yalamanchili, S., & Jha, R. (1997). On adaptative resource allocation for
complex real-time applications. Proceedings of the 18th IEEE Real-Time Systems Symposium
(RTSS ’97), San Francisco, CA.

Schlossnagle, T. T. (2007). Scalable Internet Architectures. Sams Publishing. ISBN:
0-672-32699-X.

Song, S., Ryu, K. D., & Da Silva, D. (2009). Blue eyes: Scalable and reliable system manage-
ment for cloud computing. Ipdps, IEEE International Symposium on Parallel&Distributed
Processing, Rome, Italy, 1–8.

Stockinger, H. (October 2007). Defining the grid: A snapshot on the current view. Journal of Super-
Computing, 42(1), 3–17.

Vaquero, L., Rodero-Merino, L., Caceres, J., & Lindner, M. (2009). A break in the clouds: Towards
a cloud definition. ACM SIGCOMM Computer Communications Review, 39(1), 50–55.

Wang, C. (2009). EbAT: Online methods for detecting utility cloud anomalies. Proceedings of the
6th Middleware Doctoral Symposium, Urbana Champaign, IL.

Wu, J., Liang, Q., & Bertino, E. (2009). Improving scalability of software cloud for composite
web services. Cloud, IEEE International Conference on Cloud Computing, Honolulu, Hawaii,
143–146.

Yang, J., Qiu, J., & Li, Y. (2009). A profile-based approach to just-in-time scalability for cloud
applications. Cloud, IEEE International Conference on Cloud Computing, Bucharest, Romania,
9–16.

Chapter 16
Scientific Services on the Cloud

David Chapman, Karuna P. Joshi, Yelena Yesha, Milt Halem, Yaacov Yesha,
and Phuong Nguyen

16.1 Introduction

Scientific Computing was one of the first every applications for parallel and dis-
tributed computation. To this date, scientific applications remain some of the most
compute intensive, and have inspired creation of petaflop compute infrastructure
such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated
hardware infrastructure has become both a blessing and a curse to the scientific
community. Scientists are interested in cloud computing for much the same reason
as businesses and other professionals. The hardware is provided, maintained, and
administrated by a third party. Software abstraction and virtualization provide reli-
ability, and fault tolerance. Graduated fees allow for multi-scale prototyping and
execution. Cloud computing resources are only a few clicks away, and by far the
easiest high performance distributed platform to gain access to. There may still be
dedicated infrastructure for ultra-scale science, but the cloud can easily play a major
part of the scientific computing initiative.

Scientific cloud computing is an intricate waltz of compute abstract program-
ming models, scientific algorithms, and virtualized services. On one end, highly
compute intensive scientific data algorithms are implemented upon cloud program-
ming platforms such as MapReduce and Dryad, while on the other, service discovery
and execution implement the bigger picture with data product dependencies, service
chaining, and virtualization.

The cloud of science services is very tightly knit. It is difficult to make meaning-
ful scientific discoveries from only a single data product. Yet even individual data
products are produced from other products, which in turn require even more dif-
ferent products for calibration. Service chaining is essential to the scientific cloud,
just as much as with the business cloud. However, the distinctive feature of scientific
cloud computing is data processing and experimentation; a compute elephant hiding

D. Chapman (B), K.P. Joshi, Y. Yesha, M. Halem, Y. Yesha, and P. Nguyen
Computer Science and Electrical Engineering Department, University of Maryland, Baltimore
County, MD, USA
e-mails: {dchapm2@umbc.edu; kjoshi1@umbc.edu; yeyesha@csee.umbc.edu; halem@umbc.edu;
yayesha@umbc.edu; phuong3@umbc.edu}

379B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_16, C© Springer Science+Business Media, LLC 2010

380 D. Chapman et al.

underneath the service oriented architecture. Both the service lifecycle, and the pro-
cessing platforms are key ingredients to a successful scientific cloud computation.
We discuss both fronts from the perspective of an atmospheric cloud computing sys-
tem Service Oriented Atmospheric Radiances (SOAR). We also make sure to touch
on many related cloud technologies, even if they were not necessarily the best fit for
our SOAR system.

16.1.1 Outline

There are two ends to a scientific cloud, the back end and the front end. We
briefly describe the Service Oriented Atmospheric Radiances (SOAR) system in
the next section. The third section on Scientific Programming Paradigms (back
end) describes how programming platforms affect the scientific algorithms. The
fourth section discusses the Scientific Computing Services that form the front end,
describing in detail how service virtualization affects scientific repositories.

We have found MapReduce and Dryad to be highly effective platforms for more
than our own algorithms. We summarize our own and others’ work to apply these
paradigms to science related problems.

We also describe a five phase service lifecycle, but in the perspective of scientific
applications, and address some of the unique challenges that set science apart from
other service domains.

16.2 Service Oriented Atmospheric Radiances (SOAR)

SOAR, a joint project between NASA, NOAA, and UMBC, is a scalable web service
set of tools that provides complex gridding services on-demand for atmospheric
radiance data sets from multiple temperature and moisture sounding sensors. SOAR
accepts input through an online Graphical User Interface (GUI), or directly from
other programs. The server queues these requests for a variety of complex science
data services in a database tracking the various requested workflows. It uses large
data sets collected by NASA, NOAA and DOD. These datasets contain satellite
readings for temperature and moisture from the last three decades. SOAR uses the
cloud Bluegrit at University of Maryland Baltimore County (UMBC) to apply data
transformations such as gridding, sampling, subsetting and convolving in order to
generate derived data sets from diverse atmospheric radiances (Halem et al., 2009).

Satellite remote sensing instruments orbit the Earth sun-synchronously to
observe temperature, moisture, and other atmospheric structure and properties.
SOAR facilitates climate oriented experiments by providing geospatial computa-
tions and transformations. This puts SOAR in a unique position, as it must chain
with remote servers to acquire data, but as a facilitator, would be well placed within
an even deeper chain for complicated scientific experiments.

16 Scientific Services on the Cloud 381

Fig. 16.1 SOAR deployment system

Figure 16.1 is a diagram of the SOAR deployment system. It makes use of the
compute and data resources of the Bluegrit cloud. End users could be individual sci-
entists, or other data service centers, and could make use of our graphical or SOAP
interface provided by Bluegrit’s Web server. Service requests encapsulate various
climate related experiments such as tracking easterly cloud motion, or generating
high resolution planetary images.

Management Server is a task driver for the various compute subsystems. It is
responsible for scheduling tasks on the various compute blades. These tasks include
precisely geo-located gridding, and singular value decomposition.

The input data for various service computations may not be locally available at
the time of request. Management Server and Compute Blades must interact with
various NASA data centers to acquire various data products for the requested sci-
entific computations. Additionally Management Server routinely schedules jobs
to compute and cache generic intermediate results, such as daily gridded average
radiances.

16.3 Scientific Programming Paradigms

One of the biggest hurdles to unleashing the cloud onto science, is understanding
its compute paradigms. The cloud provides a layer abstraction above and beyond
the bare system configuration. Cloud abstraction typically arises from distributed
middleware and centralized task scheduling. Programming paradigms empower the
middleware, and change the way that we program; they force us to think in parallel.
The remainder of this chapter is designed to bend our minds into understanding
how to program the cloud for scientific applications. We discuss two programming
strategies, MapReduce, and Dryad, and various scientific related problems, and how
they could be implemented in a cloud environment.

382 D. Chapman et al.

MapReduce is a simple programming paradigm for distributed cloud comput-
ing. Google started MapReduce as a parallel processing solution for its indexing
pipeline, and quickly realized that MapReduce was useful for many more parallel
processing chores within the scope of Internet data retrieval. Google now hosts thou-
sands of MapReduce applications. Although the intended purpose of MapReduce
was text analysis and machine learning, it is also useful for many scientific computa-
tions, provided however, that they follow certain conditions (Ekanayake, Pallickara,
& Fox, 2008). This makes MapReduce a very relevant topic for scientific comput-
ing, because it can make problems easier to program, yet it can potentially make
hard problems even harder, if the problem does not fit the paradigm.

Dryad is a flexible programming model based on Directed Acyclic Graphs
(DAGs). The nodes represent computation and the edges represent data flow direc-
tion. Dryad was developed by Microsoft as a generic paradigm for cloud computing
problems, and as an alternative to Google’s MapReduce. The Microsoft developers
quickly found that Dryad was much more flexible than MapReduce, and as evidence
were able to implement relational database, Map and Reduce, and many other soft-
ware paradigms all completely encapsulated within Dryad’s framework. Dryad is
well rounded, and perfectly suitable for compute intensive, data intensive, dense,
sparse, coupled, and uncoupled tasks. Dryad provides a very flexible solution, and
is a good alternative for problems that might not fit well in simpler paradigms such
as MapReduce. On the flip side, Dryad is relatively complicated, and may not be
necessary when easier solutions are possible.

16.3.1 MapReduce

The original MapReduce paper, by Dean and Ghemawat (2004) describes the
programming paradigm of MapReduce very concisely as follows.

The computation takes a set of input key/value pairs, and produces a set of output key/value
pairs. The user of the MapReduce library expresses the computation as two functions: Map
and Reduce. Map, written by the user, takes an input pair and produces a set of intermediate
key/value pairs. The MapReduce library groups together all intermediate values associated
with the same intermediate key I and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an intermediate key I and a set of
values for that key. It merges together these values to form a possibly smaller set of values.
Typically just zero or one output value is produced per Reduce invocation. The intermediate
values are supplied to the user’s reduce function via an iterator. This allows us to handle lists
of values that are too large to fit in memory.

The run-time system that implements the MapReduce handles the detail of
scheduling, load balancing and error recovery. MapReduce implementation by
Google uses Google Distributed File System where data storages and data placement
in this file system is built based on the assumption that terabyte datasets will be dis-
tributed over thousands of disks inserted to computer nodes (Ghemawat, Gobioff,
& Leung, 2003). In this kind of system, hardware failures occur often and repli-
cation strategies become important. In case of hardware failures, the system will

16 Scientific Services on the Cloud 383

redo jobs based on failed hardware only so that they do not have to redo the whole
process. The main idea of the MapReduce implementation is that it performs com-
putation where data are located so that the network latency of moving data around is
optimized. Google’s researchers have recently devised programming support for dis-
tributed data structure, called BigTable which provides capabilities similar to those
in database systems whereas MapReduce is purely a functional notation for gener-
ating new files from old ones. Data recorded in the table by users are then stored
and managed by the systems. Although BigTable does not provide a complete set of
operations supported by relational databases, it strikes a balance between expressive
and the ability to scale for very large databases in a distributed environment (Chang
et al., 2006).

An open source framework Hadoop is an implementation of MapReduce by
Apache providing abstract to programmers to let them write applications which
can access and process massive data on the distributed file system. Essentially, the
framework distributes data and processing map/sort/shuffle/reduce functions paral-
lel locally at each node. In this way, massively parallel processing can be achieved
using clusters that comprise thousands of nodes. In addition, the supporting runtime
environment provides transparent fault tolerance by automatically duplicating data
across nodes and detecting and restarting computations that fail on a particular node.
Hadoop becomes bigger and better to provide open-source software for reliable,
scalable, distributed computing. It includes subprojects such as HDFS a distributed
file system that provides high throughput access to application data, HBASE is a
scalable, distributed database that supports structured data storage for large tables,
and it is an implementation of Google BigTable. Unfortunately, the current version
0.20.0 only allows for text files and does not support binary input files, a common
format for science data processing. Apache does promise an updated version in a
future release.

Other stages can be added to extend MapReduce paradigm such as sort and
shuffle in Hadoop implementation. As one can see, the paradigm has only two
user specified functions: Map and Reduce. A great way to become more famil-
iar with MapReduce is by example. Word counting is the canonical example, with
pseudocode given from Dean and Ghemawat (2004).

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(AsString(result));

384 D. Chapman et al.

The map function emits each word plus an associated count of occurrences (just ‘1’ in
this simple example). The reduce function sums together all counts emitted for a particular
word.

Thus, by performing Map, to report the occurrence of each word, followed by reduce to
sum the number of occurrences for each word, the result of this example is the word count
for each distinct word in the document.

By constructing new and different Map and Reduce functions, MapReduce can
be used to solve many problems in addition to word counting. The processing can be
performed in parallel, because both the Map and Reduce functions can be performed
in parallel. Map acts in parallel on each input element. Reduce acts in parallel on
separate KV groups for each distinct key.

16.3.1.1 MapReduce Merge

Yang, Dasdan, Lung-Hsiao, and Parker (2007) have introduced an improvement to
Map-Reduce called Map-Reduce-Merge. This improvement enables better handling
of joins on multiple heterogeneous databases, compared with using Map-Reduce.
The authors point out that Map-Reduce is good for homogeneous databases. They
discuss the problem in performing joins on multiple heterogeneous databases effi-
ciently and mention that Pike, Dorward, Griesemer, and Quinlan (2005) point out
that there is quite a lack of fit between Map-Reduce and such joins. In Yang et al.
(2007), the authors also mention the importance of database operations in search
engines. They also described how Map-Reduce-Merge can be applied to relational
data processing

Map-Reduce (Dean & Ghemawat, 2004) is described in Yang et al. (2007) as
follows:

For each (key,value) pair, Map produces a list of pairs of the form
(key′,value’).Then Reduce is applied to the pairs created by Map as follows:For
every key key′′ that appears in the output of Map as a key, Reduce applies user
defined logic to all the values value′′ such that (key′′,value′′) is one of those pairs,
and creates a list of values value′′′

Map-Reduce-Merge is described in Yang et al. (2007) in the context of lineages.
In Map-Reduce-Merge, Map is modified to operate on each lineage separately.
Reduce is modified to operate on each lineage separately, and further modified to
create a list of pairs (key′′, value′′′) rather than a list of values value′′′.

Also, Merge is added as a third step. Merge is applied to the output of Reduce
in two lineages. From the list of values associated with a key key′′ in one lineage,
and the list of values associated with a key key′′′ in another lineage, Reduce creates
a list of pairs of the form (key′′′′,value′′′′). All the pairs created by Reduce form a
new lineage.

16.3.2 Dryad

Dryad is a programming paradigm and software framework designed around the
ideas of task scheduling and data flow. The programmer must create a Directed

16 Scientific Services on the Cloud 385

Acyclic Graph (DAG) that represents the processing task. The graph nodes are com-
pute kernels that run on various processors, and the graph edges represent the data
flow dependence. Each graph node becomes available for computation as soon as all
input data is available. A centralized job manager schedules available graph nodes
onto idle machines. The machine executes the kernel computation, and upon com-
pletion, the node passes its output down to its children, and the machine becomes
idle once again. The child graph nodes become available for computation as soon
as all input data is available from its deceased parents. The computation continues
in this manner until the entire DAG is executed and the program terminates.

Isard et al. describe their Job scheduling system with a concise diagram
(Fig. 16.2) (Isard, Budiu, Yu, Birrell, & Fetterly, 2007).

The job manager (JM) consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V) as computers become
available using the daemon (D) as a proxy. Vertices exchange data through files, TCP
pipes, or shared-memory channels. The shaded bar indicates the vertices in the job that
are currently running

A common Dryad dilemma is that there is often more than one DAG that will
satisfy computation of a particular problem. Which DAG is the fastest? Should one
implement a very fine DAG with a high degree of parallelism, or a coarse DAG
with low scheduling overhead? Sometimes the choice is clear, such as scheduling
one node per machine, but often the choice is much more difficult to understand
at first glance. Sometimes the best DAG depends on the design of your compute
cluster; network and IO hardware design may play a critical role in determining
potential bottlenecks in your data flow DAG. These low level issues may begin
to contrast the philosophy that the cloud should be completely abstracted from its
underlying hardware. Dryad makes it relatively easy for programmers to play around
with the structure of the DAG, until they design one that runs efficiently on their
target machine.

Additionally, Microsoft has attacked the graph tweaking dilemma head on with a
number of automatic graph pruning and optimization algorithms. These techniques
execute at runtime on the job scheduler, and thus can make decisions based on up
to date profiles and resource availability. One such algorithm can make the DAG
coarser by encapsulating a smaller subgraph to within a single node with serial

Fig. 16.2 Dryad

386 D. Chapman et al.

execution. Although encapsulation makes the system less parallel, it can greatly
improve performance in situations where the graph was designed too finely. Another
technique is to automatically make data reductions hierarchical. This can greatly
improve performance, by reducing the data volume before sending packets to other
machines and across racks.

16.3.3 Remote Sensing Geo-Reprojection

Atmospheric gridding and geo-reprojection is a great example of a single pass sci-
entific problem, which is well suited for the MapReduce, and Dryad programming
paradigms. Satellite remote sensing instruments measure blackbody radiation from
various regions on earth, to determine weather and climate related forecasting,
as well as supply atmospheric models with raw data for assimilation. The geo-
reprojection algorithm is one of the first major compute steps along the chain of
any satellite atmospheric prediction. The satellite observes a surface temperature,
316 K (43◦C ∼109◦F) that’s hot! But where is it? New Mexico? Libya? Geo-
reprojection solves this task by producing a gridded map of Earth with average
observed temperatures or radiances.

The measured region on Earth is a function of the instrument’s position, and the
direction that it is observing. Figure 16.3 is a diagram of the NASA Atmospheric
Infrared Sounder (AIRS) satellite instrument. The satellite has a sun synchronous

Fig. 16.3 Geo-Reprojection

16 Scientific Services on the Cloud 387

orbit while the Earth is rotating, so on a Lat Lon, projection, the joint scan pattern
is illustrated by the blue striping on the left. The instrument measures many obser-
vations during flight, as the sensor quickly oscillates between –48.95 and 48.95
degrees taking 90 observations every 2.7 s.

The map of Earth is uniformly divided into a number of regions, or grid cells. The
goal is to have a measured temperature or radiance for each cell on the grid. When
the satellite measures the same grid cell more than once, the resulting temperatures
are averaged together.

16.3.3.1 Remote Sensing Geo-Reprojection with MapReduce

The MapReduce program for Geo-reprojection is similar in structure to the canon-
ical word counting problem, provided we ignore details about computational
geometry and sensor optics. Rather than counting words, we are averaging grid
cells. Averaging is only slightly harder than summing, which in turn is only slightly
harder than counting. The program has unchanged structure but novel details.

map(int timestamp, Measurement measurements):

// key: timestamp

// value: a set of instrument observations

for each measurement m in measurements

Determine region r containing measurement m

EmitIntermediate(r, m.value);

reduce(int region, Iterator measurements):

// key: a region ID

// value: a set of measurement

// values contained in that region

double result = 0.0;

for each m in measurements:

result += m;

//divide by the total number of measurements

result = result / measurements.size;

Emit(result);

All of the sensor optics and geometry to determining the appropriate region are
glossed over in the above pseudocode, with the line “Determine region r containing
measurement m”. For more detail see Wolf, Roy, and Vermote (1998). In this simple
example, we assume there is only one region per measurement. However, in more
realistic re projections, the observation may overlap multiple regions. In such an
event, the Map would need to emit partial measurements for each region, and reduce
would remain unchanged. Notice, that the final major step of reduce is to divide
by the number of measurements (measurements.size). This division transforms the
distributed summation to a distributed average, to derive the average measurement
of the region.

388 D. Chapman et al.

16.3.3.2 Remote Sensing Geo-reprojection with Dryad

With Dryad, the remote geo-reprojection task may be computed somewhat differ-
ently than with MapReduce. We will assume that the output grid is comparably of
lower resolution than the input data set. This assumption is usually valid for the
problem, because the sounding instrument typically observes overlapping regions
multiple times within hours to days of observation. Also, for climate related appli-
cations, fine grain grids are often not required, allowing for even further data
reduction.

Problems that greatly reduce the volume of data are typically well described by
a reduction type of graph (Isard et al., 2007). The basic generic reduction graph is
shown in Fig. 16.4.

Notice, that there are many reduction graphs that all produce the same result as
the one listed above. An example is the one listed in Fig. 16.5, which features a two
level hierarchy. Partial reduction nodes r enumerate partial centroids an then pass the
result onto the final reduction node R. This approach is more parallel, because there
are more independent nodes working to do part of the reduction. Unfortunately,
there is also more overhead in this hierarchical approach, because there are more
nodes that need to be scheduled.

Fig. 16.4 Generic reduction
graph

Fig. 16.5 Reduction graph
with two level hierarchy

The following pseudocode could be used for the reduction DAGs described in
this section. Start() represents nodes 1-n, and reduce() represents nodes r and R.

start():

// input0: instrument measurements

Measurement []measurements = ReadChannel(0);

// make an empty array of gridcell regions

16 Scientific Services on the Cloud 389

Region []regions = new EmptyRegions();

//put each measurement in the region

for each measurement m in measurements

Determine region r containing measurement m

r.result += m;

r.count += 1;

//write the region array out to the channel zero

WriteChannel(newCentroids, 0);

reduce():

// input0-n: region arrays

Region [][]regions;

for every input channel i

regions[i] = ReadChannel(i);

//a single region array for the results

Region []results = new EmptyRegions();

//accumulate all of the regions together

for every input channel i

for every region j in regions[i]

results[j].result += regions[i][j].result

results[j].count += regions[i][j].count

//divide, to perform the averaging

for every region j in results

results[j].result /= results[j].count

//don’t double divide if we reduce multiple times

results[j].count = 1

//We’re done, write results to output channel 0

WriteChannel(results, 0);

16.3.4 K-Means Clustering

Clustering is an essential component of many scientific computations, including
gene classification (Alon et al., 1999), and N body physics simulations (Marzouk &
Ghoniem, 2005). The goal of clustering is to separate a number of multidimensional
data points into N groups, based on their positions relative to the other points in the
dataset. K-Means clustering uses the concept of the centroid, or average position of
all of the points in this group, to define the cluster. Initially, the points are grouped
randomly into clusters. K-Means iteratively refines these clusters until it converges
to a stable clustering.

K-Means uses the cluster centroid (average position), to determine the cluster
grouping. A single iteration of K-Means is as follows:

1. Compute cluster centroid (average all points) for each cluster
2. Reassign all points to the cluster with the closest centroid
3. Test for convergence

390 D. Chapman et al.

16.3.4.1 K-Means Clustering with MapReduce

K-Means clustering is an iterative process that is a good candidate for MapReduce.
MapReduce would be used for the centroid and clustering computation per-
formed within each iteration. One would call MapReduce inside “if a” loop (until
convergence), in order to compute iterative methods such as K-Means clustering.

The primary reason why K-Means is a reasonable MapReduce candidate, is
because it displays a vast amount of data independence. The centroid computation is
essentially distributed average, which is a small variation on the distributed summa-
tion, as exemplified by canonical word counting. Distributed summations require
straightforward list reduction operations. The reassignment of points to clusters,
requires only the current point and all cluster centroids; the points can be assigned
independently of one another. Below is pseudo-code for K-Means clustering using
MapReduce.

The Map function takes as input a number of points, and the list of centroids, and
from this it produces a list of partial centroids. These partial centroids are aggregated
in the reduce function, and used in the next iteration of the MapReduce

map(void, {Centroid []centroids, Point []datapoints}):

// key: not important

// value: list of centroids and datapoints

Centroid []newCentroids;

Initialize newCentroids to zero

for each point p in datapoints

Determine centroid centroids[idx] closest to p

//accumulate the point to the new centroid

newCentroids[idx].position += p;

//we added a point, so remember the

//total for averaging

newCentroids[idx].total += 1;

for each centroid newCentroids[idx] in newCentroids

//send the intermediate centroids for accumulation

EmitIntermediate(idx, newCentroids[idx]);

reduce(int index, Centroid []newCentroids):

// key: centroid index

// value: set of partial centroids

Centroid result.position = 0;

//accumulate the position and total for a grand total

for each centroid c in newCentroids

result.position += c.position;

result.total += c.total;

//Divide position by total to compute

// the average centroid

result.position = result.position / result.total

Emit(result);

16 Scientific Services on the Cloud 391

16.3.4.2 K-Means Clustering with Dryad

K-Means can equally well be implemented in the Dryad paradigm and mindset. The
main task of programming with the Dryad paradigm is to understand the data flow
of the system. A keen observations about K-Means, is that typically, each cluster
has many points. In other words, there are far fewer clusters than there are points.
Thus on each iteration the total amount of information is greatly reduced, when
determining centroids from the set of points.

A reduction DAG is a good choice for K-Means, because the data volume is
reduced. The following pseudocode would be used to perform the graph reduction
operations for the K-Means algorithm using Dryad. In the graph reduction dia-
grams given the section “Remote Sensing Geo-reprojection with Dryad”, start() is
the function for nodes 1-n, and reduce() is the function for nodes r and R.

start():

// input0: Complete list of centroids from the prior run

Centroid []centroids = ReadChannel(0);

// input1: Partial list of datapoints

Point []datapoints = ReadChannel(1);

// make a new list of centroids

Centroid []newCentroids;

Initialize newCentroids to zero

for each point p in datapoints

Determine centroid centroids[idx] closest to p

//accumulate the point to the new centroid

newCentroids[idx].position += p;

//we added a point, so remember the

//total for averaging

newCentroids[idx].total += 1;

//send the intermediate centroids for accumulation

//channel zero is the only output channel we have

WriteChannel(newCentroids, 0);

reduce():

// input0-n: list of intermediate centroids

Centroid [][]newCentroids;

for every input channel i

newCentroids[i] = ReadChannel(i);

// make a list of result centroids

Centroid []results;

for every input channel i

results[i].position = 0;

//accumulate the position and total for a grand total

for each centroid c in newCentroids[i]

result[i].position += c.position;

result[i].total += c.total;

392 D. Chapman et al.

//Divide position by total to compute

// the average centroid

results.position = result.position / result.total

//don’t double divide if we reduce multiple times

results.total = 1

//write our the results to channel 0

WriteChannel(results, 0);

16.3.5 Singular Value Decomposition

Singular value decomposition (SVD) can also be parallelized with cloud computing
paradigms. The goal of SVD is very similar to matrix diagonalization. One must
describe how a matrix, M, can be represented as the product of three matrices under
the conditions as described below:

M = U�VT

Where M is the original m-by-n matrix, U is an m-by-m orthogonal matrix, VT

is a n-by-n orthogonal matrix, and � is a m-by-n diagonal matrix.
The idea behind the Jacobi method is to start with the identity M = IMI and

attempt to slowly transform this formula into M = U�VT by a series of rotations
designed to zero out the off-diagonal elements one at a time. Unfortunately, zero-
ing out one element may un-zero another. However, if this approach is repeated
sufficiently, matrix M will converge to the diagonal matrix �.

Since the focus of this book is on cloud computing and not matrix algebra, we
will not go into detail about the formulas required by the Jacobi and related meth-
ods. For further reading, refer to (Klema & Laub, 1980; Soliman, Rajasekaran, &
Ammar, 2007; Rajasekaran & Song, 2006).

The One Sided JRS and Jacobi algorithms, to zero out a single element require
modification of two rows within the matrix. A single sweep, for each pair of rows
in the matrix, one must compute the dot product with the other rows, and use this
value to modify both of the rows. For an n-by-n matrix, there are n(n-1)/2 such pairs
of rows (Soliman et al., 2007).

It is thus natural to partition the matrix into rows for a parallel implementation.
Rajasekaran and Song (2006) propose a round robin approach where each machine
stores two blocks, computes all pairs of rows within each block, and then computes
all pairs of rows between the two blocks. Then, the blocks are shuffled to other
machines as illustrated in Fig. 16.6.

Although the aforementioned data access pattern can be implemented straight-
forwardly on grid systems with message passing, it is equally straightforward
to implement with cloud computing paradigms MapReduce and Dryad. The
cloud paradigms still provide additional benefits such as fault tolerance and data
abstraction.

16 Scientific Services on the Cloud 393

Fig. 16.6 Round robin SVD block communication pattern

16.3.5.1 Singular Value Decomposition with MapReduce

The round robin block data pattern described in Fig. 16.5 can be implemented with
MapReduce, but with a single caveat. The difference is that MapReduce prefers to
control how data is distributed based on the key/value pair of the block. Thus the
key can be used as a virtual machine ID, rather than a physical ID. Each block is a
key value pair. The reduce operation accepts two key value pairs (blocks) modifies
them, and emits both of them back as results. This map reduce procedure must be
performed iteratively until convergence.

map(int blockPos, Block block):

// key: the current position of the block

// value: 2D block

int newBlockPos;

if (blockPos == 0)

newBlockPos = 1;

else if (blockPos = 2n-1)

newBlockPos = blockPos;

else if (blockPos == 2n-2)

newBlockPos = 2n-3;

else if (blockPos % 2 == 1)

newBlockPos += 2;

else // (blockPos % 2 == 0)

newBlockPos -= 2;

//key must be equal to the virtual machine ID.

//however, the slot (top or bottom) is also necessary

//to disambiguate the block slots

int machineID = floor(newBlockPos/2);

BlockValue blockVal;

blockVal.block = block;

blockVal.slot = newBlockPos % 2;

EmitIntermediate(machineID, blockVal);

reduce(int machineID, BlockValue (Marzouk & Ghoniem, 2005)

blockVals):

394 D. Chapman et al.

// key: virtual machine ID

// value: structure with the slot (top or bottom)

// and the block data

//use a convention arrang the blockvals by slot

if (blockVals[0].slot == 1)

swap (blockVals[0], blockVals (Alon et al., 1999);

//perform rotations in slot 0

Block block0 = blockVals[0];

for i=0 to block0.numRows-1

for j=i to block0.numRows-1

rotate(block0.row[i], block0.row[j]);

//perform rotations in slot 1

Block block1 = blockVals (Alon et al., 1999);

for i=0 to block1.numRows-1

for j=i to block1.numRows-1

rotate(block1.row[i], block1.row[j]);

//perform rotations across both slots

for i=0 to block0.numRows-1

for j=0 to block1.numRows-1

rotate(block0.row[i], block1.row[j]);

//remember the block position for the next iteration

int blockPos0 = 2*machineID;

int blockPos1 = 2*machineID + 1;

Emit(blockPos0, block0);

Emit(blockPos1, block1);

16.3.5.2 Singular Value Decomposition with Dryad

Much like MapReduce, Dryad likes to control how data is distributed via task
scheduling. For this reason, it is equally important to use virtual machine IDs for the
round robin SVD data access pattern. For Dryad, the nodes in the DAG represent
virtual machines, and the edges represent the data distribution.

The graph in Fig. 16.6 is cyclic. It must be made acyclic for use with Dryad.
To do so, we must unroll the graph. Unfortunately, the resulting graph would be of
infinite length, as one does not know how much iteration must be performed before
convergence falls below some error threshold. Fortunately, it is sufficient to make a
large finite graph, and simply terminate early upon convergence.

The connectivity of the graph is somewhat intricate in order to achieve the pattern
shown in Fig. 16.7. Notice how in Fig. 16.7, every node has two blocks: one on top,
and one on bottom. We define that channel 0 reads input to the top block, and input
channel 1 reads input from the bottom block. We also define that output channel
0 writes output from the top block, and output channel 1 writes output from the
bottom block. At every timestep, both blocks are read, modified, and written to their
appropriate channels.

16 Scientific Services on the Cloud 395

Fig. 16.7 Acyclic SVD
round robin block
communication pattern

There are several corner cases for the connectivity of the graph. These cases
would be handled in graph construction, and are thus not listed in the pseudocode
of this section. Tables 16.1 and 16.2 show the specific rules of connectivity.

Table 16.1 Standard cases
for connectivity From To

Node Chan Node Chan
x 0 x+1 0
x 1 x−1 1

Table 16.2 Corner cases for
connectivity From To

Node Chan Node Chan
0 1 0 0
n−1 0 n−2 1
n−1 1 n−1 1

The pseudocode within a node to perform the block rotations is listed below.

node():

// input0: Block for top slot

Block block0 = ReadChannel(0);

// input1: Block for bottom slot

Block block1 = ReadChannel(1);

//perform rotations in slot 0

for i=0 to block0.numRows-1

for j=i to block0.numRows-1

rotate(block0.row[i], block0.row[j]);

//perform rotations in slot 1

396 D. Chapman et al.

for i=0 to block1.numRows-1

for j=i to block1.numRows-1

rotate(block1.row[i], block1.row[j]);

//perform rotations across both slots

for i=0 to block0.numRows-1

for j=0 to block1.numRows-1

rotate(block0.row[i], block1.row[j]);

WriteChannel(block0, 0);

WriteChannel(block1, 1);

16.4 Delivering Scientific Computing services on the Cloud

Extant methodologies for service development do not account for a cloud environ-
ment, which includes services composed on demand at short notice. Currently, the
service providers decide how the services are bundled together and delivered to
service consumers. This is typically done statically by a manual process. There
is a need to develop reusable, user-centric mechanisms that will allow the service
consumer to specify their desired security or quality related constraints, and have
automatic systems at the providers end control the selection, configuration and com-
position of services. This should be without requiring the consumer to understand
the technical aspects of services and service composition.

Service Oriented Atmospheric Radiances (SOAR), demonstrates many examples
of the forewarned paradox. Climate scientists want to study the earth’s atmospheric
profile, and they need satellite observations of sufficient quality for the experiments.
It would be futile for them to learn every data processing step required, down to the
algorithm version numbers, and the compute architectures used to produce every
datum they require. Yet, they care that such a tool chain is well documented some-
where. If a colleague were to disagree with his findings years later, when all of the
old data, algorithms and hardware have been upgraded, does the scientist even know
the tool chain that produced his old experiments? It has been said that science with-
out reproducibility is not science, yet in a world where data and computations are
passed around the intricate cloud, provenance is all to easy to lose track of.

We have proposed a methodology for delivering virtualized services via the cloud
(Joshi, Finin, & Yesha, 2009). We divide the IT service lifecycle on the cloud into
five phases. In sequential order of execution they are requirements, discovery, nego-
tiation, composition, and consumption. Figure 16.8 illustrates our proposed service
lifecycle. Detailed lifecycle illustrating the sub-phases and is available at ((Joshi
et al., 2009). We have also developed ontology in OWL for the service lifecycle
which can be accessed at (Joshi).

16.4.1 Service Requirements

In the service requirements phase the consumer details the technical and func-
tional specifications that a scientific service needs to fulfill. While defining the

16 Scientific Services on the Cloud 397

Fig. 16.8 The Service lifecycle on a scientific cloud comprises five phases: requirements,
discovery, negotiation, composition and consumption

service requirements, the consumer specifies not just the functionality, but also non-
functional attributes such as constraints and preferences on data quality, service
compliance and required security policies for the service. Depending on the service
cost and availability, a consumer may be amenable to compromise on the service
data quality. For example, a simple service providing images of the Earth might
deliver data as images of varying resolution quality. Depending on their require-
ments, service consumers may be interested in the high resolution images (higher
quality) or might be fine with lower image resolution if it results in lower service
cost.

Such explicit descriptions are of use not just for the consumer of the service, but
also the provider. For instance, the cost of maintaining the service data quality can be
optimized depending on the type of data quality requested in the service. The advan-
tage for the service provider is that they will not need to maintain the lower quality
data with the same efficiency as the higher quality data; but they would still be able
to find consumers for the data. They can separate the data into various databases and
make those databases available on demand. As maintainability is a key measure of
quality, low maintenance need of the service data will result in improved quality of
the service.

The service requirement phase consists of two main sub-phases: service specifi-
cation and request for service.

Service Specification: In this sub-phase, the consumer identifies the detailed
functional and technical specifications of the service needed. Functional specifica-
tion describe in detail what functions/tasks should a service help automate and the
acceptable performance levels of the service software and the service agent (i.e. the
human providing the service). The technical specifications lay down the hardware,
operating system, application standards and language support policies that a service
should adhere to. Specifications also list acceptable security levels, data quality and
performance levels of the service agent and the service software. Service compliance

398 D. Chapman et al.

Fig. 16.9 Screenshot of the SOAR system GUI for the gridded average brightness temperature
web service.

details like required certifications, standards to be adhered to etc. are also identi-
fied. Depending on the requirements, specifications can be as short or as detailed as
needed.

Figure 16.9 shows all of the Quality of Services (QoS) parameters available to
the user for the SOAR Gridded Average Brightness Temperature web service. GUIs
make a good human readable compliment to the machine readable description lan-
guages used by SOAP and REST style web services. User-centric QoS parameters
include variable resolution, and result type (jpg image, or hdf and binary data files).
The service providers make their own decisions about the compute resources and
related parameters. For example, a single service job may be distributed across a
number of nodes, but this type of distributed computing is not necessary for small
services that complete very quickly. It is up to the provider to decide how the task is
scheduled, and what resources to designate.

Request for Service: Once the consumers have identified and classified their ser-
vice needs, they will issue a “Request for Service” (RFS). This request could be

16 Scientific Services on the Cloud 399

made by directly contacting the service providers, such as the “Submit Request”
button on Fig. 16.8. This direct approach bypasses any sort of discovery mecha-
nism, but fails when the consumer is unaware of the service provider. Alternatively,
consumers can utilize a service search engine on the cloud to procure the desired
service, as long as the service is registered with some discovery engine.

Service requirement is a critical phase in service lifecycle as it defines the “what”
of the service. It is a combination of the “planning” and “requirements gathering”
phases in a traditional software development lifecycle. The consumers will spend
the maximum effort in this phase and so it has been depicted entirely in the con-
sumer’s area in the lifecycle diagram. The consumer could outsource compilation
of technical and functional specifications to another vendor, but the responsibility of
successful completion of this phase resides with the consumer and not the service
cloud. Once the RFS has been issued, we enter the discovery phase of the service
lifecycle.

16.4.2 Service Discovery

In this phase, service providers that offer the services matching the specifications
detailed in the RFS are searched (or discovered) in the cloud. The discovery is con-
strained by functional and technical attributes defined, and also by the budgetary,
security, data quality and agent policies of the consumer.

If the consumer elects the option to search the cloud instead of sending the RFS to
a limited set of providers, then the discovery of services is done by using a services
search/discovery engine. This engine runs a query against the services registered
with a central registry or governing body and matches the domain, data type, func-
tional and technical specifications and returns the result with the service providers
matching the maximum number of requirements listed at the top.

The discovery phase may not provide successful results to the consumers and so
they will need to either change the specifications or alter their in-house processes to
be able to consume a service that meets their needs the most.

If the consumers find the exact scientific service within the budget that they are
looking for, they can begin consuming the service. However, often the consumers
will get a list of providers who will need to compose a service to meet the con-
sumer’s specifications. The consumer will then have to begun negotiations with the
service providers which is the next phase of the lifecycle. Each search result will
also return the primary provider who will be negotiating with the consumer. It will
usually be the provider whose service meets most of the requirement specifications.

16.4.3 Service Negotiation

Service negotiation phase covers the discussion and agreement that the service
provider and consumer have regarding the service delivered and its acceptance
criteria. The service delivered is determined by the specifications laid down in the

400 D. Chapman et al.

RFS. Service acceptance is usually guided by the Service Level Agreements (SLA)
that the service provider and consumer agree upon. SLAs define the service data,
delivery mode, agent details, compliance policy, quality and cost of the service.
While negotiating the service level with potential service providers, consumers can
explicitly specify service quality constraints (data quality, cost, security, response
time, etc.) that they require.

Of course, scientists love to work with the most accurate and precise data avail-
able, until they run in to practical problems with it. The fine dataset might take too
much storage, computation may take too much time, or perhaps out of place algo-
rithms such as principal component analysis may require impractical amounts of
RAM. These sorts of problems force scientists to reconsider the level of quality that
they actually need for their desired experiment. SLAs will help in determining all
such constraints and preferences and will be part of the service contract between the
service provider and consumer.

Negotiation requires feedback, and the server must be able to estimate the cost
involved with the service and deliver these statistics to the consumer before the
service is executed. Although it is possible to negotiate automatically using hill-
climbing and related optimization algorithms, SOAR was a service system designed
primarily for human end users. Depending on the service and the QoS, the desired
SOAR transaction could take seconds, minutes, or hours to compute. It is not nec-
essary to give a precise time estimate, but at least a rough guess must be presented.
For example, a warning “This transaction could take hours to compute” would be
very helpful.

In addition to warning users about high cost services, the provider must also
explain some strategy for reducing the cost. Of course, reducing QoS will reduce
cost, but the degree may vary. Some service parameters may have a dramatic effect
on the service cost, whereas others have little effect at all. For example, in the SOAR
Gridded Average Brightness Temperature service, “resolution” has a tremendous
effect on performance, whereas “type” (format) does not affect performance very
much. Unfortunately, if the consumer doesn’t know which parameters to vary, he
may find himself toggling options randomly, or give up on the service entirely out of
frustration. Although algorithms can happily toggle options systematically, humans
would prefer to know what they are doing. SOAR documents the best known ways
to cut cost. Preemptive GUIs may even be possible, that flag a user as soon as he
selects a high cost option.

At times, the service provider will need to combine a set of services or compose
a service from various components delivered by distinct service providers in order
to meet the consumer’s requirements. For example, SOAR services often need to
interact with NASA datacenters to obtain higher resolution data for processing. The
negotiation phase also includes the discussions that the main service provider has
with the other component providers. When the services are provided by multiple
providers (composite service), the primary provider interfacing with the consumer
is responsible for composition of the service. The primary provider will also have to
negotiate the Quality of Service (QoS) with the secondary providers to ensure that
SLA metrics are met.

16 Scientific Services on the Cloud 401

Thus the negotiation phase comprises of two critical sub phases, the negotiation
of SLAs and negotiation of QoS. If there is a need for composite service, iterative
discussions takes place between the consumer and primary provider and the primary
provider and component providers. The final product of the negotiation phase is
the service contract between the consumer and primary provider and between the
primary provider and the component (or secondary) providers. Once the service
contract is approved, the lifecycle goes to the composition phase where the service
software is compiled and assembled.

16.4.4 Service Composition

In this phase one or more services provided by one or more providers are combined
and delivered as a single service. Service choreography determines the sequence in
the execution of the service components. Often the composition may not be a static
endeavor, and may even depend on the QoS parameters used in the RFS.

The SOAR gridded average brightness temperature service is a great example
of a dynamic composition workflow. Raw daily observations are cached at coarse
resolutions, so only local parallel processing is necessary to service such requests.
However, if the data specified is not available in cache, then it must be obtained
from NASA’s Goddard and MODAPS datacenters. Such is an example of service
chaining with foreign NASA entities. Depending on the request, this remote exe-
cution could take hours to compute, and thus necessitates asynchronous execution.
However, by comparison, the coarse local services could be completed in seconds.
This is a great example of how the QoS and RFS specification could have such a
huge impact on the resulting workflow, performance, and resources.

Many times what is advertised as a single service by a provider could in turn
be a virtualized composed service consisting of various components delivered by
different providers. The consumer needs to know that the service is composite for
accounting purposes only. The provider will have to monitor all the other services
that it is dependent on (like database services, network services etc.) to ensure that
the SLAs defined in the previous phase are adhered to, and recorded for scientific
reproducibility.

Once the service is composed, it is ready to be delivered to the consumer. The
lifecycle then enters the final phase of service consumption.

16.4.5 Service Consumption and Monitoring

The service is delivered to the consumer based on the delivery mode (syn-
chronous/asynchronous, real-time, batch mode etc.) agreed upon in the negotiation
phase. After the service is delivered to the consumer, payment is made for the
same. The consumer then begins consuming the service. An important part of the
consumption phase includes performance monitoring using automated tools.

402 D. Chapman et al.

In this phase, consumer will require tools that enable quality monitoring and
service termination if needed. This will involve alerts to humans or automatic ter-
mination based on policies defined using the quality related ontologies that need
to be developed. The service monitor sub-phase measures the service quality and
compares it with the quality levels defined in the SLA. This phase spans both the
consumer and cloud areas as performance monitoring is a joint responsibility. If the
consumer is not satisfied with the service quality, s/he should have the option to
terminate the service and stop service payment. If the service is terminated, the con-
sumer will have to restart the service lifecycle by again defining the requirements
and issuing a RFS.

The performance monitoring tool used in SOAR is shown in Fig. 16.10. The tool
not terribly complicated, but is very effective. It shows not only completed tasks,
but also those currently in progress. The tool provides a timestamp for submission,
so it is easy to monitor how long the request is taking. The user can select a task and
remove it, even if it is currently in progress. This allows the user to cancel tasks that
are taking too much time. Task cancellation is also accessible via SOAP, and can be
used by a machine interface as well as a human interface.

Fig. 16.10 Your Requests tool provided by SOAR

16 Scientific Services on the Cloud 403

Fig. 16.11 SOAR generated image

An example of a gridded brightness temperature image is shown in Fig. 16.11.
This is an example of a simple result generated from the SOAR system. The bright-
ness temperature image is derived from the Atmospheric Infrared Sounder (AIRS)
over the Indian Ocean on Jan 1st 2005. The striping on display is due to the sun
synchronous polar orbit, and would be resolved if the client data request were for a
longer time period. The warmest regions are in South Africa and Ethiopia. The blue
dots around Madagascar, New Guinea and other locations are due to clouds. These
types of plots, which show clouds very clearly, can be used in Hovmoller (running
mean) diagrams to track cloud movement over time and monitor processes such as
the Madden Julian Oscillation, as shown in Fig. 16.12.

16.5 Summary/Conclusions

In summary, we believe that cloud computing and in particular the MapReduce
parallel programming paradigm and its generalizations offer a new and exciting
approach for scientific computing. The compute and services paradigms at first
glance may appear counterintuitive. However, once mastered they unleash the bene-
fits cloud provides in terms of flexible compute resources, virtualized web services,
software abstraction, and fault tolerance. MapReduce and Dryad are paradigms that
can aid with scientific data processing on the back end, while service discovery and
delivery provide not only a front end, but an entire compute work flow including
data selection and quality of service. SOAR is an example of a complete scientific
cloud application, and we hope that the lessons we have learned from this and other
systems can help others in their scientific ventures.

404 D. Chapman et al.

Fig. 16.12 Hovmoller
showing easterly cloud
movement over the Pacific
from Dec 15 2006 to Jan 17
2007

References

Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (June 1999). Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon tis-
sues probed by oligonucleotide array. Proceedings of the National Academy of Sciences of the
United States of America, 96(12), 6745–6750.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (November,
2006). Bigtable: A distributed storage system for structured data. OSDI′06, Seattle, WA.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.
Proceedings of OSDI, 137–150.

Ekanayake, J., Pallickara, S., & Fox, G. (December 2008). Map-reduce for data intensive scientific
analysis. Proceedings of the IEEE International Conference on e-Science.

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. 29–43.
Halem, M., Most, N., Tilmes, C., Stewart, K., Yesha, Y., Chapmam, D., et al. (2009). Service

oriented atmospheric radiances (SOAR): Gridding and analysis services for multi-sensor aqua
IR radiance data for climate studies. IEEE Transactions on Geoscience and Remote Sensing,
47(1), 114–122.

Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: Distributed data-parallel
programs from sequential building blocks. Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems, Pacific Groove, CA.

Joshi, K. P., Finin, T., & Yesha, Y. (October 2009). Integrated lifecycle of IT services in a
cloud environment. Proceedings of the 3rd International Conference on the Virtual Computing
Initiative (ICVCI 2009), Research Triangle Park, NC.

16 Scientific Services on the Cloud 405

Joshi, K. OWL ontology for lifecycle of IT services on the cloud. http://www.cs.umbc.edu/
∼kjoshi1/IT_Service_Ontology.owl.

Klema, V., & Laub, A. (April 1980). The singular value decomposition: its computation and some
applications. IEEE Transactions on Automatic Control, 25(2).

Marzouk, Y., & Ghoniem, A. (August 2005). K-means clustering for optimal partitioning and
dynamic load balancing of parallel hierarchical N-body simulations. Journal of Computational
Physics, 207(2), 493–528.

Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. (2005). Interpreting the data: Parallel analysis
with Sawzall. Scientific Programming Journal, 227–298.

Rajasekaran, S., & Song, M. (2006). A novel scheme for the parallel computation of SVDs.
Proceedings of High Performance Computing and Communications, 4208(1), 129–137.

Ran, S. (2003). A model for web services discovery with QoS. ACM SIGecom Exchanges, 4(1),
1–10.

Soliman, M., Rajasekaran, S., & Ammar, R. (September 2007). A block JRS algorithm for highly
parallel computation of SVDs. High Performance Computing and Communications, 4782(1),
346–357.

Wolfe, R., Roy, D., & Vermote, E. (1998). MODIS land data storage, gridding, and compositing
methodology: Level 2 grid. IEEE Transactions on Geoscience and Remote Sensing, 36(4),
1324–1338.

Yang, H.-C., Dasdan, A., Hsiao, R.-L., & Scott Parker, D. (June 2007). Map-reduce-merge:
Simplified relational data processing on large clusters. Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data, Beijing, China, 1029–1040.

Chapter 17
A Novel Market-Oriented Dynamic
Collaborative Cloud Service Platform

Mohammad Mehedi Hassan and Eui-Nam Huh

17.1 Introduction

In today’s world the emerging Cloud computing (Weiss, 2007) offer a new comput-
ing model where resources such as computing power, storage, online applications
and networking infrastructures can be shared as “services” over the internet. Cloud
providers (CPs) are incentivized by the profits to be made by charging consumers
for accessing these services. Consumers, such as enterprises, are attracted by the
opportunity for reducing or eliminating costs associated with “in-house” provision
of these services.

However, existing commercial Cloud services are proprietary in nature. They are
owned and operated by individual companies (public or private). Each of them has
created its own closed network, which is expensive to setup and maintain. In addi-
tion, consumers are restricted to offerings from a single provider at a time and hence
cannot use multiple or collaborative Cloud services at the same time (Coombe,
2009). Besides, commercial CPs make specific commitments to their customers
by signing Service Level Agreements (SLAs) (Buyya et al., 2009). An SLA is a
contract between the service provider and the customer to describe provider’s com-
mitment and to specify penalties if those commitments are not met. For example,
the Cloud “bursting” (using remote resources to handle peaks in demand for an
application) may result in SLA violation and end up costing the provider.

One approach for reducing expenses, avoid adverse business impact and to sup-
port collaborative or composite Cloud services, is to form a dynamic collaboration
(DC) (Yamazaki, 2004) platform among CPs. In a DC platform: (i) each CP can
share its own local resources/services with other partner CPs and hence can get
access to much larger pools of resources/services, (ii) each CP can maximize their
profit by offering existing service capabilities to collaborative partners, so they may
create a new value added collaborative service by mashing up existing services.

M.M. Hassan (B) and E.-N. Huh
Department of Computer Engineering, Kyung Hee University, Global Campus, South Korea
e-mails: {hassan; johnhuh}@khu.ac.kr

407B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_17, C© Springer Science+Business Media, LLC 2010

408 M.M. Hassan and E.-N. Huh

These capabilities can be made available and tradable through a service catalog for
easy mash-up, to support new innovations and applications; and (iii) the reliability of
a CP is enhanced as a result of multiple redundant clouds that can efficiently tackle
disaster condition and ensure business continuity. However, the major challenges in
adopting such an arrangement include the followings:

When to collaborate? The circumstances under which a DC arrangement should
be performed. A suitable auction-based market model is required that can enable
dynamic collaboration of Cloud capabilities, hiring resources and assembling new
services and commercialized it.

How to collaborate? The architecture that virtualizes multiple CPs. Such archi-
tecture must specify the interactions among entities and allow for divergent policies
among participating CPs.

How to minimize conflicts when negotiating among CPs? A large number of con-
flicts may occur in a market-oriented DC platform when negotiating among winning
CPs. One reason is that each CP must agree with the resources/services contributed
by other CPs against a set of its own policies in DC (Nepal & Zic, 2008; Nepal,
Zic, & Chan, 2007). Another reason is due to the inclusion of high collaboration
costs (e.g. network establishment, information transmission, capital flow etc.) by
the CPs with their bidding prices in the market as they do not know to whom they
need to collaborate with after winning an auction.

This chapter discusses the aforementioned challenges to form a DC platform
among CPs and present candidate solutions to them. The main contributions of this
chapter are as follows:

• We present a novel combinatorial auction (CA) based Cloud market model called
CACM with a new auction policy that enables a virtual organization (VO) based
DC platform among CPs. The CACM model can help consumers to get collabo-
rative services from different CPs that suits their requirements as well as provide
incentives for CPs to share their services.

• To address the issue of conflicts minimization among CPs, the existing auction
policy of the CA model (Bubendorfer, 2006; Das & Grosu, 2005) is modified.
The existing policy allows each bidder (CP) to publish separate bids to partially
fulfill the composite service requirements as it cannot provide all the services.
After the bidding, the winning bidders need to negotiate with each other to pro-
vide the composite service that results in a large number of conflicts mentioned
earlier. The new auction policy in the CACM model allows a CP to dynamically
collaborate with suitable partner CPs to form a group before joining the auction
and to publish their group bids as a single bid to completely fulfill the service
requirements, along with other CPs, who publishes separate bids to partially ful-
fill the service requirements. This new approach can create more opportunities to
win auctions for the group since collaboration cost, negotiation time and conflicts
among CPs can be minimized.

• To find a good combination of CP partners required for making groups and
reducing conflicts, a multi-objective (MO) optimization model of quantitatively

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 409

evaluating the partners using their individual information (INI) and past collab-
orative relationship information (PRI) (Cowan et al., 2007) is proposed. In the
existing approaches (Ko, Kim, & Hwang, 2001; Kaya, 2009) on partner selection,
the INI is mostly used, PRI of partners is overlooked.

• Also to solve the model, a multi-objective genetic algorithm (MOGA) that uses
INI and PRI called MOGA-IC is developed. A numerical example is presented to
illustrate the proposed MOGA-IC in the CACM model. In addition, we developed
MOGA-I (Multi-Objective Genetic Algorithm using Individual information), an
existing partner selection algorithm, to validate the proposed MOGA-IC perfor-
mance in the CACM model in terms of satisfactory partner selection and conflicts
minimization.

The rest of this chapter is organized as follows: Section 17.2 describes the related
works. Section 17.3 outlines the necessity of designing a DC platform among CPs.
Section 17.4 introduces the proposed CACM model including the basic market
model and key components of a CP to form a DC platform. In Section 17.5, we
present the model of CP partner selection and the proposed MOGA-IC. Section 17.6
presents the experimental case study and analysis to show the effectiveness of the
CACM model and the MOGA-IC. And finally Section 17.7 presents a conclusion.

17.2 Related Works

Cloud computing evolved rapidly during 2008 and now it is one of the hot topics
for research. But no work has been found in the literature regarding the establish-
ment of dynamic collaboration platform among CPs. There are a few approaches
proposed in the literature regarding the Cloud market model. In Buyya et al. (2009),
authors present a vision of 21st century computing, describe some representative
platforms for Cloud computing covering the state-of-the-art and provide the archi-
tecture for creating a general auction-based Cloud market for trading Cloud services
and resource management. But this market model cannot be directly applicable in
creating a DC platform among CPs since the DC platform deals with a combinatorial
allocation problem.

There are three types of auctions- one-sided auction (e.g. First Price and Vickrey
auctions), double-sided auction (e.g. Double auction) and combinatorial auction
(CA) (Bubendorfer, 2006; Bubendorfer & Thomson, 2006; Das & Grosu, 2005;
Grosu & Das, 2004; Wolski et al., 2001). To enable the DC platform among
CPs, CA is the appropriate market mechanism. In CA-based market model, the
user/consumer can bid a price value for a combination of services, instead of bidding
for each task or service separately and each bidder or service provider is allowed to
wisely compete for a set of services.

But existing CA based market model is not fully suitable to meet the require-
ments for the CACM model since it cannot address the issue of conflicts mini-
mization among CPs that usually happen when negotiating among providers in the

410 M.M. Hassan and E.-N. Huh

DC platform (Nepal & Zic, 2008; Nepal et al., 2007). The current approaches to
handle conflicts are to design eContract delivery sequences (Nepal & Zic, 2008;
Nepal et al., 2007). An eContract (Chen et al., 2008) is used to capture the contribu-
tions as well as agreements among all participants. But the main problem of these
approaches is that auctioneer may choose an improper set of service providers (com-
peting or rival companies). Then no matter how the eContract delivery sequence is
arranged, a large number of conflicts cannot be prevented from happening. So we
propose to modify the existing auction policy of CA that allows the CPs to publish
their bids collaboratively as a single bid in the auction by dynamically collaborate
with suitable partners. This approach can help to minimize the conflicts and collab-
oration cost among CPs as they know each other very well in the group and also
creates more chances to win the auction.

However, collaborator or partner selection problem (PSP) is a complex problem,
which usually needs a large quantity of factors (quantitative or qualitative ones)
simultaneously, and has been proved to be NP-hard (Ko et al., 2001) or NP-complete
(Wu, & Su, 2005). For CP partner selection, for instance, cost and quality of service
are the most important factors. Also PSP for CPs in the CACM model is different
from other PSP problems in areas like manufacturing, supply chain or virtual enter-
prise (Ko et al., 2001; Wu & Su, 2005; Wang et al., 2009; Buyukozkan, Feyzioglu, &
Nebol, 2008; Ip et al., 2003; Fuqing, Yi, & Dongmei, 2008; Cheng, Ye, & Yang,
2009; Chen, Cheng, & Chuang, 2008; Sha & Che, 2005; Amid, Ghodsypour, &
Brien, 2006; Chang et al., 2006; Chen, Lee, & Tong, 2007; Saen, 2007; Huang
et al., 2004; Gupta & Nagi, 1995; Fischer, Jahn, & Teich, 2004; Kaya, 2009) since a
large number of conflicts may occur among CPs due to dynamic collaboration. In the
existing studies on partner selection, the individual information (INI) is mostly used,
but the past collaborative relationship information (PRI) (Cowan, 2007) between
partners, is overlooked. In fact, the success of past relations between participating
CPs may reduce uncertainty and conflicts, shorten the adaptation duration, and help
with performance promotion. Thus the existing methods cannot be applied directly
to solve the PSP problem of CPs. Therefore, an appropriate MO optimization model
using INI and PRI and effective MOGA called MOGA-IC to solve the MO optimiza-
tion problem are proposed. Although, many MOGAs are available in the literature
(Wang et al., 2009; Ip et al., 2003; Chen et al., 2008; Kaya, 2009; Zitzler et al.,
2001), but all of these also do not consider PRI for partner selection.

17.3 A Dynamic Collaborative Cloud Services Platform

Dynamic collaboration is a viable business model where each participant within
a DC shares their own local resources (services) with other participants by con-
tributing (in a controlled policy driven manner) them to the collaboration. To make
Cloud computing truly scalable and to support interoperability issues, a DC platform
among CPs is very important.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 411

A dynamic collaborative Cloud service platform can help CPs to maximize their
profits by offering existing services capabilities to collaborative business partners.
These capabilities can be available and tradable through a service catalog for easy
mash-up to provide new value-add collaborative Cloud services to consumers. Also
the DC platform can enable a CP to handle Cloud bursting by redirecting some load
to collaborators. The Fig. 17.1 shows a formed dynamic collaborative Cloud service
platform.

Fig. 17.1 A formed VO based cloud services collaboration platform

Formation of a DC is initiated by a CP, which realizes a good business oppor-
tunity which is to be addressed by forming DC with other CPs for providing a set
of services to various consumers. The initiator is called a primary CP (pCP), while
other CPs who share their resources/services in DC are called collaborating or part-
ner CPs. Users interact transparently with the VO-based DC platform by requesting
services through a service catalog of the pCP. The CPs offer capabilities/services to
consumers with a full consumption specification formalized as a standard SLA. The
requested service requirements (single, multiple or collaborative Cloud services) are

412 M.M. Hassan and E.-N. Huh

served either directly by the pCP or by any collaborating CPs within a DC. Let us
consider, pCP can provide two services s1 and s2 and CP1 and CP2 can provide
services s3, s4 and s5, s6 respectively as shown in Fig. 17.1. The request for collab-
orative services like s1, s3, s5 or s2, s3 can be served by VO-based DC platform.
In case of services s1 and s2, the pCP can directly delivers the services. To enable
this DC platform and make it commercialized, a CA-based Cloud market (CACM)
model is described in the next section.

17.4 Proposed Combinatorial Auction Based Cloud Market
(CACM) Model to Facilitate a DC Platform

17.4.1 Market Architecture

The proposed CACM model to enable a DC platform among CPs is shown in
Fig. 17.2. The existing auction policy of the CA is modified in the CACM model
to address the issue of conflicts minimization among providers in a DC platform.

Fig. 17.2 Proposed CACM model to enable a DC platform among CPs

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 413

Fig. 17.3 Existing auction policy of CA

The existing and new auction policy for the CA model is shown in Figs. 17.3 and
17.4 respectively. The CACM model allows any CP to dynamically collaborate
with appropriate partner CPs to form groups and to publish their group bids as a
single bid to completely fulfill the consumer service requirements while also sup-
porting the other CPs to submit bids separately for a partial set of services. The main

Fig. 17.4 New auction policy in CACM

414 M.M. Hassan and E.-N. Huh

participants in the CACM model are brokers, users/consumers, CPs and auctioneers
as shown in Fig. 17.2.

Brokers in the CACM model mediate between consumers and CPs. A broker can
accept requests for a set of services or composite services requirements from dif-
ferent users. A broker is equipped with a negotiation module that is informed by
the current conditions of the resources/services and the current demand to make
its decisions. Consumers, brokers and CPs are bound to their requirements and
related compensations through SLAs. Brokers gain their utility through the differ-
ence between the price paid by the consumers for gaining resource shares and that
paid to the CPs for leasing their resources.

The users/consumers can be enterprise user or personal user. Consumers have
their own utility functions that cover factors such as deadlines, fidelity of results,
and turnaround time of applications. They are also constrained by the amount of
resources that they can request at any time, usually by a limited budget. The users
can bid a single price value for different composite/collaborative Cloud services
provided by CPs.

The CPs provide Cloud services/resources like computational power, data stor-
age, Software-as-Service (SaaS), computer networks or infrastructure-as-a Service
(IaaS). A CP participates in an auction based on its interest and profit. It can publish
bid separately or collaboratively with other partner CPs by forming groups to fulfill
the consumers’ service requirements.

The responsibility of an auctioneer includes setting the rules of the auction and
conducting the combinatorial auction. The auctioneer first collects bids (single or
group bids) from different CPs participating in the auction and then decides the best
combination of CPs who can meet user requirements for a set of services using
a winner determination algorithm. We utilize secured generalized Vickrey auction
(SGVA) (Suzuki & Yokoo, 2003) to address the CACM model problem and use
dynamic graph programming (Yokoo & Suzuki, 2002) for winner determination
algorithm.

17.4.2 Additional Components of a CP to Form a DC Platform
in CACM

To achieve DC using the CACM model, in our architecture, a CP should possess the
additional components described as follows:

Price Setting Controller (PSC) – A CP is equipped with a PSC which sets
the current price for the resource/service based on market conditions, user
demand, and current level of utilization of the resource. Pricing can be either
fixed or variable depending on the market conditions.

Admission and Bidding Controller (ABC) – It selects the auctions to participate
in and submits single or group bid based on an initial estimate of the utility.
It needs market information from the information repository (IR) to make
decisions which auction to join.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 415

Information Repository (IR) – The IR stores the information about the current
market condition, different auction results and consumer demand. It also
stores INI (price, quality of service, reliability etc.) and PRI (past collabo-
ration experiences) of other CPs collected from each CPs website, market
and consumers feedback about their services.

Collaborator Selection Controller (CSC) – It helps a CP to find a good com-
bination of collaborators to fulfill the consumer requirements completely
by running a MOGA called MOGA-IC (described later in Section 17.5.3)
utilizing the INI and PRI of other CPs.

Mediator (MR) – The MR controls which resources/services to be used for
collaborative Cloud services of the collaborating CPs, how this decision is
taken, and which policies are being used. When performing DC, the MR will
also direct any decision making during negotiations, policy management, and
scheduling. A MR holds the initial policies for DC formation and creates
an eContract and negotiates with other CPs through its local Collaborating
Agent (CA).

Service Registry (SR) – The SR encapsulates the resource and service informa-
tion for each CP. In the case of DC, the service registry is accessed by the
MR to get necessary local resource/service information. When a DC is cre-
ated, an instance of the service registry is created that encapsulates all local
and delegated external CP partners’ resources/services.

Policy Repository (PR) – The PR virtualizes all of the policies within the
DC. It includes the MR policies and DC creation policies along with any
policies for resources/services delegated to the DC as a result of a collabo-
rating arrangement. These policies form a set of rules to administer, manage,
and control access to DC resources and also helps to mash-up Cloud ser-
vices. They provide a way to manage the components in the face of complex
technologies.

Collaborating Agent (CA) – The CA is a policy-driven resource discovery mod-
ule for DC creation and is used as a conduit by the MR to exchange eContract
with other CPs. It is used by a primary CP to discover the collaborating
CPs (external) resources/services, as well as to let them know about the
local policies and service requirements prior to commencement of the actual
negotiation by the MR.

17.4.3 Formation of a DC Platform in CACM Model

The DC creation steps are shown in Fig. 17.5 and are explained as follows-

Step 1: A pCP finds a business opportunity in the market from IR and wants to
submit collaborative bids as a single bid in the auction to address consumer
requirements as it cannot provide all the service requirements.

Step 2: The CSC is activated by the pCP to find a set of Pareto-optimal solutions
for partner selection and it chooses any combination from the set to form
groups and send this information to the MR.

416 M.M. Hassan and E.-N. Huh

Fig. 17.5 The formation of a DC platform among CPs before joining the auction

Step 3: The MR obtains the resource/service and access information from the
SR, whilst SLAs and other policies from the PR. It generates a eContract that
encapsulates its service requirements on the pCP’s behalf based on the cur-
rent circumstance, its own contribution policies, prices of services (generated
by PSC) and SLA requirements of its customer(s) and passes this eContract
to the local Collaborating Agent (CA).

Step 4: The local CA of pCP carries out negotiations with the CAs of other
identified partner CPs using the eContract. As the group members know each
other very well, the number of conflicts will be less. So when all CPs (includ-
ing the pCP) agree with each other, they make a soft contract among them. A
soft contract guarantees that resources/services will be available if the group
wins the auction.

Step 5: When pCP acquires all services/resources from its collaborator to meet
SLA with the consumer, a DC platform is formed. If no CP is interested in
such arrangements, DC creation is resumed from Step 2 with another Pareto-
optimal solution.

Step 6: After the DC platform creation, the MR of pCP submits collaborative
bids as a single bid to the market using the admission and bidding controller
(ABC). If this group wins the auction, a hard contract is performed among
each group members to firm up the agreement in DC. A hard contract ensures
that the collaborating CPs must provide the resources/services according to
the SLAs with consumers.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 417

If some CPs win the auction separately for each service (few chances are avail-
able), the steps 3–5 are follows to form a DC platform among providers. But they
make the hard contract in step 4 and in this case, a large number of conflicts may
happen to form the DC platform.

An existing DC may need to either disband or re-arrange itself if any of
the following conditions hold: (a) the circumstances under which the DC was
formed no longer hold; (b) collaborating is no longer beneficial for the partic-
ipating CPs; (c) an existing DC needs to be expanded further in order to deal
with additional load; or (d) participating CPs are not meeting their agreed upon
contributions.

17.4.4 System Model for Auction in CACM

For the convenience of analysis, the parameters and variables for the auction models
are defined as follows:

R = {Rj |j = 1...n} : a set of n service requirements of consumer where S ⊆ R
P = {Pr |r = 1...m} : a set of m Cloud providers who participate in the auction

as bidders where G ⊆ P
Prj = a Cloud provider r who can provide service j
S(Pr) = a set of services (Sj=1...n) provided by any CP r where S(Pr) ⊆ R
�max(R, Q) = payoff function of the user where R is the service requirements

and Q defines SLAs of each service.

17.4.4.1 Single and Group Bidding Functions of CPs

Let M be the service cost matrix of any CP Pr. We assume that each CP can provide
at most two services. The matrix M includes costs of Pr provider’s own services as
well as the collaboration costs (CC) between services of its own and other providers.
Figure 17.6 illustrates the matrix M. We assume that Pr provides two services –
CPU and Memory. Let aii(i = 1...n) be the cost of providing any service in M
independently, aij(i, j = 1...n, i 	= j) be the CC between Si and Sj services (Si, Sj ∈
S(Pr)) and aik(i, k = 1...n, i 	= k) be the CC between Si and Sk services (Si ∈
S(Pr) and Sk /∈ S(Pr)). We set nonreciprocal CC between S(Pr) services in M which
is practically reasonable.

If CP Pr knows other providers or have some past collaboration experience with
others, it can store true CC of services with other providers. Otherwise it can set
a high CC for other providers. The CC of services with other providers in matrix
M is updated when the providers finish negotiation and collaboratively provide the
services of consumers in the DC platform.

Now the Bidding Function of any CP say Pr who submits bid separately to par-
tially fulfill the customer service requirements without collaborating with other CPs
can be determined as follows: φS(Pr) = CS(Pr) + γ (Pr) where CS(Pr) is the total cost

418 M.M. Hassan and E.-N. Huh

C
P

U

CPU

M
em

or
y

A
pp

lic
at

io
n

S
to

ra
ge

Memory

Application

Storage

$78

$65

$10

$20

$20

$20

$20

Cost of CPU

CC between
Memory & CPU

CC between other
provider services

$10

CC between
CPU & Memory

Fig. 17.6 Cost matrix M

incurred by CP Pr to provide S(Pr) services (S(Pr) ⊆ R) and γ (Pr) is the expected
profit of provider Pr. The total cost CS(Pr) is calculated as follows by using the
matrix M:

CS(Pr) =
∑

Si∈S(Pr)

aii +
∑

Si∈S(Pr)

∑

Sj∈S(Pr)

aij +
∑

Si∈S(Pr)

∑

Sk /∈S(Pr)

aik (17.1)

where, i, j, k = 1...n and i 	= j 	= k
The first term in the Eq. (17.1) is the cost of providing services S(Pr).The second

term is the total collaboration cost between S(Pr) services and third term refers to
the total collaboration cost between services of different CPs with whom provider Pr
needs to collaborate. As provider Pr does not know to whom it will collaborate after
winning the auction, the true cost of aik cannot be determined. Therefore, Pr may
set a high collaboration cost in aik in order to avoid potential risk in collaboration
phase.

Now the Bidding Function of a group of CPs, who submit their bids collab-
oratively as a single bid to fulfill the service requirements completely, can be
determined as follows: Let Pr forms a group G by selecting appropriate partners
where S(PG) be the set of services provided by G and S(PG) ⊆ R, G ⊆ P. For any
provider like Pr ∈ G, the total cost of providing S(Pr) services is:

CG
S(Pr) =

∑

Si∈S(Pr)

aii +
∑

Si∈S(Pr)

∑

Sj∈S(Pr)

aij +
∑

Si∈S(Pr)

∑

Sg∈S(PG)\S(Pr)

aig +
∑

Si∈S(Pr)

∑

Sk /∈S(PG)

aik

(17.2)
where, i, j, g, k = 1...n and i 	= j 	= g 	= k
We can see from equation (2) that the term

∑
Si∈S(Pr)

∑
Sk /∈S(Pr)

aik of Eq. (17.1) is now

divided into two terms in CG
S(Pr) :

∑
Si∈S(Pr)

∑
Sg∈S(PG)\S(Pr)

aig and
∑

Si∈S(Pr)

∑
Sk /∈S(PG)

aik.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 419

The term
∑

Si∈S(Pr)

∑
Sg∈S(PG)\S(Pr)

aig denotes the total collaboration cost of services of

provider Pr with other providers in the group. The term
∑

Si∈S(Pr)

∑
Sk /∈S(PG)

aik refers

to the total collaboration cost between services of other CPs outside of the group
with whom provider Pr needs to collaborate. This term can be zero if the group
can satisfy all the service requirements of consumer. Since Pr knows other group
members, it can find the true value of the term

∑
Si∈S(Pr)

∑
Sg∈S(PG)\S(Pr)

aig. Moreover, if

Pr applies any good strategy to form the group G, it is possible for Pr to minimize∑
Si∈S(Pr)

∑
Sg∈S(PG)\S(Pr)

aig. Hence, this group G has more chances to win the auction as

compare to other providers who submit separate bids to partially fulfill the service
requirements. So the Bidding Function for the group G can be calculated as follows:

φG
S(PG) =

∑
(CG

S(Pr) + γ G(Pr)),∀Pr ∈ G, r = 1...l (17.3)

where l is the no. of providers in G and γ G(Pr) is the expected profit of any provider
r in the group.

17.4.4.2 Payoff Function of the User/Consumer

With the help of broker user generates the payoff function. During auction, user
uses the payoff function �max(R, Q) to internally determine the maximum payable
amount that it can spend for a set of services. If the bid price of any CP is greater
than the maximum payable amount �max, it will not be accepted. In the worst case,
auction terminates when the bids of all Cloud service provider is greater than �max.
In such case, user modifies its payoff function and the auctioneer reinitiates auction
with changed payoff function.

17.4.4.3 Profit of the CPs to form a Group

Let φG
S(Pr) be the price of the provider r when it forms a group G where CG

S(Pr) is
the cost of its services in the group. So the expected profit for the Pr in the group
is γ G(Pr) = φG

S(Pr) − CG
S(Pr). We know that the expected profit for the provider r,

who submits bid separately, is γ (Pr) = φS(Pr) − CS(Pr). We argue that if any CP
forms a group using a good partner selection strategy; it can increase its profit rather
than separately publishing the bid. To calculate the increased profit, we consider the
following assumptions:

CG
S(Pr) ≤ CS(Pr) and γ G(Pr) = γ (Pr)

Since CP r can collaboratively publish the bid, it may minimize its collabora-
tion cost by selecting good partners, that is, CG

S(Pr) should be less than or equal to

CS(Pr). However, γ G(Pr) = γ (Pr) means the expectation of profit does not change.

420 M.M. Hassan and E.-N. Huh

Consequently, we can also deduce the following:

φG
S(Pr) ≤ φS(Pr) (17.4)

That is the provider who collaboratively publishes bid can provide lower price for
its services while maintaining the same expected profit. Thus it has more chances
to win the auction. To determine the increased profit for Pr, let φ2LP

S(Pr) be the sec-
ond lowest price that will be paid to Pr for S(Pr) services if it wins the auction.
Now if Pr attends any auction and apply separate and collaborative bidding strategy
alternatively, the increased profit γ I(Pr) for Pr can be calculated as follows:

γ I(Pr) = α
(
φ2LP

S(Pr) − CG
S(Pr)

)
− β

(
φ2LP

S(Pr) − CS(Pr)

)
(17.5)

where

α =
{

1 if provider r collaboratively wins the auction
0 otherwise

β =
{

1 if provider r separately wins the auction
0 otherwise

From Eq. (17.5), we can figure out that if provider r collaboratively wins the
auction, it can always get the increased profit. Otherwise, no increased profit will be
achieved. So a good partner selection strategy is required for a CP to make groups.
In the next section, we will describe an effective MO optimization model for a good
combination of partner selection.

17.5 Model for Partner Selection

17.5.1 Partner Selection Problem

A primary/initiator CP (pCP) identifies a business opportunity which is to be
addressed by submitting a bid for a set of services for the consumer. It needs to
dynamically collaborate with one or more CP partners to form groups to satisfy the
consumer service requirements completely as it cannot provide all the services. We
assume that each CP can provide one or at most two services and each service has
one or more providers. Also each CP can organize other groups simultaneously. This
process of CP partner selection can be presented in Fig. 17.7.

Figure 17.7 shows that the pCP (P1,1) can provide s1 service and needs other 4
CP partners among 12 candidate CP partners to provide total 5 kinds of consumer
service requirements (s1, s2, s3, s4 and s5). We also assume that the pCP has the INI
and PRI of all the other providers for each service. The INI includes price and qual-
ity information of services of other providers which are the most important factors.
The PRI includes number of projects/auctions accomplished/won by other providers
among themselves and also with pCP. The pCP can get all of these information from
each CPs website, market and also from consumers feedback about their services.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 421

Fig. 17.7 Partner selection process for the pCP

17.5.2 MO Optimization Problem for Partner Selection

The parameters for MO partner selection are defined as follows:
φrj = the price of CP r for providing service j independently
Qrj = the quality value for service j of CP r (qualitative information can be

expressed by the assessment values from 1 to 10 (1: very bad, 10: very good))
Wrj, xi = the value of past collaboration experience (i.e. the number of times

collaboratively wining an auction) between provider r for service j and provider x
for service i where (r, x = 1....m; i, j = 1....n; i 	= j)

U = {Urj |r = 1.....m, j = 1....n} : a decision vector of partner selection

where Urj =
{

1 if choose Prj

0 otherwise
and UrjUxi =

{
1 if choose Prj and Pxi

0 otherwise

The optimized goal is selecting a group of CP partners who collaboratively win
auctions many times (maximizing past relationship performance values) and making
the individual price the lowest and quality value of service the highest. In the most
situations, it is impossible that there is a candidate provider group that can make all
the goals optimized. So to solve the partner selection problem of a pCP using the
INI and PRI, a multi-objective (MO) optimization model to minimize total price and
maximize total collaborative past relationship (PR) performance and service quality
values can be expressed mathematically as follows:

Minimize Obj_1 =
n∑

j=1

m∑

r=1

φrjUrj (17.6)

422 M.M. Hassan and E.-N. Huh

Maximuze Obj_2 =
n∑

j=1

m∑

r=1

QrjUrj (17.7)

Maximize Obj_3 =
n∑

i, j=1
i	=j

m∑

r, x=1

Wrj, xiUrjUxi (17.8)

subjec to

Urj =
{

1 if choose Prj
0 otherwise

UrjUxi =
{

1 if choose Prj and Pxi
0 otherwise

17.5.3 Multi-objective Genetic Algorithm

In the CP partner selection problem, MO optimization is preferable because it
provides a decision-maker (pCP) with several trade-off solutions to choose from.
Actually the CP partner selection problem has multiple conflicting objectives- mini-
mization of the price of service while maximization of past relationship performance
and service quality values. Multiple objective formulations are practically required
for concurrent optimization that yields optimal solutions that balance the conflict-
ing relationships among the objectives. MO optimization yields a set of Pareto
optimal solutions, which is a set of solutions that are mutually non-dominated
(Deb et al., 2002). The concept of non-dominated solutions is required when com-
paring solutions in a multi-dimensional feasible design space formed by multiple
objectives.

A solution is said to be Pareto-optimal if it is not dominated by any other solu-
tion in the solution space. The set of all such feasible non-dominated solutions in a
solution space is termed the Pareto optimal solution set. For a given Pareto-optimal
solution set, the curve made in the objective space is called the Pareto front. When
two conflicting objectives are present there will always be a certain amount of sac-
rifice in one objective to achieve a certain amount of gain in the other when moving
from one Pareto solution to another. So often it is preferred to use a Pareto optimal
solution set rather than being provided with a single solution, because the set helps
effectively understand the trade-off relationships among conflicting objectives and
make informed selections of the optimal solutions.

MO optimization difficulties can be alleviated by avoiding multiple simulation
runs, doing without artificial aids such as weighted sum approaches, using effi-
cient population-based evolutionary algorithms, and the concept of dominance. The
use of multi-objective GAs (MOGAs) provides a decision-maker with the prac-
tical means to handle MO optimization problems. When solving PSP for CPs
using MOGA techniques, one important issue need to be addressed: how to find
an appropriate diversity preservation mechanism in selection operators to enhance
the yield of Pareto optimal solutions during optimization, particularly for the CP

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 423

partner selection problems having multiple conflicting objectives. So we develop
the MOGA-IC using the non dominated sorting genetic algorithm (NSGA-II) (Deb
et al., 2002) which includes an excellent mechanism for preserving population diver-
sity in the selection operators. In this section, the MOGA-IC is designed for the
proposed model of CP partner selection as follows:

Natural number encoding is adopted to represent the chromosome of indi-
vidual. A chromosome of an individual is an ordered list of CPs. Let y =
[y1, y2, ..., yj......yn] (j = 1, 2, n), yj be a gene of the chromosome, with its
value between 1 and m (for service j, there are m CPs for a response). If m = 50
and n = 5, there may be 10 CPs that can provide each service j. Thus a total of 105

possible solutions are available. In this way the initial populations are generated.
For the selection of individual, the binary tournament selection strategy is used. We
employ a two-point crossover. In the case of mutation, one provider is randomly
changed for any service.

The multi-objective functions (Obj_1, Obj_2 and Obj_3) are considered as fitness
functions when calculating the fitness values. NSGA-II is employed to calculate
the fitness values of individual. Any two individuals are selected and their corre-
sponding fitness values are compared according to the dominating-relationships and
crowding-distances in the objective space. Then all the individuals are separated
into the non-dominated fronts. The individuals in the same fronts do not dominate
each other and we call this non-dominated sorting. Now the MOGA-IC is presented
step by step as follows:

Step 1: Initialize the input parameters which contain the number of require-
ments (R), providers (m) and maximum genetic generations (G), population
size (N), crossover probability (pc) and mutation probability (pm).

Step 2: Generate the initial parent population Pt, (t = 0) of size NP.
Step 3: Apply binary tournament selection strategy to the current popula-

tion, and generate the offspring population Ot of size NO = NP with the
predetermined pc and pm.

Step 4: Set St = Pt ∪Ot, apply a non-dominated sorting algorithm and identify
different fronts F1, F2...Fa.

Step 5: If the stop criterion (t > G) is satisfied, stop and return the individuals
(solutions) in population Pt and their corresponding objective values as the
Pareto-(approximate) optimal solutions and Pareto-optimal fronts.

Step 6: Set new population Pt+1 = 0. Set counter i = 1. Until |Pt+1|+|Fi| ≤ N
set Pt+1 = Pt+1 ∪ Fi and i = i+ 1.

Step 7: Perform the crowding-sort procedure and include the most widely
spread (N − |Pt+1|) solutions found using the crowding distance values in
sorted F in Pt+1.

Step 8: Apply binary tournament selection, crossover and mutation operators to
Pt+1 to create offspring population Ot+1.

Step 9: Set t = t + 1, then return to Step 4.

424 M.M. Hassan and E.-N. Huh

17.6 Evaluation

In this section, we present our evaluation methodology and simulation results for the
proposed CACM model with new auction policy and the MOGA-IC for CP partner
selection. First we present a simulation example of PSP for a pCP in the CACM
model. It is used to illustrate the proposed MOGA-IC method. Then NSGA-II is
utilized to develop the MOGA-IC. Also we implement the existing MOGA that
uses only INI called MOGA-I for CP partner selection and analyze its performance
with MOGA-IC in the proposed CACM model. We implement the CACM model
(winner determination algorithm) with new auction policy as well as the MOGA-IC
in Visual C++.

17.6.1 Evaluation Methodology

One of the main challenges in the CACM model and the PSP of CP is the lack
of real-world input data. So we conduct the experiments using synthetic data. We
generate the input data as follows:

Many CPs (m = 100) with different services and also some consumer require-
ments (R = 3–10) are generated randomly. We assume that each CP can provide
at most 2 services so that they have to collaborate with others to fulfill the service
requirements R. Each service may have one or more CPs. Based on R, CPs are
selected. So it is possible that every CP may not provide the required R. Also the
cost of providing any independent service is randomly generated from $80 to $100.
The ranges of collaboration cost (CC) of services as well as the profit are set within
$10 – $30 and $10 – $20 respectively. Quality and collaborative performance values
of providers are randomly selected from 1-10 and 0-10 respectively. If any provider
has more collaboration experience with other providers, the CC can be minimized.
We use the following formula to calculate the CC between any provider Prj and Pxi:

CCrj, xi = CCmin + (CCmax − CCmin)× 1

eWrj, xi
(17.9)

where

CCmin = the minimum CC between services (here $10)
CCmax= the maximum CC between services (here $30)
Wrj, xi = the value of number of collaboration experience between Prj and Pxi.

If it is zero, the highest CC is set between providers. Thus the final
price of services is generated for each provider and it is varied based
on CC in different auctions.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 425

17.6.1.1 Simulation Examples

Table 17.1 shows the three simulation examples with MOGA-IC parameters of PSP
in the CACM model. For each simulation example, MOGA-IC is developed based
on NSGA-II. Also in each simulation example, two INI (price and quality of ser-
vices) and one PRI (number of auctions collaboratively won by other providers
among themselves and also with pCP) of candidate CPs are considered. Both the
information is presented in Tables 17.2 and 17.3 in normalized forms for the first
simulation example. For normalization, the method proposed by Hwang and Yoon
(1981) is utilized. We can see that total 21 CPs are found from 35 candidate CPs
who can provide 5 randomly generated consumer service requirements. We assume
that provider number 1 is the pCP who can provide service no. 7. The number of
generations G in the first simulation example is set to 20 as the example search space
is quite small.

Table 17.1 The three simulation examples with MOGA-IC parameters

Simulation examples m R N/E G Pc Pm

1 35 5 50 20 0.9 0.1
2 100 5 100 50 0.9 0.1
3 100 5 100 100 0.9 0.1

Table 17.2 The normalized INI of pCP and other candidate CPs

Service no. Provider no. Price of service Quality value of service

2 28 0.17 0.99
2 10 038 0.88
3 10 0.99 0.88
3 15 0.81 0.3
3 6 0.66 0.01
3 32 0.07 0.65
3 14 0.55 0.23
3 20 0.88 0.72

4 9 0.00 0.54
4 33 0.17 0.4
4 18 0.84 0.62
4 17 0.89 0.02
4 34 0.5 0.66
4 26 0.57 0.00

7 1 0.4 1
8 2 0.83 0.19
8 21 0.73 0.48
8 11 0.63 0.06
8 23 0.94 0.22
8 19 0.81 0.63
8 32 0.88 0.82

426 M.M. Hassan and E.-N. Huh

Ta
bl

e
17

.3
T

he
no

rm
al

iz
ed

PR
I

of
pC

P
an

d
ot

he
r

ca
nd

id
at

e
C

Ps

P 28
,

2

P 10
,

2

P 10
,

3

P 15
,

3

P 6, 3

P 32
,

3

P 14
,

3

P 20
,

3

P 9, 4

P 33
,

4

P 18
,

4

P 17
,

4

P 34
,

4

P 26
,

4

P 1, 7

P 2, 8

P 21
,

8

P 11
,

8

P 23
,

8

P 19
,

8

P 32
,

8

P
28

,2
–

–
0.

51
0.

5
0.

79
0.

25
0.

79
0.

14
0.

69
0.

66
0.

24
0.

54
0.

18
0.

3
0.

29
0.

28
0.

36
0.

42
0.

96
0.

97
0.

72
P

10
,2

–
–

0.
28

0.
62

0.
7

0.
52

0.
51

0.
48

0.
31

0.
0

0.
81

0.
22

0.
74

0.
94

0.
79

0.
17

0.
4

0.
03

0.
4

0.
39

0.
77

P
10

,3
–

–
–

–
–

–
–

–
0.

49
0.

67
0.

28
0.

13
0.

41
0.

63
0.

93
0.

66
0.

17
0.

01
0.

70
0.

26
0.

96
P

15
,3

–
–

–
–

–
–

–
–

0.
65

0.
57

0.
04

0.
98

0.
18

0.
08

0.
13

0.
83

0.
66

0.
84

0.
63

0.
20

0.
23

P
6,

3
–

–
–

–
–

–
–

–
0.

48
0.

38
0.

28
0.

18
0.

38
0.

27
0.

81
0.

11
0.

77
0.

79
1.

0
0.

29
0.

96
P

32
,3

–
–

–
–

–
–

–
–

0.
39

0.
04

0.
09

0.
84

0.
87

0.
35

0.
79

0.
16

0.
43

0.
87

0.
11

0.
80

0.
25

P
14

,3
–

–
–

–
–

–
–

–
0.

68
0.

54
0.

29
0.

32
0.

21
0.

44
0.

85
0.

09
0.

18
0.

66
6

0.
19

0.
52

0.
74

P
20

,3
–

–
–

–
–

–
–

–
0.

05
0.

41
0.

81
0.

33
0.

04
0.

01
0.

90
0.

28
0.

0
0.

03
0.

67
0.

82
0.

01
P

9,
4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.
17

0.
51

0.
56

0.
26

0.
07

0.
56

0.
93

P
33

,4
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.

07
0.

22
0.

50
0.

59
0.

87
0.

16
0.

77
P

18
,4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.
68

0.
57

0.
41

0.
91

0.
88

0.
04

0.
87

P
17

,4
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.

64
0.

21
0.

50
0.

04
0.

73
0.

02
0.

67
P

34
,4

–
–

–
–

–
–

–
–

–
–

–
–

–
–

0.
51

0.
09

0.
11

0.
13

0.
75

0.
49

0.
77

P
26

,4
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.

27
0.

32
0.

68
0.

57
0.

31
0.

07
0.

05
P

1,
7

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
0.

22
1.

0
0.

8
0.

47
0.

58
0.

96

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 427

17.6.2 Simulation Results

17.6.2.1 Appropriate Approach to Develop the MOGA-IC

In solving the first simulation example problem of CP partner selection, the best
Pareto front among the 10 trials of 20 generations are selected as the final solution.
The 16 Pareto-optimal solutions of first front of MOGA-IC with NSGA-II for simu-
lation example 1 are presented in Table 17.4. Also the graphical representations are
shown by Fig. 17.8.

Table 17.4 Pareto-optimal solutions of MOGA-IC with NSGA-II for example 1

Pareto-optimal solutions Optimal objective function values

y = (y7 y4 y3 y2 y8) Obj_1 Obj_2 Obj_3

1 18 6 10 32 3.16 3.32 7.63
1 18 10 10 32 3.49 4.2 7.33
1 34 10 28 32 2.94 4.35 6.24
1 9 32 28 21 1.37 3.66 4.93
1 9 10 28 32 2.44 4.23 6.65
1 9 32 28 19 1.45 3.81 5.49
1 9 14 28 32 2.00 3.58 6.82
1 34 32 10 32 2.23 4.01 6.97
1 18 10 28 32 3.28 4.31 6.44
1 9 32 10 32 1.73 3.89 5.88
1 34 32 28 32 2.02 4.12 5.59
1 34 6 10 32 2.82 3.36 7.39
1 34 32 10 19 2.16 3.82 6.48
1 34 10 10 32 3.15 4.24 7.12
1 9 32 28 32 1.52 4.00 5.44
1 18 14 10 32 3.05 3.55 7.27

Figures 17.9 and 17.10 show plots of Pareto optimal solution sets of the first
fronts obtained by MOGA-IC using NSGA-II when solving the simulation exam-
ples 2 and 3 respectively. Here, we have just provided the graphical representations
of the Pareto-optimal solutions for the algorithm as the input data tables are very
large.

Figures 17.11 show the average optimized values of three objective functions
in the first fronts during 50 generations using MOGA-IC with NSGA-II for the
simulation examples 2.

It is seen from Fig. 17.11 that NSGA-II Pareto front moves towards the low-cost
region without preserving each generation’s extreme solutions. Instead, the entire
Pareto front shifts as new solution sets are obtained. In other words, MOGA-IC
with NSGA-II distributes solutions in a more focused manner. In MOGA-IC with
NSGA-II, dominance ranking is used when forming the fronts of individuals and
these fronts are first used to populate the external set, based on ranking, a strategy
that allows a set of close-neighbor individuals in the same front to be included in
the next generation.

428 M.M. Hassan and E.-N. Huh

1.0 1.5
2.0

2.5
3.0

3.5
4.0

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.0

3.3

3.6
3.9

4.2
4.5

Pareto-optimal Solution

O
bj

_3
: M

ax
im

iz
in

g
P

R
 P

er
fo

rm
an

ce
 V

al
ue

s

Obj_2: M
axim

izin
g Q

uality
 va

lues

Obj_1: Minimizing Cost Values

Fig. 17.8 Pareto-optimal solutions of MOGA-IC for simulation example 1 (N/E = 50 and
G = 20) obtained by NSGA-II

0.0
0.3

0.6
0.9

1.2

1.
5

1.
8

2.
1

2.
4

2.
7

3.
0

9.0
8.5
8.0
7.5
7.0
6.5
6.0

5.5

5.0

4.5

4.0

3.5

3.0

1.8
2.4

3.0
3.6

4.2
4.8

5.4

Pareto-optimal solution

O
bj

_3
: M

ax
im

iz
in

g
P

R
 P

er
fo

rm
an

ce
 V

al
ue

s

Obj_2: M
axim

izin
g Q

uality
 Values

Obj _1: Minimizing Cost Values

Fig. 17.9 Pareto-optimal solutions of MOGA-IC for simulation example 2 (N/E = 100 and
G = 50) obtained by NSGA-II

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 429

0.0
0.

3

0.
6

0.
9

1.2 1.5
1.8

2.1
2.4

2.73.0

9.0
8.5
8.0
7.5
7.0
6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

1.8
2.4

3.0
3.6

4.2
4.8

5.4

Pareto-optimal Solution

O
bj

_3
: M

ax
im

iz
in

g
P

R
 P

er
fo

rm
an

ce
 V

al
ue

s

Obj_2: M
axim

izin
g Q

uality
 Values

Obj _1: Minimizing Cost Values

Fig. 17.10 Pareto-optimal solutions of MOGA-IC for simulation example 3 (N/E = 100 and
G = 100) obtained by NSGA-II

10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 v
al

ue
s

of
 O

bj
ec

tiv
e

F
un

ct
io

ns

Number of Generations

Optmized Values of Obj_1 (Cost)
Optmized Values of Obj_2 (Reliability)
Optmized Values of Obj_3 (PR performance)

Fig. 17.11 Average optimized values of different objective functions in the first front of MOGA-
IC with NSGA-II for 50 generations

430 M.M. Hassan and E.-N. Huh

The MOGA-IC with NSGA-II is more focused when exploring the search space
and generating Pareto solution sets. The MOGA-IC with NSGA-II uses crowding
distance when the size of non-dominated solutions exceeds the archive size. So we
found that NSGA-II is the appropriate algorithm to develop the MOGA-IC for CP
partner selection problem. Thus the pCP can select any combination of CP partners
from the Pareto-optimal solution sets obtained from MOGA-IC based on NSGA-II.

17.6.2.2 Performance comparison of MOGA-IC with MOGA-I in CACM
Model

In order to validate the proposed MOGA-IC model for CP partner selection in
CACM model, we develop another MOGA called MOGA-I based on NSGA-II that
uses INI for CP partner selection. We analyze the performance of pCP that uses both
MOGA-IC and MOGA-I algorithms to make groups and joins various auctions in
CACM model. We assume that initially no collaborative information of other CPs
is available to the pCP.

In each auction, for a set of service requirements, first all providers including
pCP form several groups using MOGA-I and submit several group bids as single
bids. The winner determination algorithm proposed in Yokoo and Suzuki (2002) is
used to find the winners. Next in the same auction with the same set of services,
the winner determination algorithm is executed again but this time pCP uses the
proposed MOGA-IC and others use MOGA-I approach and join the auctions and
winners are determined. In our simulation, 1000 auctions are generated for different
user requirements. After each 100 auctions, we count the number of auctions pCP
wins using both the algorithms. The experimental result is shown in Fig. 17.12.

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

N
um

be
r

of
 W

in
ni

ng
 th

e
A

uc
tio

ns

Number of Auctions

MOGA-IC
MOGA-I

Fig. 17.12 Comparison of MOGA-IC with MOGA-I in terms of winning the auctions

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 431

It is seen from Fig. 17.12 that using the MOGA-IC approach, pCP wins more
auctions in comparison to MOGA-I approach. The reason is that the past collabora-
tive performance values increase as the number of auctions increases and as a result
the MOGA-IC finds good combination of partners for pCP.

We also validate the performance of MOGA-IC as compared to MOGA-I in
terms of conflicts minimization among CP providers. We assume that conflicts may
happen between providers Prj and Pxi with the probability –

pconflicts =
{

1
δ×eWrj, xi

, if Wrj, xi 	= 0
1
δ

otherwise
i 	= j, r 	= x, δ > 1 (17.10)

where δ is a constant. We set δ = 20 assuming that there is 5% chance of conflicts
between any two providers Prj and Pxi if they have no past collaborative experi-
ence. Like the previous experiment, 1000 auctions are generated. For each auction
when pCP uses both the algorithms and forms groups, we count the total number
of conflicts that may happen among the group members for various services using
the probability pconflicts. The experimental result is shown in Fig. 17.13. We can
see from Fig. 17.13 that the MOGA-IC can reduce a sufficient number of conflicts
among providers as compared to the MOGA-I algorithm since it can utilize the PRI
to choose partners along with INI.

3 4 5 6 7 8 9 10
0

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

N
um

be
r

of
 C

on
fli

ct
s

Number of Services

MOGA-IC
MOGA-I

Fig. 17.13 Comparison of
MOGA-IC with MOGA-I
approach in terms of conflicts
minimization

17.7 Conclusion and Future Work

The paper presents a novel combinatorial auction based Cloud market model called
CACM that enables a DC platform among CPs. The CACM model uses a new auc-
tion policy that allows CPs to dynamically collaborate with other partners and form
groups and submit their bids for a set of services as single bids. This policy can help

432 M.M. Hassan and E.-N. Huh

to reduce collaboration costs as well as conflicts and negotiation time among CPs
in DC and therefore creates more opportunities to win the auctions for the group. A
new multi-objective optimization model of partner selection using the individual and
past collaborative information is also proposed. An effective MOGA called MOGA-
IC with NSGA-II is then developed to solve the model. In comparison with the
existing MOGA-I approach; MOGA-IC with NSGA-II shows better performance
results in CP partner selection as well as conflicts minimization among CPs in the
CACM model.

There are two important aspects of the CACM model that require further future
research efforts. One such aspect is how to measure the level of satisfaction of
partners forming the group or allocate optimal resources among partners for the
collaborative service- often it is ignored in the existing partner selection problem.
Other important aspect is how the aggregate profit/payoff should be divided among
partners so that no one leaves the group and thus the group becomes stable. We need
to analyze these aspects in future using game theory.

References

Amid, A., Ghodsypour, S. H., & Brien, C. O. (2006). Fuzzy multi-objective linear model for
supplier selection in a supply chain. International Journal of Production Economics, 104,
394–407.

Bubendorfer, K. (2006). Fine grained resource reservation in open grid economies. Proceedings of
the 2nd IEEE International Conference on e-Science and Grid Computing, Vol. 1, Washington,
DC, 81–81.

Bubendorfer, K., & Thomson, W. (2006). Resource management using untrusted auctioneers in a
grid economy. Proceedings of the 2nd IEEE International Conference on e-Science and Grid
Computing, Vol. 1, Prentice Hall, NJ, 74–74.

Buyukozkan, G., Feyzioglu, O., & Nebol, E. (2008). Selection of the strategic alliance
partner in logistics value chain. International Journal of Production Economics, 113,
148–158.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25, 599–616.

Chang, S. L., Wang, R. C., & Wang, S. Y. (2006). Applying fuzzy linguistic quantifier to select sup-
ply chain partners at different phases of product life cycle. International Journal of Production
Economics, 100, 348–359.

Chen, Y. L., Cheng, L. C., & Chuang, C. N. (2008). A group recommendation system with
consideration of interactions among group members. Expert Systems with Applications, 34,
2082–2090.

Chen, H. H., Lee, A. H. I., & Tong, Y. (2007). Prioritization and operations NPD mix in a network
with strategic partners under uncertainty. Expert Systems with Applications, 33, 337–346.

Chen, S., Nepal, S., Wang, C. C., & Zic, J. (2008). Facilitating dynamic collaborations with eCon-
tract services. Proceeding of 2008 IEEE International Conference on Web Services, Vol. 1,
Miami, FL, 521–528.

Cheng, F., Ye, F., & Yang, J. (2009). Multi-objective optimization of collaborative manufactur-
ing chain with time-sequence constraints. International Journal of Advanced Manufacturing
Technology, 40, 1024–1032.

Cowan, R., Jonard, N., & Zimmermann, J. B. (2007). Bilateral collaboration and the emergence of
innovation networks. Management Science, 53, 1051–1067.

17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform 433

Das, A., & Grosu, D. (2005). Combinatorial auction-based protocol for resource allocation in grid.
Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium,
Denver, CA.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182–197.

Fischer, M., Jahn, H., & Teich, T. (2004). Optimizing the selection of partners in production
networks. Robotics and Comput-Integrated Manufacturing, 20(5), 593–601.

Fuqing, Z., Yi, H., & Dongmei, Y. (2008). A multi-objective optimization model of the partner
selection problem in a virtual enterprise and its solution with genetic algorithms. International
Journal of Advanced Manufacturing Technology, 37, 1220.

Grosu, D., & Das, A. (2004). Auction-based resource allocation protocols in grids. Proceeding
of the 16th IASTED International Conference on Parallel and Distributed Computing and
Systems, Vol. 1, Los Angeles, CA, 20–27.

Gupta, P., & Nagi, R. (1995). Optimal partner selection for virtual enterprises in agile manufac-
turing. Submitted to IIE Transactions on Design and Manufacturing, Special Issue on Agile
Manufacturing.

Huang, X. G., Wong, Y. S., & Wang, J. G. (2004). A two-stage manufacturing partner
selection framework for virtual enterprises. International Journal of Computer Integrated
Manufacturing, 17(4), 294–304.

Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications.
Berlin: Springer.

Coombe, B. (2009). Cloud Computing- Overview, Advantages and Challenges for Enterprise
Deployment. Bechtel Technology Journal, 2(1).

Ip, W. H., Huang, M., Yung, K. L., & Wang, D. (2003). Genetic algorithm solution for a risk-based
partner selection problem in a virtual enterprise. Computers and Operations Research, 30,
213–231.

Kaya, M. (2009). MOGAMOD: Multi-objective genetic algorithm for motif discovery. Expert
Systems with Applications, 36, 2.

Ko, C. S., Kim, T., & Hwang, H. (2001). External partner selection using Tabu search heuris-
tics in distributed manufacturing. International Journal of Production Research, 39(17),
3959–3974.

Nepal, S., & Zic, J. (2008). A conflict neighboring negotiation algorithm for resource services
in dynamic collaboration. Proceedings of the IEEE International Conference on Services
Computing, 2, 7–11.

Nepal, S., Zic, J., & Chan, J. (2007). A distributed approach for negotiating resource contributions
in dynamic collaboration. Proceedings of the 8th IEEE International Conference on Parallel
and Distributed Computing Applications and Technologies, Vol. 1, Genoa, Italy, 82–86.

Saen, R. F. (2007). Supplier selection in the presence of both cardinal and ordinal data. European
Journal of Operational Research, 183, 741–747.

Sha, D. Y., & Che, Z. H. (2005). Virtual integration with a multi-criteria partner selection model
for the multi-echelon manufacturing system. International Journal of Advanced Manufacturing
Technology, 25, 793–802.

Suzuki, K., & Yokoo, M. (2003). Secure generalized vickery auction using homomorphic encryp-
tion. Proceedings of 7th International Conference on Financial Cryptography, LNCS, Springer,
Vol. 2742, Hong-Kong, China, 239–249.

Wang, Z.-J., Xu, X.-F., & Zhan, D. C. (2009). Genetic algorithms for collaboration cost
optimization-oriented partner selection in virtual enterprises. International Journal of
Production Research, 47(4), 859–881.

Weiss, A. (December 2007). Computing in the clouds. netWorker, 11(4), 16–25.
Wolski, R., Plank, J. S., Brevik, J., & Bryan, T. (2001). Analyzing market-based resource allo-

cation strategies for the computational grid. The International Journal of High Performance
Computing Applications, 15(3), 258–281.

Wu, N. Q., & Su, P. (2005). Selection of partners in virtual enterprise paradigm. Robotics
Computer-Integrated Manufacturing, 21(5), 119–131.

434 M.M. Hassan and E.-N. Huh

Yamazaki, Y. (2004). Dynamic collaboration: The model of new business that quickly responds to
changes in the market through ‘The Integrated IT/Network Solutions’ provided. NEC Journal
of Advanced Technology, 1(1), 9–16.

Yokoo, M., & Suzuki, K. (2002). Secure multi-agent dynamic programming based on homomor-
phic encryption and its application to combinatorial auctions. Proceedings of the First Joint
International Conference on Autonomous Agents and Multi-agent Systems, ACM Press, Vol. 1,
New York, NY, 112–119.

Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary
algorithm (TIK Rep. No. 103, Swiss Federal Institute of Technology, 2001).

Part IV
Applications

Chapter 18
Enterprise Knowledge Clouds: Applications
and Solutions

Jeff A. Riley and Kemal A. Delic

18.1 Introduction

With the evolution of cloud computing in recent times we have proposed
Enterprise Knowledge Clouds (EKC) as the next generation Enterprise Knowledge
Management systems (Delic & Riley, 2009).

The Enterprise Knowledge Cloud abstracted architecture is shown in Fig. 18.1.
This architecture interconnects business partners and suppliers to company cus-
tomers and consumers, and uses future cloud technologies to harvest, process and
use internal knowledge. Each of the clouds shown in Fig. 18.1 is an autonomous
entity, existing for its own purpose and capable of collecting, warehousing, man-
aging and serving knowledge to its own group of users. However, while the clouds
are independent, they will be capable of interconnection, overlap and knowledge-
sharing so that, for example, customers and consumers might have access to
appropriate internal enterprise knowledge, or even partner/supplier knowledge
through the Enterprise Knowledge Cloud.

The emergence of these clouds and their coalescence into the Enterprise
Knowledge Cloud allows, indeed encourages, the collective intelligences formed
within each cloud to emerge and cooperate with each other. As an example, internal
IT operations will use private clouds, Sales and Marketing would operate on public
clouds, while Outsourcing businesses may reside on the partner clouds – each hav-
ing different types of users and customers. The interaction and cooperation of the
user groups, their knowledge, and the collective intelligences across the three clouds
shown in Fig. 18.1 provides both the infrastructure for behavioural, structural and
strategic adaptation in response to change as well as an environment for knowledge
creation and exchange.

In the following sections we discuss Enterprise Knowledge Management (EKM)
applications and solutions in terms of cloud computing and the emergence of the

J.A. Riley (B) and K.A. Delic
Hewlett-Packard Co., New York, NY, USA
e-mails: {jeff.riley; kemal.delic}@hp.com

437B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_18, C© Springer Science+Business Media, LLC 2010

438 J.A. Riley and K.A. Delic

Enterprise Knowledge Cloud
Architecture Abstracted

EAI

EII

Business

Business

xxx call agents
x calls/hour

xxx users
x accesses/day

xxx partner companies
x accesses/day

revenues

xxx000’s employees xxx terabytes
xxxM ac-

Social Nets
Wikis
Blogs

Partner Nets
ShareWikis
ShareBlogs

SuppliersPartners

Consumers
Customers

Companies
Clients

xxx M documents /day

Massive Participation
Massive Infrastructure

Corp Nets
Corp Wikis
Corp Blogs

Fig. 18.1 Enterprise knowledge cloud: architectural view

Enterprise Knowledge Cloud. We present what we believe will be user expecta-
tions and requirements of cloud-based Knowledge Management Applications. We
also discuss issues that will face developers and providers of KM applications as
they migrate existing applications to the cloud platform, or build new applications
specifically for the cloud. Finally we present our view of the future direction of
Knowledge Management in a cloud computing environment.

18.2 Enterprise Knowledge Management

Unfortunately, even today there is no real consensus at to what “knowledge manage-
ment” really is – ask ten people to define knowledge management and you will get
twelve different answers. Worse than that – ask ten people to define “knowledge”
and you will probably walk away with twice that number of definitions.

The “DIKW Hierarchy”, or “Knowledge Hierarchy”, refers to a representation
of the relationships between Data, Information, Knowledge, and Wisdom. An early
description of the DIKW Hierarchy was given by Milan Zeleny in 1987 (Zeleny,
1987)1 in which he describes Data as “know-nothing”, Information as “know-what”
and Knowledge as “know-how” (we are not concerned with Zeleny’s definition of
Wisdom here and leave it to interested readers to refer to his paper).

1The origin of the DIKW hierarchy is far from clear – see [12].

18 Enterprise Knowledge Clouds 439

Later, Ackoff (1989) gave the following definitions for Data, Information and
Knowledge:

• Data – data is raw. It simply exists and has no significance beyond its existence
(in and of itself). It can exist in any form, usable or not. It does not have meaning
of itself. In computer parlance, a spreadsheet generally starts out by holding data.

• Information – information is data that has been given meaning by way of rela-
tional connection. This “meaning” can be useful, but does not have to be. In
computer parlance, a relational database makes information from the data stored
within it.

• Knowledge – knowledge is the appropriate collection of information, such that
its intent is to be useful. Knowledge is a deterministic process. When someone
“memorizes” information (as less-aspiring test-bound students often do), then
they have amassed knowledge. This knowledge has useful meaning to them, but
it does not provide for, in and of itself, integration such as would infer further
knowledge

We can see from these definitions that not all data is useful information, and not
all information is useful knowledge. It follows then that Knowledge Management
is not simply the management of data or information – just providing keyword
searching capabilities over one or more information repositories is not Knowledge
Management.

Referring to the definitions of knowledge proposed by Zeleny and Ackoff,
we define Knowledge Management as the process by which organisations create,
identify and extract, represent and store, and facilitate the use of knowledge and
knowledge-based assets to which they have access.

18.2.1 EKM Applications

Knowledge can be categorized as either explicit or tacit. Explicit knowledge is
knowledge that can be codified – knowledge that can be put in a form which is
easily transferred from one person to another. Examples of explicit knowledge are
patents, recipes, process documentation, operational plans, marketing strategies and
other such knowledge-based hard assets. Tacit knowledge, on the other hand, is
knowledge which hasn’t been codified and is in fact difficult to codify and transfer –
knowledge that exists as “know-how” in people’s heads, often unknown or unrecog-
nised. Examples of tacit knowledge are things such as habits, sometimes cultural
and often learned by observation and imitation, and the notion of language.

Knowledge Management applications can be similarly categorised, and while
traditional KM applications focused on managing explicit knowledge (knowledge
base management systems, workflow management systems etc.), with the advent of
Web2.0, social networking and groupware, mashups, wikis, blogs and folksonomies

440 J.A. Riley and K.A. Delic

etc., there is more opportunity for KM applications focused on managing tacit
knowledge to evolve.

Typical Knowledge Management applications can be layered into three essential
subsystems:

• Front-end portals that manage interactions with internal users, partners’ agents
and external users, while rendering various Knowledge Services. Different classes
of users (e.g. internal vs external) are often presented with slightly different
portals allowing access to different knowledge and services.

• A core layer that provides the knowledge base and access, navigation, guidance
and management services to knowledge portals and other enterprise applications.
The core layer provides the Knowledge Base Management System (KBMS), the
Knowledge Feeds – the means by which knowledge is added to the knowledge
base or exchanged with other knowledge management systems or users – as well
as the mechanism to distribute and inject appropriate knowledge into business
processes throughout the enterprise.

KBMS

Knowledge
Base

Knowledge
Feeds

Workflow

Front End

KM Core

Back End

Enterprise Knowledge Management Stack

Users
Companies
Clients

Internet

Partner DMZ

Intranet

Authors

Groups/Forums

Automatic

1

2

3

4

Portals

Core KM
Search

Content Management
System

Workflow
Management

System

Suppliers
Partners
Exchange

Enterprise Knowledge Management
Architecture Abstracted

Fig. 18.2 Enterprise knowledge management: architectural view

18 Enterprise Knowledge Clouds 441

• The back-end that supplies Knowledge Content, and the content management
system, from various sources, authors and communities, enabling a refresh of the
knowledge base.

Thus, Enterprise Knowledge Management is typically a three-tier enterprise
application probably spread over several geographically dispersed data centres, and
typically interconnected or integrated with enterprise portals, content and workflow
management systems (Fig. 18.2).

The Enterprise Workflow System captures interactions with users and provides
necessary context for the Enterprise Knowledge Management system. Various feeds
enable flow and exchange of knowledge with partners and suppliers. Today these
feeds are mainly proprietary, while we expect that they will evolve into standards-
based solutions for large-scale content flows (RESTful services, RSS, ATOM, SFTP,
JSON, etc.). To indicate the scale and size of the typical corporate knowledge
management system, we presume that the knowledge base contains several mil-
lion knowledge items, and users number in the hundreds of thousands. Enterprise
knowledge management is considered a high-end, mission-critical corporate appli-
cation which resides in the corporate data centre. High availability and dependability
are necessary engineering features for such global, always-on, always-available sys-
tems. The transformation of EKM into the enterprise cloud will increase the scale
and importance by orders of magnitude.

18.3 Knowledge Management in the Cloud

Knowledge Management in a cloud computing environment requires a paradigm
shift, not just in technology and operational procedures and processes, but also in
how providers and consumers of knowledge within the enterprise think about knowl-
edge. The knowledge-as-a-service, “on-demand knowledge management” model
provided by the cloud computing environment can enable several important shifts
in the way knowledge is created, harvested, represented and consumed.

18.3.1 Knowledge Content

Collective intelligence is a phenomenon that emerges from the interaction – social,
collaborative, competitive – of many individuals. By some estimates there are more
than eighty million people worldwide writing web logs (“blogs”). The blogs are
typically topic-oriented, and some attract important readership. Authors range from
large company CEOs to administrative assistants and young children. When taken
together, the cloud computing infrastructure which hosts “blogospheres” is a big
social agglomeration providing a kind of collective intelligence. But it is not just
blogs that form the collective intelligence – the phenomenon of collective intel-
ligence is nurtured and enhanced by the social and participatory culture of the

442 J.A. Riley and K.A. Delic

internet, so all content developed and shared on the internet becomes part of the
collective intelligence. The internet then, and the content available there, appears
as an omnipresent, omniscient, giant infrastructure – as a new form of knowledge
management. This same paradigm applies, albeit on a smaller scale, to the enterprise
cloud – the socialisation and participatory culture of today’s internet is mirrored in
the microcosm of the enterprise.

Today this represents collaboration of mostly people only, but very soon in the
future we may envisage intelligent virtual objects and devices collaborating with
people. Indeed, this is already beginning to happen to some extent with internet-
attached devices starting to proliferate. Thus, rescaling from the actual ∼1.2 billion
users to tens or even hundreds of billions of real-world objects having a data
representation in the virtual world is probably realistic.

It is important to note here that content will no longer be located almost solely in
a central knowledge repository on a server in the enterprise data centre. Knowledge
in the cloud is very much distributed throughout the cloud and not always residing
in structured repositories with well-known query mechanisms. Knowledge manage-
ment applications offered in the cloud need to be capable of crawling through the
various structured and ad hoc repositories – some perhaps even transient – to find
and extract or index knowledge, and that requires those applications be capable of
recognising knowledge that might be useful to the enterprise knowledge consumers.
Furthermore, we believe that over time multimedia content will become dominant
over ordinary text, and that new methods for media-rich knowledge management
will need to be devised.

Even in the smaller world of the enterprise, a real danger, and a real problem to
be solved by knowledge management practitioners, is how to sort the wheat from
the chaff – or the knowledge from the data and information – in an environment
where the sheer amount of data and information could be overwhelming.

18.3.2 Knowledge Users

Leaving aside administrative tasks, there will be two categories of users within the
Enterprise Knowledge Cloud: Knowledge Providers and Knowledge Consumers.

While sketching the architecture of future enterprise knowledge management
applications, serious consideration needs to be given to aspects and dimensions of
future users – the evolution of technology in consumer and corporate domains has
created a new type of user that will be very different from contemporary knowledge
consumers.

The younger generation – the so-called “Generation Y” or “Millennial
Generation” – seems to have developed a way to quickly exchange information
snippets, being either very short text messages or particular multimedia content.
Members of this generation also typically have a much better ability to multitask
naturally while not losing or intermixing communication threads – probably a nat-
ural consequence of their exposure to electronic gaming and new work and living

18 Enterprise Knowledge Clouds 443

styles. This new generation of knowledge consumer will drive the on-demand nature
of knowledge management in the cloud. Moreover, they will require their knowledge
served up to them in “BLATT” format – with the “bottom line at the top” – and with
media-rich content.

Knowledge providers will need to develop applications that recognise the salient
knowledge in response to queries, and deliver a synopsis of that salient material
ahead of the detail. Delivering a list of documents for the user to read through
and identify and extract the knowledge themselves will no longer be acceptable.
Furthermore, knowledge management applications in the cloud will need to be
capable of presenting media-rich results to the consumer concurrently with more
traditional text-based results. Knowledge consumers that have grown up with the
internet know that knowledge is more than just text in a data base, and when they
seek knowledge they will want to view the video as well as read the text. The new,
internet-savvy knowledge consumers will want short, sharp, to-the-point responses
to their queries – but responses which are complete and include audio and visual
content where appropriate.

18.3.3 Enterprise IT

From our experience, the best domain for Enterprise Knowledge Management is in
the Enterprise IT domain, as it is a domain under huge cost pressure but one which
is essential for strategic development.

From a highly abstracted view, the Enterprise Knowledge Management IT
domain consists of problem solving, monitoring, tuning and automation, business
intelligence & reporting, and decision making tasks (Fig. 18.3).

The tasks of problem solving, monitoring, tuning and automation, business
intelligence and reporting, and decision making are the most promising areas for
the future deployment of Enterprise Knowledge Clouds. The knowledge available
to both IT administrators and automated management agents via the Enterprise

Enterprise Knowledge Management
IT Deployment Domains

Problem
Solving

Decision
Making

Monitoring
Tuning

Automation

Business
Intelligence
& Analytics

KNOWLEDGE

Fig. 18.3 Enterprise
knowledge management: IT
deployment domains

444 J.A. Riley and K.A. Delic

Knowledge Cloud will help drive the development of a slew of new technologies
addressing the problems which previous computing facilities couldn’t resolve.

Currently, the majority of the indicated IT tasks include people, while we sug-
gest that this balance will be changed in the future through automation, ultimately
leading to self-managing enterprise IT systems (Delic & Faihe, 2007). When
mapped into more precise form, this conceptual drawing (Fig. 18.3) will evolve
into the enterprise-scale knowledge management application stack discussed earlier
(Fig. 18.2).

18.3.3.1 Problem Solving

Problem solving, especially in the Enterprise Knowledge Management IT domain,
is the task for which knowledge management techniques and systems are most com-
monly deployed. The proliferation of knowledge management systems for problem
analysis and solving is many and varied, spanning the gamut from knowledge cap-
ture, representation and transformation, through to recognition, extraction and reuse.
Knowledge from all sources, including human expertise, in the form of plain text,
models, visual artefacts, executable modules, etc. is used by intelligent knowledge
management systems to enable users to solve problems without reference to scarce,
and often expensive, human experts.

With the advent of the Enterprise Knowledge Cloud and associated interfaces to
knowledge bases and knowledge feeds, software agent-based problem solving and
guidance becomes much more of a realistic proposition. Intelligent software agents,
able to be trained by “watching” and learning from experienced and expert human
support engineers, can be deployed across the cloud to assist less experienced, some-
times novice, engineers and end users. These intelligent software agents will have
knowledge of and access to all knowledge repositories and knowledge feeds across
the Enterprise Knowledge Cloud.

The potential for collaborative problem solving is expanded in the Enterprise
Knowledge Cloud, with the social networking aspect of the cloud environment
facilitating both greater interaction between the end user and support engineer and
amongst support engineers and others with relevant knowledge – including software
agents, and eventually intelligent software agents collaborating with other software
agents.

The Enterprise Knowledge Cloud provides a platform not only for collabora-
tive problem solving, but also for distributed problem solving. Distributed problem
solving is not new, and there are established grid middleware and resource brokering
technologies that facilitate the development of distributed applications (e.g. Foster
& Kesselman, 1999; Frey, Tannenbaum, Livny, Foster, & Tuecke, 2004; Venugopal,
Buyya, & Winton, 2006), but more recently distributed problem solving applications
developed specifically for the Enterprise Cloud have been described. In Vecchiola,
Kirley, and Buyya (2009), Vecchiola, Kirley and Buyya describe a network-based,
multi-objective evolutionary algorithm to be deployed on an Enterprise Cloud for
solving large and complex optimisation problems – for example, the tuning and
management of computer systems and networks.

18 Enterprise Knowledge Clouds 445

18.3.3.2 Monitoring, Tuning and Automation

In recent years a wide variety of Artificial Intelligence (AI) techniques and heuris-
tics have been deployed in knowledge management systems in an effort to make the
systems smarter and more responsive. These smarter knowledge management sys-
tems are particularly well suited to automation and self-management tasks, where
the goal is to provide automated monitoring of system use and predictive tuning of
system parameters to achieve automatic system scale out.

Delic et al. describe a system for the self-management of Apache Web Servers
using a hierarchical control system well-suited to implementation on an Enterprise
Knowledge Cloud platform (Delic, Riley, Bartolini, & Salihbegovic, 2007a). Their
hybrid approach harvests and combines knowledge from different sources and
utilises machine learning techniques to learn and implement heuristics to manage
the web server (Fig. 18.4).

Fig. 18.4 Control system for self-management of apache web servers

The self-managing Enterprise IT system is becoming more achievable as knowl-
edge management systems become smarter and knowledge more accessible. The
automation of system monitoring, problem recognition, analysis and, when nec-
essary, routing to a human expert is a critical step in architecting self-managing
systems. Figure 18.5 shows an architecture for a state-based, adaptive, self-
managing Enterprise IT system (Delic, Riley, & Faihe, 2007b). The system shown in
Fig. 18.5 recognises the system state and applies solutions to known-problem where
applicable, or routes the problem to an expert to solve as necessary. Problems routed
to experts are solved, and knowledge of the solutions is fed back into the system to
allow that knowledge to be applied as “known-problem solutions” in the future.

446 J.A. Riley and K.A. Delic

Fig. 18.5 Self-managed enterprise IT system

System state and known-problem recognition are learned in an “offline” mode by
the system – facilitated by the integrated knowledge management systems of the
Enterprise Knowledge Cloud in a way that has not been possible, or is vastly more
difficult, in a non-cloud environment.

18.3.3.3 Business Intelligence and Analytics

Business Intelligence (BI) refers to a range of methodologies, technologies, skills,
competencies, and applications businesses implement and utilize in order to better
understand their commercial context. Typically business intelligence systems are
knowledge management systems that provide current and predictive views of the
business based on historical and current data relating to the business itself and the
commercial environment in which it exists. Business Intelligence reporting is more
than the simple reporting of data gathered – BI reporting uses a wide range of AI
techniques to extract relevant knowledge from incoming data streams and repos-
itories and provide observations, hints and suggestions about trends and possible
futures.

Enterprise analytic systems provide different classes of users a wide range of
analytics from holistic views of the enterprise state and subsystems to the tasks of
optimization and forecasting (Delic & Dayal, 2003). These systems cover different

18 Enterprise Knowledge Clouds 447

domains, address varying value-at-risk entities, and require different analytic arte-
facts to be provided to users in order to improve and accelerate decisions. Highly
abstracted, the enterprise architecture can be dissected into event, transaction and
analytic layers, each having different purposes, objectives and design constraints
(Fig. 18.6).

Authorisation

Workflow

Web Access

Events Transactions Analytics

Customers & Clients

Partners & Suppliers

Enterprise
Portal

Business
Cockpit

Executives

Employees

Managers/
Analysts

Simulation System

Knowledge System

Data Warehouse

Operational Data Store

Calls/ Business
Events

IT / IS Events

MonitoringIT/IS Fabrics

Business

Help
Desk

Operational
Centre

Workbench

Heterogeneous Platforms

Billing

Interoperability Standards

XML - Web Standards

Extract/Load

Extract/Load

Transactions

Fig. 18.6 Abstracted enterprise architecture

Different types of users of enterprise analytics use different artefacts: senior
executives and analysts typically require interactive/active content, whereas pas-
sive/static content is used by larger communities of employees. Each generic type
of user also exhibits different usage patterns: analysts typically need a powerful
client/server setup; managers need browser access to analytics from a portable
system; lower-level employees might need analytics right on their desktops or
accessible via temporarily connected PDAs, mobile phones, or other portable
devices.

The Enterprise Knowledge Cloud brings together the technologies and knowl-
edge repositories underpinning today’s business intelligence and analytics systems.

18.3.3.4 Decision Making

Decision making is most often done by humans after consuming the results of
the business intelligence and analytics reporting, but with the volume of business
intelligence available to analysts increasing almost exponentially it is becoming
more and more difficult for humans to make sensible, rational and timely decisions.
For this reason more responsibility for the decision making task is being given to

448 J.A. Riley and K.A. Delic

knowledge-driven Decision Support Systems (DSS) which typically employ some
sort of artificial intelligence tuned to the environment of the DSS deployment.

Delic et al. describe a real-time Decision Support System for a typical IT situa-
tion: help-desk support for enterprise customers (Delic, Douillet, & Dayal, 2001).
Such help-desk support deals with IT equipment usage problems (usually desktop
workstations), provides operations centre support to manage the network, servers
and applications. Figure 18.7 depicts a help-desk system which uses a workflow
system to capture “problem cases” (phone call records) and “trouble tickets” (events
initiated from the equipment or/and applications). Two kinds of knowledge bases
support IT help-desk operations: case knowledge bases containing problem-solving
knowledge (often in the form of documents and search tools, diagnostic tools such
as Bayesian networks, case-based reasoning tools, etc.); and real-time knowledge
bases containing events, event management knowledge (e.g., event-condition-action
rules) and enterprise topology.

Operations Centre

Help Desk

Network

ServersEvents

Calls Knowledge
Base

Real-Time
Knowledge

Base

Workflow

E
nt

er
pr

is
e

Applications

Trouble
Tickets

Cases

Problem
Solving

Knowledge

Customer
Care

Knowledge

Event
Management
Knowledge

Topological
Knowledge

1 32

PRTPRR Expert
Analyst

First Level
Analyst

Fig. 18.7 Real-time decision support system for IT help desk

A help-desk is usually staffed by first call contact analysts who use the knowledge
bases and tools available to solve less complex problems, and dispatch the more
complex problems to second and third line analysts for resolution.

A manager responsible for IT help-desk support operations typically wants to see
a variety of performance metrics, including Problem Resolution Rate [PRR] for the
front-line analysts, and Problem Resolution Time [PRT] for the second and third
line of support. Traditionally the manager would typically get monthly or weekly

18 Enterprise Knowledge Clouds 449

reports from the workflow system, but with more current information the manager
could react more quickly to changes in operating conditions. For example, if the
help-desk manager was able to observe in real time that PRR is going down and PRT
is going up, he or she could decide quickly what corrective action to take. The causes
of the problem could be varied and interdependent, masking the prevailing cause or
disabling proper diagnosis and decision-making. The manager may need additional
information to determine the actual causes, so a real-time Decision Support System
is critical in this case.

The Enterprise Knowledge Cloud, with its integrated knowledge repositories
and Knowledge Management Systems is an ideal environment for a knowledge-
based DSS. A knowledge-driven Decision Support System can be viewed in general
terms as the combination of a problem solving system and business intelligence and
analytics reporting. The knowledge-driven DSS applies specialist problem solv-
ing capabilities to the analytics reported by the enterprise analytics and business
intelligence systems and recommends decisions and actions to users of the sys-
tem. In some cases more advanced and intelligent systems will actually perform
recommended actions or implement recommended decisions.

18.3.4 The Intelligent Enterprise

Business enterprises today use the existing internet infrastructure to execute various
business operations and provide a wide variety of services. As we see the shift of
all non-physical operations versus the internet, we observe a new type of enterprise
emerging: the Intelligent Enterprise (Delic & Dayal, 2010).

The Intelligent Enterprise is able to interact with its environment, change its
behaviour, structure and strategy – behaving actually as an intelligent entity. It is
able to adapt to rapid changing market circumstances, gradually change its busi-
ness model and survive into the next market cycle. The Intelligent Enterprise as
we see it is characterized by its ability to learn from and adapt to changes in
its environment and reinvent itself, sometimes with surprising results. In order to
keep up with the rapidly changing demands of doing business, most enterprises
implement increasingly complex IT solutions. Although implemented to make the
enterprise more efficient, coupled with the organizational complexity of such large
enterprise business, the technical complexity introduced by the many and varied
IT solutions helps create pockets of inefficiencies within the organization. We see
future Intelligent Enterprises deriving efficiencies through the automation of their
core business processes, and the exploitation of knowledge inherent in their organi-
zation. Their ability to respond quickly to changes will improve significantly as the
knowledge base and “intelligence density” within the enterprise grows and problem-
solving capabilities improve dramatically. Intelligent Enterprises will form dynamic
partnerships with other enterprises to create dynamic business ecosystems, which
will be self-managed, self-configured and self-optimized. In short, future enterprises
will become smarter – more intelligent – and by doing so will evolve automatically
into organizations more suited to their changing environment.

450 J.A. Riley and K.A. Delic

We postulate that the emergence of collective intelligences in the cloud com-
puting infrastructure will influence markets and established businesses, allowing –
even encouraging – Intelligent Enterprises to emerge, and reshape the contemporary
approach to Enterprise Knowledge Management.

18.4 Moving KM Applications to the Cloud

Not all applications are suited to cloud computing, so it follows that not all
Knowledge Management applications will be good candidates for migration to
a cloud platform. A number of issues need to be considered when deciding
whether any application should run on a cloud platform, all of which apply to KM
applications.

Some considerations when either migrating applications to a cloud environment
or designing for the cloud are:

• Security and Privacy: while less of a problem in an enterprise cloud than a public
cloud or the open internet, security and privacy issues need to be considered when
migrating KM applications to the cloud, or when designing new KM applications
for the cloud.

• Latency: if the speed with which knowledge queries are answered is critical,
then careful consideration should be made as to whether the knowledge appli-
cation serving those queries should be moved to, or developed on, the enterprise
cloud. Individual business, even within larger enterprise business, may be able
to provide faster access to dedicated knowledge bases than is possible in a cloud
environment.

• Transaction Management: data integrity, concurrency and latency are all issues
for transaction management in the cloud. There are many strategies for coping
with issues in this area – the right ones need to be chosen for each application.

• Criticality and Availability: the criticality of the underlying cloud infrastructure
should match the criticality of the applications to be run on that infrastructure.
Mission critical KM applications, for example, should not be deployed in a non-
mission critical cloud environment.

18.5 Conclusions and Future Directions

Cloud technology is driving a new paradigm in knowledge management. The partic-
ipatory and collaborative nature of the internet and cloud computing is both creating
more knowledge and providing access to knowledge that was hitherto not generally
accessible. There is much more data and information to sort through to find the
gems of knowledge – some of the data and knowledge is transient, and some of it
not recognisable as knowledge. New technologies will be developed to cope with an
almost overwhelming volume of data, information and knowledge.

18 Enterprise Knowledge Clouds 451

Knowledge content today is mostly text-based, but for the future we see an evolu-
tion towards multimedia and active content. Users today are either fixed or mobile:
tomorrow we expect they will be virtual, and later will take personalities of “avatars”
to protect privacy and integrity. And while today’s enterprise applications are devel-
oped by IT departments, with users becoming more tech and internet savvy we
predict a shift towards user-developed applications: mash-ups written in high-level
mash-up languages.

Current Enterprise Knowledge Management systems are enterprise applications
in data centres, while we expect them to evolve into “Enterprise Grids” on which
others envisage the development of “Knowledge Management Grids” (Cannataro
& Talia, 2003). Once the technology is stable and markets grow, we predict the
development of clouds as the super-structure of Enterprise Grids, interconnecting
enterprise data centres providing various functionalities.

Thus, while the architecture of today’s Enterprise Knowledge Management
systems is built around the enterprise stack, tomorrow’s Enterprise Knowledge
Management architecture will be distributed and loosely-coupled, and later moving
to decoupled, completely pluggable, intelligent knowledge management appliances
capable of adapting to interface with Enterprise Knowledge Clouds as required
(Table 18.1).

Table 18.1 Evolution of EKM systems

EKM systems Today Tomorrow Beyond

Architecture Enterprise Stack Distributed Decoupled/Pluggable
Infrastructure Datacentre Grid Cloud
Application IT Controlled User Produced On Demand
Content Mainly Text Multimedia Active
Users Fixed/Mobile Virtual Avatars
Standards 3 W.org Web 2.0 Web 3.0

We are in the midst of important social, technological and market changes where
we see some major companies announcing their intention to enter, drive and domi-
nate the field of cloud computing (Hayes, 2008; Staten, 2008; Weiss, 1987). We see
this as a precondition for the emergence of the intelligent, adaptive enterprise which
was announced in the previous century, but can be created only in the right techno-
logical circumstances. We believe that enterprise intelligence will draw its capacities
from the Enterprise Knowledge Clouds embedded in the global, dependable fabrics
consisting of subjects, objects and devices. Cloud computing will enable massive
and rapid rescaling of the content production, consumption and participation of the
various groups of cloud users at an unprecedented scale.

Massive collaboration (on content tagging, for example) followed by the emer-
gence of ontologies based on the Semantic Web, and adjusted by the folksonomies
developed as user-oriented Web 2.0 applications, will embody collective intel-
ligence as the new source of knowledge. To see this happen, we postulate the

452 J.A. Riley and K.A. Delic

necessity of massive, global, mega-scale infrastructure in the form of cloud com-
puting (interconnected grids and data centres). We are at the very beginning
of important new developments where we expect that the field of Enterprise
Knowledge Management will be rescaled by an order of magnitude and will spawn
the creation of a new kind of EKM system – the Enterprise Knowledge Exchange,
enabling trade, exchange and monetisation of knowledge assets.

References

Ackoff, R. L. (1989). From data to wisdom. Journal of Applied Systems Analysis, 16, 3–9.
Cannataro, M., & Talia, D. (2003). The knowledge grid. Communications of the ACM, 46(1),

89–93.
Delic, K. A., & Dayal, U. (2003). A new analytic perspective. Intelligent Enterprise

Magazine, 6(11). Available from: http://intelligent-enterprise.informationweek.com/030630/
611feat2_1.jhtml.

Delic, K. A., & Dayal, U. (2010). The rise of the intelligent enterprise. ACM Ubiquity, (45).
Retrieved February 1, 2010, from http://www.acm.org/ubiquity.

Delic, K. A., & Riley, J. (2009). Enterprise knowledge clouds: Next generation KM systems?
Proceedings of the 2009 International Conference Information, Process, and Knowledge
Management (eKnow 2009), Cancun, Mexico, 49–53.

Delic, K. A., Douillet, L., & Dayal, U. (2001). Towards an architecture for real-time decision
support systems: Challenges and solutions. Proceedings of the 2001 International Database
Engineering & Applications Symposium (IDEAS’01), Grenoble, France, 303–311.

Delic, K. A., Riley, J., Bartolini, C., & Salihbegovic, A. (October 2007a). Knowledge-based self-
management of apache web servers. Proceedings of the 21st International Symposium on
Information, Communication and Automation Technologies (ICAT’07), Sarajevo, Bosnia and
Herzegovena.

Delic, K. A., Riley, J., & Faihe, Y. (June 2007b). Architecting principles for self-managing
enterprise IT systems. Proceedings of the 3rd International Conference on Autonomic and
Autonomous Systems, Athens, Greece, 60–65.

Foster, I., & Kesselman, C. (1999). Globus: A toolkit-based grid architecture. In I. Foster, & C.
Kesselman (Eds.), The grid: Blueprint for a new computing infrastructure (pp. 259–278). Los
Altos, CA: Morgan Kaufmann.

Frey, J., Tannenbaum, T., Livny, M., Foster, I., & Tuecke, S. (2004). Condor-G: A computation
management agent for multi-institutional grids. Cluster Computing, 5(3), 237–246.

Hayes, B. (2008). Cloud computing. Communications of the ACM, 51(7), 9–11.
Staten, J. (March 2008). Is cloud computing ready for the enterprise?, Forrester Research, March 7.
Vecchiola, C., Kirley, M., & Buyya, R. (2009). Multi-objective problem solving with offspring

on enterprise clouds. Proceedings of the Tenth International Conference on High-Performance
Computing in Asia-Pacific Region (HPC Asia 2009), Hongkong.

Venugopal, S., Buyya, R., & Winton, L. (2006). A grid service broker for scheduling e-science
applications on global data grids. Concurrency and Computation: Practice and Experience,
18(6), 685–699.

Weiss, A. (2007). Computing in the clouds. netWorker, 11(4), 16–25.
Zeleny, M. (1987). Management support systems: Towards integrated knowledge management.

Human Systems Management, 7(1), 59–70.

Chapter 19
Open Science in the Cloud: Towards a Universal
Platform for Scientific and Statistical Computing

Karim Chine

19.1 Introduction

The UK, through the e-Science program, the US through the NSF-funded cyber
infrastructure and the European Union through the ICT Calls aimed to provide
“the technological solution to the problem of efficiently connecting data, comput-
ers, and people with the goal of enabling derivation of novel scientific theories
and knowledge”.1 The Grid (Foster, 2002; Foster, Kesselman, Nick, & Tuecke,
2002), foreseen as a major accelerator of discovery, didn’t meet the expectations
it had excited at its beginnings and was not adopted by the broad population of
research professionals. The Grid is a good tool for particle physicists and it has
allowed them to tackle the tremendous computational challenges inherent to their
field. However, as a technology and paradigm for delivering computing on demand,
it doesn’t work and it can’t be fixed. On one hand, “the abstractions that Grids
expose – to the end-user, to the deployers and to application developers – are inap-
propriate and they need to be higher level” (Jha, Merzky, & Fox, 2009), and on
the other hand, academic Grids are inherently economically unsustainable. They
can’t compete with a service outsourced to the Industry whose quality and price
would be driven by market forces. The virtualization technologies and their corol-
lary, the Infrastructure-as-a-Service (IaaS) style cloud2, hold the promise to enable
what the Grid failed to deliver: a sustainable environment for computational sci-
ences that would lower the barriers for accessing federated computational resources,
software tools and data; enable collaboration and resources sharing and provide the
building blocks of a ubiquitous platform for traceable and reproducible computa-
tional research. Amazon Elastic Compute Cloud (EC2) (Amazon, Inc., 2006) is an

K. Chine (B)
Cloud Era Ltd, Cambridge, UK
e-mail: karim.chine@polytechnique.org
1http://en.wikipedia.org/wiki/Cyberinfrastructure.
2Interview with KateKeahey (2009), An interview with kate keahey of the nimbus project, a
cloud computing infrastructure [Online]. Available: http://www.nsf.gov/news/news_videos.jsp?
cntn_id=114788&media_id=65105.

453B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_19, C© Springer Science+Business Media, LLC 2010

454 K. Chine

example of Infrastructure-as-a-Service that anyone can use today. Its considerable
success announces the emergence of a new era. However, bringing that era for
research and education still requires the software that would bridge the gap between
the cloud and the scientists’ everyday tools (YarKhan, Dongarra, & Seymour, 2006)
and would make Infrastructure-as-a-Service a trivial commodity.

This article describes Elastic-R,3,4 platform that makes working with R on the
cloud as simple as working with it locally. More generally, it aims to be the missing
link between the cloud and the most widely used data analysis tools and Scientific
Computing Environments (SCEs). Elastic-R synergizes the usage scenarios of those
environments with the usage scenarios of the cloud and empowers them with what
the cloud has best to offer:

User-friendly and flexible access to Infrastructure-as-a-Service: The cloud inter-
faces are simple and expose the right abstractions for managing and using virtual
appliances within a federated computing environment but the cloud consoles remain
tools for computer savvies. Elastic-R offers a simplified façade to the cloud that
makes any scientist able to choose and run the virtual machine with the specific
scientific computing environment (example: R version 2.9, Scilab,5 Sage,6 Root,7

etc.). The scientist can then have access to the full capabilities of the environment
using the Elastic-R Java workbench or from within a standard web browser using the
Elastic-R Ajax workbench. The scientist can issue commands, install and use new
packages, generate and interact with graphics, upload and process files, download
results, create and edit R-enabled server-side spreadsheets, etc. The scientist can
disconnect from the engine and reconnect again from anywhere, retrieving his full
session including workspace, graphics, etc. and can continue working from where
he left off. The virtual machine can be simply shut down when not needed anymore.
The user is charged only for the usage time. User’s data (working directory content)
remains on a virtual disk on the cloud that can be attached once again to a new
virtual machine instance.

Collaboration: A virtual machine instance on the cloud has a public IP address
and can be seen and used by the owner’s collaborators who can be located any-
where. Elastic-R allows the scientist to expose his machine and his R sessions (for
example) to his collaborators (Fig. 19.1). All of them can connect their Java or
Ajax workbenches to the same R engine and can control that engine and update
its environment. The actions of each collaborator in the console (commands issued,
chat), on the graphics (plotting, annotating, resizing and slides viewing) or on the
spreadsheets (cells updating, cells selecting) are broadcasted to the others and their
workbenches show the changes in real time.

3www.elasticr.net/platform
4www.elasticr.net/portal
5http://www.scilab.org
6http://www.sagemath.org/
7http://root.cern.ch/

19 Open Science in the Cloud 455

Fig. 19.1 Elastic-R portal: collaborative Virtual Research Environment

On-demand elasticity: Elastic-R exposes to the scientist a major feature of the
cloud which is the ability to choose the capacity of the virtual machine instances,
such as the number of virtual cores, the memory size and the disk space. He can
then run on the cloud analysis or simulations that require more memory than avail-
able on his laptop or would take days if run locally. Elastic-R allows the scientist to
solve compute-intense problem by starting any number of virtual machines hosting
R engines that can process in parallel partial tasks. Those pools of engines can also
be used to create Web applications with dynamic analytical content generated by
R or any other environment. For those applications, the Elastic-R platform enables
cloudbursting: virtual machines can be fired up or shut down (increasing or decreas-
ing the engines pool size) to scale up or scale down according to the load of the
application.

Applications deployment flexibility: The cloud can host very easily client-server
style applications. Elastic-R is a platform that allows anyone to assemble statisti-
cal/numerical methods and data on the server (an Elastic-R virtual machine instance
on the cloud) and to visually create and publish, in the form of URLs, interactive
user interfaces and dashboards exposing those methods and data. Elastic-R also pro-
vides tools that allow anyone to expose those methods (implemented by R functions
for example) as SOAP Web services that can be used as computational services on
the cloud for data analysis pipelines or as nodes for workflow workbenches.

Recording capabilities: Because the scientific computing environments acces-
sible through Elastic-R are running on virtual machines and because the working

456 K. Chine

directories are hosted by virtual disks, a snapshot of the full updated computational
environment can be produced at any point in time. That snapshot can be archived
or made available to anyone using the Elastic-R workbenches: an author can share
his environment with the reviewers of the journal to which he submitted his paper, a
teacher can make the statistical learning environment needed for his course available
to his students, a researcher in laboratory A can make his simulation environment
accessible to his collaborators in laboratory B, etc.

This chapter is organized as follows: The first section describes the building
blocks of the Elastic-R platform and the ecosystem it creates for the interoper-
ability, sharing and reuse of the computing artifacts. The second section describes
how the usage scenarios of Elastic-R can be integrated with those of an IaaS.
The third section details the major e-Science use cases Elastic-R deals with. The
fourth section shows how it can be used as a highly productive cloud applications
platform.

19.2 An Open Platform for Scientific Computing,
the Building Blocks

R is a language and environment for statistical computing and graphics and it
became the lingua franca of data analysis (R Development Core Team, 2009).8

R has a very powerful graphics system as well as cross-platform capabilities for
packaging any computational code. Hundreds of available R packages, exponen-
tially growing in number, implement the most up-to-date computational methods
and reflect the state-of-the-art of research in various fields. R packages have become
a reproducible research enabler because they enable functions and algorithms to be
reused and shared. There is no obstacle to a large-scale deployment of R on pub-
lic clouds and Grids since it is licensed under the GNU GPL (Chambers, 1998).
However, R is not multithreaded and does not operate as a server. As a language,
it implements the powerful S4 class system but as a library, R has only a low-
level non-object oriented Application Programming Interface (API). Graphical User
Interfaces (GUIs) development for R remains non standardized. R’s potential as a
computational back end engine for applications and service-oriented architectures
has yet to be fully exploited. While its user base is growing at a high rate, this growth
rate would be significantly higher with a user-friendly and rich workbench. Elastic-
R brings to the R ecosystem all those missing features which may enable it to be
applied in many more situations, in various different ways. Its ambition though goes
far beyond the provision of new tools and frameworks. By extending R’s logic of
openness and extensibility, Elastic-R builds an environment where all the artifacts
and resources of computing become “pluggable” and not only the computational
component (the R package).

8http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html

19 Open Science in the Cloud 457

Figure 19.2 shows the key features of Elastic-R. The Java or Ajax Elastic-R
workbench allows the scientist, the statistician, the financial analyst, etc. to eas-
ily assemble (plug together) synergetic capabilities, described in the following
sections:

Fig. 19.2 The open computational platform’s ecosystem

19.2.1 The Processing Capability

By providing a simple URL and credentials, the scientist connects his workbench
to an R-based remote computational engine and gain access to the computational
resource whether it is a node of Grid, a virtual machine of a cloud, a cluster or his
own laptop. The engine is agnostic to its hosting operating system and hardware.
IaaS requires such a mechanism for computing to become “like electricity”. EC2
(Amazon, Inc., 2006) allows the user to choose the capacity of the virtual machine
(number of virtual cores, memory size, etc.) he would like to launch. The Elastic-R
workbench exposes that choice to the scientist in its simplified EC2 Console. The
state of an Elastic-R engine persists until the computational resource is released
(the virtual machine is shut down, the interactive Grid job is killed, the process on
the physical server is killed, etc.). The scientist can disconnect form the engine and
reconnect again from anywhere: he retrieves his session with all variables, functions,
graphics, spreadsheets, etc.

458 K. Chine

19.2.2 The Mathematical and Numerical Capability

By gaining access to an R session and by importing into his workspace the R
packages related to his problem domain, the scientist gathers the functions and
mathematical models needed to process data and transform it into knowledge and
insight. The R package can be a wrapper of any mathematical library written in C,
C++, FORTRAN, etc. R can be considered as a universal framework for compu-
tational code and computational toolkits. From within his R session, the scientist
can also call Scilab,5 Sage,7 Root,9 etc. and increase the mathematical capability of
his environment. An architecture for server-side extensions allows anyone to build
java bridges that couple the Elastic-R engine with any software. Such bridges are
available for Matlab10 and OpenOffice.11

19.2.3 The Orchestration Capability

The S language implemented by R is one of the most powerful languages ever
created for “programming with data”.6 Besides R, the user can orchestrate tasks
and control data flow using python and groovy. Interpreters for theses scripting
languages are embedded both within the Elastic-R engine (on server side) and
within the workbench (client side). The full capabilities of the platform are exposed
via SOAP and RESTful front-ends (Computational Application Programming
Interfaces in Fig. 19.1) and the Elastic-R engine can be piloted programmatically
from Java, Perl, C#, C++, etc. A tool is provided to enable the scientist to generate
and deploy SOAP Web services exposing a selection of his R functions (Fig. 19.1:
generated computational web services). They can be used as nodes within workflow
workbenches. The nodes are dynamically connected to the scientist’s R session and
the processing of data is done on the cloud if the Elastic-R engine exposing the Web
service is on the cloud.

19.2.4 The Interaction Capability

The console views within the Java and Ajax workbenches allow the full control of
an R session as well as the use of python, groovy and Linux shells. Besides the
consoles, both workbenches have several dockable built-in views including remote
directory browsers for the viewing, download and upload of files from and to the
remote engine’s working directory, syntax-highlighting-enabled code editors, help
browsers, viewers for various file formats (PDF, SVG, HTML, etc.), interactive
server-side graphic devices with built-in resizing, zooming, scrolling, coordinate

9http://www.openoffice.org/
10http://open.eucalyptus.com/
11http://www.mathworks.co.uk/

19 Open Science in the Cloud 459

tracking and annotation capabilities, data inspectors, linked plots, spreadsheets fully
integrated with R functions and data.

The workbench’s architecture for plugins lets anyone create his own views and
dashboards to make workbenches more productive or to expose statistical and
numerical models through simple graphical user interfaces. All the views of the
workbenches are collaborative: when more than one user is connected to the same
Elastic-R engine, the actions of one collaborator are broadcasted to all the others.
An example of the Elastic-R Java workbench is shown in Fig. 19.3.

Simplified clouds
management
console

Virtual machines
launcher

Private virtual
machines monitor

R console
+ scilab console
+ chat
+ssh console

R Graphics
+ whiteboard
+ annotation
+ slides viewer

Session info

Fig. 19.3 Elastic-R AJAX workbench

19.2.5 The Persistence Capability

The Elastic-R computational engine’s working directory can be on a local or a net-
work file system and its content can be easily synchronized with an FTP server or
with Amazon S3 (Amazon, Inc., 2006). When the scientist uses the simplified EC2
console to start a Elastic-R-enabled Amazon Machine Image (AMI), an Amazon
Elastic Block Store (EBS) is automatically attached to the running AMI. That EBS
becomes the working directory of all the Elastic-R engines hosted by the AMI and
all the files generated by the scientist including the workspaces serialization, the
spreadsheets content, the generated web services, etc. are kept when the AMI is
shutdown. The EBS is also a place where the R packages installed by the scientist
are stored. Those packages are made available to the Elastic-R engines when a new
AMI is started. A snapshot of the EBS can be created by the scientist who can decide
to share that snapshot with other EC2 users.

460 K. Chine

19.3 Elastic-R and Infrastructure-as-a-Service

Elastic-R can be used on any type of infrastructure. However, the platform takes its
full dimension only when it is used within an IaaS-style-cloud whether it is Amazon
EC2 or a private cloud based on Eucalyptus,12 OpenNebula13 or Nimbus (Keahey &
Freeman, 2008).

Figure 19.4 shows the role of Elastic-R within an Infrastructure as service envi-
ronment (the concentric circles). Elastic-R wraps R (in the very centre) with Java
Object-oriented layers that can be accessed remotely from anywhere. The R engine
created (inside the Java virtual machine circle) is agnostic to the operating sys-
tem and to the hardware. In this case, it runs within a virtual machine that can be
based on any OS. The virtual machine uses the resources of the hardware via the
Hypervisor and its management by the end user (start-up, shutdown, etc.) is done
using the outer layer (IaaS API). “User1” and “User2” can connect to the R engine
and use it collaboratively from their Java workbenches, their Ajax workbenches or
from their Excel spreadsheets. The Developer can use the R engine (one or many, on
one or many virtual machines) by calling its remote API (Java-RMI, SOAP, REST)
from his ASP.NET web application, his Java desktop application, his Perl scripts,

Fig. 19.4 Elastic-R in the IaaS environment

12http://www.opennebula.org/
13http://www.nimbusproject.org/

19 Open Science in the Cloud 461

his Excel Add-in, etc. “User 3” from his portable device (iPhone, Android-based
phone, etc.) can use the Ajax workbench to access the same R engine as “User 1”
and “User 2” and show them his data, spreadsheets, slides, etc. interactively: the
Ajax workbench gives the same capabilities to “User 1”, “User 2” and “User 3”.
They all can issue commands to R, install and use new packages, generate and
interact with graphics, upload and process files, download results, etc.

19.3.1 The Building Blocks of a Traceable and Reproducible
Computational Research Platform

Elastic-R on an IaaS-style cloud provides a system so that the computational envi-
ronment, the data and the manipulations of the data (scripts, applications) can be
recorded. These can be used by reviewers, collaborators and anyone wanting to
investigate the data. Elastic-R provides an end-to-end solution for traceable and
reproducible computational research. Snapshots of computational environments can
be created as virtual machine images (AMIs). Snapshots of versioned libraries and
working directories can be created as Elastic Block Stores (EBSs). The Elastic-R
Java and Ajax workbenches make it possible to all scientists to work with these
snapshots (AMIs + EBSs) and produce them easily (Fig. 19.5). By Providing the
Elastic-R-enabled AMI identifier, the complementary computational libraries EBS
snapshots identifiers and the working directory (data) EBS snapshot identifier that

Elastic-R AMI 1
R 2.10

+
BioC 2.5

Elastic-R AMI 2
R 2.9

+
BioC 2.3

Elastic-R AMI 3
R 2.8

+
BioC 2.0

Elastic-R EBS 2
Data Set YYY

Elastic-R EBS 4
Data Set VVV

Elastic-R EBS 1
Data Set XXX

Elastic-R EBS 3
Data Set ZZZ

Elastic-R AMI 2
R 2.9

+
BioC 2.3

Elastic-R EBS 4

Data Set VVV

Elastic-R AMI 2
R 2.9

+
BioC 2.3

Elastic-R EBS 4
Data Set VVV

Elastic-R Amazon Machine Images

User 1

User 2

Amazon Elastic Block Stores

Fig. 19.5 The IaaS-style cloud as a reproducible research platform

462 K. Chine

have been used for his research, the scientist makes it possible to anyone to rebuild
all the data and the computational environment required to process that data.

19.3.2 The Building Blocks of a Platform for Statistics
and Applied Mathematics Education

Besides being free and mostly open source and therefore accessible to students
and educators, Elastic-R provides education-friendly features that only proprietary
software could offer so far (for example the centralized and controlled server-side
deployment of the Scientific Computing Environments) and enables new scenarios
and practices in the teaching of statistics and applied mathematics. With Elastic-R, it
becomes possible for educators to hide the complexity of R, Scilab, Matlab, etc. with
User Interfaces such as the Elastic-R plugins and spreadsheets. These are very easy
to create and to distribute to students. The User Interfaces reduce the complexity of
the learning environment and keep beginning students away from the steep learning
curves of R, Scilab or Matlab. Once created by one educator, the User Interfaces can
be shared, reused and improved by other educators. Dedicated repositories can be
provided to centralize the efforts and contributions of the community of educators
and help them sharing the insight gained in using this new environment. One could
envisage these methods being used from primary schools to graduate-level studies.

Educators can adapt the Elastic-R virtual machines images to the specific needs
of their courses and tutorials. For example, after choosing the most appropriate
image, they can add to it the missing R packages, the required data files, install
the missing tools, etc. The new image can then be provided to students on USB keys
or made accessible on an IaaS-style cloud. In the first case, the students need only
to have Java and a virtual machine player (the free VMware player for example)
installed on their laptops to run the Elastic-R workbench and to connect to a compu-
tational engine on the virtual machine. In the second case, they need only a browser.
Once again, a virtual machine prepared by one educator can be shared, reused and
improved by other educators.

The virtual machine is fully self-contained: the code needed to run the workbench
or the plug-ins prepared by the educator can be delivered by the virtual appliance
itself thanks to the Elastic-R code server that runs at startup. The interaction between
the student and the SCE as well as the artifacts produced are saved within the
Elastic-R-enabled-virtual machine. The educator can retrieve the USB keys used
by the students (or connect to the virtual machine instance on the IaaS-style cloud)
and checks not only the validity of the different intermediate results they obtained
but also the path they followed to get those results.

The collaboration capabilities of the workbench open also new perspectives in
distributed learning. The educator can connect anytime to the SCEs of students at
any location. He can see and update their environments and guide them remotely.
Collaborative problem solving becomes also possible and can be used as a support
for learning.

19 Open Science in the Cloud 463

19.4 Elastic-R, an e-Science Enabler

Elastic-R is an e-Science platform that deals with some of the most timely use
cases related to the use of Information and Communications Technologies (ICT)
in research and education:

19.4.1 Lowering the Barriers for Accessing on-Demand
Computing Infrastructures. Local/Remote Transparency

The same application, the Elastic-R workbench (Fig. 19.6), makes it easy to connect
to various environments locally or on remote machines whether they are nodes of
a Grid or virtual machines of a cloud. Switching from one resource to another (for
example from one virtual machine instance on Amazon Elastic Compute Cloud to
another or from an interactive Grid job on the European Grid EGI to an interactive
job on an intranet cluster) becomes as simple as replacing one URL with another.

Object Export /Import Layer

RServices API

RServices skeleton Graphic devices skels R packages skels

mapping

JavaGDrJava/JRI

R
 S

erver

Server Side -Personal Machine, Academic Grids, Clusters, Clouds

Client Side-Internet
Virtual R Workbench

R Graphic Device+Interactors

R Script Editor

R Spreadsheet

Groovy/Jython Script Editor

R Workspace

Internet Browser

R Help Browser

R Console

Java Applet

Virtual R Workbench URL
Docking Framework

Fig. 19.6 Elastic-R Java workbench

19.4.2 Dealing with the Data Deluge

The data generated by modern science tools can become too large to move easily
from one machine to another. This can be an issue for large collaborative projects.

464 K. Chine

The analysis of such data can’t be performed the way it has been so far. The answer
to this increasingly acute problem is to take the computation to the data and is what
Elastic-R enables users to do: The generic computational engine can run on any
machine that has a privileged connectivity with the data storage machine or within
the large scale database. This is the case when an Elastic-R EC2 AMI is used to
process data that is already on Amazon’s Elastic Cloud. The user can connect his
virtual workbench (or his scripts using the Elastic-R SOAP clients) to the compu-
tational engine, set the working directory to the location of the data (e.g. via NFS)
and view or analyze the data using R/Scilab packages.

19.4.3 Enabling Collaboration Within Computing Environments

Users can connect to the same remote engine and work with large scale data
collaboratively using broadcasted commands/graphics and collaborative spread-
sheets (Fig. 19.7). Every command issued by one of them is seen by all the others.
Synchronized R graphics panels allow them to see the same graphics and to annotate
them collaboratively. Chatting is enabled. Linked plots views based on a refactored
iplots package (Theus & Urbanek, 2008) enable collaborative highlighting and color
brushing on a variety of high interaction graphics.

Amazon Virtual Private Cloud

Subnet 2

Subnet 3

Subnet 1

Fig. 19.7 Decentralized collaboration: Elastic-R portal as an EC2 AMI

19 Open Science in the Cloud 465

19.4.4 Science Gateways Made Easy

Web-based interfaces and portals allowing scientists to use federated distributed
computing infrastructures to solve their domain specific problems have always been
difficult to develop, upgrade and maintain. We should have front ends that are easy
to create. Elastic-R proposes a different paradigm for the creation and distribu-
tion of such front-ends to HPC/cloud environments with plugins and server-side
spreadsheets (see Sections 19.5.1 and 19.5.2)

19.4.5 Bridging the Gap Between Existing Scientific Computing
Environments and Grids/Clouds

Once the user’s workbench is connected to a remote R/Scilab engine, a RESTful
embedded server (local http relay) enables third-party applications such as emacs,
OpenOffice Calc or Excel to access and use the Grid/cloud-enabled engine. For
example, an Excel add-in enables scientists to use the full capabilities of the
Elastic-R platform and reproduce the features of the Elastic-R spreadsheets from
within Excel. The bi-directional mirroring of server-side spreadsheets’ models into
Excel cell ranges is also available. This allows users to overcome some of the Excel
flaws (limited capabilities in statistical analysis, inaccurate numerical calculations
at the edge of double, inconsistent identification of missing observations. . .). Excel
becomes a front-end of choice to Grid/cloud resources and can then become the
universal workbench for different sciences.

19.4.6 Bridging the Gap Between Mainstream Scientific
Computing Environments

The platform has a server-side extensions architecture that enables the creation of
bridges between the remote computational engine and any third party tool. Besides
R and Scilab, several widely used environments can be integrated (Matlab, Root,
SAS, etc.). Since R and Scilab are running within the same process (same Java
Virtual Machine), it is easy and very fast to exchange data between them. This can be
achieved for example by using the Groovy interpreter available as part of the remote
engine. The SOAP API can be called from any environment. It enables SciPy users
for example to work with Elastic-R engines on the cloud and to call R and Scilab
functions.

19.4.7 Bridging the Gap Between Mainstream Scientific
Computing Environments and Workflow Workbenches

Elastic-R enables automatic exposure of R functions and packages as Web Services
(Fig. 19.8). The generated Web Services are easy to deploy and can use back-end

466 K. Chine

T1

T3T2 getData

LogOn

Login

Pwd

Options

SessionID associated with a reserved Elastic-R Engine

Retrieve Data
logOff

ES

ESon2 ESon3
f (ES)

ESon1

T1,T2,T3: Generated Stateful Web Services for R functions T1,T2 & T3
LogOn,getData: R-SOAP methods

ES: ExpressionSet
ESon1, ESon2, ESon3 : ExpressionSet Object Names

f = T3 o T2 o T1

• remove ESonx

• « Clean » Elastic-R Engine

• Put Elastic-R Engine back in the Pool

• kill Elastic-R Engine

Fig. 19.8 Workflows with generated Stateful SOAP web services

computational engines running at any location. They can be seamlessly integrated
as workflows nodes and used within environments such as Knime,14 Taverna15 or
Pipeline Pilot.16 They can be stateless (an anonymous R worker performs the com-
putation) or stateful (an R worker reserved and associated with a session ID is
used and can be reused until the session is destroyed). The statefulness solves the
overhead problem caused by the transfer of intermediate results between workflow
nodes.

19.4.8 A Universal Computing Toolkit for Scientific Applications

Elastic-R frameworks and tools make it possible to use R as a Java object-oriented
toolkit or as an RMI server. All the standard R objects have been mapped to Java
(Fig. 19.9) and user defined R classes can be mapped to Java on demand (Fig. 19.10).
R functions can be called from Java as if they were Java functions. The input param-
eters are provided as Java objects and the result of a function call is retrieved as a
Java object. Calls to R functions from Java locally or remotely cope with local and
distributed R objects. The full capabilities of the platform are exposed via a SOAP

14http://www.knime.org/
15http://www.taverna.org.uk/
16http://accelrys.com/products/scitegic/

19 Open Science in the Cloud 467

Fig. 19.9 Java classes diagram: mapping of standard R objects

Generated Java Bean

Proxy Class

Fig. 19.10 Java classes diagram: generated mapping for ExpressionSet (S4 class)

and RESTful front-ends. Several tools and frameworks are provided to help build-
ing analytical desktop/web applications and scalable data analysis pipelines in any
programming language (Java, C#, C++, Perl, etc.)

19.4.9 Scalability for Computational Back-Ends

Elastic-R provides a pooling framework for distributed resources (RPF) allowing
pools of computational engines to be deployed on heterogeneous nodes/virtual

468 K. Chine

machines instances. These engines are managed and used via a simple borrow/return
API for multithreaded web applications and web services, for distributed and par-
allel computing, for dynamic content on-the-fly generation (analytic results, tables
and graphics in various formats for thin web clients) and for computational engines’
virtualization in a shared computational resources context (Fig. 19.11). The engines
become agnostic to the hosting operating system. Several tools are provided to
monitor and manage the pools programmatically or interactively (Supervisor UI).
The pooling framework enables transparent cloudbursting: Amazon EC2 virtual
machines instances hosting one or many computational engines can be fired up or
shut down to scale up or scale down according to the load in a highly scalable web
applications deployment for example.

H
TTPS

Restful W
S over SSL

S
S

H

R
estful W

S
 over S

S
L

SOAP over SSL

Heartbeat
Restful WS over SSL

Fig. 19.11 Elastic-R security architecture

19.4.10 Distributed Computing Made Easy

To solve heavily computational problems, there is a need to use many engines
in parallel. Several tools are available but they are difficult to install and beyond
the technical skills of most scientists. Elastic-R solves this problem. From within
a main R session and without installing any extra toolkits/packages, it becomes
possible to create logical links to remote R/Scilab engines either by creating new
processes or by connecting to existing ones on Grids/clouds (Fig. 19.12). Logical
links are variables that allow the R/Scilab user to interact with the remote engines.
rlink.console, rlink.get, rlink.put allow the user to respectively submit R com-
mands to the R/Scilab worker referenced by the rlink, retrieve a variable from the

19 Open Science in the Cloud 469

Fig. 19.12 Parallel computing with Elastic-R on Amazon Elastic Compute Cloud

R/Scilab worker’s workspace into the main R workspace and push a variable from
the main R workspace to the worker’s workspace. All the functions can be called
in synchronous or asynchronous mode. Several rlinks referencing R/Scilab engines
running at any locations can be used to create a logical cluster which enables to
use several R/Scilab engines in a coordinated way. For example, a function called
cluster.apply uses the workers belonging to a logical cluster in parallel to apply a
function to a large scale R data.

19.5 Elastic-R, an Application Platform for the Cloud

Elastic-R is extensible with java components both on client-side (the plugins) and
on server-side (the extensions). With those components, anyone can create and
deploy his application on the cloud without having any specific knowledge about
the infrastructure.

19.5.1 The Elastic-R Plug-ins

The Elastic-R platform defines a contract for creating cross-platform statisti-
cal/numerical new interfaces in Swing-Java either programmatically or using visual

470 K. Chine

composition tools like the Netbeans GUI designer. The views can be bundled into
zip files and opened by anyone using the Elastic-R workbench (Fig. 19.13). The
views receive a Java Interface that allows them to use the R/Scilab engine to which
the workbench is connected and that can be running at any location.

Visual Graphic User Interface Builder

Elastic-R Java Workbench

Plugins Repository

• myPlugin
• myDashboard

Upload plugin

Elastic-R AJAX Workbench

Standalone Application Accessible
From a URL

Fig. 19.13 Elastic-R plugins’ visual creation and publishing

Three-parts-URLs (Elastic-R’s Java Web Start trigger + computational engine’s
URL parameter + plugin’s zip file URL parameter) can be used to deliver those GUIs
to the end-user. He retrieves them in one click and the only software required to be
preinstalled on his machine is a Java runtime. Instead of requiring a transparent
connection to a server-side Grid/cloud-enabled engine, the distribution URLs can
be written to trig transparently the creation of a computational engine on the user’s
machine: a zipped version of R is copied on the user’s machine (with or without
administrative privileges) and is used transparently by the GUI.

19.5.2 The Elastic-R Spreadsheets

The Elastic-R spreadsheets are Java-based built originally using the OSS jspread-
sheet. Unlike jspreadsheet, Calc and Excel’s spreadsheets, they have their models
on server-side, are HPC and collaboration enabled and are fully connected with
the remote statistical/numerical engine’s workspace. This enables for example R
data import/export from/to cells and R functions use in formula cells. Dedicated R

19 Open Science in the Cloud 471

functions (cells.get, cells.put, cells.select, etc.) allow the R user to retrieve the con-
tent of cell ranges into the R workspace or to update them programmatically: An
R script can reproduce the spreadsheet entirely. A macros system allows the user to
define listeners on R variables and on cell ranges and to define corresponding actions
as R/Java scripts. Specific macros called datalinks allow the user to bi-directionally
mirror R variables with cell ranges. R graphics and User Interface components can
be docked onto cell ranges. UI components can be for example: Sliders mirror-
ing R variables; Graphic Panels showing R Graphics (in any format) produced by
user defined R scripts and automatically updated in case user-defined R variables
have their values change or in case cells within a user-defined cell ranges list are
updated; Buttons executing any user-defined R script, etc. (Fig. 19.14). This spread-
sheet enables scientists without programming skills to create sophisticated Grid or
cloud-based analytical views and dashboards and lowers the barriers for creating
science gateways and distributing them.

Fig. 19.14 Elastic-R server-side spreadsheet models/GUI widgets

19.5.3 The Elastic-R extensions

Elastic-R extensions are Java components that can be uploaded anytime to an
Elastic-R engine’s extensions folder. They are dynamically loaded by the engine’s
Java Virtual Machine and the code they expose can be called from the client.

472 K. Chine

Extensions allow anyone to build java bridges that couple the Elastic-R engine with
any software such as Matlab10 and OpenOffice.11

19.6 Cloud Computing and Digital Solidarity

The FOSS community established Open Source Software as a credible alternative
to proprietary software and allowed users from developing countries to have free
access to tools of the highest quality. Cloud computing allows anyone today to use
over the internet virtual machines of any computing capacity running on federated
infrastructures. The combination of sponsored access to public clouds and Software
delivered as a service through the internet opens perspectives for reducing the dig-
ital divide of an unprecedented scale and enables revolutionary new scenarios for
knowledge sharing and digital solidarity.

Elastic-R is the first Software platform to bring to light the tremendous poten-
tial of this combination in research and education. It puts the best of the existing
Scientific Computing Environments and data analysis tools in the hands of everyone
by making them available as a service on Amazon’s cloud (EC2). Researchers, edu-
cators and students from developing countries can use standard web browsers and
low-speed internet connections to work for example with R or with Scilab. African
scientists for example would have on demand access not only to machines with any
number of processors and any size of memory to perform their research but also
to potentially infinite shared digital resources. Those resources can be for example

Generate token

Deliver token

Use token

Activate token

Launch machine instance

Register machine instance

Use R console

Call R Engine

XXYYZZ

XXYYZZ

XXYYZZ

XXYYZZ

Fig. 19.15 Elastic-R’s digital tokens: cloud vouchers for digital solidarity

19 Open Science in the Cloud 473

pre-prepared and ready-to-run virtual machine images with research software tools
or public data or analytical applications provided by the world’s scientists.

The Elastic-R portal lowers the barriers for anyone to use the cloud. It also
provides a mechanism of secure digital tokens (Fig. 19.15) that can be delivered
by international organizations and charities to African scientists for example. The
tokens allow the scientists to start virtual machines for a specified number of hours
and use them for their research. Elastic-R is also a Virtual Research Environment
that allows any number of geographically distributed users to work simultaneously
and collaboratively with the same virtual machine, the same tool and the same data.
It makes it much easier for developing countries’ scientists to get more actively
involved in large international collaborations, to have real time scientific interac-
tion with their peers in the US and in Europe and to gain access to scientific data
and to the computational environments required to process that data. Elastic-R is
finally a real-time cloud-based e-Learning system that makes it possible for volun-
teering educators from developed countries to teach statistics and math interactively
to African students without having to be physically in Africa.

19.7 Conclusions and Future Directions

This article described the Elastic-R as a new environment that has the potential
to democratize the cloud and to push forward the reproducibility of computational
research. Its current availability and easy access on Amazon Elastic Compute Cloud
maximizes its chances for uptake and adoption. Academia, Industry and Educational
Institutions would benefit from the emergence of a new environment for the inter-
operability, sharing and reuse of computational artifacts. The creation and sharing
of analytical tools and resources can become accessible to anyone (open science).
An international portal4 for on demand computing is being built using the differ-
ent frameworks provided by Elastic-R and could become a single point of access
to Virtualized SCEs on public servers and on virtual appliances that are ready for
use on various clouds. There is no question about the need for more usability in
the computational landscape. Java, Xen, VMware, EC2, R and Elastic-R prove that
the target of a universal computational environment for science and for everyone is
definitely within reach.

References

Amazon, Inc. (2006). Amazon elastic compute cloud [Online]. Available: aws.amazon.com/ec2.
Amazon, Inc. (2006). Amazon simple storage service [Online]. Available: aws.amazon.com/s3.
Chambers, J. M. (1998). Programming with data: A guide to the S language. New York, NY:

Springer.
Foster, I. (2002). What is the grid? A three point checklist. Grid Today, 1(6), 22–25.
Foster, I., Kesselman, C., Nick, J., & Tuecke, S. (2002). The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration. Open Grid Service Infrastructure
WG, Global Grid Forum.

474 K. Chine

Jha, S., Merzky, A., & Fox, G. (2009). Using clouds to provide grids with higher levels of
abstraction and explicit support for usage modes. Concurrency and Computation: Practice and
Experience, 21(8), 1087–1108.

Keahey K., & Freeman, T. (October 2008). Science clouds: Early experiences in cloud computing
for scientific applications. Chicago, IL: Cloud Computing and Its Applications 2008 (CCA-08).

R Development Core Team (2009). R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
http://www.R-project.org.

Theus, M., & Urbanek, S. (2008). Interactive graphics for data analysis: Principles and examples.
CRC Press. ISBN 978-1-5848-8594-8, 2008.

YarKhan, A., Dongarra, J., & Seymour, K. (July 2006). NetSolve to GridSolve: The evolution of a
network enabled solver. IFIP WoCo9 Conference “Grid-Based Problem Solving Environments:
Implications for Development and Deployment of Numerical Software,” Prescott, AZ.

Chapter 20
Multidimensional Environmental Data Resource
Brokering on Computational Grids and
Scientific Clouds

Raffaele Montella, Giulio Giunta, and Giuliano Laccetti

20.1 Introduction

Grid computing has widely evolved over the past years, and its capabilities have
found their way even into business products and are no longer relegated to scientific
applications. Today, grid computing technology is not restricted to a set of specific
grid open source or industrial products, but rather it is comprised of a set of capabil-
ities virtually within any kind of software to create shared and highly collaborative
production environments. These environments are focused on computational (work-
load) capabilities and the integration of information (data) into those computational
capabilities. An active grid computing application field is the fully virtualization
of scientific instruments in order to increase their availability and decrease opera-
tional and maintaining costs. Computational and information grids allow to manage
real-world objects in a service-oriented way using industrial world-spread standards.

Boosted by the rapid advance in the multi-core technology, the approach to grid
computing has been changing and has evolved towards the right convergence among
stability, effectiveness, easy management, convenient behavior and, above all, a bet-
ter ratio between costs and benefits. This technology led the distributed computing
world to a third generation of grids characterized by the increase of the intra site
computing power, due to the multi-core technology, and the terabyte up to petabyte
scale storage availability. This approach makes convenient the development of virtu-
alization techniques and allows an effective exploitation of massive server factories.
Advanced virtual machine software has a slight impact on performance, e.g. using
techniques as paravirtualization (Youseff, Wolski, Gorda, & Krintz, 2006), and it
permits to deploy, start, pause, move, stop and un-deploy virtual machines in a
high performance, secure and collaborative environment. The software technolo-
gies underlying this grid approach, usually defined as cloud computing (Foster

R. Montella (B) and G. Giunta
Department of Applied Science, University of Napoli Parthenope, Napoli, Italy
e-mails: {raffaele.montella; giulio.giunta}@uniparthenope.it
G. Laccetti
Department of Mathematics and Applications, University of Napoli Federico II, Napoli, Italy
e-mail: giuliano.laccetti@unina.it

475B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_20, C© Springer Science+Business Media, LLC 2010

476 R. Montella et al.

et al., 2006), are quite similar to those developed for the second generation of grids
offering features in a software as service way. The true novelty is the dynamical
deployment of full virtual machines packed around a software running in a local
or remote site. The user asks the resource broker for a service. This service could
be even not deployed, but available in a catalogue and then packed into the proper
virtual machine and eventually made ready to use. Furthermore, the rapid decline of
the cost of highly integrated clusters has spurred the emergence of the data center as
the underlying platform for a growing class of data-intensive applications (Llorente,
2008a, 2008b).

In this scenario metadata augmented data, both stored or produced by an on
line acquisition system, have a key role in overcoming what old fashioned com-
puting grids and data grids were in the past. In particular, in a cloud environment
the resource is seen as a high level entity, while brokering on application needs is
performed automatically using a self describing service approach.

We developed a grid aware component based on a Resource Broker Service
implementing a wrap over the OpenDAP (Open source Project for a Network Data
Access Protocol) (Gallagher, Potter, & Sgouros, 2004) scientific data access proto-
col and ensuring effective and efficient content distribution on the grid. In a previous
work (Montella, Giunta, & Riccio, 2007) we described the behavior of a Grads
Data Distribution Service (GDDS) that could be considered the ancestor of the Five
Dimension Data Distribution Service (FDDDS) presented in this work. This service
relies on a different legacy OpenDAP engine and provides wider environmental data
format capabilities and better performance.

Most of grid middleware implementations assume instruments as data sources.
Instruments can be considered off-line and only processed data are usually pub-
lished, leveraging on common storage facilities as Replica Location, Reliable File
Transfer and GridFTP technologies. With this kind of approach, acquired data are
concentrated, rather than distributed, with poor benefits in terms of dynamic load
balanced access.

In the field of environmental data acquisition, the latter issue can be crucial when
a large number of users require an access to the data during extreme weather events,
such as hurricanes, flooding or natural disasters as volcanic eruptions, earthquakes
and tsunamis.

The challenge of integrating instruments into a grid environment is strategically
relevant and it can lead to a more efficient and effective use of the instruments
themselves, a reduction of the general overhead and to an improvement of the
throughputs. Usually instruments produce huge amount of data that could be stored
elastically using cloudily available storage services, reducing management costs and
charging users only for resources that they use. From this point of view, data pro-
duced by instruments, and stored on cloud computing services, can be advertised on
a grid index serviced and provisioned on-demand using OpenDAP based services.

In the following we discuss the implementation and the integration in the
Globus Toolkit 4 of FDDDS and we describe how FDDDS and the Resource
Broker (RBS) services work. We also focus on the implementation of the mapping
component among the resources exposed by GT4 index service and the Condor

20 Multidimensional Environmental Data Resource Brokering 477

ClassAd representation, and we provide some examples related to weather forecast
model evaluation.

Our RB can answer to queries such as the following one (looking for the best 5D
environmental dataset fitting specified requirements):

[

Rank=other.ConnectionSpeed;
Requirements=other.Type="dataset";
other.Time>=’03:07:2008 00:00:00’ &&

other.Time<=’09:07:2008 00:00:00’ &&

other.Lat>=36 &&

other.Lat<=42 &&

other.Lon>=8 &&

other.Lon<=20 &&

other.Variables=u10m,v10m; &&

other.DataOrigin=="wrf"
]

In this ClassAd data oriented query, the user is looking for a dataset containing
the east-component and the north-component of the wind vector at 10m from the
sea level (u10m and v10m, respectively). The requested data have to be produced
by the Weather and Forecast model and related to the Southern Italy domain area,
expressed as latitude and longitude ranges. The best dataset provider is selected by
ranking the ConnectionSpeed of the hosts producing the web service. Therefore,
if two or more data providers are discovered, the best performing one is selected.
Finally, the user submits a specific request to FDDDS for sub-setting (i.e. extracting
sub-cubes from data cubes) the desired data. Taking into account local data man-
agement policies, the sub-set data could be made available as advertised resource,
distributed, replicated, cached or eventually even deleted if not used within a
time threshold. In a grid based on cloud environment, FDDDS instances could be
dynamically deployed in order to fit actual user needs.

If data are directly produced by instruments and stored using a locally provided or
cloud available storage, the developed Instrument Service (InS) adverts data sources
on the grid index service, so a ClassAd query as the following is possible:

[

Type="DataConsumer";
Rank=1/gis.getDistance(

14.22,40.85,other.Longitude,other.Latitude

);

Requirements=
other.Type=="Instrument" &&

other.Desc=="WeatherStation" &&

other.Sensor=="windDir,windSpeed"
]

478 R. Montella et al.

In this query the user is looking for a weather station instrument provided by the
data channel acquiring wind direction and speed as close as possible to the point
located at longitude 14.22◦ and latitude 40.85◦.

In Section 20.2, the design and the behavior of our RBS are briefly described.
In Section 20.3 the implementation of GDDS and related issues of performance,
flexibility and portability are addressed. In Section 20.4 the FDDDS architecture is
introduced as evolution of previously developed systems. Section 20.5 describes the
Instrument Service design and implementation. Section 20.6 describes an approach
to weather forecast evaluation focusing on a novel algorithm based on time shifted
ensembles. Section 20.7 is dedicated to the integration of data provided by FDDDS
and data provided by InS. Finally Section 20.8 contains some conclusions and
highlights on future work.

20.2 Resource Discovery and Selection Using a Resource
Broker Service

The Resource Broker Service (Montella, 2007) is the key component in our grid web
service infrastructure. It is based on a Latent Semantic Indices native matchmaking
algorithm. We have integrated the resource broker service into the GT4 context,
where each resource is published in the Index Service, identified by an EPR (End
Point Reference) and selectable using standard GT4 command line tools, such as
wsrf-query, and xpath queries.

In the RBS architecture the most important component is the collector process.
The generic collector parses index service entry elements and stores them in a host
(grid element) oriented format suitable for the native resource brokering algorithm.
The collector is charged with managing in the most appropriate way different kinds
of resources, such as the Default Index Service, the Managed Job Factory Service
and the Reliable File Transfer Factory Service that are parsed and mapped to the
Globus.Service.Index, Globus.Service.GRAM and Globus.Service.RTF properties
respectively. The collector finds out properties and performs a mapping between one
or more properties to new ones and then it stores the results in a local data structure.
The collector is fully extensible and customizable using a documented API.

When the Resource Broker service is loaded into the GT4 Web Services con-
tainer, an instance of the collector component is created and initialized performing
queries to the VO main index service.

The RBS accepts queries in native notation; each selection criterion uses expres-
sions like “equal”, “different”, “greater than”, “greater or equal to”, “less than”,
“less or equal to” and “max”/“min” to maximize or minimize a property and “dont-
care” to ignore a pre-set condition. The broker returns a match by pointing the
consumer directly to the selected resource with an End Point Reference (EPR). The
selected resource is tagged as claimed to prevent another resource broker query
from selecting the same resource, so that a potential overbooking is avoided. The
resource remains claimed until a new update event occurs and the resource status

20 Multidimensional Environmental Data Resource Brokering 479

reflects its actual behavior. Notification messages are filtered, to avoid a degradation
in performance due to the data renewal event management. In order to automatically
control the resource lifetime, the effective update availability is not persistent, but it
is renewed whenever a status change event exceeds a given threshold.

20.3 Anagram Based GrADS Data Distribution Service

OpenDAP is a community initiative with the goal to create an open-source solu-
tion for serving distributed scientific data and for allowing ocean and atmosphere
researchers to access environmental data anywhere on the Internet from a wide vari-
ety of new and existing programs. The OpenDAP project can capitalize on years
of development of data analysis and display packages that use those APIs, allow-
ing users to continue to use programs which they are already familiar with and
to develop network versions of commonly used data access Application Program
Interface (API) libraries, such as NetCDF, HDF, JGOFS, and others. The OpenDAP
architecture relies on a client/server model, with a client that sends requests for
data out onto the network to some server answering with the requested data. This is
exactly the model used by the world wide web, where clients submit their requests
to web servers for data that make up web pages, even though there is still lack of
support to the web service technology and to computational data grids. We previ-
ously developed a GT4 based web service in order to provide a web grid service
fashioned access to environmental data, leveraging on grid features as the Grid
Security Infrastructure and the Reliable File Transfer for secure and high perfor-
mance data management. Our initial design was focused on serving data provided
by the Grid Analysis and Display System (GrADS) (Doty & Kinter, 1995). This
software tool is a free and open source interactive desktop tool, developed in ANSI
C and ported on different platforms and operating systems, that is widely used for
its easy access, manipulation, and visualization of earth science data stored in vari-
ous formats as binary, GRIB, NetCDF, or HDF-SDS (Scientific Data Sets). GrADS
uses a 5-Dimension data environment: longitude, latitude, vertical level, time and
parameters (variables). A plain text descriptor file acts as metadata for both station
and gridded data distributed over regular, non-linearly spaced, Gaussian, or vari-
able resolution grids. Different datasets may be integrated and graphically overlaid,
with their correct spatial and time registration, through a large variety of graphical
techniques and, moreover, the output can be exported in either postscript or image
formats.

The GrADS-DODS Server (GDS) combines GrADS and OpenDAP to create
an open-source solution for serving distributed scientific data (Wielgosz & Doty,
2003). The GDS provides a wide range of clients with remote dataset access via
the OpenDAP protocol and with some analysis tool which has been OpenDAP
enabled. Metadata and subsets are retrieved transparently from the server as needed.
Data extraction and sub-setting are the main features of GDS, but GDS also pro-
vides powerful and multi-stage complex analysis tools, using GrADS software as a

480 R. Montella et al.

computing engine component. In order to reuse as much as possible of the standard
GDS distribution, we developed an adapting framework over the Anagram engine,
a software component which GDS (Wielgosz, 2004) is based on. Our GDDS imple-
ments a “same binary” conservative approach along the way we followed in the
grid enabling process of a set of environmental models, as for example the Weather
Research and Forecast model (WRF) (Giunta, Laccetti, & Montella, 2008). Since
the Anagram engine heavily builds on module late binding at runtime and a deep
integration of the servlet management into the service implementation, we have
developed an adapter framework in order to obtain a better behavior when using it
as a component, without modifying the legacy distribution. This solution inherits
from GDS the need to invoke an external process, i. e. the GrADS executable, for
each data access. Translated in the grid enabled version, this means that at every
invocation of the operation provider, the host machine has to configure a scratch
directory where to work with a local instance of GrADS. This causes a loss of per-
formance, especially in stressfully working conditions in which many consumers
ask for data to be extracted by huge dataset, and a lack of portability because of the
need to recompile the GrADS source for specific operating system and architecture.
Moreover, the number of data types accessible by GrADS is limited. For instance,
only few kinds of NetCDF files (following restricted conventions) can be directly
accessed (Fig. 20.1).

20.4 Hyrax Based Five Dimension Distribution Data Service

The Five Dimensional Data Distribution Service relies on the Hyrax OpenDAP
server (Gallagher, Potter, West, Garcia, & Fox, 2006). Hyrax is a data server which
combines the efforts at UCAR/HAO to build a high performance DAP-compliant
data server for the Earth System Grid II project with existing software developed
by OpenDAP. This server is based on the Java servlet mechanism to manage web
requests from DAP format-specific software. This approach improves the perfor-
mance for small sized data requests. The servlet front end, instead of launching
an external local process as in GDS, looks at each request and formulates a query
to a second server, Back End Server (BES), which may be or may be not on the
same machine. BES handles the reading of the selected data from the data storage
and returns DAP-compliant responses to the front end, which, in turn, could send
these responses back to the requestor or might process them to build more complex
responses. We notice that this architecture makes possible a better integration in a
web grid service ecosystem. In implementing FDDDS we had to extend the client
OpenDAP class APIs in order to completely disjoin them from the front end and to
provide the needed interfaces to the grid.

We have completely integrated the Back End Service into the web service
environment, by reusing any kind of configuration files within the GT4 service
architecture. In this way the migration from the classic client server OpenDAP
protocol based architecture to the service oriented grid environment application
occurs in a really soft fashion.

20 Multidimensional Environmental Data Resource Brokering 481

Fig. 20.1 The GrADS Service block diagram

FDDDS has a self decorating dataset metadata which provide a grid oriented data
representation and enforce the interaction and the collaboration among different and
geographically spread components, such as instruments, and resource brokers. The
native BES provides security tools based on X509 certificates. In our implementa-
tion we relied on this feature to ensure the access to the BES only from the local
host machine and from FDDDS, delegating to this component and to the underly-
ing GSI the task of authentication, authorization and encryption. This allows that
only certificates that have been authenticated by grid users can perform OpenDAP
operations including new dataset uploading and administration management.

482 R. Montella et al.

When FDDDS is loaded into the container, it contacts the BES for retrieving
the dataset list. For each dataset a web service resource is created, with the prop-
erties extracted from the dataset metadata and then published on a specified Index
Service. Then the RBS collector component can carry out a ClassAd representation
of the resource involved in the matchmaking process. If a suitable dataset resource is
found, the resource broker returns the EPR referencing to the best FDDDS service
instance, which is selected taking into account the network behavior between the
consumer and the producer endpoints. Then the consumer invokes the getData, get-
DAS or getDDX to retrieve dataset metadata while getData retrieves data in binary
format. The getData operation provider accepts data selection and subsetting param-
eters via a standard OpenDAP query string specifying the variable name, the running
dimensions and the step intervals. In the same way, the getData operation provider
allows to perform a sort of remote analysis, using the BES engine and specifying
datasets and expressions, as well as to choose the (to be returned) data format (DAP
or NetCDF).

FDDDS uses SOAP messages only for an operation provider invocation and for
returning computed results, while for transferring data a dedicated transfer service is
invoked. This prevents a decrease of performance that can be caused by the transport
protocol, especially when the requested data size is very large, as in the case of wide
space and temporal domains with many variables. The getData operation provider
returns an EPR to the resource associated with the result of the sub-setting and allo-
cated in a temporary storage area. It follows that efficient grid oriented file transfer
protocols, as GridFTP, can be used to improve the performance of the distribution
system. The sub-set data can be made available for request by advertising them on
the Index service. Tracking the log for requested data, the RB notifies FDDDS to
distribute a popular in queries sub-set dataset over the grid. FDDDS has in charge the
management of such a dynamically created dataset, empting caches and destroying
it if needed.

The use of the OpenDAP protocol is very common in the environmental sci-
entists community because of a great amount of compliant applications. FDDDS
precludes a direct use of distributed data unless upgraded versions of such applica-
tions would provide a full WSRF compliant grid web service access. However, this
can be achieved through the use of a local server, based on the original Hyrax front
end acting as a proxy interface between OpenDAP server compliant applications
(such as IDL, Matlab, GrADS, Ferret and more) and the grid world, represented by
the resource broker service, the FDDDS service and the Grid Security Infrastructure.

This proxy-like acting local server accepts connections only from the loop-back
network interface and translates the standard OpenDAP query string into a direct
or resource brokered grid interaction. The local OpenDAP server implements an
FDDDS client which handles certificates, EPR and resource broker requests in a
fully transparent way (Fig. 20.2).

In a performance analysis, we compared the Grads Data Distribution Service
with the Five Dimension Data Distribution Service by setting up a testbed of real
data produced by weather forecast operational runs.

20 Multidimensional Environmental Data Resource Brokering 483

Fig. 20.2 The five dimension data distribution service block diagram

In the current setup, each WRF model run produces a 11 gigabytes data file
storing the coarse domain forecast results. The size of the data set on the fine domain
amounts to 2 gigabytes for each model’s run. The coarse domain output file stores a
five-dimension data set, comprised of, 19 vertical levels, 655×594 cells, 27 2D and
3D variables, and 144 time steps.

In order to test the services, a getData operation provider is invoked by requesting
the u10m variable for all time steps (144, six days, one time step per hour) and
subsetting an area of 2n square cells with 3≤n≤9. The invocation time includes
the subsetting and the data transfer via gridFTP. In this conditions, for small sized
subsets the performance of both services are comparable, while for more demanding
subsetting tasks the FDDDS shows a higher efficiency (Fig. 20.3).

20.5 Design and Implementation of an Instrument Service
for NetCDF Data Acquisition

Our ultimate goal is the instruments sharing on computing grids. In order to abstract
different kinds of instruments (such as weather stations, surface current radars and
wind profilers), with a wide variety of hardware interfaces and acquisition data

484 R. Montella et al.

Fig. 20.3 Performance analysis results

rates, a suitable design leveraging on a plug-in based framework is needed. We
have developed an Abstract Instrument Framework (AIF) to decouple the acqui-
sition Java interface from the grid middleware technology (Montella, Agrillo, &
Di Lauro, 2008) and to introduce a streaming protocol after the SOAP interaction
started the communication (Fig. 20.4). Environmental data acquisition instruments

Fig. 20.4 The Abstract Instrument Framework class diagram and the instrument service
architecture

20 Multidimensional Environmental Data Resource Brokering 485

interact with their proxy hardware in different ways. Weather station data loggers
could work in real-time or in batch mode depending on the type of data link. Wind
profilers and surface currents radars operate in a similar way using a power work-
station as a proxy machine. Wind profile equipment workstations are a sort of a
very powerful data logger in which vertical profile integrated values are stored. The
sea surface current instruments use workstations acting as an automatic integration
and post processing computing node producing surface time integrated values. We
used a layered approach relying on virtualization. The instrument framework defines
the behavior of a generic instrument built assembling sensors for data acquisi-
tion and actuators for instrument handling leveraging on the component abstraction
technique.

Each abstract component leaves unimplemented each low level hardware inter-
action with the instrument and it provides tools for data delivery as SOAP typed
values or streaming protocols.

Weather stations are usually equipped with an autonomous simple data logger
with remote interaction capabilities for instrument setup, sensor calibration and data
retrieving in both batch and real-time mode. We operate different kind of weather
stations built on different sensors and data loggers. Weather stations fit straight-
forwardly in this framework model, because they are a collection of sensors. Data
channels may be operated in two ways, depending on the hardware sensor and the
required measurement. The real sensor components implement the real data access
either with a real-time request or retrieving them form a data logger which specifies
the type and the nature of the acquired data.

Typically sea surface currents radar control stations are powerful workstations
where all operations on data and sensors (remote antennas) are managed by a pro-
prietary closed source software. In this case there is no direct access to the sensor,
but only to the automatically post-processed data. The sea surface currents radar
sensor wraps provide surface data averaged in time e localized on a geo-referenced
matrix. The virtualization is obtained through interfacing real sensor components
related to sea current speed and direction directly with data produced by the stan-
dard equipment. The wind profile instrument works in a very similar manner and
the profiled data, averaged in time and distributed along the vertical axis, are stored
by the proxy workstation acting as an enhanced data logger which provides data
transfer tools based on standard protocols.

The Instrument Service exposes operation providers to start and stop data stream-
ing using a specified protocol (published, for each sensor, on the index service as
a metadata field) with a protocol plug in interface designed to easily customize the
data distribution. In this case the standard SOAP message exchanging between the
web service consumer and the web service producer is performed only to control
data transmission, while the actual data transfer is carried out using a more efficient
protocol.

The Instrument Service automatically publishes Instruments, Sensors and
Handlers metadata – and even data – on the GT4 Index Service, so that a grid
service consumer could leverage on the WSRF Notification feature to interact with a
data acquisition device. RBS component interacts with the Index Service and allows

486 R. Montella et al.

any instrument shared on the grid to participate in the dynamic resource allocation
process. An instrument, as any grid shared data source FDDDS, is discoverable and
selectable via ClassAd queries.

A matchmaker algorithm can match ClassAds to different kinds of entities in a
specified manner: The expression other.Type=Instrument is evaluated as
true if the ClassAd which is matched with contains a property named Type with
the string value equal to Instrument. In the matchmaking protocol, two ClassAds
match if each one has an attribute requirement that evaluates to true in the context of
the other ClassAd; then matched grid elements activate a separate claiming protocol
to confirm the match and to establish the allocation of resources.

The representation of an instrument as a grid resource is automatically done by
RBS and considered as a sort of dynamically varying stored data. The following
example shows the ClassAd representation of a weather station:

[

Type="Instrument";
Desc="WeatherStation";
Area="Napoli";
Longitude="14.32";
Latitude="40.50";
TimeStamp="23-12-2007 03:30:00";

Sensor="windDir,windSpeed,airTemp,airPressure";
Values="335,3.280,14,1013";
Units="◦N,ms-1,◦K,HPa";
Rank=1;
Requirements=other.Type=="DataConsumer"

]

This instrument is defined as a weather station resource in the Napoli area located
at longitude 14.32◦, latitude 40.50◦. The Instrument Service framework publishes
the Sensor metadata, then it collects the instrument features and finally publishes
on the grid index service the instrument geographical position, the data currently
acquired by each sensor and the actuators feedback parameters.

20.6 A Weather Forecast Quality Evaluation Scenario

The assessment of the quality of an operational weather forecasting model is a
crucial process for stating the reliability of the overall operational forecasting
system.

A forecast is an estimate of the future state of the atmosphere. It is created
by estimating the current state of the atmosphere using observations, and then
calculating how this state will evolve in time by means of a numerical weather
prediction computer model. As the atmosphere is a chaotic system, very small errors

20 Multidimensional Environmental Data Resource Brokering 487

in its initial state can lead to large errors in the forecast. This means that one cannot
create a perfect forecast system because it is not possible to observe every detail
of the atmosphere’s initial state. Tiny errors in the initial state will be amplified, so
there is always a limit to how far ahead we can predict any detail.

In a weather forecast operational scenario, the ensemble methodology is a com-
mon technique for the assessment of the model behavior by means of a sensitivity
analysis on initial and boundary conditions. To test how small discrepancies in the
initial conditions may affect the outcome of the forecast, an ensemble system can
be used to produce many forecasts. The complete set of forecasts is referred to as
the ensemble, and any individual forecast as an ensemble member.

The ensemble forecasts give a much better idea on which weather events may
occur at a particular time. By comparing the ensemble members the forecaster can
decide how likely a particular weather event may be. Shortly, if the forecasts exhibit
a large divergence, then one may conclude that there is a large uncertainty about the
future weather, while if most of the forecasts are similar then much confidence can
be taken in predicting a particular event.

Ensemble modeling requires high computational power since a large number of
simulations must be run concurrently, so that grid computing technology is a key
and widely adopted solution (Ramakrishnan et al., 2006).

Technical issues related to our grid application for operational weather forecasts
are discussed in (Ascione, Giunta, Montella, Mariani, & Riccio, 2006). Briefly,
a Job Flow Scheduler Service (JFSS) orchestrates the grid application behav-
ior; it relies on a Job Flow Description Language which specifies the relations
among web service consumers and uses the RBS for dynamic resource alloca-
tion, data and instrument discovery and selection. With the Five Dimension Data
Distribution Service, we set up a grid application which integrates a grid enabled
WRF weather model with a set of grid based validating tools leveraging on FDDDS
in a operational scenario.

We have developed a weather forecast quality control and validation algorithm
aimed at saving computing time and avoiding multiple model runs, as in a stan-
dard ensemble simulation. The algorithm uses an approach we called “Time Shift
Ensemble”. The WRF model is run each day, with initial and boundary conditions
provided by an NCEP global model. The output of a daily simulation is a forecast
on the next six simulated days. Thus the first simulated day (hours ranging from 0
to 23) has a set of six forecasted data: the 0 h..23 h dataset generated by the current
day run; the 24 h..47 h dataset returned by the previous day run and so on, up to the
dataset produced by the run of 6th previous day.

We have considered the Geo-potential height (GpH) computed by the model at
500 HPa level as a good atmosphere status descriptor parameter, as usual in the
meteorology community (Warren, 2007). The GpH is a vertical “gravity-adjusted”
coordinate that corrects the geometric height (elevation above mean sea level) using
the variation of gravity with latitude and elevation. GpH is usually referred to a
pressure level, which would correspond to the GpH necessary to reach the given
pressure.

488 R. Montella et al.

At each point of the spatial domain, we compute the difference between the
hourly forecasted GpH produced by the current run and the GpH values produced by
each of the five simulations that we ran at the previous days. These set of values can
be considered as the discrepancies of the results of an ensemble built on 6 model’s
runs with different initial/boundary conditions. The quality of the forecast can be
deduced from the behavior of those time series (Montella, Agrillo, Mastrangelo, &
Menna, 2008). To be more precise, let Fs,f denote the GpH forecast produced by the
run at day s (s= 0 for the current day, s=−1 the previous one, and so on) for the
forecasted day f (f = 0 denotes the first day of the simulation and f= 5 the last sim-
ulated day, with a total simulated time equal to 144 h). The current day is forecasted
for the first time as the last day of the run executed at the day−5 (F−5,5), the second
time as F−4,4 up to the simulation F−1,1 (Fig. 20.5).

Fig. 20.5 The validation algorithm and some results

Figure 20.5 (right-up) also reports the behavior of the five time series of the
computed discrepancies (for a given simulated day and at a specific spatial point)
in the case of a reliable simulation, while the right-down side of Fig. 20.5 shows
the related time series of normalized Root Mean Square error (nRMSd) between the
F−5..−1 and the current day run’s values F0.

20.7 Implementation of the Grid Application

Here we give some insight into relevant implementation details of our grid applica-
tion. The application workflow starts with an invocation to FDDDS which collects
initial and boundary conditions needed for the initialization of WRF (Fig. 20.6).

Data are downloaded from the NCEP ftp server using an automatic process. Since
forecasts have to be computed each day on the same domain, another invocation
of FDDDS allows to download terrain data previously produced by the GeoGrid

20 Multidimensional Environmental Data Resource Brokering 489

Fig. 20.6 The grid/cloud application schema

Service (GGS), which is a wrap over the WRF geogrid module. Then the Ungrib
Service (UGRBS) is invoked to convert initial and boundary conditions in a file
format suitable for the metgrid WRF module. The process continues with a call to
the MetGrid Service (MGS) which interpolates initial and boundary conditions over
the domain and, finally, to the Real Service (RS), that is wrapped on the Real WRF
module and that prepares data for the WRF Service, a service shell over the WRF
main module. The WRF main model produces results that are stored using FDDDS.
This component makes the produced data available on the grid, either using the RBS
or directly through the EPR. To perform our validation tests we set up an application
with only one domain covering all Europe and part of northern Africa, with 256x120
square cells (30×30 Km2) centered at longitude 14.22◦ and latitude 40.85◦.

The validation process starts collecting pre-processed data related to the same
current simulated day and it invokes RBS and FDDDS to get information on where
the data are available. These data are used by the Validation Service (VALS), that
wraps around a tool implementing the evaluation algorithm described in the previous
section. The VALS component returns a map of the Geopotential Height nRMSd
and stores the computed data in a FDDS service selected via RBS.

Figure 20.6 shows the application architecture from a deployment point of
view. The services classified as deployable on a cloud computing infrastructure

490 R. Montella et al.

are the ones characterized by large need of computing power. These services can
be conveniently managed by a batch execution using virtual machines (Sotomayor,
Keahey, & Foster, 2008), where the computing power, required by the web services
underlying the application modules of the grid application (WRF: GGS, UGRBS,
REALS, WRFS; Evaluation: VALS, METS), is dynamically allocated on demand
and eventually released. We deployed the computing power demanding services on
a public infrastructure as a service oriented computing cloud.

The services classified as deployed on the grid are data oriented. In this case
the need for the elasticity provided by the cloud infrastructure is addressed to the
computing intensive part of the application.

The use of the cloud infrastructure is convenient because resources, i.e. virtual
machines, have to be instanced only for the needed time. Using the cloud for data
storing is technically possible, but some drawbacks can raise when a large amount
of data are allocated permanently in the cloud without the need of storage elasticity;
we notice that in our application the needed amount of storage could be estimated in
advance. The evaluation algorithm requires 6 files of about 11 gigabyte each. After
any run of the model, the oldest dataset is deleted and the last produced dataset is
added to the storage. However, the application requirements for the storage result in
a total cost of ownership which is less critical than the requirement for computing
power, so that a self hosted storage turns out to be more effective than a cloud storage
solution.

20.8 Conclusions and Future Work

We have described some recent results in distributing 5D environmental data using
GT4 WSRF compliant tools in a high performance grid environment. The appli-
cation has been deployed in an Infrastructure as a Service public cloud. We have
briefly discussed how the computing and storage resources can be made available
on a computing grid or dynamically allocated on a computing cloud. In particular,
the application we discussed here has a critical issue in computing power needs,
so that the WRF related services can be deployed in the cloud. On the other hand,
storage does not call for an elastic solution and hosting data on the cloud appeared
unsuitable.

We have shown that a suitable integration of legacy software, i.e. the Back End
Server of the Hyrax OpenDap server suite and the gridFtp parallel file transfer proto-
col, can improve the operational throughput and can allow a useful, on demand data
sub-setting and data collecting process. The Five Dimension Distribution Service
relies on a previously designed resource broker collector and matchmaking algo-
rithm, which use the grid ClassAd notation automatically extracted from metadata.
This approach also opens a wide range of applications in the field of the environ-
mental model validation, where issues like component integration and security are
crucial since a validation algorithm must involve several community tools in order
to achieve scientific relevance.

20 Multidimensional Environmental Data Resource Brokering 491

We are aware that a more extensive performance analysis of the application has to
be performed, for instance regarding the cache behavior in a real grid environment
and the effect on the overall performance of the FDDDS dynamical deployment on
a cloud system. Our next goal is to develop a GT4 WSRF compliant web service,
wrapping the MET (Holland, Gotway, Brown, & Bullock) model evaluation tool.
The MET offers grid-to-point, grid-to-grid and advanced spatial forecast verification
techniques in an unified and modular toolkit, that builds on capabilities available
in other verification systems. Tools provided by MET can be grouped by function
to describe the overall structure of the MET: data handling, statistical calculations
and data analysis. This architecture is suitable for our web service infrastructure
in which grid applications are straightforwardly arranged using the JFDL or other
similar tools. The idea is to build up a double evaluation system based on VALS and
on the service wrapped over MET, which can be able to operate with observed data
either downloaded from distribution services or directly sampled via InS, and with
data stored using FDDDS.

In an operational scenario, such as that one producing the results shown in
Fig. 20.7, the model evaluation has to be performed automatically in order to provide
thematic maps about the forecast’s confidence. This result could be achieved using
machine learning algorithms, which can return decision support rules. The choice
of the most suitable classification algorithm and the related issues of its tuning and
assessment will be addressed in a future work.

Fig. 20.7 Weather forecast on a Southern Italy domain

492 R. Montella et al.

References

Ascione, I., Giunta, G., Montella, R., Mariani, P., & Riccio, A. (2006). A grid computing based
virtual laboratory for environmental simulations. Proceedings of 12th International Euro-Par
2006, Dresden, Germany, August/September 2006. LNCS 4128, Springer 2006.

Doty, B. E., & Kinter, J. L., III (1995). Geophysical data analysis and visualization using GrADS.
In E. P. Szuszczewicz & J. H. Bredekamp (Eds.), Visualization techniques in space and
atmospheric sciences (pp. 209–219). Washington, DC: NASA.

Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., & Zhang, X. (May 2006). Virtual
clusters for grid communities. Singapore: CCGRID.

Gallagher, J., Potter, N., & Sgouros, T. (2004). DAP data model specification DRAFT. Retrieved
November 6, 2004, Rev., 1.68, from www.opendap.org.

Gallagher, J., Potter, N., West, P., Garcia, J., & Fox, P. (2006). OPeNDAP’s Server4: Building
a high performance data server for the DAP using existing software. AGU Meeting in San
Francisco, San Francisco, CA.

Giunta, G., Laccetti, G., & Montella, R. (2008). A grid-based service oriented environmental mod-
eling laboratory for research and production applications. In R. Wyrzykowski, J. Dongarra, K.
Karczewski, & J. Wasniewski (Eds.), Chapter of Parallel Processing and Applied Mathematics
2007 (pp. 951–960). Lecture Notes in Computer Science n. 4967. New York, NY: Springer.

Holland, L., Gotway, J. H., Brown, B., & Bullock, R. A. Toolkit for model evaluation (National
Center for Atmospheric Research Boulder, CO 80307).

Llorente, I. M. (July 2008). Towards a new model for the infrastructure grid. Panel From Grids
to Cloud Services in the International Advanced Research Workshop on High Performance
Computing and Grids, Cetraro, Italy.

Llorente, I. M. (July 2008). Cloud computing for on-demand resource provisioning. International
Advanced Research Workshop on High Performance Computing and Grids, Cetraro, Italy.

Montella, R. (May 2007). Development of a GT4-based resource broker service: An application
to on-demand weather and marine forecasting (Vol. LNCS 4459 of LNCS). New York, NY:
Springer.

Montella, R., Giunta, G., & Riccio, A. (June 2007). Using grid computing based components in
on demand environmental data delivery. ACM Proceedings About Upgrade Content Network
HPDC2008 Workshop. Monterey Bay, CA, USA.

Montella, R., Agrillo, G., & Di Lauro, R. (April 2008a). Abstract instrument framework: Java
interface for instrument abstraction (DSA Tech. Rep.) Napoli.

Montella, R., Agrillo, G., Mastrangelo, D., & Menna, M. (2008b). A globus toolkit 4 based instru-
ment service for environmental data acquisition and distribution. Proceedings of Upgrade
Content Workshop HPDC2008, Boston, MA.

Ramakrishnan, L., Blanton, B., Lander, H., Luettich, R., Reed, D., & Thorpe, S. (2006). Real-time
storm surge ensemble modeling in a grid environment.

Sotomayor, B., Keahey, K., & Foster, I. (June 2008). Combining batch execution and leasing
using virtual machines. ACM/IEEE International Symposium on High Performance Distributed
Computing 2008 (HPDC 2008), Boston, MA.

Warren, R. (2007). Development and illustrative outputs of the community integrated assess-
ment system (cias), a multi-institutional modular integrated assessment approach for modelling
climate change. Environmental Modelling and Software, 20, 1–19.

Wielgosz, J., & Doty, J. A. B. (2003). The grads-dods server: An open-source tool for distributed
data access and analysis.

Wielgosz, J. (2004). Anagram: A modular java framework for high-performance scientific data
servers.

Youseff, L., Wolski, R., Gorda, B., & Krintz, C. (December 2006). Paravirtualization for HPC
systems XHPC. Workshop on XEN in High-Performance Cluster and Grid Computing.

Chapter 21
HPC on Competitive Cloud Resources

Paolo Bientinesi, Roman Iakymchuk, and Jeff Napper

Abstract Computing as a utility has reached the mainstream. Scientists can now
easily rent time on large commercial clusters that can be expanded and reduced on-
demand in real-time. However, current commercial cloud computing performance
falls short of systems specifically designed for scientific applications. Scientific
computing needs are quite different from those of the web applications that have
been the focus of cloud computing vendors. In this chapter we demonstrate through
empirical evaluation the computational efficiency of high-performance numerical
applications in a commercial cloud environment when resources are shared under
high contention. Using the Linpack benchmark as a case study, we show that
cache utilization becomes highly unpredictable and similarly affects computation
time. For some problems, not only is it more efficient to underutilize resources,
but the solution can be reached sooner in realtime (wall-time). We also show that
the smallest, cheapest (64-bit) instance on the studied environment is the best for
price to performance ration. In light of the high-contention we witness, we believe
that alternative definitions of efficiency for commercial cloud environments should
be introduced where strong performance guarantees do not exist. Concepts like
average, expected performance and execution time, expected cost to completion,
and variance measures—traditionally ignored in the high-performance computing
context—now should complement or even substitute the standard definitions of
efficiency.

21.1 Introduction

The cloud computing model emphasizes the ability to scale compute resources
on demand. The advantages for users are numerous. Unlike conventional cluster

P. Bientinesi (B) and R. Iakymchuk
AICES, RWTH, Aachen, Germany
e-mails: {pauldj; iakymchuk}@aices.rwth-aachen.de

J. Napper
Vrije Universiteit, Amsterdam, Netherlands
e-mail: jnapper@cs.vu.nl

493B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_21, C© Springer Science+Business Media, LLC 2010

494 P. Bientinesi et al.

systems, there is no significant upfront monetary or time investment in infrastruc-
ture or people and ongoing expenses are simplified. When resources are not in
use, total cost can be close to zero. Instead of allocating resources according to
average or peak load, the cloud user can pay costs directly proportional to current
need. Individuals can quickly create and scale-up a custom compute cluster, paying
only for sporadic usage. However, there are also some disadvantages. Costs can be
divided into different categories that are billed separately: for example, network,
storage, and CPU usage. This model can be complex when attempting to minimize
costs (Strebel & Stage, 2010). Further, the setup time for computation resources is
currently quite long (on the order of minutes for Amazon), and the granularity for
billing CPU resources is coarse: by the hour. These two factors imply that resources
should be very conservatively scaled in current clouds, reducing some of the bene-
fits of scaling on demand. Finally, in many cloud environments, physical resources
are shared among virtual nodes belonging to different users, which can negatively
impact performance.

The ability to allocate on demand nodes in current commercial cloud envi-
ronments implies a new problem in scientific computing: contention. Good high-
performance computing clusters balance the CPU, memory, and network usage
of applications to maintain efficiency while scaling up resource usage but assume
exclusive access to these resources by an application. For example, the RoadRunner
supercomputer at Los Alamos National Laboratory can solve a linear system using
100 K cores while maintaining 90% efficiency of CPU usage. This feat requires
carefully balancing the application’s needs across CPU, memory, and the network.
With exclusive access, developers of applications and compute libraries can achieve
such balanced computing by reducing the noise in resource usage that prevents effi-
cient synchronization. For example, one node out of a large system might run extra
software for monitoring that causes it to reach the end of a computation slower than
the other nodes. If all nodes must synchronize at the end of a computation, all other
nodes in the system must wait for the slowest node to finish. Small amounts of noise
can significantly affect the overall performance of a tightly coupled application
(Petrini, Kerbyson, & Pakin, 2003).

Although cloud environments typically provide a small degree of resource
availability guarantees, they do not provide a complete facsimile of an unshared
virtual node or strong performance guarantees. Contention is visible along almost
all resources: memory bandwidth, last-level cache space, network bandwidth and
latency (Wang & Ng, 2010), and even CPU time. In addition to introducing the
kind of noise discussed above, such contention can severely limit the use of
resources shared between virtual environments. For example, memory contention
can increase the compute time of a simple matrix multiplication by an order of
magnitude.

To run scientific applications efficiently, cloud computing needs to provide
resources to scientific applications comparable to current well-balanced, exclusive-
access high-performance computing (HPC) systems. Isolation between different
virtual machines in the cloud should provide predictable performance for devel-
opers of compute-intensive applications and libraries. However, our evaluation of

21 HPC on Competitive Cloud Resources 495

the Amazon EC2 cloud—currently the largest commercial cloud environment—
demonstrates that significant work is still needed to isolate virtual machines in the
cloud or to adjust HPC libraries to adapt to the dynamic, contentious environment
of the cloud. The Amazon EC2 cloud system was built for web service workloads
(that is, without extremely fast interconnects) and cannot compare favorably with
purpose-built, heavily-engineered HPC supercomputers for many tightly-coupled
scientific computations such as dense linear algebra. Although we do not expect
comparable performance, the dynamic scalability of the environments holds some
promise for smaller workloads.

In order to determine the achievable efficiency of current cloud systems for HPC,
we consider the execution of dense linear algebra, which provides a favorable ratio
of computation to communication: O(n3) operations on O(n2) data. Dense linear
algebra algorithms can thus overlap the slow communication of data with quick
computations over much more data (Dongarra, Van de Geijn, & Walker, 1994).
Cloud systems will generally be limited by slow communication more than special-
ized HPC systems given their relatively cheap, slow interconnects. We are concerned
primarily with the efficiency of shared cloud systems as they scale up and show that
the effects of contention can far outweigh (at least in current offerings) the imbal-
ance caused by an underprovisioned interconnect. We thus focus on CPU costs,
ignoring possible associated (and significantly less per computation) storage and
networking costs.

This chapter empirically explores computational efficiency in a cloud envi-
ronment when resources are shared under high contention. We consider single
node performance of dense linear algebra operations while nodes are shared with
unknown other applications on Amazon EC2 (Services, 2010). Further, we ana-
lyze how the performance changes on clusters of up to 64 compute cores. Our
results show that the performance of single nodes available on EC2 can be as
good as nodes found in current HPC systems (TOP500.org, 2010), but the aver-
age performance is much worse and shows high variability. In fact, dense linear
algebra algorithms do not appear to scale well on cloud systems with high levels
of contention. Contention skews the balance of node’s CPU and memory resource
availability to network capacity to prevent efficient usage of the resources. Cache
utilization becomes highly unpredictable and similarly affects computation time.
We show that for some problems, not only is it more efficient to underutilize CPU
resources, but the solution can even be reached sooner in realtime (wall-time).

In light of the high-contention we witness, we believe that alternative definitions
of efficiency for cloud environments should be introduced where strong perfor-
mance guarantees do not exist. Concepts like average expected performance and
execution time, expected cost to completion, and variance measures—traditionally
ignored in the HPC context—now should complement or even substitute the stan-
dard definitions of efficiency. In addition to standard metrics such as GFLOP and
efficiency used in HPC, we introduce $/GFLOP(dollars per billions of floating point
operations) to analyze in depth the pros and cons of clouds. The $/GFLOP metric
allows users to estimate straightforward costs—currently limited to CPU usage—for
different applications with respect to computational efficiency.

496 P. Bientinesi et al.

21.2 Related Work

Cloud computing has been proposed as a service to scale out or share existing sci-
entific clusters. The Eucalyptus project provides an open source cloud management
tool (Nurmi et al., 2008). Similarly, the Nimbus project provides cloud manage-
ment tools for clusters (Keahey, Freeman, Lawret, & Olson, 2007). These tools do
not typically provide for multi-tenancy—unlike the commercial cloud environments
we study—and thus observe different performance characteristics closer to existing
scientific clusters with exclusive access. We are concerned in this chapter with the
effects of contention on HPC applications when multiple VMs share resources.

Tikotekar et al. run different HPC benchmarks in virtual machines to determine
the effects of virtualization on high-performance computing applications (Tikotekar
et al., 2009). The results show isolating the effects of multiple VMs on the same
machine is difficult, but in general virtualization has little effect on the performance
of compute intensive HPC applications. Similarly, Youseff et al. see little perfor-
mance impact on the memory hierarchy behavior of linear algebra libraries under
virtualization (Youseff, Seymour, You, Dongarra, & Wolski, 2008). However, this
study does not consider contention between multi-tenant VMs.

The impact of virtualization on the networking performance of EC2 is analyzed
empirically by Wang and Ng (2010). They report heavy network instabilities and
delays, especially on small 32-bit nodes. We observe poor performance on the HPL
parallel benchmark using multiple instances but are more concerned with the scaling
properties. Although the instances do not approach peak performance, the paral-
lel job can scale (for tens of nodes) with poor network performance provided the
instances have enough installed RAM due to the high ratio of computation to com-
munication in dense linear algebra. Our experiments (see Fig. 21.8) demonstrate
this effect.

The effects of sharing the last-level cache in multi-core processors is dis-
cussed by Iyer et al. (2007). The paper discusses different approaches to improving
the performance guarantees of each core with respect to cache behavior. Using
these techniques could greatly increase the predictability of performance on cloud
platforms.

Previously, Edward Walker has compared EC2 nodes to current HPC systems
(Walker, 2008). Our results here are similar to his for the small clusters of 4 nodes
that he used. We previously reported preliminary results in (Napper & Bientinesi,
2009).

21.3 Background

We perform our experiments on the Amazon Elastic Compute Cloud (EC2) service
as a case study for commercial cloud environments (Services, 2010). Although there
are competing cloud offerings that were publicly available at the time (Xcalibre,
2010; Hosting, 2010), Amazon’s service is the largest that provides highly

21 HPC on Competitive Cloud Resources 497

configurable virtual machines. The nodes allocated by EC2 run a kernel or operat-
ing system configured by Amazon, but all software above this level is configured by
the user. Many other cloud offerings by other providers limit applications to certain
APIs or languages. To use existing highly optimized dense linear algebra libraries,
we use Amazon as a case study.

Nodes allocated through EC2 are called instances. Instances are allocated from
Amazon’s data centers according to unpublished scheduling algorithms. Allocations
are initially limited to 20 total instances, but this restriction can be lifted upon
request. Data centers are combined into entities known as an availability zone,
Amazon’s smallest logical geographic entity for allocation. These zones are further
combined into regions, which consist of only the US and Europe at the moment.

After allocation, each instance automatically loads a user-specified image con-
taining the proper operating system (in our case Linux) and user software (described
below). Images are loaded automatically by Amazon services onto one or more
virtualized processors using the Xen virtual machine (VM) (Barham et al., 2003).
Each processor is itself multi-core, resulting in a total of 2–8 virtual cores for the
instances we reserved. The Terms of Service provided by Amazon do not provide
strong performance guarantees. Most importantly for this study, they do not limit
Amazon’s ability to implement multi-tenancy; that is, to co-locate VMs from dif-
ferent customers. We discuss the performance characteristics of different instances
below.

Tools written to Amazon’s public APIs provide the abilities to allocate extra
nodes on demand, release unused nodes, and create and destroy images to be
loaded onto allocated instances. Using these tools and developing our own, we
built images with the latest compilers provided by the hardware CPU vendors
AMD and Intel. We use HPL 2.0 (Petitet, Whaley, Dongarra, & Cleary, 2010) from
the University of Tennessee, compiled with GotoBLAS 1.26 (Goto, 2010) from
the Texas Advanced Computing Center (TACC), and MPICH2 1.0.8 (Laboratory,
2010) from the Argonne National Laboratory. Using our tools we can allocate and
configure variable size clusters in EC2 automatically, including support for MPI
applications.

Although we developed tools to automatically manage and configure EC2 nodes
for our applications, there are also other publicly available tools for running sci-
entific applications on cloud platforms (including EC2) (Nimbus Science clouds,
2010; Nurmi et al., 2008). Further, as the cloud computing platform matures, we
expect much more development for specific applications such as high-performance
computing to reduce or eliminate much of the initial learning curve for deploying
scientific applications on cloud platforms. Already, for example, public images are
available on EC2 supporting MPICH (Gemignani & Skomoroch, 2010).

21.3.1 Overview of Amazon EC2 Setup

Our case study was carried out using various instance types on the Amazon
Elastic Compute Cloud (EC2) service from November 2008 through January 2010.

498 P. Bientinesi et al.

Table 21.1 Information about various instances types: processor type, number of cores per
instance, installed RAM (in Gigabytes), and theoretical peak performance (in GFLOP/sec). Prices
are on Amazon EC2 as of January, 2010

Instance Processor Cores RAM (GB) Peak (Gflops) Price ($/hr)

m1.large Intel Xeon E5430 2 7.5 21.28 $0.34
m1.large AMD Opteron 270 2 7.5 8.00 $0.34
m1.xlarge Intel Xeon E5430 4 15 42.56 $0.68
m1.xlarge AMD Opteron 270 4 15 16.00 $0.68
c1.xlarge Intel Xeon E5345 8 7 74.56 $0.68
m2.2xlarge Intel Xeon X5550 4 34.2 42.72 $1.20
m2.4xlarge Intel Xeon X5550 8 68.4 85.44 $2.40

Table 21.1 describes the salient differences between the instance types: number of
cores per instance, installed memory, theoretical peak performance, and the cost
of the instance per hour. We only used instances with 64-bit processors so that
we treat the m1.large as the smallest instance although Amazon provides a smaller
32-bit m1.small instance. The costs per node vary by a factor of 7 from $0.34 for
the smallest to $2.40 for nodes with significant installed memory. We note that cost
scales more closely with installed RAM than with peak CPU performance—the
c1.xlarge instance being the outlier. Peak performance is calculated using processor-
specific capabilities. For example, the c1.xlarge instance type consists of 2 Intel
Xeon quad-core processors operating at a frequency of 2.3 GHz with a total mem-
ory of 7 GB. Each core is capable of executing 4 floating-point operations per clock
cycle, leading to a theoretical peak performance of 74.56 GFLOP per node. There
are additional costs for bandwidth used into and out from Amazon’s network and for
long-term storage of data, but we ignore these costs in our calculations because they
are negligible compared to the costs of the computation itself in our experiments.

In regards to multithreaded parallelism provided by the multi-core processors,
extensive testing typically delivered the best performance when we set the Goto
BLAS library to use as many threads as available cores per socket—4 and 2, for
the Xeon and the Opteron, respectively. We provide the number of threads used
to obtain specific results in the following section when presenting peak achieved
efficiency. With these settings and using the platform-specific libraries and com-
pilers, we reached 76% and 68% of theoretical peak performance (as measured in
GFLOP/sec) for the Xeon E5345 and Opteron 270, respectively, for single node
performance on xlarge instances. We thus believe the configuration and execution
of LINPACK in HPL on the high-CPU and standard instances is efficient enough
to use as an exemplar of compute-intensive applications for the purposes of our
evaluation.

All instance types (with Intel or AMD CPUs) execute the RedHat Fedora Core 8
operating system using the 2.6.21 Linux kernel. The 2.6 line of Linux kernels sup-
ports autotuning of buffer sizes for high-performance networking, which is enabled
by default. The specific interconnect used by Amazon is unspecified (Services,
2010) and multiple instances might even share a single hardware network card

21 HPC on Competitive Cloud Resources 499

(Wang & Ng, 2010). Therefore, the entire throughput might not be available to any
particular instance. In order to reduce the number of hops between nodes to the
best of our ability, we run all experiments with cluster nodes allocated in the same
availability zone.

21.3.2 Overview of HPL

Our goal is to determine the suitability of commercial cloud environments for cer-
tain kinds of scientific applications. We focus on the HPL benchmark (Petitet et al.,
2010) as the exemplar of tightly coupled, highly parallel scientific applications. HPL
computes the solution of a random dense system of linear equations via LU factor-
ization with partial pivoting and triangular solves. This algorithm requires O(n3)
floating point operations on O(n2) data; that is, HPL is compute-intensive, and rep-
resents a realistic upper bound for the performance of such scientific applications.
The actual implementation is driven by more than a dozen parameters, all of which
may have a significant impact on the resulting performance and therefore require
fine tuning. We describe the HPL parameters that were tuned below:

1. Block size (NB). It is determined in relation to the problem size and the per-
formance of the underlying BLAS kernels. We used four different block sizes,
namely 192, 256, 512, and 768.

2. Process grid (p × q). This is the number of process rows and columns of the
compute grid. As with most clusters, we empirically observed that on EC2 it is
better to use process grids where p ≤ q. This is a product of the data flow of the
algorithms used in HPL.

3. Broadcast algorithm (BFACT). It depends on the problem size and network per-
formance. Testing suggested that the best broadcast parameters are 3 and 5.
For large machines featuring fast nodes compared to the available network
bandwidth, algorithm 5 is observed to be best.

With respect to the other HPL settings, we kept them fixed for all the experiments.

21.4 Intranode Scaling

We begin our empirical analysis of EC2 performance for linear algebra by evaluat-
ing the consistency of achievable performance on a single node. In order to evaluate
the consistency in performance delivered by EC2 nodes, we executed DGEMM—
the matrix-matrix multiplication kernel of BLAS—and HPL tests for 24 h, repeat-
ing the experiment over different days. We first focus on the DGEMM results, then
discuss results from HPL. DGEMM is at the core of the Basic Linear Algebra
Subroutines (BLAS) library. Implementing the basic operation of multiplying two
matrices, DGEMM is the building block of all the other Level-3 BLAS routines

500 P. Bientinesi et al.

and of virtually every linear algebra algorithm. It is highly optimized for each target
architecture and its performance, often in the 90+% range of efficiency, is ordinarily
interpreted as the processor peak achievable performance.

21.4.1 DGEMM Single Node Evaluation

In our DGEMM experiment we initialize three square matrices A, B and C of a fixed
size and then invoke the GotoBLAS implementation of DGEMM (Goto, 2010).
We only time the call to the BLAS library and not the time spent allocating and
initializing the matrices. Due to the dense nature of the matrices involved in the
experiments—most of the entries are non-zero—we expect little to no fluctuations
in the execution time on a single node independent of problem size and the number
of cores used.

Figure 21.1 presents the time to complete the same DGEMM computation repeat-
edly over six hours on EC2. For space reasons we focus on six hours; however, the
rest of the time shows similar behavior. In this experiment, only four of the eight
cores of a c1.xlarge instance were used. The results show very high variability in
execution time with an average of 191.8 seconds and standard deviation of 68.6 sec-
onds (36% of average). There are several possible sources for such variability: (1)
the process is not being run for extended, variable periods of time, (2) the threads

 0

 50

 100

 150

 200

 250

 300

 350

 400

16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30

E
xe

cu
tio

n
tim

e
(s

ec
s)

Time of day

Fig. 21.1 Execution time of repeated DGEMM using 4 (of 8) cores over 6 hours on c1.xlarge
instance. Average execution is 191.8 s with a standard deviation of 68.6 s. The input sizes for each
DGEMM are identical. On a stand alone node all executions would be identical

21 HPC on Competitive Cloud Resources 501

are being scheduled on different cores each time (reducing first-level cache perfor-
mance), and (3) the last-level cache shared by all cores is less available to each
thread (because it is being used by another thread on a different core).

Figure 21.2 shows a similar experiment to Fig. 21.1 but using only one of the
eight cores. The experiment shows none of the variability when using only one core
that is present using more cores. With an average execution time of 227.9 s, the
standard deviation is only 0.23 s. The results for using all eight cores shows even
higher levels of variability than Fig. 21.1. The reduced variability of a single core
demonstrates cause (1) above is unlikely. The process is scheduled similarly, but
performance is much more predictable. Cause (2), however, cannot be ruled out
because Amazon EC2 provides no mechanism to pin threads to particular cores so
that the thread always executes on the same physical core of the processor. Finally,
we conjecture cause (3) plays at least as significant a role as (2), and we look at
different experiments to explore these effects.

0

50

100

150

200

250

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00

E
xe

cu
tio

n
tim

e
(s

ec
s)

Time of day

Fig. 21.2 Execution time of repeated DGEMM using 1 (of 8) core over 6 hours on c1.xlarge
instance. Average execution is 227.9 s with a standard deviation of 0.23 s. The input sizes to each
DGEMM are identical

The effects of using different numbers of cores is easily observed. The average
and minimum execution time against the number of cores appear in Fig. 21.3. In
this graph, DGEMM was executed over several hours on a matrix of size n = 10 k
so that the matrices (each 762 MB) cannot fit in the 8 MB last-level cache of the
Intel XEON running the c1.xlarge instance. The results presented are average and
minimum execution times for the DGEMM. Again, allocation and initialization of
memory are not included in the timings. Error-bars show the standard deviation of
the average. There are several notable characteristics of the graph:

502 P. Bientinesi et al.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 227.5
min 2cores = 113.9
min 4cores = 57.16
min 6cores = 39.37
min 8cores = 29.86

Fig. 21.3 Average execution time of repeated DGEMM with n = 10 k on c1.xlarge instance by
number of cores used. The matrices cannot fit within the last-level cache. The inputs sizes for each
DGEMM are identical. Error bars on average show one standard deviation

1. The best performance in graphs (minimum line) shows that we can reach
roughly 90% efficiency. Such performance is close to the optimal achievable.
For example, such performance would be expected in a stand alone node. We
note that virtualization alone clearly does not have a significant impact on peak
performance.

2. The average performance shows that similar computations will not likely ever
reach optimal. The average efficiency—as given by the inverse of the spread
in graph between the min and average—drops dramatically. The best average
performance at two cores is still several times worse than the minimum execution
time at eight cores.

3. As the number of cores increases, the average significantly increases along with
the standard deviation. The standard deviation increases by four orders of magni-
tude. Expected performance diverges so significantly from best performance that
when using eight cores one would rarely expect to achieve the best performance.

4. Underutilization is a good policy on EC2. Using two cores appears to be the
sweet spot in this experiment. Efficiency is good and the average and expected
performance are the best and in line with optimal. Using four cores already takes
longer on average than using two, although using four is still slightly faster than
a single core, and the trend only worsens as the number of cores increases. Note
that the fastest expected time is obtained by only using only a quarter of the
machine!

21 HPC on Competitive Cloud Resources 503

While we can attribute the performance degradation when using more than
two cores per node in Fig. 21.3 to ever worse cache behavior, we cannot easily
distinguish which caches are being missed. In the multicore processors in these
instances, cores have individual caches and a large shared last-level cache (LLC).
Pinning a thread to a particular core would help the thread maintain cache consis-
tency for the individual caches while reducing memory demand of the threads would
reduce contention on the shared LLC. However, the kernels supplied by Amazon
EC2 do not provide support to allow us to pin threads. To attempt to distinguish
these effects without the ability to fix threads to particular cores, we performed sim-
ilar DGEMM experiments with smaller matrices that all fit within the LLC of the
processor.

Figure 21.4 shows the average and minimum execution times using different
numbers of cores for a DGEMM on small matrices n = 500 yielding matrices
of 1.9 MB that can easily fit within the 8 MB LLC. The error-bars on the average
execution times give a standard deviation from the mean. Again, allocation and ini-
tialization of memory are not included in the timings. We note several characteristics
of the graph:

1. As with the out-of-cache DGEMM, the minimum execution times are consistent
with the expected performance of a stand-alone node.

2. Contention is likely for the last-level cache. The two orders of magnitude perfor-
mance degradation between a single core and eight cores is also the difference
in time between accessing the last-level cache and main memory.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 0.031
min 2cores = 0.029
min 4cores = 0.022
min 6cores = 0.024
min 8cores = 0.020

Fig. 21.4 Average execution time of repeated DGEMM with n = 500 on c1.xlarge instance by
number of cores used. All the matrices fit within the last-level cache at once. The inputs sizes for
each DGEMM are identical. Error bars on average show one standard deviation

504 P. Bientinesi et al.

3. The ability to pin threads to cores would probably help significantly. Using mul-
tiple cores always performs worse than with a single core, implying significant
overhead from coordination. Since the minimum scales well, we conjecture that
the average suffers from poor cache behavior. However, the average time with
multiple cores does not become orders of magnitude worse—as would be caused
by going to main memory—until all of the cores are used. Lower level cache
misses are thus more likely when underutilizing the instance with fewer than
eight cores.

21.4.2 HPL Single Node Evaluation

In order to determine whether the effects we have seen using DGEMM scale to
multiple nodes, we use the HPL benchmark (Petitet et al., 2010) that solves a system
of linear equations via LU factorization. HPL can scale to large compute grids.
However, we first consider HPL given similar matrices to the previous DGEMM
experiments, namely, solving a system of linear equations on a single node where
the data does fit and does not fit into the LLC of the processor. In the following
section, we extend HPL to examine internode scaling using parallel algorithms.

In Fig. 21.5 we repeatedly execute HPL with n = 25 k on the Amazon EC2
c1.xlarge instance. We plot average and minimum execution times against the num-
ber of cores. As with the DGEMM experiments, error bars show one standard

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 1203.42
min 2cores = 612.490
min 4cores = 321.110
min 6cores = 228.250
min 8cores = 182.440

Fig. 21.5 Average execution time of repeated HPL with n = 25 k on c1.xlarge instance by number
of cores used. The matrices cannot fit within the last-level cache. The input configuration to each
execution of HPL is identical. Error bars on average show one standard deviation

21 HPC on Competitive Cloud Resources 505

deviation. As with the first DGEMM experiment, these matrices do not fit within
the LLC of the processor, but do fit within the main memory of a single instance.
The results are quite similar to DGEMM, but show slightly different trends. We do
not directly compare the DGEMM and HPL experiments because of the use of very
different algorithms. We only point out that the trends show similar behavior on a
single node.

In the last single node figure, we show HPL with a matrix of size n = 1 k so
that all data for the computation fits within the LLC. Figure 21.6 plots the average
(and one standard deviation) and minimum execution times of repeated runs of the
HPL benchmark. The results show similar behavior to the corresponding DGEMM
experiment. We could not find a source for the anomalous improved performance at
six cores as compared to four or eight. In the following section, we extend HPL to
multiple nodes to take a look at the effects of contention on parallel computations
in a commercial cloud environment.

 0

 10

 20

 30

 40

 50

 60

 1 2 4 6 8

T
im

e
(s

ec
s)

Number of cores

Minimum
Average

min 1 core = 0.100
min 2cores = 0.060
min 4cores = 0.070
min 6cores = 0.070
min 8cores = 0.090

Fig. 21.6 Average execution time of repeated HPL with n = 1 k on c1.xlarge instance by number
of cores used. The matrices fit within the last-level cache. The input configuration to each execution
of HPL is identical. Error bars on average show one standard deviation

From the single node experiments we conclude that the very high variance in
performance implies that the best achieved performance is not a good measure of
expected performance. The average expected performance can be several orders
of magnitude worse depending on the cache behavior of the algorithm in both
efficiency and time to solution. In our experiments, the best average expected per-
formance is obtained on Amazon using much less of the machine than is allocated:
In an experiment accessing a large amount of main memory, using only a quarter of
the machine provided the best expected performance!

506 P. Bientinesi et al.

21.5 Internode Scaling

The previous section demonstrates the significant effects of contention on single
node performance in a commercial cloud environment. In this section, we extend
our empirical analysis to parallel multi-node algorithms using the HPL bench-
mark. The HPL benchmark represents tightly coupled, highly parallel algorithms
frequently used in scientific applications. We executed the HPL benchmark on
different instance types on Amazon EC2, varying the parameters as described in
Section 21.3.2. Using different instance types allowed us to see the effects on per-
formance, efficiency, and cost of varying the amount of RAM available and the
problem size.

Tables 21.2, 21.3, 21.4 and 21.5 show the parameters used to obtain the best
results over different problem sizes, instance types, and number of cores used per
node. To calculate the total number of cores used for a particular execution, use the
result of p×q× Threads. Due to the numerous parameters of HPL, it was necessary
to try different input configurations to maximize performance. To maximize the per-
formance, we minimized reliance on the interconnect by maximizing the memory
allocation per node used to solve a particular problem size. Figure 21.7 shows the
number of nodes used for different instance types to solve each problem size. Only
the m2.4xlarge instance with 68.4 GB of RAM is large enough to solve all problem
sizes on a single node. We used this as a reference point in Fig. 21.8 to bound the
effects of network usage on the performance.

Table 21.2 Results of HPL benchmarks for matrix size n = 20 k. Columns are, in order: Amazon
EC2 instance type, CPU type (Xeon or Opteron), block size (NB), process grid (p × q), number
of threads used in the BLAS routines, broadcast algorithm (BFACT), best elapsed time, and cor-
responding efficiency using the theoretical peak performance from Table 21.1. A more detailed
description of the parameters can be found in Section 21.3.2

Instance Proc.
Block
size p × q Threads Bcast

Time
(min:sec)

Efficiency
(% peak)

m1.large Xeon 256 1x1 2 3 06:29.35 64.38
m1.large Opt. 192 1x2 1 3 12:24.21 89.62
m1.xlarge Xeon 256 1x1 4 3 05:07.30 40.78
m1.xlarge Opt. 256 1x2 2 3 06:28.16 85.88
c1.xlarge Xeon 512 1x1 8 3 01:51.85 63.96
m2.2xlarge Xeon 256 1x2 2 3 03:19.74 62.50
m2.4xlarge Xeon 256 1x1 8 3 01:44.55 59.71

In Figs. 21.8, 21.9, 21.10, 21.11, 21.12, and 21.13 we present different aspects
of the results of our HPL benchmark experiments given in Tables 21.3, 21.4, and
21.5. We first discuss the best results obtained to give a reasonable lower bound
on performance in a contentious commercial cloud environment. In these parallel
experiments, the minimum times do not differ as greatly from the average as the sin-
gle node experiments for several reasons: (1) the elapsed time required (more than
an hour for large problem sizes) implies an averaging effect and (2) the overhead for
parallel jobs is higher than single node experiments due to network usage. Finally,

21 HPC on Competitive Cloud Resources 507

Table 21.3 Results of HPL benchmarks for matrix size n = 30 k

Instance Proc.
Block
size p × q Threads Bcast

Time
(min:sec)

Efficiency
(% peak)

m1.large Xeon 256 1x1 2 3 20:20.82 69.31
m1.large Opt. 256 1x2 1 3 41:21.01 90.75
m1.xlarge Xeon 256 1x2 2 3 11:00.73 64.00
m1.xlarge Opt. 192 1x2 2 3 21:20.46 87.88
c1.xlarge Xeon 512 1x1 8 3 05:19.10 75.66
m2.2xlarge Xeon 256 1x2 2 3 11:12.15 62.69
m2.4xlarge Xeon 512 1x1 8 3 05:46.53 60.80

Table 21.4 Results of HPL benchmarks for matrix size n = 50 k

Instance Proc.
Block
size p × q Threads Bcast

Time
(hr:min:sec)

Efficiency
(% peak)

m1.large Xeon 512 1x3 2 5 35:55.66 60.56
m1.large Opt. 256 1x3 2 3 1:09:44.47 83.00
m1.xlarge Xeon 512 1x2 4 5 28:07.85 58.00
m1.xlarge Opt. 512 1x4 2 5 1:00:46.59 71.41
c1.xlarge Xeon 512 3x1 8 5 18:14.36 34.04
m2.2xlarge Xeon 256 1x2 2 3 51:09.45 63.11
m2.4xlarge Xeon 256 1x2 8 3 26:16.52 61.87

Table 21.5 Results of HPL benchmarks for matrix size n = 80 ka

Instance Proc.
Block
size p × q Threads Bcast

Time
(hr:min:sec)

Efficiency
(% peak)

m1.large Xeon 768 2x4 2 5 1:01:06.31 54.69
m1.xlarge Xeon 512 1x4 4 3 1:14:57.67 44.58
m1.xlarge Opt. 512 2x2 4 5 3:27:46.61 42.78
c1.xlarge Xeon 768 1x8 8 5 2:17:50.49 0.07
m2.2xlarge Xeon 512 1x2 4 3 1:50:56.69 60.02
m2.4xlarge Xeon 512 1x1 8 3 1:46:06.05 62.76

aWe could not allocate enough m1.large nodes of Opteron type to solve a problem of size
n = 80 k

we note that in these figures the line for m1.large instances using the Opteron pro-
cessor does not extend to n = 80 k because we could not allocate enough m1.large
instances with Opteron CPUs in a single availability zone to solve a problem of size
n = 80 k.

21.5.1 HPL Minimum Evaluation

Figure 21.8 demonstrates that efficiency is generally better than 60% for problem
sizes below 80 k. Here, efficiency is considered to be percentage of theoretical peak

508 P. Bientinesi et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20000 30000 50000 80000

N
um

be
r

of
 n

od
es

Matrix size

m1(c1).(x)large
m1.xlarge

m2.2xlarge
m2.4xlarge

Fig. 21.7 Required number of nodes for different input matrix sizes n. The number of nodes is
determined by maximizing usage of RAM on each node. We could not allocate enough m1.large
nodes of AMD type to solve a problem of size n = 80 k

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 20000 30000 50000 80000

E
ff

ic
ie

nc
y

(%
)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Fig. 21.8 Efficiency scaling by problem size. Efficiency is determined with respect to the
theoretical peak given in Table 21.1 multiplied by the number of nodes used

given in Table 21.1 multiplied by the number of nodes used. We consider 60% to be
reasonable performance given the relatively slow interconnect provided by Amazon
EC2 compared to purpose-built HPC systems. The balance of resources available to
the computation is clearly important. For example, the m2.2xlarge and m2.4xlarge

21 HPC on Competitive Cloud Resources 509

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20000 30000 50000 80000

T
im

e
(h

ou
rs

)

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Matrix size

Fig. 21.9 Total time to solution for different instance types by problem size

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 20000 30000 50000 80000

C
os

t (
$)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Fig. 21.10 Cost to solution prorated to actual time spent for different instance types by problem
size

instances have roughly equal performance at 80 k although HPL needs two of the
m2.2xlarge instances and only one m2.4xlarge. In this case the interconnect does
not have a significant effect because the nodes are provisioned with enough RAM to
keep the CPU busy. The c1.xlarge instances suffer severe performance degradation,

510 P. Bientinesi et al.

 0

 2

 4

 6

 8

 10

 12

 20000 30000 50000 80000

C
os

t (
$)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Fig. 21.11 Actual cost to solution for different instance types by problem size. Execution time is
rounded to the nearest hour for cost calculation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20000 30000 50000 80000

C
os

t p
er

 G
fl

op
 (

$)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Fig. 21.12 Cost per GFLOP ($/GFLOP) prorated to actual time spent for different instance types
by problem size

however. At n = 80 k, the c1.xlarge instances perform two orders of magnitude
worse than a single node. We conjecture that the 7 GB of RAM of c1.xlarge nodes
is insufficient to keep the CPU busy given the same interconnect between instances.
In general, nodes with more RAM clearly scale up in problem size much better as

21 HPC on Competitive Cloud Resources 511

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 20000 30000 50000 80000

C
os

t p
er

 G
fl

op
 (

$)

Matrix size

m1.large (Xeon)
m1.large (Opt.)

m1.xlarge (Xeon)
m1.xlarge (Opt.)
c1.xlarge (Xeon)

m2.2xlarge (Xeon)
m2.4xlarge (Xeon)

Fig. 21.13 Actual cost to solution per GFLOP ($/GFLOP) for different instance types by problem
size. Execution time is rounded to the nearest hour for cost calculation

expected due to the high ratio between the required number of operations and the
data size to solve a dense linear system.

While efficiency is important to gauge the scalability of the implementation, for
any particular experiment the most important concern is generally time to solution.
Fig. 21.9 shows the total time to solution for different instance types by problem
size. This graph shows that although the efficiency of larger nodes is somewhat
better than that of the smaller ones, in most cases the smaller nodes reach the
solution faster. The c1.xlarge instances, recommended for high-compute applica-
tions, and the m2.2xlarge and m2.4xlarge instances, recommended for high-memory
applications, are generally the slowest.

One of the important concerns when using commercial cloud environments are
the differing costs of different instances. Figure 21.10 provides the cost to solu-
tion for different instance types by problem size. In this graph, the cost is prorated
to the second to illustrate the marginal costs incurred when allocating a cluster to
solve several problems. Figure 21.11 provides the comparable actual costs of using
the different instance types to solve a single execution each problem size; that is,
this graph includes the costs of the remaining hour after the execution completes.
The salient difference between the figures is the relation of the largest nodes to the
smaller nodes. Using absolute cost, the largest nodes are cheapest for large prob-
lems, but using prorated costs they are more expensive. Since the prorated trends
are more informative for different problem sizes and for multiple jobs, we conclude
the smaller instances m1.large and m1.xlarge are the most cost effective for parallel
jobs.

512 P. Bientinesi et al.

In addition to cost to solution, we also consider a more general cost measure,
$/GFLOP, calculated using the ratio between the total GFLOPS returned by the
HPL benchmark and the (prorated) cost for the specific computation. This measure
allows a rough conversion of expected cost for other problem sizes including other
scientific applications characterized by similar computational needs. Figures 21.12
and 21.13 show the results of the HPL benchmarks giving the cost per GFLOP
for different instances by problem size. The cost per GFLOP measure magnifies
the differences between the instance types, but of course the best instance type in
Figs. 21.10 and 21.11—m1.large—is still the best for the price to performance ratio.

The m1.large instance is the fastest by Fig. 21.9 and the best for price to per-
formance by Fig. 21.10, leading us to recommend the smallest (64-bit) instance for
most parallel linear algebra compute jobs on the Amazon EC2 cloud environment
according to the empirical upper bound on performance. The high-compute and
high-memory instances are not worth the extra costs in our experiments. Given the
high variability in performance of single nodes, we examine in the following section
the expected performance from instances instead of the upper bound to determine if
our recommendation holds also for expected average performance.

21.5.2 HPL Average Evaluation

The minimum execution times from the previous section provide a rough upper
bound for performance. In this section, we examine the average execution times
for HPL to provide a better estimate of the expected performance of applications
with dense linear algebra. Figures 21.14, 21.15, 21.16, and 21.17 provide the min-
imum and average (and standard deviation) execution times for different instances

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 389.35 avg/min = 1.41
30k min = 1220.8 avg/min = 1.68
50k min = 2155.7 avg/min = 1.30
80k min = 3666.3 avg/min = 1.22

Fig. 21.14 Minimum and average execution time of HPL on m1.large (Xeon) instances by
problem size. Error bars on average show one standard deviation

21 HPC on Competitive Cloud Resources 513

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

20k min = 388.160 avg/min = 1.82
30k min = 1280.46 avg/min = 1.53
50k min = 3646.59 avg/min = 1.46
80k min = 11115.6 avg/min = 1.12

Fig. 21.15 Minimum and average execution time of HPL on m1.xlarge (Opt.) instances by
problem size. Error bars on average show one standard deviation

20k min = 307.30 avg/min = 2.67
30k min = 660.73 avg/min = 1.33
50k min = 1687.8 avg/min = 1.71
80k min = 4497.7 avg/min = 1.84

 0

 2000

 4000

 6000

 8000

 10000

 12000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

Fig. 21.16 Minimum and average execution time of HPL on m1.xlarge (Xeon) instances by
problem size. Error bars on average show one standard deviation

by problem size. We do not show the m2.2xlarge or m2.4xlarge instances due to
insufficient data. These large instances are also quite expensive to allocate.

As with the single node experiments, Fig. 21.14, 21.15, 21.16, 21.17 show that
the expected performance is worse than the best performance, but by a much smaller

514 P. Bientinesi et al.

20k min = 111.85 avg/min = 2.98
30k min = 319.10 avg/min = 4.35
50k min = 674.63 avg/min = 6.36
80k min = 6410.2 avg/min = 2.08

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 20000 30000 50000 80000

T
im

e
(s

ec
s)

Matrix size

Minimum
Average

Fig. 21.17 Minimum and average execution time of HPL on c1.xlarge instances by problem size.
Error bars on average show one standard deviation

margin. Indeed, for the m1.large instances in Fig 21.14, the expected performance at
n = 80 k is only 22% worse than the best execution time. Generally, the average for
the HPL experiments is between 30% and 2 × worse than the minimum execution
times. As we mentioned at the beginning of this section, we believe the smaller
differences between the expected execution time and the best times are due to an
averaging effect from the length of the experiments and the greater overhead of the
HPL benchmark from network traffic (as compared to the DGEMM experiments in
Section 21.4.1).

The m1.large instance—the smallest that we tested—remains the best instance
on EC2 for tightly coupled, compute intensive, parallel jobs. Although the aver-
age expected time is longer than the minimum by 20% for the largest problem
size, the expected time is still faster than the next fastest minimum time (m1.xlarge
Xeon). Given that the m1.large also costs half as much as the m1.xlarge, the smallest
instance is the clear winner for the tightly-coupled, dense linear algebra computation
that we evaluated, and the high marginal costs for high-compute or high-memory
nodes is not cost effective.

21.6 Conclusions

In this chapter we demonstrated empirically the computational efficiency of high-
performance numerical applications in a commercial cloud environment when
resources are shared under high contention. Through a case study using the Linpack

21 HPC on Competitive Cloud Resources 515

benchmark, we show that cache utilization becomes highly unpredictable and sim-
ilarly affects computation time. For some problems, not only is it more efficient
to underutilize resources, but the solution can be reached sooner in realtime (wall-
time). We also show that the smallest, cheapest (64-bit) instance on the Amazon
EC2 commercial cloud environment is not only the fastest, but also the best for
price to performance ratio.

We presented the average expected performance and execution time, expected
cost to completion, and variance measures—traditionally ignored in the high per-
formance computing context—to determine the efficiency and performance of the
Amazon EC2 commercial cloud environment. Under omnipresent contention for
resources, the expected performance in the cloud environment diverges by an
order of magnitude from the best achieved performance. We conclude that there
is significant space for improvement in providing predictable performance in such
environments.

Acknowledgments The authors wish to acknowledge the Aachen Institute for Advanced Study
in Computational Engineering Science (AICES) as sponsor of the experimental component of
this research. Financial support from the Deutsche Forschungsgemeinschaft (German Research
Association) through grant GSC 111 is gratefully acknowledged. Also, support from the XtreemOS
project, which is partially funded by the European Commission under contract #FP6-033576 is
gratefully acknowledged.

References

Barham, P.T., Dragovic, B., Fraser, K., Hand, S., Harris, T.L., Ho, A., et al. (2003). Xen and the
art of virtualization. In Symposium on operating systems principles, (pp. 164–177). New York,
NY: Bolton Landing, USA.

Dongarra, J., van de Geijn, R., & Walker, D. (1994). Scalability issues affecting the design of a
dense linear algebra library. Journal of Parallel and Distributed Computing, 22(3), 523–537.

Gemignani, C., & Skomoroch, P. (2010). Elasticwulf: Beowulf cluster run on Amazon
EC2. Available via the WWW. Retrieved 1 January 2010, from http://code.google.com/
p/elasticwulf/.

Goto, K. (2010). GotoBLAS. Available from WWW. Retrieved 1 January 2010, from
http://www.tacc.utexas.edu/.

Hosting, S. D. (2010). GoGrid cloud hosting. Available from WWW. Retrieved 1 January 2010,
from http://gogrid.com.

Iyer, R., Zhao, L., Guo, F., Illikkal, R., Makineni, S., Newell, D., et al. (2007). Qos policies
and architecture for cache/memory in cmp platforms. SIGMETRICS Performance Evaluation
Review, 35(1), 25–36. DOI http://doi.acm.org/10.1145/1269899.1254886.

Keahey, K., Freeman, T., Lauret, J., & Olson, D. (2007). Virtual workspaces for scientific
applications. SciDAC 2007 Conference, Boston, MA.

Laboratory, A. N. (2010). MPICH2: High-performance and widely portable MPI. Available via the
WWW. Retrieved 1 January 2010, from http://www.mcs.anl.gov/research/projects/mpich2/.

Napper, J., & Bientinesi, P. (2009). Can cloud computing reach the Top500? Unconventional High-
Performance Computing (UCHPC), Italy.

Nimbus Science Clouds (2010). Available from WWW. Retrieved 1 January 2010, from
http://www.nimbusproject.org/.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al. (2008). The
Eucalyptus open-source cloud-computing system. Proceedings of Cloud Computing and Its
Applications [online].

516 P. Bientinesi et al.

Petitet, A., Whaley, R. C., Dongarra, J., & Cleary, A. (2010). HPL - a portable implementation of
the high-performance LINPACK benchmark for distributed-memory computers. Available from
WWW. Retrieved 1 January 2010, from http://www.netlib.org/benchmark/hpl/.

Petrini, F., Kerbyson, D. J., & Pakin, S. (2003). The case of the missing supercomputer per-
formance: Achieving optimal performance on the 8,192 processors of ASCI Q. SC ’03:
Proceedings of the 2003 ACM/IEEE conference on Supercomputing, IEEE Computer Society,
Washington, DC, USA, p. 55.

Services, A. W. (2010). Amazon elastic compute cloud (EC2). Available from WWW. Retrieved 1
January 2010, from http://aws.amazon.com/ec2.

Strebel, J., Stage, A. “An Economic Decision Model for Business Software Application
Deployment on Hybrid Cloud Environments”, In: M. Schumann, L.M. Kolbe, M.H. Breitner,
A. Frerichs (eds.), Multikonferenz Wirtschaftsinformatik 2010, Universitätsverlag Göttingen,
Ottingen, 2010, pp. 195–206.

Tikotekar, A., Vallée, G., Naughton, T., Ong, H., Engelmann, C., & Scott, S. L. (2008). An analy-
sis of HPC benchmarks in virtual machine environments. Euro-Par 2008 Workshops - Parallel
Processing: VHPC 2008, UNICORE 2008, HPPC 2008, SGS 2008, PROPER 2008, ROIA
2008, and DPA 2008, Las Palmas de Gran Canaria, Spain, August 25–26. Revised Selected
Papers, 63–71. Springer, Berlin, Heidelberg (2009). DOI http://dx.doi.org/10.1007/978-3-642-
00955-6_8

TOP500.Org (2010). Top 500 supercomputer sites. Available from WWW. Retrieved 1 January
2010, from http://www.top500.org/.

Walker, E. (2008). Benchmarking Amazon EC2. LOGIN, 18–23.
Wang, G., & Ng, E. (2010). The impact of virtualization on network performance of Amazon

EC2 data center. INFOCOM ’10: Proceedings of the 2010 IEEE Conference on Computer
Communications. IEEE Communication Society. San Diego, CA.

Xcalibre Communications Ltd (2010). FlexiScale cloud computing. Available from WWW.
Retrieved 1 January 2010, from http://www.flexiscale.com.

Youseff, L., Seymour, K., You, H., Dongarra, J., & Wolski, R. (2008). The impact of paravir-
tualized memory hierarchy on linear algebra computational kernels and software. HPDC
’08: Proceedings of the 17th International Symposium on High Performance Distributed
Computing, ACM, New York, NY, USA, 141–152. DOI http://doi.acm.org/10.1145/1383422.
1383440.

Chapter 22
Scientific Data Management in the Cloud:
A Survey of Technologies, Approaches
and Challenges

Sangmi Lee Pallickara, Shrideep Pallickara, and Marlon Pierce

22.1 Introduction

Experimental sciences create vast amounts of data. In astronomy, data produced by
the Pan-STARRS project (Pan-STARRS project, 2010; Jedicke, Magnier, Kaiser, &
Chambers, 2006) is expected to result in more than a petabyte of images every year.
In high-energy physics, the Large Hadron Collider will generate 50–100 petabytes
of data each year, with about 20 PB of that data being stored and processed on
a worldwide federation of national grids linking 100,000 CPUs (Large Hadron
Collider project, 2010; Massimo Lammana, 2004).

Cloud computing is immensely appealing to the scientific community, who
increasingly see it as being part of the solution to cope with burgeoning data vol-
umes. Cloud computing enables economies-of-scale in facility design and hardware
construction. Groups of users are allowed to host, process, and analyze large vol-
umes of data from various sources. There are several vendors that offer cloud
computing platforms; these include Amazon Web Services (Amazon Web Services,
2010), Google’s App Engine (Google App Engine, 2010), AT&T’s Synaptic Hosting
(AT&T Synaptic Hosting, 2010), Rackspace (Rackspace, 2010), GoGrid (GoGrid,
2010) and AppNexus (AppNexus, 2010). These vendors promise seemingly infinite
amounts of computing power and storage that can be made available on demand, in
a pay-only-for-what-you-use pricing model.

The science community has substantial experience in dealing with data manage-
ment issues in distributed computing environments. Data Grids (Chervenak, Foster,
Kesselman, C. Salisbury, & Tuecke, 2001), which is based on the grid computing
paradigm, has provided large-scale scientific data storage with support for data dis-
covery and accesses over the grid network (Singh et al., 2003; The Globus toolkit,

S.L. Pallickara (B) and S. Pallickara
Department of Computer Science, Colorado State University, Fort Collins, CO, USA
e-mails: {sangmi; shrideep}@cs.colostate.edu

M. Pierce
Community Grids Lab, Indiana University, Bloomington, IN, USA
e-mail: mpierce@cs.indiana.edu

517B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_22, C© Springer Science+Business Media, LLC 2010

518 S.L. Pallickara et al.

2010; Moore, Jagatheesan, Rajasekar, Wan, & Schroeder, 2004; Antonioletti et al.,
2006). Similarly, many cyberinfrastructures and gateways provide their own large-
scale data management schemes to satisfy domain-specific requirements (Peng &
Law, 2004; Plale et al., 2005).

Scientific data management in the cloud differs from prior approaches in several
aspects (Gannon & Reed, 2009). First, cloud computing consolidates computing
capabilities and data storage in very large datacenters or economics-driven local dat-
acenters. In conventional high performance computing, scientists share massively
parallel super computers. Access to these supercomputing resources is managed by
batch queue systems. Computational input and output data are staged back and forth
from the computing nodes to the data storage, which is located separately. In cloud
computing the data storage and the computing capability are in the same place. This
leads to leads to a paradigm shift in many of data processing and analysis.

Second, hosting data in a centralized facility can be a catalyst for data sharing
across different scientific domains. An example of multidisciplinary data hosting
can be found in the SciDB (SciDB, 2010) open source database. SciDB is designed
to serve scientists across a variety of disciplines including astronomy, biology, mete-
orology, oceanography, and physics. This sharing is not only between different
fields, but also among scientists from diverse institutions of the same discipline.

Finally, from the perspective of data hosting, cloud computing is inherently more
sustainable. In cloud settings data is often replicated to cope with transient and per-
manent failures in addition to coping with data corruptions caused by the use of
commodity hardware. Since data preservation is often a critical aspect in most sci-
entific domains, data management in the cloud is often a far superior alternative to
using local storage, which would involve resolving technical problems that include
inter alia replication, fault tolerance, and error detection.

This chapter is organized as follows. In Section 22.2 we discuss common char-
acteristics of scientific data processing to help understand the requirements for
scientific data management. In Section 22.3 we discuss current data cloud techno-
logies. We describe scientific applications that are adopting data cloud technologies
in Section 22.4. We present an analysis of the gaps between current data cloud tech-
nologies and scientific data management requirements in Section 22.5. Finally, in
Section 22.6 we present our conclusions.

22.2 Data Management Issues Within Scientific Experiments

Data management in scientific computing involves data capture, curation, and anal-
ysis of the datasets. A lot of this data is produced by observational or experimental
instruments such as survey telescopes, doppler radars, satellites, and particle accel-
erators such as the Large Hadron Collider. Collecting large amounts of data from
these instruments can occasionally cause problems in the data ingest and trans-
fer phases. Integrating data from diverse data sources has also been a challenge
because of the differences in data delivery patterns and also the heterogeneity in data

22 Scientific Data Management in the Cloud 519

formats. Additionally, data is also produced during the computing phase and during
simulation runs. Furthermore, in addition to the experimental data (raw, derived and
recombined), any results and publications produced because of these experiments
are also collected and managed as part of the scientific data (Gray, 2009).

Data analysis and simulation often involve visualization. The collected data is in
general stored prior to being accessed by the data analysis or visualization process.
The curation process involves efficient information extraction besides data organi-
zation including indexing and replication. A related consideration is the long-term
preservation of the collected data.

Different stages of scientific data processing execute not only sequentially, but
also recursively and interactively with other stages during the scientific experiments.
Data processing often involves dynamic sharing between scientists or groups. For
example, Unidata publishes atmospheric observational data to the public (Unidata,
2010); and in the biotechnology domain NCBI (NCBI, 2010) publishes information
that includes gene sequences and chemical structures besides providing a library for
biomedical articles (GenBank, 2010; PubCam, 2010; PubMed, 2010).

22.3 Data Clouds: Emerging Technologies

Peta-scale datasets pose new challenges. Here, the file system has to be able to man-
age billions of files some of which may themselves be a few terabytes long. To cope
with this a synthesis of database systems and file systems has been proposed (Gray
et al., 2005); here, the file hierarchy would be replaced with a database cataloging
various attributes of each file.

The Map-Reduce (Dean & Ghemawat, 2004) programming model by Google
enables concurrent processing of a voluminous dataset on a large number of
machines. Computations and the data they operate on are collocated on the same
machine. Thus a computation only needs to perform local disk I/O to access its
input data. Map-Reduce can also be thought of as an instance of the SPMD model
in parallel computing.

The Google File System (GFS) (Ghemawat, Gobioff, & Leung, 2003) fits in
rather nicely with the Map-Reduce programming model. GFS disperses a large file
onto a set of machines each with its own commodity hard drives: thus, portions of a
file reside on multiple machines, which is where Map-Reduce computations would
be pushed during subsequent processing. To account for failures that occur fairly
often in settings involving commodity components, GFS replicates each file (the
default is 3). Failures are assumed to be permanent, and once the system detects
a failure it works to ensure that portions of files that were hosted on the failed
machine are replicated elsewhere (using copies from other machines) to ensure that
the replication levels for the affected files are preserved.

To provide database-like access to the data stored in GFS, Google developed a
distributed data store, BigTable (Chang et al., 2006). BigTable provides a multi-
dimensional map sorted by {row, column, timestamp}. Files are clustered as tablets

520 S.L. Pallickara et al.

that have a size of 100 ∼ 200 MB, and BigTable manages more than a few Giga
tablets. Google’s implementation is available to the public through the Google
Application Engine (Google App Engine, 2010). Google also provides a data anal-
ysis infrastructure, Sawzall (Pike, Dorward, Griesemer, & Quinlan), which makes
effective use of large computing clusters with large datasets. Sawzall allows users to
specify execution instructions through statements and expressions that are borrowed
from C, Java or Pascal. Sawzall then converts these instructions into a program that
can run on Google’s highly parallel cluster.

Google’s efforts have inspired several open source projects such as Hadoop
(Hadoop, 2010) and several derivative projects including HBase (HBase, 2010),
Hypertable (Hypertable, 2010) and Hive (Hive, 2010). Hadoop provides Map-
Reduce programming environment on top of the Hadoop distributed file system
(HDFS). HBase and Hypertable harness Hadoop to implement a distributed store
that mirrors the software design of Google’s BigTable. Apache’s Hive (Hive, 2010)
is a data warehouse infrastructure, which allows SQL-like ad hoc querying of data
stored in HDFS. Zookeeper (Zoopeeker, 2010) is a high-performance coordination
service for distributed applications.

Cassandra (Lakshman, Malik, & Ranganathan, 2008), developed by Facebook
and Yahoo, provides a distributed column store for Internet scale data management.
Cassandra focuses on fault tolerance to achieve an “always writable” feature, which
is critical for several web-based software. Pig (Olston, Reed, Srivastava, Kumar, &
Tomkins, 2008) is a platform for analyzing large datasets. Pig is both a high-level
data-flow language and execution framework for parallel computation. Pig auto-
matically translates user queries into efficient parallel evaluation plans, and then
orchestrates their execution on a Hadoop cluster. Pig utilizes the Pig Latin language,
developed by Yahoo, which combines high-level declarative querying in the spirit
of SQL, and low-level, procedural programming, MapReduce.

Similarly, Microsoft provides its own software stack and computing facilities to
the DataCloud clients. Azure (Microsoft, Windows Azure, 2010) is a large-scale dis-
tributed storage system in this software stack. SQL Azure (Microsoft, SQL Azure,
2010) provides a distributed key-value store and its interface extends standard SQL.
Microsoft uses the dataflow graph based processing model called Dryad (Isard,
Budiu, Yu, Birrel, & Fetterly, 2007) that is designed for Windows based cloud clus-
ters. DryadLINQ (Yu, Gunda, & Isard, 2009; Isard & Yu, 2009) exploits LINQ
(Language Integrated Query) to provide a hybrid of declarative and imperative pro-
gramming. Any LINQ-enabled programming language such as C#, VB, and SQL
can be used for distributed computation with DryadLINQ. DryadLINQ built on top
on Dryad, provides a sequential data analysis language. The DryadLINQ system
transparently translates the data-parallel portions of the program into a distributed
execution plan, which is then passed to the Dryad execution platform. Objects in
DryadLINQ datasets can be of any .NET type; this makes it easy to work with
datasets such as image patches, vectors, and matrices.

In contrast to Google and Microsoft, Amazon web services (Amazon Web
Services, 2010) provides a much lower level of computing and data storage
infrastructure. Additionally, an Elastic Map-Reduce web service (Amazon Elastic

22 Scientific Data Management in the Cloud 521

MapReduce, 2010) based on Hadoop is also provided. Users can run their own vir-
tual cluster with specific batch processing such as Open PBS (2010), Open MPI
(2010) or Condor (Thain, Tannenbaum, & Livny, 2005). Similarly, several commer-
cial database management systems are available on the EC2 cluster including, IBM
DB2 (Baru et al., 1995), Microsoft SQL Server (Microsoft, SQL Azure, 2010), and
Oracle Database 11 g (Oracle Database 11g, 2010). Users can access storage ser-
vices, such as Simple Storage Service (S3) (Palankar et al., 2008) and Elastic Block
Service (EBS) (Amazon EBS, 2010). In S3 users store 1 byte∼ 5 GB objects which
are accessed through web service interface. EBS provides a much larger storage of
1 GB∼ 1 TB and this block is mounted on a user’s instance. Amazon provides a web
service interface to simple database functions such as indexing and querying with
SimpleDB (Amazon SimpleDB, 2010). Recently, Amazon introduced a more full-
featured SQL like database instances, Relational Database Service (RDS) (Amazon
RDS, 2010).

Table 22.1 below summarizes the various data cloud technologies that we have
discussed so far.

Many of the technologies enabling the data cloud have been investigated in
recent distributed data management projects. The Boxwood project (MacCormick,
Murphy, Najork, Thekkath, & Zhou, 2004) from Microsoft provides a distributed
data management system which provides distributed locking, clustering, and storage
of data based on B-trees. The Boxwood project aims to provide an infrastructure for

Table 22.1 Summarizing the data cloud technologies

Vendors
Execution
engine

Distributed data
storage
(unstructured)

Distributed data
storage
(Structured)

High-level data
analysis

Google Google
Map-reduce

Google File
System(GFS)

BigTable Sawsall

Microsoft Dryad Azure, Cosmos SQL Azure DryadLINQ
Apache Hadoop

Map-reduce
Hadoop

Distributed
File System
(HDFS)

HBase
Hypertable
(Zvents)

Hive, Pig Latin,
and Pig

Amazon Elastic Compute
Cloud, Elastic
MapReduce,

Simple Storage
Service (S3),
Elastic Block
Storage (EBS)

Dynamo,
SimpleDB,
Relational
Database
Service (RDS)

Facebook/
Yahoo

PNUTS,
Cassandra

Pig, Hive

Other Efforts WheelFS,
Synaptic
Hosting,
AppNexus,
GoGrid,
Rackspace

Synaptic Storage

522 S.L. Pallickara et al.

building high-level services such as file systems or databases. In the domain of struc-
tured peer-to-peer systems, several distributed hash table (DHT) based projects have
dealt with similar problems of providing distributed storage or higher-level services
over wide area networks. These DHT-based projects include CAN (Ratnasamy,
S., Francis, P., Handley, M., Karp, R., and Shenker, 2001), Chord (Stoica, R.
Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, 2001), Tapestry (Zhao,
J. Kubiatowicz, and A. D. Joseph, 2001), and Pastry (Rowstron, and P. Drushel,
2001). In addition, several database vendors have developed parallel databases that
can store large volumes of data. Oracle’s Real Application Cluster database (Oracle
Real Application Cluster, 2010) uses shared disks to store data and a distributed
lock manager. IBM’s DB2 Parallel Edition (Baru et al., 1995) is based on the
shared-nothing architecture (Stonebraker, 1986) similar to BigTable. Each DB2
server is responsible for a subset of the rows in a table that it stores in a local
relational database. These approaches provide a complete relational model with
transactions.

22.4 Case Studies: Harnessing the Data Cloud for Scientific
Data Management

The past decade has seen a new set of challenges emerge in the scientific computing
area. Data volumes underpin several of these challenges. It is very common for
domain scientists to work with datasets in the order of tends of terabytes. By the
same token, it is not uncommon for data volumes to be in the order of petabytes.
Problems stem from the fact that the access times and transfer rates for commodity
hard drives have not kept pace with improvements in their capacities. Some of this
stems from the electro-mechanical nature of these disk drives.

Problems are further exacerbated by the fact that the concomitant processing
for these datasets are also becoming computationally intensive. For a set of N data
points the processing complexity could be super-linear. The data processing can also
entail multiple accesses to the underlying datasets. There are several scientific appli-
cations that are adopting data cloud technologies to cope with their data-intensive
computing challenges.

22.4.1 Pan-STARRS Data with GrayWulf

The Pan-STARRS project (Pan-STARRS project, 2010; Jedicke et al., 2006) is a
large astronomical survey. The project will use a special telescope in Hawaii with
a 1.4 gigapixel camera to sample the sky over a period of four years. The large
field of view and relatively short exposures will enable the telescope to cover three
quarters of the sky 4 times per year in 5 optical colors. This will result in more
than a petabyte of images per year. The images will then be processed through an

22 Scientific Data Management in the Cloud 523

image segmentation pipeline that will identify individual detections, at the rate of
100 million detections per night. These detections will be associated with physical
objects in the sky and loaded into the project’s database for further analysis and
processing. It is expected that the database will contain over 5 billion objects and
well over 100 billion detections. The projected size of the database is 30 terabytes
by the end of the first year, growing to 80 terabytes by the end of year 4.

As a part of an effort for better analysis of the data produced by Pan-STARRS,
astronomers at Johns Hopkins University are partnering with Microsoft External
Research to develop a set of software services and design principles known as
GrayWulf (Szalay et al., 2009; Simmhan et al., 2009), which is based on the use
of commodity hardware, Windows HPC Server 2008, and Microsoft SQL Server
2008. GrayWulf is an extension of the Beowulf cluster and provides access to the
cloud from a user’s desktop.

GrayWulf provides a shared queryable data store for users who perform analyses
on the shared database. For achieving scalability, the shared database is parti-
tioned and layered hierarchically. The lower data layer contains vertical partitions
of the tables and includes three types of tables: Detections, Objects, and Metadata.
Detection rows correspond to astronomical sources detected in either single or
stacked images. Object rows correspond to unique astronomical sources and sum-
marize statistics from both single and stack detections that are stored in different sets
of columns respectively. Metadata refers mainly to telescope and image information.
In general, this partition of data is associated with a specific portion of the sky. On
top of the lower level data store, the loader/merger servers ingest new detections
into the database’s daily base.

Each user gets their own database (MyDB) on the servers to store intermediate
results. Users have full control over their own MyDBs. Data may be uploaded to or
downloaded from a MyDB and tables can be shared with other users: this creates a
collaborative environment to share results.

GrayWulf uses workflows for several data analysis actions. The data valet work-
flow infrastructure includes a set of services for workflow visual composition,
automatic provenance capture, scheduling, monitoring, and fault handling. Besides
the Pan-STARR project, other projects (Li et al., 2008; Budavari, Malik, Szalay,
Thakar, & Gray, 2005) have managed their large datasets with GrayWulf.

22.4.2 GEON Workflow with the CluE Cluster

The San Diego Super Conputing Center (SDSC) (San Diego Supercomputing
Center, 2010) established its Data Central site, which hosts 27 PB of data and more
than 100 specific databases. In 2009, SDSC started investigation on the hosting
extremely large data sets on the Academic Cluster Computing Initiative (Zverina,
2010) cluster which is a joint effort by IBM/Google. The research will focus on
using the data-parallel GEON LiDAR Workflow application (Jaeger-Frank et al.,
2006).

524 S.L. Pallickara et al.

22.4.3 SciDB

SciDB (SciDB, 2010) was initiated in two successive Extremely Large Databases
(XLDB) (XLDB, 2007; XLDB, 2008) workshops that were organized in order to
address the challenge of designing databases that can support the complexity and
scale involved in scientific applications. Data storage and computation scale equally
in SciDB. The data storage in SciDB can scale up to a few petabytes. Users can
access a 10,000-node cloud using their laptop to process (a subset of) the dataset.
Reported use cases of SciDB include domains such as optical astronomy, radio
astronomy, earth remote sensing, environmental observation and modeling, and
seismology (SciDB, 2010).

SciDB incorporates support for arrays and vectors. These data types come with
several built-in optimized operators, which can be categorized as structural or
content-dependent. As the name suggests, structural operators operate on the struc-
ture of the array independent of the data. Examples of structural operators include
Subsample and Reshape. The Subsample operator takes as its input an array A and
a predicate specified on the dimensions of A. The operator then generates a new
array with the same number of dimensions as A, but where the dimension values
satisfy the specified predicate (e.g., every 10th value of the dimension). Reshape
is a more advanced structural operator. Reshape can convert an array to a new one
with a different number of dimensions possibly with new dimension names, but the
same number of cells. Content-dependent operators are those whose result depends
on the data that is stored in the input array. Filter is one such operator, which takes
as input an array A and a predicate P over the data values that are stored in the cells
of A and returns an array with the same dimensions as A.

Additionally, SciDB supports uncertain data; here, “uncertain x” for any data
type x uses two values. This feature is particularly useful in computing the result
of a location calculation for observed objects commonly used in astronomy and
GIS databases, which may contain some approximation errors due to hardware
calibration.

SciDB places a special emphasis on the management of provenance for scientific
data. Most data is expected to be fed to SciDB from input sources such as scientific
measurement devices or sensors. Due to the large volumes of data, the data needs
to be written into disk buckets that will contain rectangular chunks of the array. The
R-Tree data structure is used to keep track of the location and contents of these
buckets.

22.4.4 Astrophysical Data Analysis with Pig/Hadoop

(Loebman et al. 2009) have studied the emerging data management needs of the
“N-body Shop” group, which specializes in the development and utilization of large-
scale simulations specifically, “N-body tree codes” (Stadel, 2001). The objective

22 Scientific Data Management in the Cloud 525

of these simulations is to investigate the formation and evolution of large-scale
structures in the universe.

The University of Washington’s N-body Shop is representative of the current
state-of-art in astrophysical cosmological simulation. In 2008, the N-body Shop
was the 10th largest consumer of NSF Teragrid time, using 7.5 million CPU
hours and generated 50 terabytes of raw data, with an additional 25 terabytes of
post-processing information (Teragrid, 2010).

The N-body Shop has tried different approaches to solve issues in the manage-
ment of voluminous datasets generated during the simulation. The efforts focused
on improving the scalability in the RAM and I/O bandwidth. TIPSY (TIPSY, 2010)
is one of the popular toolkits in this domain and it includes several scripts written
in interpreted languages such as Python, Perl, or Interactive Data Language (IDL)
(IDL, 2010). A trait common to these tools is that they operate in main memory. In
the astrophysical community, Ntropy (Gardner, A. Connolly, and C. McBride, 2007;
Gardner, 2007), a parallel library for the analysis of massive particle datasets has
been harnessed to cope with the distributed memory needs. DBMSs and frameworks
like Hadoop and Dryad offer similar scalability as application-specific libraries in
terms of utilizing distributed memory. However, researchers benefit significantly
from declarative languages built on top of these frameworks, such as Pig Latin and
DryadLINQ.

Loebman et al’s work (Loebman et al., 2009) has evaluated the performance of
data analysis queries between DBMSs and Hadoop/Pig environments. For DBMS,
this evaluation partitioned the data via an optimization process. For Hadoop/Pig,
the data partitioning was done manually. In the experiments, for larger number of
nodes, Hadoop/Pig showed shorter response times for the data analysis queries.

Similarly, (Cary et al., 2009) studied the applicability of MapReduce to spatial
data processing workloads and validated the excellent scalability of MapReduce in
that domain. (Palankar, et al., 2008) recently evaluated Amazon S3 as a feasible and
cost effective alternative for hosting scientific dataset, particularly those produced
by large community collaborations such as LSST (LSST, 2009).

22.4.5 Public Data Hosting by Amazon Web Services

Amazon Web Services (AWS) hosts Public Data Sets (Amazon Public Datasets,
2010) in their centralized repository of public data sets that can be easily integrated
with AWS cloud-based applications. Currently, users can access various scientific
datasets such as DNA sequences from GenBank, human genome data, influenza
virus including updated Swine Flu sequences published by NCBI, Sloan Digital
Sky Survey DR6 subset, and daily global weather measurements (1929–2009).
Users can create their own Elastic Block Service (EBS) volume with a snapshot of
the selected dataset and access, modify and perform computations on their virtual
machine instances.

526 S.L. Pallickara et al.

22.5 A Gap Analysis of Data Cloud Capabilities

In this section we present an analysis of how current capabilities within the data
cloud fall short of the current and future needs of scientific data management and
processing. In some cases, existing systems have come up with ad hoc solutions to
address the shortcomings while in others a lot of research still needs to be done.

22.5.1 The Impedance Mismatch

Database researchers have been dealing with impedance mismatch (Gray et al.,
2005), which refers to the mismatch between the programming model and the
database capabilities. Data cloud technologies also lag in their inability to match
the functionalities required by the scientific application. For example, most of the
current data cloud implementations do not support N-dimensional arrays as core
data types in their computing model. This issue has been addressed in the SciDB
project (SciDB, 2010) by providing a data structure of arrays and vectors along
with a set of operators. Indexing schemes based on the appropriate data types for
the scientific data objects are another feature that is currently lacking in data cloud
technologies. These can cause significant performance issues for scientific data
management.

22.5.2 Fault Tolerance

The cloud computing environment is in general built using affordable, commodity
hardware; as a result, failures are not uncommon in these settings. The probability
of a failure occurring during a long-running data analysis task is thus relatively high.
For example, Google reports an average 1.2 failures per analysis job (Deanand &
Ghemawat, 2004). Fast failure detections and recovery schemes will provide a more
reliable data analysis environment for scientific users.

22.5.3 Scientific Data Format and Analysis Tools

Discovering a sub-array for a computing module is a critical task for scientific appli-
cations. Scientific data arrays are often stored as files that are based on scientific
file formats such as HDF (HDF, 2010), NetCDF (NetCDF, 2010), and FITS (FITS,
2010). These file formats provide attributes for these files, which in turn give clues
to discover the relevant sub-array.

Scientific applications open files to check their attributes. To achieve better per-
formance, scientists often encode key attributes into the file system hierarchy. This
set of strings represents not only the path to the file in the file system, but also
provides useful filtering functionality to assist the data discovery process. In these

22 Scientific Data Management in the Cloud 527

settings the users discover data in two steps: (1) the user searches the files relevant
to the sub-array by means of the information encoded in the file path. (2) then the
application scans the file(s) and searches the right sub-array.

However, as the file system grows to billions of files with petabytes of data
volumes, scientific data needs more information to identify and describe itself.
Similarly, more database-like features are required to handle files and the infor-
mation about them. Many scientific data management systems (Peng & Law, 2004;
Plale et al., 2005) have addressed this need for metadata – information about the
data. As a part of the scientific data management system, the metadata of the data
products are stored and managed in a conventional database system. This meta-
data is generally stored separate from the actual datasets and contains a logical or
physical link to the data file.

BigTable like data cloud storage provides characteristics of a distributed file sys-
tem and databases with parallel data discovery and processing. However, to benefit
from this technology, scientific users incur an overhead similar to the one in current
scientific data management systems: extracting attributes, storing attributes in the
table, and generating queries for them. In general, many of these steps are similar
across applications if they use the same data formats. For scientific applications that
share the same data format, many of these steps will overlap. Therefore, predefined
data types and associated querying mechanism would be a useful technology for
scientific users and developers.

22.5.4 Integration with the Object Oriented Programming Model

Integrating database systems with the object oriented programming model can be
counted as one of the significant advances in database technology. There are many
object-oriented databases that treat any data type as an encapsulated type that can be
stored as a value in the field of a record (Ozone, 2010; ZODB, 2010). This approach
virtually resolves the problem of the lack of data types in database-style sys-
tems. This also provides an easy-to-use interface for the programming environment.
Current data cloud systems do not adequately address whether their approaches are
a natural fit for the object-oriented programming model.

22.5.5 Working with Legacy Software

A closer look at scientific software reveals that computing or simulation components
in many of the applications rely on conventional file systems. Therefore, file path is
widely used as an input parameter for executables. Likewise, many of the script files
are dependent on the file system. A new method is required which can transform
the software interface from one that is file system based to one that is data cloud
compatible.

Finally, visualization tools require support for data from the data cloud. Most
of the vendors of data clouds develop their applications based on Web browser

528 S.L. Pallickara et al.

technology. However, visualization tools are widely used in the scientific commu-
nity, because general-purpose Web browsers cannot satisfy specific requirements
such as 3D graphical rendering, and support for scientific data formats. To provide
active access to the data stored in the data cloud, efficient mechanisms to interact
with the visualization tools is required.

22.5.6 Real-Time Data

One of the distinctive characteristics in scientific data management is the variety
of data sources. Modern sensors and digitized experimental equipments inject the
data directly into the data storage. This real-time data often arrives at the storage
as streaming data. Stream data processing differs from conventional data processing
performed in data cloud implementations, such as crawled web pages, or personal
information.

For example, Unidata (Unidata, 2010) provides data collections from observa-
tional data sources for meteorology research and weather forecasting. Satellite data
is provided every hour with various resolutions. Every day around 140,000 wind
and temperature observations are delivered from around 4000 aircrafts. Also, the
data from 152 NexRed Doppler radar stations are collected every 5, 6, or 10 min-
utes. Some of this data must race to be delivered to the simulation component
for emergency weather event such as a tornado or hurricane. Efficient data access
to real-time data would enable real-time data mining and eventually improve the
overall performance of computing significantly.

22.5.7 Programmable Interfaces to Performance Optimizations

Data cloud promises scalability for scientific data management. Scalability is a crit-
ical requirement for data management with continually increasing data volumes.
However, many scientific research projects also require reasonably low latency to
satisfy the on-demand access and computing requirements. Google Earth stores pre-
processed imagery (approximately 70 terabytes) on their disk space (Chang et al.,
2006). These imageries are indexed into a relatively small (∼500 GB) table. This
table must serve tens of thousands of queries per second per data center with low
latency. Therefore, this table is hosted across hundreds of tablet servers and contains
in-memory column families.

As we see in Google Earth’s example, designing well performing data systems
is not trivial with data cloud implementations. Unlike conventional database sys-
tems that provide a built-in cache, replication scheme, or optimizing schemes, data
cloud implementations require programmers and system designers to be involved in
the process of performance optimization. Programmable interfaces to performance
optimizations is needed.

22 Scientific Data Management in the Cloud 529

22.5.8 Distributed Database Issues

Data clouds share many of the issues from distributed database systems. This
includes fault tolerance, conflict management, distributed lock, and data integrity.
Fault tolerance is critical for high-throughput computing, which can involve pro-
cessing that can take up to several days to a few weeks to complete a job. Data
integrity is essential to ensure the accuracy of the result. Furthermore, data assurance
is required for data that is archived for the long term.

22.5.9 Security and Privacy

Scientific users require security and privacy to access their personal data products.
Users require secure access to the data for discovery, browsing and computing.
Therefore, sensitive data may be encrypted prior to being uploaded to the data cloud
storage. To avoid unauthorized access to the sensitive data, any application running
in the cloud should not be allowed to directly decrypt the data. However, to decrypt
the dataset, moving entire (or large part of) dataset back and forth from the data
cloud storage is a very bandwidth/computing intensive task. Thus, (Adabi, 2009)
suggests that a data analysis system that can operate directly on encrypted data
(Agrawal, Kiernan, Srikant, & Xu, 2004; Hacigumus, Iyer, Li, & Mehrotra, 2002;
Ge & Zdonik, 2007; Kantarcoglu & Clifton, 2004; Mykletun & Tsudik, 2006) will
improve the performance significantly.

22.6 Conclusions

Cloud computing offers obvious advantages, such as co-locating data with com-
putations and an economy of scale in hosting the services. While these platforms
obviously perform very well for their current intended use in search engines or
elastic hosting of commercial Web sites, their role in scientific computing is still
evolving. In some scientific analysis scenarios, the data needs to be close to the
experiment. In other cases, the nodes need to be tightly integrated with a very low
latency, while in some cases a high I/O bandwidth is required.

There has been a strong trend to move scientific data to the cloud. We expect
this trend to continue and accelerate in the future. As more and more systems start
using the data cloud we expect that the issues outlined in the preceding section will
become increasingly important, and also be an area where there will be a good deal
of research activity.

References

Adabi, D. J. (2009). Data management in the cloud: Limitations and opportunities. IEEE Data
Engineering Bulletin, 32(1), 4–12.

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004). Order preserving encryption for numeric
data. Proceedings of SIGMOD, 563–574.

530 S.L. Pallickara et al.

Amazon Elastic MapReduce (2010). http://aws.amazon.com/elasticmapreduce/. Accessed on
February 20, 2010.

Amazon EBS (2010), http://aws.amazon.com/ebs/. Accessed on February 20, 2010.
Amazon Public Datasets (2010), http://aws.amazon.com/publicdatasets/. Accessed on February 20,

2010.
Amazon RDS (2010), http://aws.amazon.com/rds/. Accessed on February 20, 2010.
Amazon SimpleDB (2010), http://aws.amazon.com/simpledb/. Accessed on February 20, 2010.
Amazon Web Services (2010). http://aws.amazon.com/ Accessed on February 20, 2010.
Antonioletti, M., Krause, A., Paton, N. W., Eisenberg, A., Laws, S., Malaika, S., et al. (2006). The

WS-DAI family of specifications for web service data access and integration. ACM SIGMOD
Record, 35(1), 48–55.

AppNexus (2010). http://www.appnexus.com/ Accessed on February 20, 2010.
AT&T Synaptic Hosting (2010). http://www.business.att.com/enterprise/Family/application-

hosting-enterprise/synaptic-hosting-enterprise/ Accessed on February 20, 2010.
Baru, C. K., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S., et al. (1995). DB2

parrel edition. IBM Systems Journal, 34(2), 292–322.
Budavari, T., Malik, T., Szalay, A. S., Thakar, A., & Gray, J. (2003). SkyQuery – A prototype dis-

tributed query web service for the virtual observatory. In H. Payne, R. I. Jedrzejewski, & R. N.
Hook (Eds.), Proceedings of ADASS XII, Astronomical Society of the Pacific, ASP Conference
Series (Vol. 295, p. 31).

Cary, A., Sun, Z., Hristidis, V., & Rishe, N. (2009). Experiences on processing spatial data with
mapreduce. Proceedings of the 21st SSDBM Conference. Lecture notes in computer science,
Vol. 5566, 302–319.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., et al. (November
2006). Bigtable: A distributed storage system for structured data. OSDI’06: Seventh Symposium
on Operating System Design and Implementation, Seattle, WA, 205–218.

Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., & Tuecke, S. (2001). The data grid:
Towards an architecture for the distributed management and analysis of large scientific datasets.
Journal of Network and Computer Applications, 23, 187–200.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters.
Communications of the ACM, Vol. 51(1), 107–113.

Deanand, J., & Ghemawat, S. (December 2004). Mapreduce: Simplified data processing on large
clusters. In Proceedings of OSDI, San Francisco, CA, 137–150.

Dennins D. Gannon, D., & Dan D. Reed, D. (2009). “Parallelism and the cloud.” In: T. Hey,
S. Hensley, and K. Tolle (Eds.), The fourth paradigm: Data-intensive scientific discovery,
Microsoft research (pp 131–136), ISBN-10:0982544200.

FITS (2010). http://fits.gsfc.nasa.gov/. Accessed on February 20, 2010.
Gardner, J. (2007). Enabling knowledge discovery in a virtual universe. Proceedings of TeraGrid

’07: Broadening Participation in the TeraGrid, ACM Press.
Gardner, J. P., Connolly, A., & McBride, C. (2007). Enabling rapid development of parallel tree

search applications. Proceedings of the 2007 Symposium on Challenges of Large Applications
in Distributed Environments (CLADE 2007), ACM Press, 1–10.

Ge, T., & Zdonik, S. (2007). Answering aggregation queries in a secure system model. Proceedings
of VLDB, 519–530.

GenBank (2010). http://www.ncbi.nlm.nih.gov/Genbank/ Accessed on February 20.
Ghemawat, S., Gobioff, H., & Leung, S.-T. (October 2003). The google file system. Appeared in

19th ACM Symposium on Operating Systems Principles, Lake George, NY, 29–43.
GoGrid (2010). http://www.gogrid.com Accessed on February 20, 2010.
Google App Engine (2010). http://code.google.com/appengine/ Accessed on February 20, 2010.
Gray, J. (2009). Jim gray on eScience: A transformed scientific method. In T. Hey, S. Hensley, &

K. Tolle (Eds.), The fourth paradigm: Data-intensive scientific discovery, Microsoft research
(pp xvii–xxxi), ISBN-10:0982544200.

22 Scientific Data Management in the Cloud 531

Gray, J., Liu, D. T., Nieto-Santisteban, M. A., Szalay, A. S., Heber, G., & DeWitt, D. (December
2005). Scientific data management in the coming decade. SIGMOD Record, 34(4), 34–41.

Hacigumus, H., Iyer, B., Li, C., & Mehrotra, S. (2002). Executing sql over encrypted data in the
database-service-provider model. Proceedings of SIGMOD, 216–227.

HDF (2010) http://www.hdfgroup.org/HDF5/. Accessed on February 20, 2010.
Isard, M., & Yu, Y. (July 2009). Distributed data-parallel computing using a high-level pro-

gramming language. Proceedings of the International Conference on Management of Data
(SIGMOD), 987–994.

Isard, M., Budiu, M., Yu, Y., Birrel, A., & Fetterly, D. (March 2007). Dryad: Distributed data-
parallel programs from sequential building blocks. Proceedings of European Conference on
Computer Systems (EuroSys), Lisbon, Portugal, March 21–23, 59–72.

IDL (2010) Interactive Data Language. http://www.ittvis.com/ProductServices/IDL.aspx.
Accessed on February 20, 2010.

Jaeger-Frank, E., Crosby, C. J., Memon, A., Nandigam, V., Conner, J., Arrowsmith, J. R., et al.
(December 2006). A domain independent three tier architecture applied to Lidar processing and
monitoring. In the Special Issue of the Scientific Programming Journal devoted to WORKS06
and WSES06, 185–194.

Jedicke, R., Magnier, E. A., Kaiser, N., & Chambers, K. C. (2006). The next decade of solar system
discovery with pan-STARRS. Proceedings of IAU Symposium 236, 341–352.

Kantarcoglu, M., & Clifton, C. (2004). Security issues in querying encrypted data. 19th Annual
IFIP WG 11.3 Working Conference on Data and Applications Security, 325–337.

Lakshman, A., Malik, P., & Ranganathan, K. (2008). Cassandra, structured storage system over a
P2P network. Keynote Presentation, SIGMOD, Calgary, Canada, 5–5.

Lammana, M. (November 2004). Nuclear instruments and methods in physics research section A:
Accelerators, spectrometers, detectors and associated equipment. In the Proceedings of the 9th
international Workshop on Advanced Computing and Analysis Techniques in Physics Research
(Vol. 534, No. 1–2, pp. 1–6).

Large Hadron Collider project (2010). http://public.web.cern.ch/public/en/LHC/LHC-en.html
Accessed on February 20, 2010.

Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., et al. (2008). A public turbulence
database and applications to study lagrangian evolution of velocity increments in turbulence.
Journal of Computational Physics, 9(31), 1468–5248.

Loebman, S., Nunley, D., Kwon, Y. C., Howe, B., Balazinsk, M., & Gardner, J. P. (2009).
Analyzing massive astrophysical datasets: Can pig/hadoop or a relational DBMS help?
Proceedings of the Workshop on Interfaces and Architecture for Scientific Data Storage
(IASDS), 1–10.

LSST Science Collaborations and LSST Project (2009). LSST Science Book, Version 2.0,
arXiv:0912.0201, http://www.lsst.org/lsst/scibook.

MacCormick, J., Murphy, N., Najork, M., Thekkath, C. A., & Zhou, L. (December 2004).
Boxwood: Abstractions as the foundation for storage infrastructure. Proceedings of the 6th
Symposium on Operating Systems Design and Implementation (OSDI 2004), San Francisco,
CA, USA, 105–120.

Microsoft, SQL Azure (2010). http://www.microsoft.com/windowsazure/sqlazure/ Accessed on
February 20, 2010.

Microsoft, Windows Azure (2010). http://www.microsoft.com/windowsazure/ Accessed on
February 20, 2010.

Moore, R. W. Moore, R. W., Jagatheesan, A. Jagatheesan, A., Rajasekar, A. Rajasekar, A.,
et al. (April 2004). “Data grid management systems,”. Proceedings of the 21st IEEE/NASA
Conference on Mass Storage Systems and Technologies (MSST), April 13–16, 2004, College
Park, Maryland, USA, April 13–16, 2004.

Mykletun, E., & Tsudik, G. (2006). Aggregation queries in the database-as-a-servicemodel. IFIP
WG 11.3 on Data and Application Security, 89–103.

NCBI (2010). http://www.ncbi.nlm.nih.gov/guide/ Accessed on February 20, 2010.

532 S.L. Pallickara et al.

NetCDF (2010). http://www.unidata.ucar.edu/software/netcdf/. Accessed on July 16, 2010.
Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A. (June 2008). Pig latin: A not-

so-foreign language for data processing. ACM SIGMOD 2008 International Conference on
Management of Data, Vancouver, Canada, 1099–1110.

OpenMPI (2010). http://www.open-mpi.org/. Accessed on February 20, 2010.
OpenPBS (2010). http://www.pbsgridworks.com. Accessed on February 20, 2010.
Oracle Database 11 g (2010), http://www.oracledatabase11g.com/. Accessed on February 20, 2010.
Oracle Real Application Cluster (2010). http://www.oracle.com/technology/products/database/

clustering/index.html. Accessed on Febrary 20, 2010
Ozone (2010). http://www.ozone-db.org/frames/home/what.html. Accessed on February 20, 2010.
Palankar, M. R., Iamnitchi, A., Ripeanu, M., & Garfinkel, S. (2008). Amazon S3 for science grids:

A viable solution? DADC ’08: Proceedings of the 2008 International Workshop on Data-Aware
Distributed Computing, 55–64.

Pan-STARRS project (2010). http://pan-starrs.ifa.hawaii.edu/public/ Accessed on February 20,
2010.

Peng, J., & Law, K. H. Reference NEESgrid data model (Tech. Rep. NEESgrid-2004-40).
Pike, R., Dorward, S., Griesemer, R., & Quinlan, S. Interpreting the data: Parallel analysis with

Sawzall. Scientific Programming Journal Special Issues on Grids and Worldwide Computing
Programming Models and Infrastructure, 13(4), 227–298.

Plale, B., Gannon, D., Alameda, J., Wilhelmson, B., Hampton, S., Rossi, A., et al. (2005). Active
management of scientific data. IEEE Internet Computing Special Issue on Internet Access to
Scientific Data, 9(1), 27–34.

PubCam (2010). http://pubchem.ncbi.nlm.nih.gov/ Accessed on February 20, 2010.
PubMed (2010). http://www.ncbi.nlm.nih.gov/pubmed/ Accessed on February 20, 2010.
Rackspace (2010). http://www.rackspace.com/index.php Accessed on February 20, 2010.
Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (August 2001). A scalable content-

addressable network. Proceedings of SIGCOMM, 161–172.
Rowstron, A., & Drushel, P. (November 2001). Pastry: Scalable, distributed object location and

routing for large scale peer-to-peer systems. Proceedings of Middleware 2001, 329–350.
San Diego Supercomputing Center (2010), http://www.sdsc.edu/. Accessed on February 20, 2010.
SciDB (2010). http://scidb.org/ Accessed on February 20, 2010.
Simmhan, Y., Barge, R., van Ingen, C., Nieto-Santisteban, M., Dobos, L., Li, N., et al. (2009).

GrayWulf: Scalable software architecture for data intensive computing. Proceedings of the
42nd Hawaii International Conference on System Science, 1–10.

Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., et al. (2003).
A metadata catalog service for data intensive applications. IEEE, ACM, Super Computing the
international conference for High Performance Computing, Networking, Storage and Analysis,
33–50.

Stadel, J. G. (2001). Cosmological N-Body simulations and their analysis. (Doctoral dissertation,
University of Washington, 2001).

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., & Balakrishnan, H. (August 2001). Chord:
A scalable peer0to-peer lookup service for internet applications. Proceedings of SIGCOMM,
149–160.

Stonebraker, M. (1986). The case for shared nothing architecture. Database Engineering, 9(1),
4–9.

Szalay, A., Bell, G., Vandenberg, J., Wonders, A., Burns, R., Fay, D., et al. (2009). GrayWulf:
Scalable clustered architecture for data intensive computing. Proceedings of the 42nd Hawaii
International Conference on System Science, 1–10.

Teragrid (2010), http://www.teragrid.org/. Accessed on February 20, 2010.
Thain, D., Tannenbaum, T., & Livny, M. (February–April 2005). Distributed computing in practice:

The condor experience. Concurrency and Computation: Practice and Experience, 17(2–4),
323–356.

TIPSY (2010). http://hpcc.astrowaxhington.edu/tools/tipsy/tipsy.html. Accessed on February 20,
2010.

22 Scientific Data Management in the Cloud 533

The Academic ClusterComputing Initiative (ACCI 2007). Google and IBM Announce University
Initiative to Address Internet-Scale Computing Challegne, Google Official Press Center,
http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html.

The Globus Toolkit (2010). Data replication service. http://www-unix.globus.org/
toolkit/docs/4.0/techpreview/datarep/ Accessed on February 20, 2010.

Unidata (2010). http://www.unidata.ucar.edu/ Accessed on February 20, 2010.
Yu, Y., Gunda, P. K., & Isard, M. (October 2009). Distributed aggregation for data-parallel com-

puting: Interfaces and implementations. Proceedings of the Symposium on Operating Systems
Principles (SOSP).

Zhao, B. Y., Kubiatowicz, J., & Joseph, A. D. (April 2001). Tapestry: An infrastructure for fault-
tolerant wide-area location and routing (Tech. Rep. UCB/CSD-01-1141, CS Division, UC
Berkeley).

Zverina, J. (2010) San Diego supercomputing center begins cloud computing research using
the Google IBM clue cluster. http://www.sdsc.edu/News%20Items/PR021309_clue.html,
Accessed on February 20, 2010.

ZODB (2010). http://wiki.zope.org/481zope2/ZODBZopeObjectDatabase. Accessed on February
20, 2010.

Zookeeper (2010). http://wiki.apache.org/hadoop/ZooKeeper. Accessed on February 20, 2010.

Chapter 23
Feasibility Study and Experience on Using
Cloud Infrastructure and Platform for Scientific
Computing

Mikael Fernandus Simalango and Sangyoon Oh

23.1 Introduction

In the academia, conducting experiments, gathering and processing data are triv-
ial tasks. However, in some circumstances for example when processing large-set
of data, method to accomplish the task can be tricky and non-trivial, not to mention
problematic. When it comes to numerical float or array, processing a very large set of
this kind of data will require superior computing power. Some entities with splen-
did compute nodes may process the data directly in their own infrastructure. Yet,
providing decent infrastructure for processing large data sets or resource-extensive
task can be a challenge for other entities. Infrastructure owned by an entity conduct-
ing the computation can be insufficient or just enough to execute the tasks above
the minimum requirements. A common practice for infrastructure-limited research
entity in dealing with such kind of situation is to outsource the compute task to
external party with more superior compute power in order to reduce waiting time
for producing the result of data processing.

The development of grid computing, however, enables institutions within local
vicinity or even remotely separated ones in global scope to collaborate and con-
tribute their compute resources to build a more superior compute facility. This may
lessen the gap between less superior entity and more superior entity in process-
ing the scientific data. Nevertheless, the notion that grid is formed by collaboration
among several institutes may hinder another body outside the collaboration con-
tract to use the leveraged computing power. Efforts have been made to build grid
infrastructure that can be widely used by articulating economic principles (Buyya
& Bubendorfer, 2008), but still, they have yet to become mature.

M.F. Simalango (B)
WISE Research Lab, Ajou University, Suwon, South Korea
e-mail: mikael@ajou.ac.kr

S. Oh
WISE Research Lab, School of Information and Communication Engineering,
Ajou University, Suwon, South Korea
e-mail: syoh@ajou.ac.kr

535B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_23, C© Springer Science+Business Media, LLC 2010

536 M.F. Simalango and S. Oh

Cloud computing initially came up to the surface as a buzzword in 2007 (Google
Trend for Cloud Computing, http://www.google.com/trends?q=cloud+computing)
and has been gaining more popularity these days. Some consider it as mar-
keting hype instead of sound breakthrough in distributed computing (Johnson,
2008; Boulton) Nevertheless, the trend shows that public interests in cloud
computing keep growing in the first two years of the cloud computing era.
Big enterprises like Amazon through Amazon EC2 (Amazon Elastic Compute
Cloud, http://aws.amazon.com/ec2/) and Google with Google App Engine (Google
App Engine. http://code.google.com/appengine/) have become the main advo-
cates for introducing and driving the adoption of cloud computing to wider
audience.

During the advent of cloud computing, debates were over the definition and
scope of cloud computing (Foster, Zhao, Raicu, & Lu, 2008; Mei, Chan, & Tse,
2008; Vouk, 2008; Buyya, Yeo, & Venugopal, 2008). As time progresses, cloud
computing starts to find its shape (Rimal, Choi, & Lumb, 2009) and issues have
been shifting from debatable opinions over interpretation of corresponding terms in
the new paradigm into maturing and nurturing the technology through the execu-
tion of prospective researches (Birman, Chockler, & van Renesse, 2009). Through
the diversity of the researches, it should also be reasonable to expect the imple-
mentation of cloud computing paradigm and techniques in the academia if they
are proven to be feasible and can outperform or at least comparable with existing
approach.

In a previous article, we raised the issue about the use of cloud computing espe-
cially the enterprise cloud for scientific computing (Simalango & Oh, 2009). We
revisited characteristics of scientific computing in general and explained common
methods used in scientific computing realm. We studied how the enterprise-powered
cloud computing could also satisfy the requirements of scientific computing and
complement or even replace classical approach. In this article, we will elaborate
more about the scientific computing, summarize other researchers’ efforts to do
computation in the cloud, add our experience in setting up the environment for
a tiny internal cloud and scaling up the cloud through the utilization of external
enterprise cloud, and also give recommendation for adoption of cloud computing in
accomplishing scientific compute tasks.

23.2 Scientific Compute Tasks

Dissecting characteristics of scientific computing is like mapping the genes. At the
bigger scope -the double helix structure of DNAs in a chromosome- we notice big
affinity of the exterior structure of genes. As we digest more scrupulously to the
smaller details, however, it can be noticed that tasks pertaining to and information
confined in each gene are different. Similarly, scientific computing tasks may seem
indistinguishable for non-practitioners while researchers at the same time perceive
the broadness of the tasks. Each field in sciences conducts various compute tasks

23 Feasibility Study and Experience 537

with different computing strategies. We are then interested more in how a certain
strategy is selected for accomplishing a scientific compute task.

Scientific compute tasks are mainly related with two things, processing time
and result. A compute task that can be completed in less time is favorable in gen-
eral sense. With quicker task completion, other jobs in queue can be staged and
sequenced to be processed in order to obtain the final result. Implications brought
by the final result after series of analyses of the outputted data will determine the
state of success of the corresponding compute task. The result, however, depends on
the correctness of the underlying logic. Since the logic is formulated by the process
designer or researcher, proper and efficient implementation of the logic will yield
less processing time and expected result given that the logic is verifiably correct for
the task.

Designing implementation of algorithms for a scientific compute task can be triv-
ial. Still, in some cases complexities exist and transform the task to be non-trivial.
The complexities are primarily caused by two factors: size of input and algorithms
in the processing block. Input to a compute task can be huge hence the time needed
to process it completely also becomes lengthier. At the other side, the processing
block may also implement complex algorithms which in turn requires hefty amount
of resources. This results in the necessity of superior computation capability. Huge
inputs and complex algorithms infer intense computing. By basing on compute
intensity as criteria, we can categorize scientific compute tasks into two groups,
resource-intensive tasks and data-intensive tasks.

A resource-intensive task refers to a task that makes use of plenty of compute
resources. Compute resources can be I/O, CPU cycles, memory, temporary stor-
age, and also energy. Examples of resource-intensive task in scientific realm are
system modeling, image rendering (especially in 3D), and forecasting. Such kinds
of tasks involve chains of complex computations which demand big allocation of
resources. Slightly different with the previous one, data-intensive task refers to a
task that deals with processing of huge size of input data. An example of task
that falls into this category is data mining for huge set of data (iris data in biomet-
rics, protein data in biology, access log data in computer network, etc.). However,
for resource-constrained processing node, a data-intensive task can also become
a resource-intensive task if proper strategy for processing such data can not be
applied.

Enabling parallelism has been a strategy used in the execution and accomplish-
ment of scientific compute tasks especially the complex ones. With parallelism,
a complex compute task which requires enormous amount of resources, let say
equivalent with the specifications of a minicomputer or mainframe, can be divided
into smaller parts, each to be fitted and deployed into less powerful infrastruc-
ture, for example PC-class compute nodes. Techniques and paradigm in achieving
parallelism have also evolved, from clustering to grid computing and now cloud
computing.

In classical clustering, a virtually more superior compute node which is named
a compute cluster is formed by several physical compute nodes which share the
same software system. The nodes in a compute cluster are also placed in close

538 M.F. Simalango and S. Oh

vicinity and in general case, the hardware specifications are also the same. Hence, a
compute cluster is basically built over homogeneous compute nodes. Homogeneity
in elements of a compute cluster lessens communication overhead among nodes
in cluster. At the same time, however, the homogeneity brings inflexibility in
extending the compute capability. Since the requirements are tight, future node
provisioning and configuration can be a problem for an institution with limited
resources.

Grid computing enables resource pooling from distributed sets of compute nodes.
The compute-node set can be a cluster of commodity computers and servers, or
simply an individual node. Different with a traditional compute cluster which is
built on top of homogeneity, a grid can be formed by diverse systems. A grid fed-
erates resources comprising storage, network, and compute which are distributed
geographically and generally heterogeneous and dynamic. A grid defines and pro-
vides a set of standard protocols, middleware, toolkits, and service to discover and
share the componential distributed resources. Upon the creation of a grid, a com-
putation power equivalent to supercomputers and large dedicated clusters can be
built and utilized at cheaper price compared to the purchase of a mainframe or
supercomputers.

There are two types of grid based on its usage method namely institutional grid
and community grid. In institutional grid, utilization of resources in the grid is pos-
sible only by the institutions or individuals donating compute resources to the grid.
In contrast, community grid model also offers compute resources to public users.
Nevertheless, resource utilization is usually tied within a contract. A grid user is
allocated certain amount of resources and extra resource allocations will be made
possible after approval of proposal of additional resource request (Foster et al.,
2008).

A common technique in accomplishing scientific compute task in the grid is
through batch processing. This technique is mainly aimed at solving data-intensive
tasks. Initially, data are segmented into several sequences and workflows pertinent
to the segmentations (Simmhan, Barga, Lazowska, & Szalay, 2008) are then cre-
ated by a scheduler. A batch process is then executed in order to process all the
sequences and output the result. The overall process is depicted in Fig. 23.1. In the
picture, we redraw and combine common processes in implementations mentioned
in Matsunaga, Tsugawa, and Fortes (2008) and Liu and Orban (2008). In the pic-
ture, the job scheduler manages the process of assigning workflows for processing
in compute infrastructure, which is the grid. The outputs of the process are chunks
of data which have to be merged later to yield the final result.

Based on the scheme in Fig. 23.1, we can see the main idea is implementing
parallelization through simultaneous processing of segmented data. Through the
creation of multiple workflows and their delegation to worker/compute nodes in
the grid, an initially time-consuming process over a large set of data (data-intensive
task) can be reduced into sets of smaller processes running in parallel. Consequently,
this approach shortens the time to yield the result compared to processing of such
data in serial.

23 Feasibility Study and Experience 539

Fig. 23.1 A batch-process scheme for processing large scientific data

23.3 Scientific Computing in the Cloud

If we revisit the question about the feasibility of cloud computing for processing
scientific data, the first question can be how scalable the cloud is to compute scien-
tific tasks which can be increasingly complex in their dynamics. Bureaucracy in the
grid and the notion that a grid is operated on project basis may have hindered the
paradigm to become more popular in use. Conversely, such hurdle may not be found
in the cloud computing paradigm which offers the economies of scale and pay-as-
you-go principle. Utilizing compute resources offered by cloud service providers by
only providing credit card information is tempting and the same time attractive and
appealing. Also, extra computational resources can be provisioned immediately to
a cloud user (on-demand utilization) thus skipping the hassle that may have been
experienced by a grid user. The feature of utility computing in the cloud paradigm,
which is paying only the amount of resources used, also brings convenience that
makes utilization of the cloud seem to be compelling for the academia.

23.3.1 Cloud Architecture as Foundation of Cloud-Based Scientific
Applications

Doing science in the cloud inevitably depends on how cloud architecture can satisfy
the requirements of scientific computing. Despite differing in articulation over the
definition of cloud computing, there is commonness in cloud architecture adhering
to layered architecture as depicted in Fig. 23.2. In the figure, we can see that cloud
architecture is constituted of three layers from the bottom up: IaaS (Infrastructure
as a Service) layer, PaaS (Platform as a Service) layer, and SaaS (Software as a

540 M.F. Simalango and S. Oh

Fig. 23.2 Layered cloud
architecture

Service) layer respectively. The layers also refer to types of services offered in the
cloud. Below the three layers, there exists virtualization technology which handles
the logic of transforming physical server, storage, and network into a virtualized
environment.

Virtualization technologies architect the creation of virtual machines on phys-
ical infrastructure which support the overlaying cloud services. Revisiting its
definition, virtualization is defined as the abstraction of the logical resources
away from the underlying physical resources thus consequently enabling abstrac-
tion of the coupling between hardware and OS. This definition is closed to
operating system virtualization if compared with types of virtualizations noted
by Sun Microsystems (Cloud Computing Primer. http://www.sun.com/offers/
docs/cloud_computing_primer.pdf.). In a virtualized environment, multiple operat-
ing systems can run the same physical infrastructure and share the resources. It is
made possible by the role of virtualization machine monitor (VMM) or hypervisor
placed and running between the hardware and operating systems (also referred to
as the guests of VMM). VMM arbitrates accesses to underlying physical host and
manages the resource sharing between its guest operating systems.

Capabilities pertinent to virtualization can be categorized into workload iso-
lation, workload consolidation, and workload migration (Uhlig, et al., 2005).
Traditionally, an operating system runs various applications under the same sys-
tem environment. Workload isolation enables isolation of multiple software stacks
in their own VMs thus improving security and reliability. Meanwhile, workload
consolidation refers to the capability of virtualization to consolidate individual
workloads onto single physical platform thus reducing the total cost of owner-
ship. Finally, workload migration makes it possible to decouple the guest from the
hardware it is currently running and migrate it to a different platform.

In Fig. 23.1, we reviewed how we can do science, which is processing data-
intensive task, in the grid. As we may notice earlier, the basic notion is parallel
processing of data chunk in the worker nodes followed with the compilation of the
partial result to yield the final output. Referring to the cloud architecture in Fig. 23.2
and the role of virtualization, we consider that science in the cloud implements the
same basic principle, parallelism, in different methodology. Through the techniques

23 Feasibility Study and Experience 541

Fig. 23.3 Processing data-intensive scientific task in the cloud

in doing science in the cloud also differ, in general they resemble the process we
depict in Fig. 23.3.

Referring to Fig. 23.3, a researcher keeps in hand input data to be processed.
The process will be handled by certain package of software applications that will be
loaded to the data nodes. Before any data node is deployed, the package is bundled
in a virtual machine image (VMI) that is stored in data storage infrastructure in
the cloud. The example for the persistent storage service in the enterprise cloud is
Amazon S3 (Simple Storage Service) or Amazon EBS (Elastic Block Store). There
can be several VMIs stored in the storage infrastructure thus the cloud management
application or system should provide the interface to the repository of the images.
Cloud management system itself can be located in the master node or hosted in
another node outside the cloud. It enables dynamic listing of VMIs and provides
other interfaces to cloud management and monitoring. However, in the absence of
cloud management system, image deployment to compute nodes and corresponding
configurations should be done manually.

Upon getting the list of VMIs from the cloud management interface, the
researcher will then choose the suitable VMI and then create a number of instances
accordingly. One or some of the instances will act as the master node which will
splice the data input into several parts and delegate their processing to the worker
nodes. Master node(s) control the executions of jobs, collate the partial output, and
notify the researcher when all jobs have been finished and final output is ready to

542 M.F. Simalango and S. Oh

be analyzed. In a bigger picture, this resembles the process in the grid computing
paradigm. It is then understandable if some experts also state that the cloud is the
evolution of the grid (Foster et al., 2008, Giunta, Lacetti, Montella, 2008).

A recent finding by Dejun, Pierre, and Chi (2009) shows that the performance
of EC2 instances is relatively stable. However, one can not predict the performance
of a new instance even though statistics of performance of the same instances over
some period of time in the past has been collected. The consequence of this finding
is two-fold. First, performance stability of a VM instance hints the prospect for con-
ducting lengthy computation since system failure during the compute process can
be expected to be minimal. Contrarily, a new resource provisioning mechanism is
deemed necessary to ensure that the deployed VM profile matches the requirements
of the compute task.

Given that the performance of VM instances in an enterprise cloud service can
differ even for those with exactly the same profile, a question about feasibility of
entire resource provisioning by a single cloud may be raised. A cloud itself can
differ in size thus implying heterogeneity of profiles it may create. A small cloud
with less virtualized nodes may support less set of basic profiles. Similarly, a bigger
cloud with more resources tends to be more capable of creating various profiles.
Meanwhile, another question about the possibility of integrating an internal, private
cloud with public, enterprise cloud whenever necessary thus creating a new type of
cloud named hybrid cloud or interoperable cloud is also natural to come up to the
surface. Adhering to the principle of efficiency and reusability, an entity or orga-
nization tends to use its own resource whenever possible instead of paying third
parties for renting out and utilizing their resources. These questions end up as a sur-
vey of scientific computation cloud infrastructure, platform, and application which
is immediately described in the next section.

23.3.2 Emergence of Cloud-Based Scientific Computational
Applications

We have surveyed several projects and initiatives resulting as cloud-based appli-
cations that are primarily targeted to the scientific domain. The summary is listed
as Table 23.1. Our main emphasis is to characterize and categorize the domain of
each application, parallelism model, base platform, and cloud scalability in term of
support to interconnection and integration with other types of cloud.

There are some other cloud-based scientific applications that are not listed in the
table. However, the items put in the table should be representative enough to convey
the idea that cloud computing has been touching multi-disciplinary fields. Our table
consists of sample applications in bioinformatics, computation biology, climatology
and computer science with majority categorized as bioinformatics applications. It
was surprising for us to find out the interest of researchers and practitioners outside
the computer science field in solving their complex problem with cloud computing
paradigm. Success stories from those pioneers may naturally incite curiosity of other

23 Feasibility Study and Experience 543

Ta
bl

e
23

.1
So

m
e

cl
ou

d-
ba

se
d

pr
oj

ec
ts

fo
r

sc
ie

nt
ifi

c
pu

rp
os

e

Pr
oj

ec
ts

D
om

ai
n

Pu
rp

os
e

Pa
ra

lle
lis

m
m

od
el

Pl
at

fo
rm

C
lo

ud
sc

al
ab

ili
ty

C
lo

ud
B

L
A

ST
(M

at
su

na
ga

,T
su

ga
w

a,
&

Fo
rt

es
,2

00
8)

B
io

in
fo

rm
at

ic
s

Pr
ot

ei
n

se
qu

en
ce

an
al

ys
is

M
ap

R
ed

uc
e

us
in

g
B

L
A

ST
as

M
ap

pe
r

H
ad

oo
p

A
pr

iv
at

e
cl

ou
d

in
vi

rt
ua

ln
et

w
or

k

C
lo

ud
B

ur
st

(S
ch

at
z,

20
09

)
B

io
in

fo
rm

at
ic

s
G

en
om

ic
m

ap
pi

ng
M

ap
R

ed
uc

e
H

ad
oo

p
A

pr
iv

at
e

or
pu

bl
ic

cl
ou

d
(E

C
2)

C
ro

ss
B

ow
(L

an
gm

ea
d,

Sc
ha

tz
,L

in
,P

op
,&

Sa
lz

be
rg

,2
00

9)

B
io

in
fo

rm
at

ic
s

D
N

A
se

qu
en

ce
al

ig
nm

en
ta

nd
SN

P
de

te
ct

io
n

M
ap

R
ed

uc
e

us
in

g
B

ow
tie

an
d

SO
A

Ps
np

H
ad

oo
p

A
pr

iv
at

e
or

pu
bl

ic
cl

ou
d

(E
C

2)

B
io

V
L

A
B

-M
ic

ro
ar

ra
y

(Y
an

g,
C

ho
i,

C
ho

i,
&

Pi
er

ce
,2

00
8)

C
om

pu
ta

tio
na

l
bi

ol
og

y
M

ic
ro

ar
ra

y
da

ta
an

al
ys

is
W

or
kfl

ow
X

B
ay

a
A

pu
bl

ic
cl

ou
d

(E
C

2)

C
lo

ud
-b

as
ed

C
la

ss
ifi

er
s

(M
or

et
ti,

St
ei

nh
ae

us
er

,
T

ha
in

,&
C

ha
w

la
,

20
08

)

C
om

pu
te

r
sc

ie
nc

e
D

is
tr

ib
ut

ed
da

ta
m

in
in

g
C

la
ss

if
y

C
on

do
r

A
pr

iv
at

e
cl

ou
d

Sa
te

lli
te

da
ta

pr
oc

es
si

ng
(G

ol
pa

ye
ga

ni
&

H
al

em
,2

00
9)

G
eo

in
fo

rm
at

ic
s

G
ri

dd
in

g
re

m
ot

e
se

ns
in

g
da

ta
M

ap
R

ed
uc

e
H

ad
oo

p
A

pr
iv

at
e

cl
ou

d

M
PM

D
cl

im
at

e
ap

pl
ic

at
io

n
(E

va
ng

el
in

os
&

H
ill

,
20

08
)

C
lim

at
ol

og
y

Si
m

ul
at

in
g

at
m

os
ph

er
e-

oc
ea

n
m

od
el

s

M
PI

L
A

M
,M

PI
C

H
,a

nd
G

ri
dM

PI
A

pu
bl

ic
cl

ou
d

(E
C

2)

544 M.F. Simalango and S. Oh

parties to implement the paradigm thus bringing cloud computing to broader use
especially in the scientific field.

Observing Table 23.1 more scrupulously, we can find out that MapReduce imple-
mentation in Hadoop has been the dominant approach in parallelization recently. In
our opinion, this is driven by the adequate information, documentation, samples,
case studies and also enterprise support for MapReduce. MapReduce model itself
was initially proposed and used by Google (Dean & Ghemawat, 2004) and Hadoop
provides its open-source Java implementation. This model consists of a map func-
tion written by user that takes a set of input key/value pairs in order to generate a
set of intermediate key/value pairs, and a reduce function also written by user which
merges all intermediate values associated with the same intermediate key. Referring
back to Fig. 23.3, the map function is equivalent to delegating, and partial outputting
phases whereas the reduce function is to sorting and merging phase.

In Hadoop implementation of MapReduce, map and reduce functions can be
replaced by any executable software program. This feature is supported by a utility
named Hadoop streaming, which is shipped along with default Hadoop package.
For example, CloudBLAST uses Basic Local Alignment Search Tool (BLAST)
through NCBI BLAST 2 implementation as the map function. This software pro-
gram executes the map function in lieu by finding region of local similarity between
nucleotide or protein sequences. Another example is CrossBow that reuses Bowtie
to enable fast and memory-efficient alignment of short reads to mammalian genomes
hence the map function substitute. The reduce function is also replaced by the invo-
cation of SOAPsnp whose task is to provide Single Nucleotide Polymorphism (SNP)
calls from short read alignment data. The ability to reuse legacy software may have
also contributed to wider adoption of MapReduce model and Hadoop for parallel
programming.

We can also notice in Table 23.1 that academia have begun using cloud infras-
tructure and platform offered by the enterprises. Amazon with its variety of cloud
services has been a major testbed cited in corresponding research works. Amazon
EC2 and S3 are used for infrastructural cloud services while Amazon Elastic
MapReduce is used as a cloud platform for MapReduce-based parallel applications.
This finding leads us to a further study of cloud-computing feasibility for scientific
purpose through our own experience in building and using a compute cloud.

23.4 Building Cloud Infrastructure for Scientific Computing

In this section, we summarize our early experience in setting up and using cloud
infrastructure and platform for scientific computing. We also propose potential
future use by transforming our existing systems to the cloud-based infrastruc-
ture. Additionally, we share our experience in using the enterprise cloud especially
Amazon EC2. We highlight some important remarks which can be useful for other
research institutions which are also interested in virtualizing their existing compute
environment or simply testing the water by applying cloud computing paradigm.

23 Feasibility Study and Experience 545

23.4.1 Setup and Experiment on Tiny Cloud Infrastructure
and Platform

Our research lab has diverse types of compute nodes ranging from mobile devices
like PDAs, desktops, and, workstations. We run some server programs on the work-
stations and let the desktop utilized for personal research purpose. We wanted to
assess the difficulty level of creating a tiny cloud which comprises small number
of compute nodes. Pointing out numbers, the workstations add up to 20 cores in
total. We are familiar with the operating systems we use (some distributions of
GNU/Linux and Windows) and have been self-managing and self-administering our
infrastructure. In our view, if it doesn’t take too much time and effort to set up a tiny
cloud, other research institutions not associated with computer science/computer
engineering field can also transform their legacy system to the cloud by their own.

Since we are interested in MapReduce, we experimented on our workstations by
installing and configuring Hadoop in the network and then ran some MapReduce-
based applications. We wanted to assess the difficulties of self-installation of
Hadoop in a cluster and its performance when running some MapReduce appli-
cations. The specifications of our infrastructure can be seen in Table 23.2.

Table 23.2 Infrastructure for running a tiny compute cloud

Part Item Description

Hardware Processors 20 cores total with speed ranging from 1.6 GHz
to 3.0 GHz

RAMs At least 2 GB on a physical server
Software OSes RHEL 4 64-bit, Fedora Linux 12 64-bit (Linux

kernel 2.6.31), Windows Server 2003 64-bit
Other software Hadoop 0.20, CloudBurst 1.0.1, CrossBow 0.1.3

Network Ethernet Gigabit Ethernet
IP Addresses Public IPv4 addresses
Firewall Two-level firewall, no NAT

In our experience, installing and configuring Hadoop in a cluster may take some
time but should not bear a lot of technical difficulties. There exists Hadoop distribu-
tion from Cloudera Hadoop Distribution, (http://www.cloudera.com/hadoop) which
streamlines the installation of packages and dependencies with the use of yum soft-
ware program. The challenge can be in configuring the connection between master
node and slave node. Since Hadoop requires SSH connection to a slave node with
root-level access to start its daemons and other startup scripts, there can be diffi-
culties in configuring the permission and scaling the infrastructure horizontally in a
network shielded by NAT. Also, there is some security concern regarding the net-
work configuration of the cluster. Enabling remote root login is potential to bring
security breach if variety of software is installed in the machine. Certain software
may have security holes or bugs hence once it is exploited, it can affect the whole
system.

546 M.F. Simalango and S. Oh

Virtualization can isolate the workload thus improving the security. It also
improves the utilization of idle resources since several VMs are invoked simul-
taneously. However, our finding indicates that there are still tough difficulties in
transforming existing infrastructure into totally virtualized one. We are interested in
type 1 hypervisor like Xen Hypervisor. (http://xen.org) that runs directly on com-
puter hardware and manages all its guest operating systems. There are two modes
of an operating system running as a Xen guest, dom0 and domU modes. In dom0
mode, an operating system will be assigned as the main guest OS with more privi-
leges. The dom0 guest OS also manages and controls communication between Xen
and other guest OSes. In domU mode, the guest OS has less privilege and con-
fined to direct network and I/O access respectively. The major problem was native
OS support for running Xen as the virtualization software. We wanted to use the
version of Fedora Linux as the dom0 guest but since Xen requires modification to
Linux kernel it was not possible to run Xen without manually patching the kernel or
downgrading to older version of the OS whose kernel still supports dom0 mode. We
consider this as a serious hurdle especially if the kernel patching is to be conducted
by somebody with minimum system administration experience. Also, the option to
downgrade the OS brings incompatibility problem to other software and software
build process.

Beyond the technical difficulties, we noted that Hadoop is potential to be used as
a platform for broader scientific applications. Besides the streaming feature, Hadoop
also provides built-in web interface for analyzing logs of executed jobs1 along with
its configuration. This can ease the collection of log data for further analysis. For
example, in one of our experiments, we ran PatternRecog job which counted the
occurrence of certain pattern in several input files. Through the web interface, the
total execution time can be seen along with more detailed info like the execution
time and details of each phase like Map and Reduce phases. This helped us not only
in analyzing and solving some data-intensive problems but also getting to know
what happened in each compute node.

23.4.2 On Economical Use of the Enterprise Cloud

If grid computing has been dormant in the advocacy for wider adoption in the
academia, it is deemed necessary to question whether cloud computing can take
place in the candidacy of scientific computing platform. The first question can be,
“How easy and efficient it is to do science in the cloud?” When efficiency and eco-
nomical use of resources comes in mind, the question can be later followed with
“How economical is it to do science in the cloud?” We will provide our perspective
based on the experience of using Amazon cloud services.

The term pay-as-you-go can be tempting for an institution with insufficient
infrastructural resource but eager to take benefit of enterprise infrastructure offered

1In Hadoop terminology, a job is divided into several tasks

23 Feasibility Study and Experience 547

at low unit price. In Langmead et al. (2009), the cost incurred for analyzing human
genome data with 320-CPU cluster in EC2 was $85. According to the authors, the
approach is beneficial since it condensed 1000 h of computation into a few hours
without requiring the user to own or operate a computer cluster, which cost much
more if purchased. We both agree and disagree to this opinion and explain the
underlying arguments for the statement.

There are two services offered by Amazon that can be pertinent to sci-
entific compute task, Amazon EC2 and Amazon Elastic MapReduce. Amazon
Elastic MapReduce is tailored to applications built on top of MapReduce model.
Researchers and developers can conveniently test and deploy their MapReduce-
based applications on the platform and scale the amount of resources used only
by using a web interface. However, there are also other scientific applications not
based on MapReduce model. To deploy such applications in the cloud, bundling
and packaging from the ground up is required. An image containing the applica-
tions and container OS should be created and referenced every time a new virtual
machine instance is launched.

In the absence of suitable images, user should manually configure the basic VMI
offered by provider. Upon the creation of an instance, user should manually down-
load the application binaries or build the sources and related dependencies when
binaries are not available or compatibility is an issue. As the cloud operates on
utility basis, downloading binaries or sources and working remotely to configure
a virtual machine is considered as using provider’s infrastructure hence user is
charged for the data transfer. In Amazon EC2 case for example, by January 2010,
a standard Linux large instance in North Virginia (7.5 GB memory, 2 virtual cores,
850 GB local storage, 64-bit architecture) cost $0.34/h with data transfer out start-
ing from $0.15/GB and decreasing progressively, and free to $0.1/GB unit price of
data transfer in. A user who is running the instance for one day (24 h) with 1 TB
data in and 1 TB data out should pay $158.16 consisting of $8.16 compute instance
fee and $150 data transfer fee. If the user activity is configuring the standard vir-
tual machine, he may have not anticipated that he is also being charged for the
activity which may potentially contribute significant number to the final amount
he has to pay. When he has to configure a decent number of virtual machines,
the cost will be multiplied, which is getting worse when failure occurs for sev-
eral installations, thus configuration has to be done several times. Consequently,
this additional cost can reduce the economical benefit of doing computation in the
cloud.

To put it into a bigger picture, the current offer by cloud providers is attractive
but the hidden cost may hinder the wider use in the academia. Current cloud-based
applications either use a private cloud or a public cloud. If scaling can be done more
dynamically by integrating virtualized resources in a private cloud with the public
cloud by on-demand basis, the cost efficiency can be improved. Also, there should
be decent number of VMIs supporting various scientific applications and a mech-
anism that can self-describe applications bundled within a VMI. We then propose
the idea and current effort for the cloud integration and interoperability in the next
section.

548 M.F. Simalango and S. Oh

23.5 Toward Integration Of Private and Public Enterprise
Cloud Environment

As an emerging computing paradigm, cloud computing is prospective for various
types of research. One of the challenging cloud computing-related researches is
dynamic, on-demand scaling of cloud. As can be seen in Fig. 23.4, currently a
cloud is a single entity. It is either private or public. Scaling a cloud depends on the
whole size of the cloud. A user in a private research institution with a small private
cloud can have difficulties in provisioning more resources if a certain computation
task grows in complexity and data input size. Current option when such situation
occurs is to move the whole computation to a public cloud that supports more
resources. This principally lessens the usability and effectiveness of transforming
legacy system into a cloud environment.

Fig. 23.4 Projected evolution of cloud computing interoperability

Cloud integration and interoperability can be achieved by several methods. We
would like to highlight several key methods that can foster the integration and inter-
operability. Building semantics is one of the methods deemed essential. Currently,
each cloud provider goes with its own way in defining the abstraction for the
resources. Amazon, for example, uses manifest XML file to describe a virtual
machine image which is called Amazon Machine Image (AMI). By complying with
certain semantics instead, it is possible to create a directory service that contains list
of VMIs from various Independent Software Vendors (ISVs) located across different
domains along with description about each image. This will assist in the enable-
ment of auto VMI discovery and deployment across multiple authorities. This idea
is similar with WSDL and service registry in web service SOA.

Standardization is also an important aspect to consider. Cloud services in each
provider use different interfaces thus without the help of middleware or a cloud

23 Feasibility Study and Experience 549

service broker, it is difficult to integrate the heterogeneous services. Currently, there
has been effort from Open Grid Forum (OGF) to standardize the interfaces for IaaS
cloud computing facilities (OGF Open Cloud Computing Interface Working Group,
http://www.occi-wg.org/doku.php). The standardization will cover the development
of APIs for cloud consumers, integrators, aggregators, providers, and vendors.

Early effort for the integration can be seen in the development of middleware.
Eucalyptus (Nurmi et al., 2009) and OpenNebula (Vozmediano, Montero, Llorente,
2009) are samples of middleware for cloud management. Eucalyptus provides the
same tools and interfaces with Amazon EC2. It consists of node controller which
controls the execution, inspection, and termination of VM instances, cluster con-
troller which gathers information about and schedules VM execution as well as
manages virtual instance network, storage controller which provides mechanism
for storing and accessing VMI and user data, and cloud controller for high-level
scheduling decisions and displaying information about resources. Eucalyptus is
basically a middleware for managing a private cloud infrastructure but recent
development enables the management of a hybrid cloud infrastructure.

On the other hand, OpenNebula tries to provide a uniform cloud management
layer based on service type. Its basic principle is to separate resource provisioning
from the service management. By implementing this principle, it enables elastic
cluster capacity through on-demand deployment or shutdown of virtual worker
nodes which can be located in a private or public cloud, cluster partitioning through
segregation and isolation of worker nodes based on service type, and heterogeneous
configurations which enables a service to have multiple software configurations.
OpenNebula supports various virtualization technologies including Xen, KVM,
and VMWare which are usually used in a private cloud and interfaces to public
IaaS-cloud like AmazonEC2 and ElasticHosts.

Still, existing efforts can accelerate the progress if there is common consensus
about the architecture of a cloud computing system. As cloud computing nowa-
days is much driven by the enterprises, it is inevitable to see various cloud systems
with each implementing different interfaces, abstractions, layering, and manage-
ment scheme. With common architecture, an ecosystem consisting of private clouds
and public clouds interacting dynamically for elastic resource provisioning and
service exchange will be closer to come.

23.6 Conclusion

Growing interests in cloud computing raises questions about leveraging this com-
puting paradigm in scientific field. This article addressed the issue by highlighting
the features and characteristics of scientific computing and how it can be realized
within cloud computing paradigm. Several scientific applications built on top of
cloud infrastructure were described along with our experiences in setting up a pri-
vate cloud and utilizing public cloud infrastructure. Based on our experience, an
organization can transform their infrastructure into a cloud environment and take

550 M.F. Simalango and S. Oh

benefit of better resource utilization but should also be aware that some difficulties
can be faced. Also, institution with tight budget-spending policy should be cautious
when deciding to do massive computation on a public cloud.

Due to its infant state, there are various researches to be done in cloud computing.
We consider research in cloud interoperability as one of the important ones. We
provide some projection and recommendations based on our finding that can be
useful by other researchers having similar interests.

References

Birman, K., Chockler, G., & van Renesse, R. (2009, June). Toward a Cloud Computing Research
Agenda. ACM SIGACT News, 40(2), 68–80.

Boulton C. Oracle CEO Larry Ellison Spits on Cloud Computing Hype, http://www.eweek.
com/c/a/IT-Infrastructure/Oracle-CEO-Larry-Ellison-Spits-on-Cloud-Computing-Hype/.

Buyya, R., & Bubendorfer, K. (2008). Market Oriented Grid and Utility Computing. Wiley,
New York.

Buyya, R., Yeo, C. H., &Venugopal, S. Market Oriented Cloud Computing: Vision, Hype, and
Reality for Delivering IT Services as Computing Utilities. IEEE International Conference on
High Performance Computing and Commnunications (HPCC).

Dean, J., & Ghemawat, S. (2004, December). MapReduce: Simplified Data Processing on Large
Clusters. Proceedings of 6th Symposium on Operating Systems Designs and Implementations.

Dejun, J., Pierre, G., & Chi, C.-H. (2009, November). EC2 Performance Analysis for Resource
Provisioning of Service-Oriented Applications. Proceedings of 3rd Workshop on Non-
Functional Properties and SLA Management in Service-Oriented Computing.

Evangelinos, C., & Hill, C. N. (2008). Cloud Computing for Parallel Scientific HPC Applications:
Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2. Cloud
Computing and its Application (CCA).

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008, December). “Cloud Computing and Grid Computing
360-Degree Compared,” Grid Computing Environment Workshop.

Giunta, G., Lacetti, G., Montella, R. (2008). Five Dimension Environmental Data Resource
Brokering on Computational Grids and Scientific Clouds. IEEE Asia-Pasific Services
Computing Conference.

Golpayegani, N., & Halem, M. (2009). Cloud Computing for Satellite Data Processing on High
End Compute Clusters. IEEE International Conference on Cloud Computing.

Johnson, B. (2008). Cloud Computing is a Trap, Warns GNU Founder Richard Stallman,”
http://www.guardian.co.uk/technology/2008/sep/29/cloud.computing.richard.stallman.

Langmead, B., Schatz, M. C., Lin, J., Pop, M., & Salzberg, S. L. (2009). Searching for SNPs with
cloud computing. Genome Biology, 10(11), R134.

Liu, H., & Orban, D. (2008). GridBatch: Cloud Computing for Large-Scale Data-Intensive Batch
Applications. Eighth IEEE International Symposium on Cluster Computing and the Grid.

Matsunaga, A., Tsugawa, M., & Fortes, J. (2008). CloudBLAST: Combining MapReduce
and Virtualization on Distributed Resources for Bioinformatics Applications. Fourth IEEE
International Conference on eScience.

Mei, L., Chan, W. K., & T. H. Tse, (2008). A Tale of Clouds: Paradigm Comparison and Some
Thoughts on Research Issues. IEEE Asia-Pasific Services Computing Conference.

Moretti, C., Steinhaeuser, K., Thain, D., & Chawla, N. V. (2008). Scaling Up Classifiers to Cloud
Computers. Eighth IEEE International Conference on Data Mining.

Nurmi, D. et al. (2009, May). The Eucalyptus Open-Source Cloud-Computing System. 9th
IEEE/ACM International Symposium on Cluster Computing and the Grid.

23 Feasibility Study and Experience 551

Rimal, B. P., Choi, E., & Lumb, I. (2009). A Taxonomy and Survey of Cloud Computing Systems.
Fifth International Joint Conference on INC, IMS, and IDC.

Schatz, M. C. (2009, June). CloudBurst: Highly sensitive read mapping with mapreduce.
Bioinformatics, 25(11), 1363–1369.

Simalango, M. F., & Oh, S. (2009, July). On Feasibility of Enterprise Cloud for Scientific
Computing. Korea Computer Congress.

Simmhan, Y., Barga, R., Lazowska, E., & Szalay, A. (2008). On Building Scientific Workflow
Systems for Data Management in the Cloud. Fourth IEEE International Conference on
eScience.

Uhlig, R. et al. (2005, May). Intel virtualization technologies. Computer, 38(5), 48–56.
Vouk, M. A. (2008). Cloud Computing – Issues, Research, and Implementations. Proceedings of

30th International Conference on Information Technology Interfaces.
Vozmediano, R. M., Montero, R. S., & Llorente, I. M. (2009). Elastic Management of Cluster-

Based Services in the Cloud. Proceedings of 1st Workshop on Automated Control for
Datacenters and Clouds, ICAC.

Yang, Y., Choi, J. Y., Choi, K., Pierce, M. (2008). BioVLAB-Microarray: Microarray Data Analysis
in Virtual Environment. Fourth IEEE International Conference on eScience.

Chapter 24
A Cloud Computing Based Patient Centric
Medical Information System

Ankur Agarwal, Nathan Henehan, Vivek Somashekarappa, A.S. Pandya,
Hari Kalva, and Borko Furht

24.1 Introduction

This chapter discusses an emerging concept of a cloud computing based Patient
Centric Medical Information System framework that will allow various authorized
users to securely access patient records from various Care Delivery Organizations
(CDOs) such as hospitals, urgent care centers, doctors, laboratories, imaging cen-
ters among others, from any location. Such a system must seamlessly integrate all
patient records including images such as CT-SCANS and MRI’S which can eas-
ily be accessed from any location and reviewed by any authorized user. In such a
scenario the storage and transmission of medical records will have be conducted in
a totally secure and safe environment with a very high standard of data integrity,
protecting patient privacy and complying with all Health Insurance Portability and
Accountability Act (HIPAA) regulations.

The sharing of medical records, specifically radiology imaging databases with
CDOs will have potential to drastically reduce medical redundancies, exposure to
radiations, costs to patients. In addition such system can empower the patients with
the automated ownership of their secure personal medical information. It is essen-
tial to use the cloud computing in this application since it would allow the CDOs
to address the challenge of sharing medical data that is overly complex and highly
expensive to address with traditional technologies. In addition to providing commu-
nity of care, proposed system can also serve as a valuable tool in clinical research,
medical decision-making, epidemiology, evidence-based medicine, and in formu-
lating public health policy. Figure 24.1 shows a high level simplified overview of

A. Agarwal (B), A.S. Pandya, H. Kalva, and B. Furht
Department of Computer Science and Engineering, FAU, Boca Raton, FL, USA
e-mails: {ankur@cse.fau.edu; pandya@fau.edu; hari.kalva@fau.edu; bfurht@fau.edu}

N. Henehan
Senior Software Developer, NACS Solutions, Oberlin, OH, USA
e-mail: nhenehan@gmail.com

V. Somashekarappa
Senior Software Developer, Armellini Inc., Palm City, FL, USA
e-mail: vsomashekar@gmail.com

553B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_24, C© Springer Science+Business Media, LLC 2010

554 A. Agarwal et al.

Fig. 24.1 Overview of global medical information system model

the proposed system. This defines the following specific objectives of the chapter
below:
1. To discuss an approach that would allow us to shift from institute centered hospi-

tal information system towards a regional/global medical information system by
developing standards based Service-Oriented-Architecture (SOA) for interfacing
heterogeneous medical information systems such that it would allow real-time
access to all medical records from one medical information system to another.

2. To discuss a brief architecture and implementation plan to develop a “Lossless
Accelerated Presentation Layer” that will allow one to view all radiology images
(Digital Imaging and Communication in Medicine (DICOM) objects) that reside
in a cloud based distributed database. This component would further allow the
radiologist to annotate the image through a web-based viewer and store it back
into the distributed cloud based database. Such layer would provide an instanta-
neous lossless access to all DICOM objects thereby, eliminating the download
time. The current solutions do not provide the lossless view of the DICOM
objects.

3. To discuss the architecture for web-based interface that will provide a holistic
view of all medical records to every patient. The proposed environment will be
scalable and reside on the cloud. Such a system would empower all patients with
the automated ownership of their secure personal medical records. This inter-
face can be extended to provide an anonymous view for all medical records for
research purposes to scientific community and organizations such as department
of health.

24 A Cloud Computing Based Patient Centric Medical Information System 555

4. To discuss the strategies and architecture for the design of a distributed archi-
tecture that would ensure data consistency/integrity. The proposed architecture
would provide autonomous scalability to allow dynamic growth of the cloud
based medical record system.

Figure 24.2 shows the layered view of the proposed system architecture and
how it relates to stated project objectives. The detailed architecture of each layer
is discussed in Section 24.4, “Project Plan and Research Methods”.

Globally Distributed Dynamically
Scalable

Cloud Architecture
(Objective 4)

Lossless
Accelerated
Presentation

Layer
(Objective 2)

Integration
Platform

Service Oriented Architecture for
Interfacing Medical Messages

(Objective 1)

Web-Based Interface for Patient Health
Records

(Objective 3)

Fig. 24.2 Layered
architecture for the proposed
medical information system

24.2 Potential Impact of Proposed Medical Informatics System

This project focuses on the development of an architecture for integrating het-
erogeneous medical information systems such as (Hospital Information System,
Radiology Information System, and Electronic Medical Records among others).
These systems in their current form do not transfer information from one system into
another outside a network. The proposed approach for a global medical informatics
system would allow all medical records to be completely portable. In the current
system a significant amount of delay is involved in transmitting medical records
from one CDO to another, leading to repetitive medical testing and increased cost of
healthcare to the patient, insurance companies and federal government. The devel-
opment of a cloud based service oriented architecture that will provide all patients
with an interactive view of all their medical records. Such a system would provide
all patients with the ownership of their medical records, thereby eliminating the need
to repetitive procedures.

The proposed system architecture drastically reduces the Medicare spending for
imaging services. The sharing of medical records, specifically radiology imaging
databases, will drastically reduce medical redundancies, and exposure to radiations.
Total national healthcare spending is in excess of $2.6 Trillion or about 17% of

556 A. Agarwal et al.

our Gross Domestic Product. The proposed architecture would significantly con-
tribute the reduction in national healthcare spending by eliminating the repetition
of procedure due to unavailability of medical records. In year 2006 itself various
medical imaging services accounted for 58% of Medicare’s physician office spend-
ing. In order to control this spending on medical imaging, the “Deficit Reduction
Act” (DRA) was created in year 2005 to reduce medical imaging spending by
$2.8 Billion by 2011. This project will allow various CDOs to share the medical
records and imaging thereby, eliminating the need to repeat the procedures during a
defined time period thereby, serving the objectives of Deficit Reduction Act. Please
note with the current technology radiology imaging can be shared within a CDO,
however not among various CDOs. The development of a lossless accelerated pre-
sentation layer would allow to access all radiology images residing on a cloud based
distributed database in a lossless manner through a web-based DICOM viewer. This
layer would provide a seamless access to all radiology imaging from any location in
real-time thereby increasing the efficiency of overall medical record systems.

Centralizing medical records can also create new and more intelligent per-
spectives in medicine. Such database with medical information will be extremely
valuable for advanced data mining in clinical research. This will have potential to
analytically evaluate and innovate new disease information and test methods that
will improve the health care delivery and lead the exploration of new preventive
treatment. In addition, the proposed project also serves the criteria of national Health
Information Technology agenda.

24.3 Background and Related Work

System Integration has been always the most critical issue for the development of
information systems in healthcare industry. Medical Information Systems (MIS)
are heterogeneous in nature and therefore pose a severe challenge in their inter-
operability (Hersh, 2002; Lu, Duan, Li, Zhao, & An, 2005). A large number
of healthcare applications are isolated and do not communicate with each other.
Therefore, the integration of existing information systems represents one of the
most urgent priorities of healthcare information systems (Saito & Shapiro, 2005).
A 2005 RAND study estimates that the U.S.A. could save $81 billion annually
and help to improve the quality of care through the adoption of high quality and
integrated MISs (Weber-Jahnke & Price, 2007). At the end of 2003, the Medicare
Prescription Drug Improvement and Modernization Act (MMA) was signed that
required the establishment of a Commission on Systemic Interoperability to pro-
vide a road map for interoperability standards in order for the majority of the U.S.
citizens to have interoperable electronic health records within ten years (Katehakis,
Sfakianakis, Kavlentakis, Anthoulakis, & Tsiknakis, 2007).

Many efforts have been made on integrating the heterogeneous systems in hos-
pitals (Haux, 2006). Healthcare industry has developed several standards through
which relevant data can be transferred among different information systems

24 A Cloud Computing Based Patient Centric Medical Information System 557

(Hasselbring, 2000). These standards are Health Language Seven (HL7), Electronic
Data Interchange (EDI) X12 Version 4010, Health Insurance Portability And
Accountability (HIPAA), Digital Image Communication in Medicine (DICOM),
Integrating Healthcare Enterprise (IHE) among others (Lenz, Beyer, & Kuhn,
2007). All these standards are currently being widely used in healthcare industry.
According to Open Source Clinical Research Group HL7 is the most widely used
messaging standard in health, not only in North America, but also around the world.
Further, a 1998 survey found the HL7 standard in use in more than 95 percent of hos-
pitals with more than 400 beds. Overall, more than 80 percent of the respondents in
that study reported using HL7 in their information system departments with another
13.5% planning to do so. The proposed solution will be able to integrate all medical
information systems that are in compliance with HL7 standard.

Standardized interfaces are available to many healthcare “Object Oriented
Services” such as CORBAmed (Common Object Request Broker Architecture in
Medicine), which realizes the share of common functionalities like access con-
trol among different systems. Others, like DICOM, HL7 (Health Level Seven)
and the initiative of IHE (Integrating the Healthcare Enterprise) (Carr & Moore,
2003), specify the guidelines or standards for exchanging messages among differ-
ent systems, which make the different systems work in harmony and implement
the workflow integration (Lu, Duan, Li, Zhao, An, 2005; Wang, Wang, & Zhu,
2005). Broker, an embedded device facilitated the communication between HIS,
RIS and Picture Archiving and Communication System (PACS) by integrating HL7
with DICOM. Broker accepted HL7 messages from RIS, translated and mapped
the data to produce DICOM messages for transmission to PACS. However, the
Broker system posed a challenge since it allowed RIS information to flow only
in one direction resulting in the duplication of databases. IHE initiative, jointly
established by Hospital Information Management Systems Society (HIMSS) and
the Radiological Society of North America (RSNA), later addressed the issue by
allowing the integration of clinical information within a healthcare delivery net-
work. Later a consolidated solution with RIS/PACS/HIS integration was offered by
healthcare companies. This was a major step towards the successful integration of
patient records within a network (Boochever, 2004).

There have been some efforts to share the patient information within a limited
group of in order to facilitate the teamwork and effective healthcare management.
The Medical Informatics Network Tool (MTNL). The software included an intelli-
gent engine that was used for treating only Schizophrenia, a chronic brain disorder
(Young, Mintz, Cohen, & Chiman, 2004). The software allowed collecting use-
ful information about the patient and facilitating the communication among all
the team members in addition to other providing other useful information related
to Schizophrenia. This system was very helpful in taking meaningful decisions
quickly and therefore had a positive impact on the patient healthcare. Similarly,
the proposed solution would provide all information regarding a patient in a cen-
tralized location. Aggregation of such information will have profound impact on
the overall patient healthcare and would reduce the probability of making wrong
decisions such as prescribing conflicting prescriptions. In 2006 Al- Busaidi et al.

558 A. Agarwal et al.

researched on introducing a personalized patient information that was extracted
from a single patient database (Al-Busaidi, Gray, & Fiddian, 2006). This research
was more focused on web mining and intelligent information retrieval from web that
can provide a simplified and meaningful description to the problem that a patient
might be experiencing. Project was more focused towards analyzing the informa-
tion based on conceptual integration of ontology. However in this project our focus
is to integrate several patient record systems (Radiology Information System (RIS),
Electronic Medical Records (EMR), Hospital Information System (HIS), Patient
Health Record (PHR) and Clinical Information System (CIS) among others) and
provide a cloud computing based patient centric interface for all patient records.

Recently service oriented architecture type IT platforms are emerging as solu-
tions for clinical enterprises (Strähle et al., 2007). Web Services (WS) provide
an open and standardized way to achieve interoperation between different soft-
ware applications, running on a variety of platforms and/or frameworks. Therefore,
they constitute an important technological tool toward the incremental delivery of
advanced inter-enterprise services. Significant advantages of using WS on top of any
existing middleware solution is location transparency, language and platform inde-
pendence, together with their embracement by big vendors and the acceptance they
enjoy between the users. WS, with their extensible markup language (XML) roots,
open the door for the next generation, loosely coupled, coarse-grained, document-
oriented architectures. The term “loosely coupled” is used to characterize services
where the assumptions made by the communicating parties about each other’s
implementation, internal structure, and the communication itself are kept to a mini-
mum. In Wang, Wang, and Zhu (2005) researchers have proposed the use of a SOA
for combining few workflows for integrating various health information systems.
Although the workflows are not complete however it is an important contribution
towards integrating various informatics systems.

Harvard Medical School CIO John Halamka quoted, “Putting servers and
exchanges into doctors’ offices is not going to work”. He suggested a better model
is using regional health-care information technology centers that use cloud comput-
ing systems to work with doctors (Gallagher, 2009). Computing done at cloud scale
allows users to access virtual supercomputer-level (Hayes, 2008). Cloud comput-
ing’s aim is to deliver tens of trillions of computations per second to problems such
as delivering medical information in a way that users can tap through the Web. When
implemented correctly, cloud computing allows the development and deployment of
applications that can easily grow capacity, deliver needed performance, and have a
high-degree of fault tolerance, all without any concern as to the nature and location
of the underlying infrastructure (Buyya, Yeo, Venugopal, Broberg, Brandic, 2009).
IBM announced that American Occupational Network and HyGen Pharmaceuticals
are improving patient care by digitizing health records and streamlining their busi-
ness operations using cloud-based software. GoogleHealth and Microsoft Vault
health solutions are commercial steps in the direction of aggregating patient records
in a unified environment. However, the major issue with their solution is the inabil-
ity of CDOs to upload patient health records in a central data repository. In both
systems patients must upload all the records, which require patients to first gain

24 A Cloud Computing Based Patient Centric Medical Information System 559

access to their medical history. It is important to note that EMR is the basic building
block, the source of information that feeds the Electronic Health Record (EHR). The
EHR is the longitudinal record made possible by Regional Health Information orga-
nizations (RHIO’s). While he Patient Health Record (PHR) is the record owned,
accessed, and managed by the consumer. The interdependencies among them are
very clear. Without linking (interfacing) a EMR with a PHR, the consumer will
have to manually input vital data, like laboratory results. Without an EHR, the PHR
cannot accept information from multiple providers (McDonald, 1997). This is the
case in both solutions offered by Microsoft and Google. Often it takes several weeks
before one can gain access to their medical records from a hospital thereby, limiting
its usage. In addition, both Google and Microsoft health solutions do not provide
a lossless solution to the imaging services, which are important component of the
overall patient centric system. In this chapter, we discuss a framework that will allow
us to interface all medical records systems those are HL7 compliant and store the
data in a multi-cloud based distributed database system.

24.4 Brief Discussion of Medical Standards

Healthcare industry currently has several standards through which relevant data is
transferred between different information systems, these standards are HL7, EDI
X12 Version 4010 (EDI X12), HIPAA, DICOM, IHE among others (Spyrou et al.,
2002). A brief discussion of these standards is discussed below:

Health Language 7: aims at enabling communication between applications
provided by different vendors, using different platforms, operating systems, appli-
cation environments (e.g. programming languages, tools). In principle, HL7 enables
communication between any systems regardless of their architectural basis and
their history. Therefore, HL7 supports communication between real-world systems,
newly developed or legacy. This is achieved through syntactically and semantically
standardized messages. HL7 interfaces realize the request/service procedure by
sending and receiving these standardized messages. HL7 functional areas include
typical health-care (clinical) domains as Admission Discharge and Transfers
(ADT), Patient Registration, Orders, Results, Financial and Master files. More
recent versions of HL7 also include Non-ASCII character sets, Query language
support, Medical documents, Clinical trials, Immunization reporting, Ad6erse drug,
Reactions, Scheduling, Referrals, and Problems and goals. An example of an HL7
transaction set is shown below:

MSH|^~\&|GHH LAB|ELAB-3|GHH OE|BLDG4|200202150930||ORU^R01|CNTRL-3456|P|2.4<cr>
PID|||555-44-4444||EVERYWOMAN^EVE^E^^^^L|JONES|19620320|F|||153 FERNWOOD DR.^
^STATESVILLE^OH^35292||(206)3345232|(206)752-121||||AC555444444||67-A4335^OH^20030520<cr>
OBR|1|845439^GHH OE|1045813^GHH LAB|15545^GLUCOSE|||200202150730|||||||||
555-55-5555^PRIMARY^PATRICIA P^^^^MD^^|||||||||F||||||444-44-4444^HIPPOCRATES^HOWARD H^^^^MD<cr>
OBX|1|SN|1554-5^GLUCOSE^POST 12H CFST:MCNC:PT:SER/PLAS:QN||^182|mg/dl|70_105|H|||F<cr>

Electronic Data Interchange: is a data format based on ASC (Accredited
Standards Committee) X12 standards. It is used to exchange specific data between

560 A. Agarwal et al.

two or more trading partners. Term “trading partner” may represent organization,
group of organizations or some other entity. EDI X12 is governed by standards
released by ASC X12. Each release contains set of message types like invoice, pur-
chase order, healthcare claim, etc. Each message type has specific number assigned
to it instead of name. For example: an invoice is 810, purchase order is 850 and
healthcare claim is 837. Some key EDI transactions are:

∗ 837: Medical claims with subtypes for professional, institutional, and dental
varieties
∗ 820: Payroll deducted and other group premium payment for insurance

products
∗ 834: Benefits enrollment and maintenance
∗ 835: Electronic remittances
∗ 270/271: Eligibility inquiry and response
∗ 276/277: Claim status inquiry and response
∗ 278: Health services review request and reply

Health Insurance Portability and Accountability: regulation impacts those in
healthcare that exchange patient information electronically. HIPAA regulations
were established to protect the integrity and security of health information, including
protecting against unauthorized use or disclosure of the information. HIPAA states
that a security management process must exist in order to protect against “attempted
or successful unauthorized access, use, disclosure, modification, or interference with
system operations”. In allows monitoring, reporting and sounding alert on attempted
or successful access to systems and applications that contain sensitive patient infor-
mation. Current version of HIPAA is X12 4010 and recently a new guideline X12
5010 was released and mandated by the Department of Health to be complied with
and implemented by all care givers before January 2013.

Digital Imaging and Communication in Medicine: is the industry standard for
storing and transferring all radiology images. The standard ensures the interoper-
ability of system and can be use to produce, display, send, query, store, process,
retrieve, and print DICOM objects. Patterned after the Open System Interconnection
of the International Standards Organization, DICOM enables digital communication
between diagnostic and therapeutic equipment and systems from various manufac-
turers. The DICOM 3.0 standard, developed by the American College of Radiology
(ACR) and National Electrical Manufacturers Association (NEMA), evolved from
versions 1.0 and 2.0 which evolved in 1985 and 1988 respectively.

In addition to these standards it is must that the designed medical informatics
system is in compliance with the following requirements.

Patient Safety: One of the most important requirements of any medical infor-
matics system is the availability of consistent and correct information. At no point
should the system show inaccurate, incomplete and unintended information that may
jeopardize the safety of a patient.

Disaster Recovery: Since the proposed system is cloud computing based (hosted
on Internet) there must be provision for backing up the entire system data incase of

24 A Cloud Computing Based Patient Centric Medical Information System 561

a system failure. A method must be included that would prevent the data from being
corrupted or lost. If not done so this may lead to major crisis in terms of patient
safety.

Accuracy, Availability and Accessibility: It is must that health informatics system
must achieve the availability target of above 99% since the system stores critical
information. The data stored must be accurate, available and always accessible from
any location.

Integration: As discussed above, for the system to serve as a global medical
record that will include all patient records, all medical standards must be correctly
and carefully integrated into the system. Several of these standards have already
been discussed above.

Ease of use and Customer Satisfaction: It is expected that the system will be
widely used by all patients, doctors, nurses and other entities involved in healthcare.
Therefore, the system must provide a simple user interface for all entities (users)
involved. Inability to achieve this may prohibit users in using the system thereby
reducing the potential impact of the proposed informatics system.

Government Compliance: The most important system requirement is security
and the HIPAA compliance. The system must support both. Each workflow must be
carefully designed such that it meets the HIPAA standard.

24.5 Architecture Description and Research Methods

Currently clinical data, in standardized format, is distributed among Care Delivery
Organizations (CDO) such as hospitals, pharmacies, insurance companies among
others. Creating and authorized & secured sharing of this data repository on cloud(s)
based distributed database is the goal of proposed project. In this section we provide
an architecture description of each layer of our proposed medical information sys-
tem as shown in Fig. 24.2 above in section “Introduction”. The project is focused
on several critical research components such as architecture of distributed database,
load balancing algorithms for traffic management on cloud computing system, sys-
tem integration, development of lossless presentation layer for image viewing and
performance evaluation.

24.5.1 Objective 1: A Service Oriented Architecture for Interfacing
Medical Messages

This section discusses the approach that has been adopted for interfacing several
medical systems in order to centralize all patient records. The proposed solution
does not focus on the developing yet another standard which would try and enforce
other organizations to comply with. Rather the federated approach was selected,
based on a set of already existing healthcare industry standards through which
medical messages are transferred between different information systems. Currently

562 A. Agarwal et al.

medical messaging standards enable data transfer between systems in a request –
service manner, where in the data is sent from one system to another directly or via
a modulator like an EDI VAN service provider. Such data transfer is occurs only
upon the request and is not based on the occurrence of an event such as admission
of patient.

Through a service oriented architecture various medical information systems can
be integrated by collecting standardized data on a cloud based distributed database
repository. In this architecture Web-services will be hosted securely on a cloud
while the Web service clients serving as agents will be running on various health-
information-systems. In order to facilitate a seamless integration of various medical
information databases the schemas of the distributed database residing on cloud(s)
will imitate the existing schema of healthcare standards like HL7, EDI and DICOM.
During initial setup of the web-service clients, the schema of the existing HIS or
EMR systems will be mapped to the proposed cloud based distributed database
schema. This would allow the agent to periodically query the client databases
through established connections which will facilitate the transfer of data to the
cloud(s) over secure HTTP connection. Figure 24.3 shows the proposed approach
as discussed above.

Fig. 24.3 Layered view of
the proposed service oriented
architecture for interfacing
medical messages

Web-Services (WS) is major, service-oriented, connection technologies which is
specification based and mostly open. In addition to its open source development
potential in a technology neutral environment, major vendors are embracing World
Wide Web Consortium (W3C) and the Internet Engineering Task Force (IETF)
efforts. Significant advantages of using WS on top of any existing middleware solu-
tion are location transparency, language and platform independence, in addition to
their adoption by big vendors and wide acceptance. WS, with their XML roots,

24 A Cloud Computing Based Patient Centric Medical Information System 563

open the door for the next generation, loosely coupled, coarse-grained, document-
oriented architectures. Security should not be considered an afterthought but it
should be built into the communication platform itself. WS were originally con-
sidered as an easy way to do business across the Internet since it allows tunneling
through the hypertext transfer protocol that usually bypasses corporate firewalls.
The use of transport layer security may not be enough to provide the desired
levels of authentication, authorization, and trust. The use of technologies like XML-
Signature, XML-Encryption, and WS-Security should be mandatory in order to
achieve the necessary quality of protection for message integrity and confidential-
ity. Additional efforts such as WS-Trust, WS-Policy, and WS-Secure Conversation
must be consideration as well. Currently, the most common technological tool to
cover various security aspects is the Public Key Infrastructure (PKI). PKI is used
to describe the processes, policies, and standards that govern the issuance, mainte-
nance, and revocation of the certificates, public, and private keys that the encryption
and signing operations require. PKI incorporates the necessary techniques to enable
two entities that do not know each other to securely exchange information using an
insecure network such as the Internet.

24.5.2 Objective 2: Lossless Accelerated Presentation Layer
for Viewing DICOM Objects on Cloud

A key requirement for DICOM viewers is lossless image coding; users accessing
DICOM images should receive lossless image to rule out any compression arti-
facts. Figure 24.4 shows the proposed architecture for the imaging sub-system.
When users open a DICOM image, a DICOM viewer is executed in the cloud.
The views rendered by the DICOM viewer have to be communicated to the users
remotely accessing the image. Commercial remote access tools such as Citrix use
lossy compression for remote viewing and hence are not suitable for medical imag-
ing application. A few hospitals have used such solution for making the DICOM
objects available outside the hospital network. However, such use of lossy com-
pression may not be an acceptable solution under several medical conditions. For
instance, such a lossy compression may provide wrong information about the size
of a cancer cells that may be growing in any part of a body. Since the stage of a

Fig. 24.4 The proposed architecture for the imaging sub-system

564 A. Agarwal et al.

cancer is determined by the volume of the cancer cells; a lossy image may show a
reduced volume by removing some pixels.

Our proposed solution is to use the open source remote control software
TightVNC as a basis and modify the image coding engine to support lossless
images. The complexity of encoding and the compression achieved varies with
algorithms. One can easily evaluate and measure the compression performance for
lossless JPEG-2000 and JPEG. High performing compression algorithms can then
be selected to get maximum performance of the imaging sub-system.

24.5.3 Objective 3: Web Based Interface for Patient Health Records

Patient health records stored in a centralized data repository over the distributed
cloud(s) can be instantly viewed by any authorized user connected to this system
through a web-based interface designed as part of the proposed system. The data
can be accessed by existing health information systems with the help of remote calls
to cloud hosted web services as shown in Fig. 24.5. The proposed SOA would allow
various medical information systems to interface with these web-services through
their interfacing clients. All clients will go through a standard layer of authentication
and authorization through public key encryptions standards.

Fig. 24.5 Service oriented architecture for presentation layer

Since the data is stored in the standardized format (HL7 or EDI) on the cloud
based GHIS database, we must present the data in a readable format. The web por-
tal can provide all users with the ability to search for a patient’s identity given a
set of demographic criteria and retrieval of all the related health and medical infor-
mation pertaining to the patient under consideration. Additional filtering of patient
data will be possible if the consumer of the service is only restricted to view some
parts of the patient’s medical records. This will be accomplished by the use of user
roles and access grants. Secured logins to access patient records for authorized users
such as physicians, radiologists, laboratory technicians among others can be created
using the existing methods like one-time passwords (OTP). OTP methods can be
facilitated through the use of a standard medical hardware device such as a “Token”
that would generate a time synchronized one time password to allow the access to
patient database.

24 A Cloud Computing Based Patient Centric Medical Information System 565

A web-based ImageJ interface can be easily made available through this web-
portal system for viewing DICOM objects. ImageJ is a public domain Java image
processing program inspired by NIH ImageJ for the Macintosh. It was designed
with an open architecture that provides extensibility via Java plugins. ImageJ will
be integrated with a PACS server on the cloud to read DICOM objects residing
on the distributed database. The user interface of ImageJ viewer application would
depend upon the role of the accessing user. For instance, a radiologist will have the
permission to alter the DICOM object that will be stored as a new version in form of
a separate image layer. A web-browser presents the remote “desktop” from which
an authorized user may launch ImageJ to open DICOM objects. Users interact with
ImageJ directly using the controls provided by ImageJ. As the views of ImageJ
change, a view encoder based on the TightVNC server compresses the “desktop”
and transmits this to the user. TightVNC uses the standard Remote Frame Buffering
(RFB) protocol for desktop sharing and control. Since lossless compression will be
used in the View Encoder, the users will see images that are identical to the images
rendered by ImageJ.

24.5.4 Objective 4: A Globally Distributed Dynamically Scalable
Cloud Based Application Architecture

The proposed medical information system concept is for patients, doctors and other
care providers to have immediate access to medical records, images and other dig-
ital resources. Once connected to information system, the services available to a
consumer will be filtered depending upon the consumer’s role, type or responsi-
bility. Figure 24.6 shows high level layered architecture for a proposed globally
distributed dynamically scalable cloud that will be used for storing all medical data.
Every tier in the Fig. 24.6 includes multiple instances in the local and geographically
distributed clouds.

Tier 1 (Security Tier) of each application partition would include firewall with
VPN, traffic filtering, statistical reporting and balancing functionalities and capa-
bilities. In order increase efficiency of the tier, one would explore combining few
of these services together on the same host or device, though cross-cloud Virtual
Private Network (VPN) services will reside on isolated hosts. Additionally, due to
the sensitive nature of the Internet Protocol Security (IPSEC) hosts and to ensure
data security, this separation is considered necessary.

Tier 2 (Presentation Tier) represents a web server for serving of http clients.
Ultimately each instance on this tier should be able to detect a failed node on its tier
and take over the load in order to provide fault tolerance in our overall proposed sys-
tem. This can be accomplished by using the “Linux-Ha” clustering software in an
active/active configuration (http://www.linux-ha.org/GettingStarted/TwoApaches).
Secure Socket Layer (SSL)/Transport Layer Security (TLS) and http proxy services
are somewhat compute intensive therefore their impact on overall performance is

566 A. Agarwal et al.

Fig. 24.6 Layered architecture for a globally distributed dynamically scalable cloud

close to linear. Thus, resources on this layer can be estimated based on number of
connections.

Tier 3 (Application Tier) is the actual application/business logic tier. The primary
platforms in this tier are Apache Tomcat and Sun Java. Since the load balancing
will be done mostly on the outer perimeter and http tier, high availability becomes
the primary concern at this level. It being a healthcare domain, one of our prime
objectives is to ensure the application availability all the time. Being data critical,
healthcare applications cannot afford to lose the connection even during the major
hardware outage of x-1 nodes (where x is the number of nodes serving the appli-
cation via Apache Tomcat), the layer would ensure the constant availability of all
applications.

The final Tier, Tier 4 (Database Tier) of the server systems is the database
systems. We discuss a brief architecture of our proposed system.

24 A Cloud Computing Based Patient Centric Medical Information System 567

24.5.4.1 Distributed Data Consistency Across Clouds

One can easily carry out a detailed performance evaluation and benchmarking of
various database storage methodologies such as traditional relational database man-
agement systems (RDBMS) Object Oriented Database Systems and Distributed
Key-Value Persistence. The performing database architecture could then be imple-
mented on a single-cloud in a standard master-slave topology with distributed reads
and master-only writes.

A special replication server can be configured to replicate the data from the
master database after every 20–60 min. Such configuration would allow us to pre-
serve a consistent data state which is lagged by 20–60 min. In case of a system
failure the data from this state can be recovered. All data-backups can be sched-
uled to run from the special replication server such as to avoid affecting read or
write performance. The existence of multiple databases scattered over multiple
clouds will pose a data consistence issue (Holden, et al., 2009; Saito & Shapiro,
2005). Cross-cloud architecture can be developed to handle this issue safely and
efficiently. Figure 24.7 shows the proposed method for distributed master database
synchronization technique.

The proposed solution is to perform offline synchronization on a schedule. On
the system being replicated to, we can develop an agent to stop and reroute new
connections, pause all automated maintenance agents flush all the caches on each
node of each system and then perform cross replication from a replica of the online
system to its own master.

The agents responsible for this will also communicate amongst each other to
ensure that it would be performed in a rolling pattern, where no more than 1/3 to 1/2
of the individual global cloud instances are unavailable at any given time. This will
eliminate perceived service interruption. Since this data is ultra sensitive and must
be protected at all costs, an industry standard IPSEC VPN must be implemented to
facilitate this cross-cloud replication or synchronization.

24.5.4.2 Higher availability and application scalability

We propose the architecture of a global medical information system that may
have millions of users accessing the system for accessing personal health records.
Therefore the system must ensure high scalability in order to serve increasing num-
ber of users on the system. Further, it will be imperative to ensure the persistence
and integrity of the information store while maintaining high performance.

One can easily explore and benchmark the methods for distributed HTTP serv-
ing (Zegura, Ammar, Fei, Bhattacharjee, 2000). One method distributed HTTP
serving, referred to as Geographic Load Balancing, is controversial as to its effec-
tiveness yet being quite heavily used among large web presences like Google, Inc.
or Amazon.com. The premise of Geographic Load Balancing method is that any
host with a public IP address can be cross referenced with the IP address block
assignments on a per country basis (Colajanni, Yu, 1997) (See Fig. 24.8).

568 A. Agarwal et al.

Fig. 24.7 Proposed method for distributed master database synchronization

For the application tier, we propose to implement load balancing using the JK
connector from the http layer in a weighted round robin load balancing scheme. The
application cluster software stack will include Apache Tomcat on Sun Java TM and
a JVM heap clustering suite, Terracotta (See Fig. 24.9) (Eeckhout, Georges, & De
Bosschere, 2003; Taboada, Touriño, & Doallo, 2009).

On cloud computing clusters one can spawn new computing resources, virtual
machines, dynamically. We propose to that one should develop a method that would
allow us to effectively allocate/deallocate a new application instance in a timely
manner. Such a method would further interface with the JK connector(s) in order to
dynamically alter connection weights and notify the HTTP layer of a new resource
against which it can balance (Arzuaga & Kaeli, 2010). The proposed system would
include four application partitions: Core System Services, Hospital Information
Web Services, PACS System and Accelerated DICOM Presentation Services. The
agent will know which of these services needs more resources. We will develop

24 A Cloud Computing Based Patient Centric Medical Information System 569

Fig. 24.8 Geographic proximity cloud selection

an algorithm to detect rate of load increase based on the special needs of each
subsystem.

24.5.4.3 Concerning Low Level Security

Although user authentication and authorization will reside in the application and
integration services, the GMIS Infrastructure must be developed in such a way so as
to ensure trustworthy use of the cloud systems and networks. GMIS security com-
ponents and layers will be enforced on any internet capable platform. The existing
security methods such as use of firewalls with a minimum necessary access policy
and Public key infrastructure will be deployed in order to ensure secured access to
the healthcare cloud. Further, one must aim at certifying all clients by GMIS Root
Certificate Authority which in-turn may be certified by a third party. Figure 24.10
shows a simplified view of trusted client connection to the healthcare cloud.

570 A. Agarwal et al.

Fig. 24.9 Application cluster

The public key infrastructure should be used for accessing the services and appli-
cations using Transport Layer Security (TLS) and require the servers to provide
their credentials to the client. Additionally, by requiring the client also to present
their security credentials (or certificate) we can easily establish a low level trust
and assume that both parties are very likely to be who they claim. One must further
configure the SSL/TLS processing servers with an HTTP based reverse proxy and
Intrusion Detection suite.

24 A Cloud Computing Based Patient Centric Medical Information System 571

Fig. 24.10 Trusted client connection to the healthcare cloud

References

Arzuaga, E., & Kaeli, D. R. (2010). Quantifying Load Imbalance on Virtualized Enterprise
Servers (pp. 235–242). ACM Proceedings joint WOSP/SIPEW International Conference on
Performance Engineering, New York, NY.

Al-Busaidi, A., Gray, A., & Fiddian, N. (2006). Personalizing web information for patients:
Linking patient medical data with the web via a patient personal knowledge base. Health
Informatics Journal, 12(17), 27–39.

Boochever, S. S. (2004). HIS/RIS/PACS Integration: Getting to the Gold Standard. Radiology
Management, 26(3), 16–24.

572 A. Agarwal et al.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Elsevier Future Generation Computer Systems, 25, 599–616.

Carr, C. D., & Moore, S. M. (2003). IHE: A model for driving adoption of standards. Journal of
Computerized Medical Imaging and Graphics, 27, 137–147.

Colajanni, M., & Yu, P. S. (1997). Adaptive TTL schemes for load balancing of distributed web
servers. ACM SIGMETRICS Performance Evaluation Review, 25(2), 36–42.

Eeckhout, L., Georges, A., & De Bosschere, K. (2003). How Java Programs Interact With Virtual
Machines at the Microarchitectural Level. ACM Conference on Object Oriented Programming
Systems Languages and Applications (pp. 169–186). ACM, New York, NY.

Gallagher, J. (2009). Harvard Med Dean Sees Long Road to Electronic Records.
Triangle Business Journal, Retrieved April 23, 2009, from http://triangle.bizjournals.
com/triangle/stories/2009/04/20/daily53.html

Hasselbring, W. (2000). Information system integration. Communications of the ACM, 43(6),
32–38.

Haux, R. (2006). Health information systems – past, present, future. International Journal of
Medical Informatics, 75, 268–281.

Hayes, B. (2008). Cloud computing. Communications of the ACM, 51(7), 9–11.
Hersh, W. R. (2002) Medical informatics improving health care through information. Journal of

American Medical Association, 288(16), 1955–1958.
Holden, E. P., Kang, J. W., Bills, D. P., Ilyassov, M., Holden, E. P., Kang, J. W., Bills, D. P., &

Ilyassov, M. (2009). Databases in the Cloud: A Work in Progress (pp. 138–143). ACM
Conference on Information Technology Education. New York: ACM.

Katehakis, D. G., Sfakianakis, S. G., Kavlentakis, G., Anthoulakis, D. N., Tsiknakis M.
(2007) Delivering a lifelong integrated electronic health record based on a service ori-
ented architecture. IEEE Transactions on Information Technology in Biomedicine, 11(6),
639–650.

Lenz, R., Beyer, M., Kuhn, K. A. (2007). Semantic integration in healthcare networks.
International Journal of Medical Informatics, 7(6), 201–207.

Lu, X., Duan, H., Li, H., Zhao, C., An, J. (2005). The architecture of enterprise hospital information
system. 27th Annual Conference Proceedings of IEEE Engineering in Medicine and Biology,
7, 6957–6960.

McDonald, C. J. (1997) The barriers to electronic medical record systems and how to overcome
them. Journal of the American Medical Informatics Association, 4(3), 213–221.

Saito, Y., & Shapiro, M. (2005). Optimistic replication. Journal of ACM Computing Surveys, 37(1),
42–81.

Spyrou, S. S., Bamidis, P., Chouvarda, I., Gogou, G., Tryfon, S. M., & Maglaveras, N. (2002)
Healthcare information standards: Comparison of the approaches. Health Informatics Journal,
8, 14–19.

Strähle, M., Ehlbeck, M., Prapavat, V., Kück, K., Franz, F., & Meyer, J.-U. (2007).
Towards a service-oriented architecture for interconnecting medical devices and applications
(pp. 153–155). IEEE Workshop on High Confidence Medical Devices, Software, and Systems
and Medical Device Plug-and-Play Interoperability.

Taboada, G. L., Touriño, J., & Doallo R. (2009). Java for high performance computing: assess-
ment of current research and practice (pp. 30–39). ACM Proceedings of the 7th International
Conference on Principles and Practice of Programming in Java, New York, NY.

Wang, W., Wang, M., & Zhu, S. (2005). Healthcare Information System Integration: A Service
Oriented Approach. IEEE International Conference on Services Systems and Services
Management, 2, 1475–1480.

Weber-Jahnke, J. H., Price, M. (2007). Engineering Medical Information Systems: Architecture,
Data and Usability & Security (pp. 188–189). IEEE International Conference on Software
Engineering,.

24 A Cloud Computing Based Patient Centric Medical Information System 573

Young, A. S., Mintz, J., Cohen, A. N., Chiman, M. J. (2004). Network-based system to improve
care for schizophrenia: The Medical Informatics Network Tool (MINT). Journal of American
Medical Informatics, 11(5), 358–367

Zegura, E. W., Ammar, M. H., Fei, Z., Bhattacharjee, S. (2000). Application-Layer Anycasting:
A Server Selection Architecture and Use in a Replicated Web Service. IEEE/ACM Transactions
on Networking, 8(4), 455–466.

Chapter 25
Cloud@Home: A New Enhanced Computing
Paradigm

Salvatore Distefano, Vincenzo D. Cunsolo, Antonio Puliafito,
and Marco Scarpa

25.1 Introduction

Cloud computing is a distributed computing paradigm that mixes aspects of Grid
computing, (“. . . hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational capabili-
ties” (Foster, 2002)) Internet Computing (“. . .a computing platform geographically
distributed across the Internet” (Milenkovic et al., 2003)), Utility computing (“a
collection of technologies and business practices that enables computing to be deliv-
ered seamlessly and reliably across multiple computers, ... available as needed
and billed according to usage, much like water and electricity are today” (Ross
& Westerman, 2004)) Autonomic computing (“computing systems that can man-
age themselves given high-level objectives from administrators” (Kephart & Chess,
2003)), Edge computing (“. . . provides a generic template facility for any type of
application to spread its execution across a dedicated grid, balancing the load . . .”
Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical com-
puting1 starting from the assumption that in next future energy costs will be related
to the environment pollution).

The development and the success of Cloud computing is due to the maturity
reached by both hardware and software, in particular referring to virtualization
and Web technologies. These factors made realistic the L. Kleinrock outlook of
computing as the 5th utility (Kleinrock, 2005), like gas, water, electricity and
telephone.

Cloud computing is derived from the service-centric perspective that is quickly
and widely spreading on the IT world. From this perspective, all capabilities and

S. Distefano (B), V.D. Cunsolo, A. Puliafito, and M. Scarpa
University of Messina, Contrada di Dio, S. Agata, Messina, Italy
e-mails: {sdistefano; vdcunsolo; apuliafito; mscarpa}@unime.it
1Ethical computing puts into practice the principles of computer ethics. Computer ethics is a branch
of practical philosophy which deals with how computing professionals should make decisions
regarding professional and social conduct. Computer ethics is a very important topic in computer
applications, whose interests are quickly rising in the last period due to the increase of raw materials
and basic commodities prices.

575B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_25, C© Springer Science+Business Media, LLC 2010

576 S. Distefano et al.

resources of a Cloud (usually geographically distributed) are provided to users as
a service, to be accessed through the Internet without any specific knowledge of,
expertise with, or control over the underlying technology infrastructure that supports
them.

Cloud computing is strictly related to service oriented science (Foster, 2005),
service computing (Zhang, 2008) and IT as a service (ITAAS) (Foster & Tuecke,
2005), a generic term that includes: platform AAS, software AAS, infrastructure
AAS, data AAS , security AAS, business process management AAS and so on. It
offers a user-centric interface that acts as a unique, user friendly, point of access for
users’ needs and requirements.

Moreover, Cloud computing provides on-demand service provision, QoS guar-
anteed offer, and autonomous system for managing hardware, software and data
transparently to users (Wang et al., 2008).

In order to achieve such goals it is necessary to implement a level of abstrac-
tion of physical resources, uniforming their interfaces and providing means for their
management, adaptively to user requirements. This is done through virtualizations,
service mashups (Web 2.0) and service oriented architectures (SOA).

Virtualization allows to execute a software version of a hardware machine into a
host system, in an isolated way. It “homogenizes” resources: problems of compat-
ibility are overcome by providing heterogeneous hosts of a distributed computing
environment (the Cloud) with the same virtual machine. The software implementing
virtualization is named hypervisor.2

The Web 2.03 provides an interesting way to interface Cloud services, imple-
menting service mashup. It is mainly based on an evolution of JavaScript with
improved language constructs (late binding, clousers, lambda functions, etc) and
AJAX interactions.

The Service Oriented Architecture (SOA) is a paradigm for organizing and uti-
lizing distributed capabilities that may be under the control of different ownership
domains (MacKenzie et al., 2006). In SOA, services are the mechanism by which
needs and capabilities are brought together. SOA defines standard interfaces and
protocols that allow developers to encapsulate information tools as services that
clients can access without knowledge of, or control over, their internal workings
(Foster, 2005).

As pictorially described in Fig. 25.14 a great interest on Cloud computing
has been manifested from both academic and private research centers,
and numerous projects from industry and academia have been proposed.
In commercial contexts, among the others we highlight: Amazon Elastic
Compute Cloud (http://aws.amazon.com/ec2), IBM’s Blue Cloud (http://www-
03.ibm.com/press/us/en/pressrelease/22613.wss/), Sun Microsystems Network.com

2According to the ties between the host and the guest OS, two kinds of virtualization techniques are
available [19]: full-virtualization (completely decoupled OS such as QEMU, VirtualBox, VMWare,
etc) and para-virtualization (guest OS partially depends on host OS such as XEN).
3http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
4http://peterlaird.blogspot.com/2008/09/visual-map-of-cloud-computingsaaspaas.html

25 Cloud@Home 577

Fig. 25.1 Cloud computing taxonomy

(http://www.network.com), Microsoft Azure Services Platform (http://www.
microsoft.com/azure/default.mspx), Dell Cloud computing solutions (http://www.
dell.com/cloudcomputing). There are also several scientific activities, such as:
Reservoir (http://www-03.ibm.com/press/us/en/pressrelease/23448.wss/), Nimbus-
Stratus-Wispy-Kupa5 and OpenNEbula (http://www.opennebula.org/). All of them

5Respectively: http://workspace.globus.org/clouds/nimbus.html/, http://www.acis.ufl.edu/vws/,
http://www.rcac.purdue.edu/teragrid/resources/#wispy, http://meta.cesnet.cz/cms/opencms/en/docs/
clouds

578 S. Distefano et al.

support and provide an on-demand computing paradigm, in the sense that a user
submits his/her requests to the Cloud that remotely, in a distributed fashion, pro-
cesses them and gives back the results. This client-server model well fits aims and
scopes of commercial Clouds: the business. But, on the other hand, it represents a
restriction for scientific Clouds, that have a view closer to Volunteer computing.

Volunteer computing (also called Peer-to-Peer computing, Global computing or
Public computing) uses computers volunteered by their owners, as a source of com-
puting power and storage to provide distributed scientific computing (Anderson &
Fedak, 2006).

It is behind the “@home”6 philosophy of sharing/donating network connected
resources for supporting distributed scientific computing.

We believe the Cloud computing paradigm is applicable also at lower scales,
from the single contributing user, that shares his/her desktop, to research groups,
public administrations, social communities, small and medium enterprises, which
make available their distributed computing resources to the Cloud. Both free sharing
and pay-per-use models can be easily adopted in such scenarios.

From the utility point of view, the rise of the “techno-utility complex” and the
corresponding increase of computing resources demand, in some cases growing dra-
matically faster than Moore’s Law as predicted by the Sun CTO Greg Papadopoulos
in the red shift theory for IT (Martin, 2007) could bring, in a close future, towards
an oligarchy, a lobby or a trust of few big companies controlling the whole comput-
ing resources market. In this sense: “vested economic and political interests could
conspire together to build huge technology-based utility industries that preserve and
reinforce their power bases”.7

To avoid such pessimistic but achievable scenario, we suggest to address the
problem in a different way: instead of building costly private data centers, that
the Google CEO Eric Schmidt likes to compare to the prohibitively expensive
cyclotrons (Baker, 2008), we propose a more “democratic” form of Cloud com-
puting, in which the computing resources of single users accessing the Cloud can
be shared with the others, in order to contribute to the elaboration of complex
problems.

Since this paradigm is very similar to the Volunteer computing one, it can be
named Cloud@Home. Both hardware and software compatibility limitations and

6Examples of projects on the topic are: SETI@home (Search for Extra-Terrestrial
Intelligence http://setiathome.berkeley.edu/) - looks for radio evidence of extrater-
restrial life; FOLDING@home (http://folding.stanford.edu/) Predictor@home
(http://predictor.chem.lsa.umich.edu/) - investigate protein-related diseases; Einstein@home
(http://einstein.phys.uwm.edu/) - looks for gravitational signals coming from pulsars; LHC@home
(http://lhcathome.cern.ch/) - improves the design of LHC particles accelerator; AQUA@home
(http://aqua.dwavesys.com/) - predicts the performance of superconducting adiabatic quantum
computers on a variety of hard problems.
7http://www.roughtype.com/archives/2007/12/the_technoutili.php

25 Cloud@Home 579

restrictions of Volunteer computing can be solved in Cloud computing environ-
ments, allowing to share both hardware and software resources or services.

The Cloud@Home paradigm could be also applied to commercial Clouds, estab-
lishing an open computing-utility market where users can both buy and sell their
services. Since the computing power can be described by a “long-tailed” distribu-
tion, in which a high-amplitude population (Cloud providers and commercial data
centers) is followed by a low-amplitude population (small data centers and private
users) which gradually “tails off” asymptotically, Cloud@Home can catch the Long
Tail effect (Anderson, 2006), providing similar or higher computing capabilities
than commercial providers’ data centers, by grouping small computing resources
from many single contributors.

25.2 Why Cloud@Home?

The necessity of such a new computing paradigm is strictly related to the lim-
its of existing Cloud solutions. For years the Grid computing paradigm has been
considered as the solution for all the computing problems: a secure, reliable, per-
forming platform for safely managing geographically distributed resources. But
the Grid computing has some drawbacks: it is sensitive to hardware or software
differences or incompatibility; it is not possible to dynamically extend a Virtual
Organization by on-line enrolling resources, and consequently is not possible to
share local resources, if they are not initially enrolled in the VO; it often does
not face QoS and billing problems; it mainly implements data parallelism against
task parallelism, making difficult the composition of services; a user needs to have
knowledge of both the distributed system and the application requirements in order
to submit and manage jobs.

These lacks have been partially faced and solved in Utility and Cloud computing,
implementing service oriented paradigms with higher level user friendly interfaces.
Utility and Cloud implement on-demand computing paradigms: users commission
their computing, pay and get the results. Since they are mainly thought for commer-
cial applications, QoS and business policies have to be carefully addressed. Utility
and Cloud computing lack of an open, free viewpoint: as in the Grid computing, it
is not possible to enroll resources or services, as also to build custom data centers
by dynamically aggregating resources and services not conceived with this purpose.

Moreover, each Cloud has its own interface and services, therefore it cannot
communicate or interoperate with the other Clouds. Another important issue is the
customizability, i.e. the capability of expressing a custom application by means of
services.

On the other hand the Volunteer computing paradigm is born for supporting the
philosophy of open computing. It implements an open distributed environment in
which resources (not services as in the Cloud) can be shared. But it manifests the
same problem of Grid with regard to the compatibility among resources. Moreover,
due to its purpose, it also does not implement any QoS and billing policy.

580 S. Distefano et al.

25.2.1 Aims and Goals

Ian Foster summarizes the computing paradigm of the future as follows8: “. . . we
will need to support on-demand provisioning and configuration of integrated ‘virtual
systems’ providing the precise capabilities needed by an end-user. We will need to
define protocols that allow users and service providers to discover and hand off
demands to other providers, to monitor and manage their reservations, and arrange
payment. We will need tools for managing both the underlying resources and the
resulting distributed computations. We will need the centralized scale of today’s
Cloud utilities, and the distribution and interoperability of today’s Grid facilities.”

We share all these requirements, but in a slightly different perspective: we
want to actively involve users into such a new form of computing, allowing to
create their own interoperable Clouds. In other words, we believe that it is possi-
ble to export, apply and adapt the “@home” philosophy to the Cloud computing
paradigm. By merging Volunteer and Cloud computing, a new paradigm is created:
Cloud@Home. This new computing paradigm gives back the power and the control
to users, who can decide how to manage their resources/services in a global, geo-
graphically distributed context. They can voluntarily sustain scientific projects by
voluntarily providing their resources to scientific research centres for free, or they
can earn money by selling their resources to Cloud computing providers in a pay
per use/share context.

In this way, the focus is moved from Cloud providers to users: Cloud@Home can
be a Cloud computing framework that take as main goal user’s needs. Thus, in such
perspective, both the commercial/business and the volunteer/scientific viewpoints
coexist: in the former case the end-user orientation of Cloud is extended to a collab-
orative two-way Cloud in which users can buy and/or sell their resources/services; in
the latter case, the Grid philosophy of few but large computing requests is extended
and enhanced to open Virtual Organizations. In both cases QoS requirements could
be specified, introducing in the Grid and Volunteer philosophy (best effort) the
concept of quality.

Cloud@Home can be also considered as a generalization and a maturation of the
@home philosophy: a context in which users voluntarily share their resources with-
out any compatibility problem. This allows to knock down both hardware (processor
bits, endianness, architecture, network) and software (operating systems, libraries,
compilers, applications, middlewares) barriers of Grid and Volunteer computing.
Moreover, in Cloud@Home the term resources must be interpreted in the more gen-
eral Cloud sense of services. This means that Cloud@Home allows users to share
not only physical resources, as in @home projects or in Grid environments, but any
kind of service. The flexibility and the extendibility of Cloud@Home could allow
to easily arrange, manage and make available (for free or paying) significant com-
puting resources (greater than in Clouds, Grids and/or @home environments) to
everyone that owns a computer.

8http://ianfoster.typepad.com/blog/2008/01/theres-grid-in.html

25 Cloud@Home 581

From the other hand, Cloud@Home can be considered as the enhancement of the
Grid-Utility vision of Cloud computing. In this new paradigm, users’ hosts are not
passive interfaces to Cloud services, but they can be actively involved in computing.
Single nodes and services can be enrolled by the Cloud@Home middleware, in
order to build own-private Cloud infrastructures that can (for free or paying) interact
with other Clouds. This allows to customize Cloud applications with own special
purpose services.

The Cloud@Home motto is: heterogeneous hardware for homogeneous Clouds.
Thus, the scenario we prefigure is composed of several coexisting and interopera-
ble Clouds, as pictorially depicted in Fig. 25.2. Open Clouds (yellow) identify open
VO operating for free Volunteer computing; Commercial Clouds (blue) characterize
entities or companies selling their computing resources for business; Hybrid Clouds
(green) can both sell or give for free their services. Both Open and Hybrid Clouds
can interoperate with any other Clouds, also Commercial, while these latter can
interoperate each other if and only if the Commercial Clouds are mutually recog-
nized. In this way it is possible to make federations of Clouds working together on
the same project.

Commercial
Cloud

Open Cloud

Hybrid Cloud

Amazon EC2

IBM Blue
Cloud

Hybrid Cloud

Scientific
Cloud Open Cloud

Academic
Cloud

Microsoft
Azure S.P.

Sun
Network.com

Fig. 25.2 Cloud@Home scenario

This can give to users the possibility to choose the best provider that matches
their requirements. In such flexible context, Cloud providers can establish business
relationships, agreements and strategies to achieve the best market performance,
reducing costs and maximizing revenues.

The overall infrastructure must deal with the high dynamism of its
nodes/resources, allowing to move and reallocate data, tasks and jobs. It is therefore
necessary to implement a lightweight middleware, specifically designed to optimize
migrations. The choice of developing such middleware on existing technologies
(as done in Nimbus-Stratus starting from Globus) could be limitative, inefficient
or not adequate from this point of view. This represents another significant point
in favor of Could@home against Grid: a lightweight middleware allows to involve

582 S. Distefano et al.

limited resources’ devices into the Cloud, implementing some specific (light) ser-
vices. Moreover, the Cloud@Home middleware does not influence the code writing
as Grid and Volunteer computing paradigms do.

Another important goal of Cloud@Home is the security. Volunteer computing
has some lacks in security concerns, while the Grid paradigm implements com-
plex security mechanisms. The virtualization in Clouds implements the isolation of
the services, but does not provide any protection from local access. With regards
security, the specific goal of Cloud@Home is to extend the security mechanisms of
Clouds to the protection of data from local access. Since Cloud@Home is composed
of an amount of resources potentially larger than commercial or proprietary Cloud
solutions, its reliability can be compared to the Grid or the Volunteer computing
one, and it should be greater than other Clouds.

Last but not least, interoperability is one of the most important goal of
Cloud@Home. This is an open problem in Grid, Volunteer and Cloud computing
that we want to adequately face in Cloud@Home. In Grid environment interoper-
ability is a very tough issue, many people tried to address it for many years and still
we are far away to solve the problem. Interoperability in Cloud contexts is easier,
since virtualization avoids the major architectural, physical, hardware and software
problems.

New standards and interfaces enabling enhanced portability and flexibility of vir-
tualized applications have to be implemented. Up to now, significant discussion has
occurred around open standards for Cloud computing. In this context, the “Open
Cloud Manifesto” (www.opencloudmanifesto.org) provides a minimal set of princi-
ples that will form a basis for initial agreements as the Cloud community develops
standards for this new computing paradigm. Moreover, problems of compatibility
among different virtual machines (VM) monitors can arise and therefore must be
adequately faced, as the Open Virtualization Format (OVF) group is trying to do.

25.2.2 Application Scenarios

Several possible application scenarios can be imagined for Cloud@Home:

• Scientific research centers, communities – the Volunteer computing inspiration
of Cloud@Home provides means for the creation of open, interoperable Clouds
for supporting scientific purposes, overcoming the portability and compatibil-
ity problems highlighted by the @home projects. Similar benefits could be
experienced in public administrations and open communities (social network,
peer-to-peer, cloud gaming, etc). Through Cloud@Home it could be possible
to implement resources and services management policies with QoS require-
ments (characterizing the scientific project importance) and specifications (QoS
classification of resources and services available). A new deal for Volunteer com-
puting that does not take into consideration such aspect, following a best effort
approach.

25 Cloud@Home 583

• Enterprises - planting a Cloud@Home computing infrastructure in busi-
ness/commercial locations can bring considerable benefits, especially in small
and medium but also in big enterprises. It could be possible to implement own
data center with local, existing, off the shelf, resources: usually in any enterprise
there exist a capital of stand-alone computing resources for office automation,
monitoring, designing and so on. Since such resources are only (partially) used
in office hours, by Internet connecting them altogether it becomes possible to
build up a Cloud@Home data center, in which allocate the shared services (web
server, file server, archive, database, etc) without compatibility constraints or
problems. The interoperability among Clouds allows to buy computing resources
from commercial Cloud providers if needed or, otherwise, to sell the local Cloud
computing resources to the same providers. This allows to reduce and optimize
business costs according to QoS/SLA policies, improving performances and reli-
ability. For example, this paradigm allows to deal with the flow peaks economy:
data centers could be sized for the medium case, and worst cases (peaks) could
be managed by buying computing resources from Cloud providers. Moreover,
Cloud@Home drives towards a resources rationalization: all the business pro-
cesses can be securely managed by web, allocating resources and services where
needed. In particular this fact can improve marketing and trading (E-commerce),
making available to sellers and customers a lot of customizable services. The
interoperability could also point out another scenario, in which private companies
buy computing resources in order to resell them.

• Ad-hoc networks, wireless sensor networks, home automation - the Cloud com-
puting approach, where both the software and the computing resources are owned
and managed by the service providers, eases the programmers’ efforts in facing
the device heterogeneity and prevents application downloads. Mobile applica-
tion designers should start to consider that their applications, besides to be
usable on a small device, will need to interact with the Cloud. Service discov-
ery, brokering, and reliability are important, and services are usually designed
to interoperate (The Programmable Web. http://www.programmableweb.com). In
order to consider the arising consequences related to the access of mobile users to
service-oriented grid architecture, researchers have proposed new concepts such
as the one of a mobile dynamic virtual organization (Waldburger & Stiller, 2006).
New distributed infrastructures have been designed to facilitate the extension of
Clouds to the wireless edge of the Internet. Among them, the Mobile Service
Clouds enables dynamic instantiation, composition, configuration, and reconfig-
uration of services on an overlay network to support mobile computing (Samimi,
McKinley, & Sadjadi, 2006).

A still open research issue is whether or not a mobile device should be considered
as a service provider of the Cloud itself. The use of modern mobile terminals such
as smart-phones not just as Web Service requestors, but also as mobile hosts that
can themselves offer services in a true mobile peer-to-peer setting is discussed in
(Srirama, Jarke, & Prinz, 2006). Context aware operations involving control and
monitoring, data sharing, synchronization, etc, could be implemented and exposed

584 S. Distefano et al.

as Cloud@Home Web services involving wireless and Bluetooth devices, laptop,
Ipod, cellphone, household appliances, and so on. Cloud@Home could be a way for
implementing Ubiquitous and Pervasive computing: many computational devices
and systems can be engaged simultaneously for performing ordinary activities, and
may not necessarily be aware that they are doing so.

25.3 Cloud@Home Overview

Our basic idea is to reuse “domestic” computing resources to build voluntary
contributors’ Clouds. With Cloud@Home, anyone can experience the power of
Cloud computing, both actively providing his/her own resources and services, and
passively submitting his/her applications.

25.3.1 Issues, Challenges and Open Problems

In order to implement such a form of computing the following issues should be
taken into consideration:

• Resources and Services management – a mechanism for managing resources and
services offered by Clouds is mandatory. This must be able to enroll, discov-
ery, index, assign and reassign, monitor and coordinate resources and services.
A problem to face at this level is the compatibility among resources and services
and their portability.

• Frontend – abstraction is needed in order to provide users with a high level
service oriented point of view of the computing system. The frontend pro-
vides a unique, uniform access point to the Cloud. It must allow users to
submit functional computing requests only providing requirements and spec-
ifications, without any knowledge of the system resources deployment. The
system evaluates such requirements and specifications and translates them into
physical resources’ demand, deploying the elaboration process. Another aspect
concerning the frontend is the capability of customizing Cloud services and
applications.

• Security – effective mechanisms are required to provide: authentication,
resources and data protection, data confidentiality and integrity.

• Resource and service accessibility, reliability and data consistency – it is nec-
essary to implement redundancy of resources and services, and hosts’ recovery
policies since users voluntarily contribute to the computing, and therefore they
can asynchronously, at any time, log out or disconnect from the Cloud.

• Interoperability among Clouds – it should be possible for Clouds to interoperate
each other.

• Business models – for selling Cloud computing it is mandatory to provide
QoS and SLA management for both commercial and open volunteer Clouds
(traditionally best effort), in order to discriminate among the applications to
be run.

25 Cloud@Home 585

25.3.2 Basic Architecture

In order to accomplish the introduced issues, we recur to virtualization. This
technology provides solution to the problem of incompatibility among resources,
implements an adequate level of abstraction and guarantees the isolation of services
and resources, i.e. the security protection.

A possible Cloud@Home architecture is shown in Fig. 25.3, identifying three
hierarchical layers: frontend, virtual and physical.

Physical Layer

Frontend Layer

Contributing HostContributing HostContributing Host

Virtual Layer

VM VM

Hypervisor

VM VM

Hypervisor

VM VM

Hypervisor

Frontend Layer

C@H FSC@H FSC@H FS Torrent Torrent

Cloud@Home Storage

Secure Channel

Web 2.0
Frontend

Client
Low level

Web REST/
SOAP

PKI

Consumer Host

C@H
Remote

Disk

C@H
VM

Fig. 25.3 Basic architecture of Cloud@Home

According to this point of view the Cloud is composed of several contributing
hosts that share their resources. A user can interact with the Cloud through the
consumer host after authenticating him/herself into the system. The main enhance-
ment of Cloud@Home is that a host can be at the same time both contributing and
consumer host, establishing a symbiotic mutual interaction with the Cloud.

25.3.3 Frontend Layer

The Cloud@Home frontend layer is responsible for the resources and services
management (enrolling, discovery, allocation, coordination, monitoring, schedul-
ing, etc.) from the global Cloud system’s perspective. The frontend layer provides
tools for translating end-user requirements into physical resources’ demand, also
considering QoS/SLA constraints, if specified by the user. Moreover, in commercial
Clouds, it must be able to negotiate the QoS policy to be applied (SLA), there-
fore monitoring for its fulfillment and, in case of unsatisfactory results, adapting the
computing workflow to such QoS requirements.

If the available Cloud’s resources and services can not satisfy the require-
ments, the frontend layer provides mechanisms for requesting further resources
and services to other Clouds, both open and/or commercial. In other words, the
Cloud@Home frontend layer implements the interoperability among Clouds, also

586 S. Distefano et al.

checking for services’ reliability and availability. In order to improve reliability and
availability of services and resources, especially if QoS policies and constraints have
been specified, it is necessary introduce redundancy.

The frontend layer is split into two parts, as shown in Fig. 25.3: the server
side, implementing the resources management and related problems, and the light
client side, only providing mechanisms and tools for authenticating, accessing and
interacting with the Cloud.

In a widely distributed system, globally spread around the world, the knowl-
edge of resources’ accesses and uses assumes great importance. To access and
use the Cloud services a user first authenticates him/herself and then specifies
whether he/she wants to make available his/her resources and services for sharing,
or he/she only uses the Cloud resources for computing. The frontend layer provides
means, tools and policies for managing users. The best mechanism to achieve secure
authentications is the Public Keys Infrastructure (PKI) (Tuecke, Welch, Engert,
Pearlman, & Thompson, 2004), better if combined with smartcard devices that,
through a trusted certification authority, ensure the user identification.

Referring to Fig. 25.3, three alternative solutions can be offered by the fron-
tend layer for accessing a Cloud: (a) Cloud@Home frontend client, (b) Web 2.0
user interface and (c) low level Web interface (directly specifying REST or SOAP
queries). These also provide mechanisms for customizing user applications by
composing services (service mashup and SOA) and submitting own services.

25.3.4 Virtual Layer

The virtualization of physical resources offers end-users a homogeneous view of
Cloud’s services and resources. Two basic services are provided by the virtual
layer to the frontend layer and, consequently, to the end-user: execution and storage
services.

The execution service is the tool provided by the virtual layer for creat-
ing and managing virtual machines. A user, sharing his/her resources within a
Cloud@Home, allows the other users of the Cloud to execute and manage virtual
machines locally at his/her node, according to policies and constraints negotiated
and monitored at the frontend layer. In this way, a Cloud of virtual machine’s execu-
tors is established, where virtual machines can migrate or can be replicated in order
to achieve reliability, availability and QoS targets. As shown in Fig. 25.3, from the
end-user point of view an execution Cloud is seen as a set of virtual machines avail-
able and ready-to-use. The virtual machines’ isolation implements protection and
therefore security. This security is ensured by the hypervisor that runs the virtual
machine’s code in an isolated scope, similarly to a sandbox, without affecting the
local host environment.

The storage service implements a storage system distributed across the storage
hardware resources composing the Cloud, highly independent of them since data
and files are replicated according to QoS policies and requirements to be satisfied.

25 Cloud@Home 587

From the end-user point of view, a storage Cloud appears as a locally mounted
remote disk, similarly to a Network File System or a Network Storage. The tools,
libraries and API for interfacing end-user and storage Clouds are provided to user
by the frontend client, but are implemented at virtual and physical layers.

In a distributed environment where any users can host part of private data, it
is necessary to protect such data from unauthorized accesses (data security). A
way to obtain data confidentiality and integrity could be the cryptography, as better
explained in the physical layer description.

25.3.5 Physical Layer

The physical layer is composed of a “cloud” of generic nodes and/or devices
geographically distributed across the Internet. They provide to the upper virtual
layer both physical resources for implementing execution and storage services and
mechanisms and tools for locally managing such resources.

Cloud@Home negotiates with users that want to join a Cloud about his/her
contribution. This mechanism involves the physical layer that provides tools for
reserving physical execution and/or storage resources for the Cloud, and monitors
these resources, such that constraints, requirements and policies thus specified are
not violated. This ensures reliability and availability of physical resources, avoiding
to overload the local system and therefore reducing the risk of crashes.

To implement the execution service in a generic device or to enroll it into an
execution Cloud, the device must have a hypervisor ready to allocate and run virtual
machines, as shown in Fig. 25.3. If a storage service is installed into the device, a
portion of the local storage system must be dedicated for hosting the Cloud data.
In such cases, the Cloud@Home file system is installed into the devices’ shared
storage space.

At physical layer it is necessary to implement data security (integrity and con-
fidentiality) also ensuring that stored data cannot be accessed by who physically
hosts them. We propose an approach that combines the inviolability of the Public
Key Infrastructure asymmetric cryptography and the speed of the symmetric cryp-
tography. Data are firstly encrypted by the symmetric key, and then stored into the
selected host with the symmetric key encrypted by the user private key. This ensures
that only authorized users can decrypt the symmetric key and consequently can
access data.

SSH, TLS, IPSEC and other similar transmission protocols could be used to man-
age the connection among nodes. However, since the data stored in a Cloud@Home
storage are encrypted, it is not necessary to use a secure channel for data transfers,
more performant protocol, such as BitTorrent9, can be used. The secure channel is
required for sending and receiving non-encrypted messages and data to/from remote
hosts.

9http://www.bittorrent.org/beps/bep_0003.html

588 S. Distefano et al.

Once the functional architecture of Cloud@Home has been introduced, it is
necessary to characterize the blocks implementing the functions thus identified.
These blocks have been depicted in the layered model of Fig. 25.4, that reports the
core structure of the overall system implementing the Cloud@Home server-side,
subdivided into management and resource subsystems.

F
ro

nt
en

d
V

irt
ua

l
P

hy
si

ca
l

Storage CloudExecution Cloud

Resources Engine

VM Scheduler

VM
Provider

Resource
Monitor

HyperVisor

OS

Chunk
Provider

Policy Manager

User Frontend

M
an

ag
em

en
t

S
u

b
sy

st
em

Storage
Master

R
es

o
u

rc
e

S
u

b
sy

st
em

Cloud Broker

Fig. 25.4 Cloud@home core structure organization

25.3.6 Management Subsystem

In order to enroll and manage the distributed resources and services of a Cloud, pro-
viding a unique point of access them, it is necessary to adopt a centralized approach
that is implemented by the management subsystem. It is composed of four parts: the
user frontend (UF), the Cloud broker, the resource engine and the policy manager.

The user frontend provides tools for Cloud@Home-User interactions. It collects
and manages the users’ requests issued by different types of clients (frontend client,
Web 2.0 and low level SOAP/REST Web interface). All such requests are transferred
to the blocks composing the underlying layer (resource engine, Cloud broker and
policy manager) for processing.

The Cloud broker collects and manages information about the available Clouds
and the services they provide (both functional and non-functional parameters, such

25 Cloud@Home 589

as QoS, costs, reliability, request formats’ specifications for Cloud@Home-foreign
Clouds translations, etc).

The policy manager provides and implements the Cloud’s access facilities. This
task falls into the security scope of identification, authentication and permission
management. To achieve this target, the policy manager uses an infrastructure based
on PKI, smartcard devices and Certification Authority. The policy manager also
manages the information about users’ QoS policies and requirements.

The resource engine is the hearth of Cloud@Home. It is responsible for the
resources’ management, the equivalent of a Grid resource broker in a broader Cloud
environment. To meet this goal, the resource engine applies a hierarchical policy.
It operates at higher level, in a centralized way, indexing all the resources of the
Cloud. Incoming requests are delegated to VM schedulers or storage masters that,
in a distributed fashion, manage the computing or storage resources respectively,
coordinated by the resource engine.

In order to manage QoS policies and to perform the resources discovery,
the resource engine collaborates with both Cloud broker and policy manager, as
depicted in Fig. 25.5 showing the step-by-step interactions among such blocks. After
authenticating into the system (steps 1 and 2), an end-user specifies his/her require-
ments (step 3), saved by the policy manager (step 4). Then, a negotiation between
the two parties is triggered (step 5), iteratively interacting with the end-user till an
agreement is met (SLA). This task is split into two parallel subtasks: the former
(step 5a), performed by the policy manager under the supervision of the resource
engine, estimates and evaluates the QoS requirements of the request; the latter (step
5b), performed by the resource engine, discovers resources and services to be used.
Both subtasks can require the collaboration of the Cloud broker, that looks for other
Clouds able to provide resources and services to satisfy SLA/QoS requirements.

Figure 25.6 shows the interaction between a contributing user, that wants to pro-
vide his/her resources to a Cloud, and the Cloud@Home management system. A
user, authenticated by the Cloud’s policy manager (steps 1 and 2), sends a request

Cloud@Home

End-User

Policy
Manager

5b. Inter-Clouds
Resource Discovery

4. QoS ReqsC@H UF
1. User Authentication

3. Reqs/SLA

End-User
Host

2. Authenticate
User

Cloud
Broker

Resource
Engine

5a. SLA

5. SLA

5a. SLA

VM Scheduler/
Storage Master

VM Scheduler/
Storage Master

VM/Chunk
Provider

VM/Chunk
Provider

VM/Chunk
Provider

5b. Resource Discovery

Fig. 25.5 Cloud@Home end-user negotiation

590 S. Distefano et al.

Cloud@Home

Contributing
User Policy

Manager

5. Find/Create
VM Scheduler/
Storage Master

4a. Resource Registration
C@H UF

1. User Authentication

VM Scheduler/
Storage Master

3. Registration
Request

2. Authenticate
User

8.Associate Resource

Resource
Engine

Contributing
User Host 7. Ack

4b. Resource
Contribution

Policies

6. Resource
 Policies

Fig. 25.6 Cloud@Home resource setup

for registering resources and services to the user frontend (step 3), also specifying
policies for using them. It sorts the request at the resource engine (step 4a), and con-
straints and policies at the policy manager (step 4b). After that, the resource engine
searches for a VM scheduler or a storage master to which such resources/services
have to be assigned (step 5), collaborating with the policy manager. It can also cre-
ate a new VM scheduler/storage master if the search results obtained do not satisfy
the requirements.

Once the scheduler/master is identified the policy manager contacts it for
exchanging policies and specifications of the resources. Then the resource engine
sends the acknowledgement and the scheduler/master reference to the contributing
host (step 7), that signals its availability and actual status (step 8).

25.3.7 Resource Subsystem

The resource subsystem contains all the blocks implementing the local and dis-
tributed management functionalities of Cloud@Home. This subsystem can be
logically split into two parts offering different services over the same resources: the
execution Cloud and the storage Cloud. The management subsystem merges them
providing a unique Cloud that can offer both execution and/or storage services.

The execution Cloud provides tools for managing virtual machines according
to users’ requests and requirements coming from the management subsystem. It
is composed of four blocks: VM scheduler, VM provider, resource monitor and
hypervisor.

The VM Scheduler is a peripheral resource broker of the Cloud@Home infras-
tructure, to which the resource engine delegates the management of comput-
ing/execution resources and services of the Cloud. It establishes which, what, where

25 Cloud@Home 591

and when allocate a VM, moreover it is responsible for moving and managing VM
services.

From the end-user point of view a VM is allocated somewhere on the Cloud,
therefore its migration is transparent for the end-user that is not aware of any VM
migration mechanism. The association between resources and scheduler is made
locally, as shown in Fig. 25.6. Since a scheduler can become a bottleneck if the sys-
tem grows, to avoid the congestion further decentralized and distributed scheduling
algorithms can be implemented. Possible strategies and tricks for facing the problem
are:

• implementing a hierarchy of schedulers with geographic characterization (local,
zone, area, region, etc);

• replicating schedulers, which can communicate each other for synchronization;
• autonomic scheduling.

The VM provider, the resource monitor and the hypervisor are responsible for
managing a VM locally to a physical resource. A VM provider exports func-
tions for allocating, managing, migrating and destroying a virtual machine on the
corresponding host.

The resource monitor allows to take under control the local computing resources,
according to requirements and constraints negotiated in the setup phase with the
contributing user. If during a virtual machine execution the local resources crash or
become insufficient to keep running the virtual machine, the resource monitor asks
the scheduler to migrate the VM elsewhere.

Figure 25.7 depicts the process of requesting and allocating computing resources
in Cloud@Home environments. The overall process is coordinated by the resource
engine that estimates requests and requirements submitted by the end-user (steps 0,1
and 2), previously authenticated, and therefore evaluates and selects proper sched-
ulers (step 3). Each of such schedulers, in its turn, allocates the physical resources

Cloud@Home

Host

VM
Scheduler

End-User

Policy
Manager

Resource
Engine

VM
Provider

Cloud
Broker

3. Find VM Scheduler

2. VM RequestC@H UF

1. Computing Resources
Request

4. Resource
Allocations

VM

7. Direct Interactions
VM

Scheduler

VM
Scheduler

UF Client

0. Request
Computing

RM HV

Host

VM
Provider

VMVM

Host

VM
Provider

VM

Host

VM
Provider

VM
Scheduler

5. VM Provider
Entries

6. VM Entries

Fig. 25.7 User computing request processing

592 S. Distefano et al.

that will host the VM (step 4). The access points of such resources are then fed back
to the end-user (steps 5 and 6), and consequently the two parties get connected and
can directly interact (step 7).

In order to implement the storage Cloud, we specify the Cloud@Home file system
(FS), adopting an approach similar to the Google FS one (Ghemawat, Gobioff, &
Leung, 2003). The Cloud@Home FS splits data and files into chunks of fixed or
variable size, depending on the storage resource available. The architecture of such
file system is hierarchical: data chunks are physically stored on chunk providers and
corresponding storage masters index the chunks through specific file indexes (FI).

The storage master is the directory server, indexing the data stored in the asso-
ciated chunk providers, It directly interfaces with the resource engine to discover
the resources storing data. In this context the resource engine can be considered as
the directory server indexing all the storage masters. To improve the storage Cloud
reliability, storage masters must be replicated. Moreover, a chunk provider can be
associated to more than one storage master.

In order to avoid a storage master becoming a bottleneck, once the chunk
providers have been located, data transfers are implemented by directly connect-
ing end-users and chunk providers. Similar techniques to the ones discussed about
VM schedulers can be applied to storage masters for improving performance and
reliability of the storage Clouds.

Chunk providers physically store the data, that, as introduced above, are
encrypted in order to achieve the confidentiality goal.

Data reliability can be improved by replicating data chunks and chunk providers,
consequently updating the corresponding storage masters. In this way, a corrupted
data chunk can be automatically recovered and restored through the storage masters,
without involving the end-user.

Similarly to the execution Cloud, the storage Cloud can be implemented as shown
in Fig. 25.8: an end-user data I/O request to the Cloud (steps 0 and 1) is delivered
to the resource engine (step 2), that locates the storage masters managing the chunk

Cloud@Home

Storage
Master

End-User

Policy
Manager

Resource
Engine

Chunk
Provider

Cloud
Broker

3. Find Storage Master

7. Data Transfers

2. Data I/O RequestC@H UF

1. Remote Disk I/O
5. Retrieve Data Index

8. Update Indexes

C@H
FS

Chunk
Provider

Chunk
Provider

C@H
FS FI

UF Client

0. Data I/O

Storage
Master

4. CP
Entries

6. Data
Index

Storage
Master Host

Host

Host

Chunk
Provider

Host

Fig. 25.8 User remote disk I/O request processing

25 Cloud@Home 593

providers where data are stored or will be stored (step 3), and feeds back the list of
chunk providers and data indexes to the end-user (step 4, 5 and 6). In this way the
end user can directly interact with the assigned chunk providers storing his/her data
(step 7).

25.4 Ready for Cloud@Home?

In this paper we proposed an innovatory computing paradigm merging volunteer
contributing and Cloud approaches into Cloud@Home. This proposal represents a
solution for building Clouds, starting from heterogeneous and independent nodes,
not specifically conceived for this purpose. This can implement a generalization
of both Volunteer and Cloud computing by aggregating the computational poten-
tialities of many small, low power systems, exploiting the long tail effect of
computing.

In this way Cloud@Home opens the Cloud computing world to scientific and
academic research centers, as well as to communities or single users: anyone can
voluntarily support projects by sharing his/her resources. On the other hand, it
opens the utility computing market to the single user that wants to sell his/her
computing resources. To realize this broader vision, several issues must be ade-
quately taken into account: reliability, security, portability of resources and services,
interoperability among Clouds, QoS/SLA and business models and policies.

It is necessary a common understanding, an ontology that fixes metrics and
concepts such as resources, services and also overall Clouds functional and non-
functional parameters (QoS, SLA, exposition format, and so on), that must be
translated into specific interoperability standards. Fundamental aspects to take into
account are reliability and availability: in a heterogeneous Cloud we can have
resources highly reliable and available, such as NAS and/or computing servers, and
barely reliable and available, such as temporary contributors connected only few
hours. Cloud@Home must consider such parameters, specifying adequate policies
for optimizing their management.

References

Anderson, C. (2006, July). The Long Tail: How Endless Choice is Creating Unlimited Demand.
Random House Business Books, London.

Anderson, D. P., & Fedak, G. (2006). The Computational and Storage Potential of Volunteer
Computing. Proceedings of the Sixth IEEE international Symposium on Cluster Computing
and the Grid (May 16–19, 2006), CCGRID. IEEE Computer Society, Washington, DC,
73–80.

Baker, S. (2008, December, 24). Google and the Wisdom of Clouds, BusinessWeek. Retrived
December, 2008, from http://www.businessweek.com/magazine/content/07_52/b406404
8925836.htm.

Davis, A., Parikh, J., & Weihl, W. E. (2004). Edgecomputing: Extending Enterprise Applications
to the Edge of the Internet (pp. 180–187). WWW Alt.’04: Proceedings of the 13th international
World Wide Web Conference on Alternate Track Papers & Posters. New York: ACM.

Foster, I. (2002, July) “What is the grid? – A three point checklist. GRIDtoday, 1(6).

594 S. Distefano et al.

Foster, I. (May 2005). Service-oriented science. Science, 308(5723).
Foster, I., Tuecke, S. (2005). Describing the elephant: The different faces of IT as service. Queue,

3 (6) 26–29.
Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003, December). The Google File System. SIGOPS

Operating Systems Review, 37 (5), pp. 29–43.
Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36, (1)

41–50.
Kleinrock, L. (2005, November) A vision for the internet. ST Journal of Research, 2,(1), 4–5.
MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R., & Hamilton, B. A. (2006).

Reference Model for Service Oriented Architecture 1.0,” OASIS SOA Reference Model
Technical Committee, http://docs.oasis-open.org/soa-rm/v1.0/.

Martin, R. The Red Shift Theory,” InformationWeek, Retrived August 20, 2007, from
http://www.informationweek.com/news/hardware/showArticle.jhtml? articleID=201800873.

Milenkovic, M., Robinson, S. H., Knauerhase, R. C., Barkai, D., Garg, S., Tewari, A., Anderson,
T. A., & Bowman, M. (2003, May). Toward internet distributed computing. Computer, 36(5),
38–46.

Ross, J. W., & Westerman, G. (2004). Preparing for Utility Computing: The Role of it Architecture
and Relationship Management. IBM System Journal, 43(1), 5–19.

Samimi, F. A., McKinley, P. K., & Sadjadi, S. M. (2006). Mobile Service Clouds: A Self-Managing
Infrastructure for Autonomic Mobile Computing Services. LCNS 3996, Heidelberg: Springer.

Srirama, S. N., Jarke, M., & Prinz, W. (2006). Mobile Web Service Provisioning,” AICT-ICIW’06:
Proceedings of the Advanced Int’l Conference on Telecommunications and Int’l Conference
on Internet and Web Applications and Services (p. 120). Washington, DC: IEEE Computer
Society.

Tuecke, S., Welch, V., Engert, D., Pearlman, L., & Thompson, M. (2004, June). Internet X.509
Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC 3820 (Proposed Standard).

VMWare, Understanding Full Virtualization, Paravirtualization, and Hardware Assist, 2007. White
Paper.

Waldburger, M., & Stiller, B. (2006). Toward the Mobile Grid: Service Provisioning in a Mobile
Dynamic Virtual Organization (pp. 579–583). IEEE International Conference on Computer
Systems and Applications. Washington, DC: IEEE Computer Society.

Wang, L., Tao, J., Kunze, M., Castellanos, A., Kramer, C. D., & Karl, W. (2008). Scientific
Cloud Computing: Early Definition and Experience (pp. 825–830). HPCC’08, IEEE Computer
Society. Washington, DC: IEEE Computer Society.

Zhang, L.-J. (2008, April–June). EIC Editorial: Introduction to the Body of Knowledge Areas of
Services Computing. IEEE Transactions on Services Computing,1(2), 62–74.

Chapter 26
Using Hybrid Grid/Cloud Computing
Technologies for Environmental Data Elastic
Storage, Processing, and Provisioning

Raffaele Montella and Ian Foster

26.1 Introduction

High-resolution climate and weather forecast models, and regional and global
sensor networks, are producing ever-larger quantities of multidimensional environ-
mental data. To be useful, this data must be stored, managed, and made available to
a global community of researchers, policymakers, and others.

The usual approach to addressing these problems is to operate dedicated data
storage and distribution facilities. For example, the Earth System Grid (ESG)
(Bernholdt et al., 2005) comprises data systems at several US laboratories, each
with large quantities of storage and a high-end server configured to support requests
from many remote users. Distributed services such as replica and metadata catalogs
integrate these different components into a single distributed system.

As both environmental data volumes and demand for that data grows, servers
within systems such as ESG can easily become overloaded. Larger datasets also lead
to consumers wanting to execute analysis pipelines “in place” rather than download-
ing data for local analysis – further increasing load on data servers. Thus, operators
are faced with important decisions as to how best to configure systems to meet
rapidly growing, often highly time-varying, loads.

The emergence of commercial “cloud” or infrastructure on demand providers
(Mell & Tim, 2009) – operators of large storage and computing farms supporting
quasi-instantaneous on-demand access and leveraging economics of scale to reduce
cost – provides a potential alternative to the servers operated by systems such as
ESG. Hosting environmental data on cloud storage (e.g., Amazon S3) and run-
ning analysis pipelines on cloud computers (e.g., Amazon EC2) has the potential
to reduce costs and/or improve the quality of delivered services, especially when
responding to access peaks (Armbrust, Fox, Griffith, Joseph, Katz et al., 2009).

R. Montella (B)
Department of Applied Science, University of Napoli Parthenope, Napoli, Italy
e-mail: raffaele.montella@uniparthenope.it

I. Foster
Argonne National Laboratory, Argonne, IL, USA; The University of Chicago, Chicago, IL, USA
e-mail: foster@anl.gov

595B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0_26, C© Springer Science+Business Media, LLC 2010

596 R. Montella and I. Foster

In this chapter, we present the results of a study that aims to determine whether
it is indeed feasible and cost-effective to apply cloud services to the hosting and
delivery of environmental data. We approach this question from the twin perspec-
tives of architecture and cost. We first examine and present the design, development,
and evaluation of a cloud-based software infrastructure that leverages some grid
computing services and dedicated to the storage, processing, and delivery of multi-
dimensional environmental data. In our design we used the Amazon EC2/S3 cloud
computing APIs in order to provide an elastic hosting and processing facilities for
data, and the Globus Toolkit v4 (GT4) to federate data elements in a wider grid
application context. The scalability is ensured by a hybrid virtual/real aggregation
of computing resources.

The rest of this chapter is as follows. In Section 26.2, we introduce the appli-
cation context, describing important characteristics of environmental data and what
scientists need to accelerate research. In Section 26.3, we describe the current sta-
tus of elastic allocated storage and the tools we developed in order to realize our
goals, stressing on the new capabilities produced benefitting the computer scientist
community. A GT4 (Foster, 2006) web service providing environmental multidi-
mensional datasets using a grid/cloud hybrid approach is described in Section 26.4,
while Section 26.5 presents experiments that characterize the performance and cost
of our approach; these results can help identify the best deployment scenario in a real
world operational applications. Finally, in Section 26.6 we present some conclusions
and outline future work.

26.2 Distributing Multidimensional Environmental Data

ESG is built upon the Globus Toolkit and other related technologies. ESG continues
to expand its hosted data and data processing services, leveraging an environment
that addresses authentication, authorization for data access, large-scale data trans-
port and management, services and abstractions for high-performance remote data
access, mechanisms for scalable data replication, cataloging with rich semantic and
syntactic information, data discovery, distributed monitoring, and Web-based por-
tals for using the system. Current work aims to expand the scope of ESG to address
the need for federation of many data sources, as will be required for the next phase
of the Intergovernmental Panel on Climate Change (IPCC) assessment process.

In the world of environmental computational science, data catalogues are imple-
mented, managed, and stored using community developed file standards such as
Network Common Data File (NetCDF), mainly used for storage and (parallel)
high performance retrieval, and the Gridded Binary format (GriB), usually used for
data transfer. The most widely used data transfer protocol is OpenDAP (the Open
source Project for a Network Data Access Protocol), formerly DODS (Distributed
Oceanographic Data System). OpenDAP supports a set of standard features for
requesting and transporting data across the web (Gallagher, Potter, & Sgouros,
2004). The current OpenDAP Data Access Protocol (DAP) uses HTTP for requests

26 Hybrid Grid/Cloud Computing Technologies 597

and responses. The Grid Analysis and Display System (GrADS) (Doty & Kinter,
1995) is a free and open source interactive desktop tool used for easy access, manip-
ulation, and visualization of earth science data stored in various formats such as
binary, GRIB, NetCDF, and HDF-SDS. The GrADS-DODS Server (GDS) combines
GrADS and OPeNDAP to create an open-source solution for serving distributed
scientific data (Wielgosz & Doty, 2003).

In previous work, Montella et al. developed the GrADS Data Distribution Service
(GDDS) (Montella, Giunta, & Riccio, 2007) service, a GT4-based web service for
publishing and serving environmental data. The use of GT4 mechanisms enables
the integration of advanced authentication and authorization protocols and the con-
venient publication of service metadata, which is published automatically to a GT4
index service. This latter feature enables resource brokering involving both data and
other grid resources such as CPUs, storage, and instruments – useful, for example,
when seeking data sources that also support data processing.

Hyrax is a data server that combines the efforts at UCAR/HAO to build a
high performance DAP-compliant data server based on software developed by
OpenDAP (Gallagher, Potter, West, Garcia, & Fox, 2006). A servlet frontend for-
mulates a query to a second backend server that reads data from the data stores and
returns DAP-compliant responses to the frontend. The frontend may then either pass
responses back to the requestor, perhaps with modifications, or it may use them to
build more complex responses.

Montella et al. turned to a Hyrax-based software architecture when they devel-
oped the Five Dimensional Data Distribution Service (FDDDS), leveraging the
Hyrax OpenDAP server to achieve a better integration within a web/grid service
ecosystem. To implement FDDDS, they extended the client OpenDAP class APIs
to separate them from the frontend and to provide the needed interfaces in order
to provide services to the grid. FDDDS inherits most GDDS features included
the automatic index service advertisement of available metadata. This GT4-based
environmental data delivery service operates on local data storage. Thus, cloud
deployment is possible in a fully virtualized context with no kind of cloud-specific
optimization (Giunta, Laccetti, & Montella, 2008).

26.3 Environmental Data Storage on Elastic Resources

Our goal in this work is to explore whether it is feasible to leverage Amazon cloud
services to host environmental data. In other words, we want to determine the dif-
ficulty, performance, and economic cost of operating a service like FDDDS with
data (and perhaps processing as well) hosted not on local resources but on cloud
resources provided by Amazon. This service, like FDDDS, should allow remote
users to request both entire datasets and subsets of datasets, and ultimately also
to perform analysis on datasets. Whether the service is deployed in a native grid
environment or in a grid on cloud fashion should be transparent to the consumer.
Ideally, the service will inherit the security and standard connection interface from

598 R. Montella and I. Foster

grid computing and achieve scalability and availability thanks to the elastic power
of the cloud.

In conducting this study, we focus in particular on performance issues. The use of
dynamically allocated cloud resources has the potential for poor performance, due
to the virtualized environment, internal details of cloud storage behavior, and extra
cloud/intra-cloud network communication. We anticipate that it will be desirable
to move as much processing work (subsetting and data analysis) as possible into
the cloud, so as to minimize the need for cloud-to-outside world data transfer. This
approach can also help to reduce costs, given that Amazon charges for the movement
of data between its cloud storage and the outside world.

26.3.1 Amazon Cloud Services

We summarize important characteristics of the Amazon EC2, S3, and EBS services
that we use in this work.

The Elastic Compute Cloud (EC2) service allows clients to request the creation
of one or more virtual machine (VM) instances, each configured to run a VM image
supplied by the client. The user is charged only for the time (rounded up to the
nearest full hour) a EC2 instance is up and running. Different instance types are sup-
ported with different configurations (number of virtual cores, amount of memory,
etc.) and costing different amounts per hour. An EC2 user can configure multiple
VM images and run multiple instances of each to instantiate complex distributed
scenarios that incorporate different functional blocks such as web servers, applica-
tion servers, and database servers. EC2 provides tools, web user interface and APIs
in many languages that make it straightforward to create and manage images and
instances. A global image library offers a starting point from which to begin image
setup and configuration.

The Simple Storage Service (S3) provides a simple web service interface that
can be used to store and retrieve data objects (up to 5 GB in size) at any time and
from anywhere on the web. Only write, read, and delete operations are allowed.
The number of objects that can be created is effectively unlimited. The object name
space is flat (there is no hierarchical file system): each data object is stored in a
bucket and is retrieved via a unique key assigned by the developer. The S3 service
replicates each object to enhance availability and reliability. The physical location of
objects is invisible to the user, except that the user can choose the geographical zone
in which to create the object (currently, US West, US East, and Europe). Unless
objects are explicitly transferred, they never leave the region in which they are
created.

S3 users can control who can access data or alternatively can make objects
available to all. Data is accessed via REST and SOAP interfaces designed to
work with any Internet development toolkit. S3 users are charged for storage and
for transfers between S3 and the outside world. The default download protocol

26 Hybrid Grid/Cloud Computing Technologies 599

is HTTP; a BitTorrent protocol interface is provided to lower costs for large-
scale distribution. Large quantities of data (e.g., a large environmental dataset)
can be moved into S3 by using an import/export service based on physical deliv-
ery of portable storage units, which is more rapid and less expensive than Internet
upload.

The Elastic Block Store (EBS) provides block-level storage volumes that can
be attached to a EC2 instance as a device, but that persist independently from the
life of any particular instance. This service is useful for applications that require a
database, file system, or access to raw block-level storage, as in the case of NetCDF
file storage. EBS volumes can range in size from one to 1,000 GB. Multiple volumes
can be mounted to the same instance, allowing for data striping. Storage volumes
behave like raw, unformatted block devices, with user-supplied device names and
a block device interface. Instances and volumes must be located in the same zone.
Volumes are automatically replicated. EBS uses S3 to store volume snapshots in
order to protect data for long-term durability and to instantiate as many volumes as
needed by the user. EBS performance can vary because the needed network access
and the S3 snapshot interfacing and are deeply related to the specific application, so
benchmark are needed for each case. The user is charged only for the data stored
in the volume plus how much S3 consumed for snapshots (storage space and I/O
operations).

From the developer’s perspective, the use of EBS is completely transparent
because volumes are seen as block devices attached to EC2 instances. In contrast, S3
features require the use of web service APIs. In order to interface S3 with NetCDF
we choose the Java implementation freely available in source code.

26.3.2 Multidimensional Environmental Data Standard File
Format

As we deal here with data in NetCDF format, we describe that data format briefly.
NetCDF is a data format and abstraction, implemented by a software library, for
storing and retrieving environmental multidimensional data. Developed by UCAR
in the early 90s for meteorological data management, NetCDF has become a widely
used data format for a wide range of environmental computing science applications.
The NetCDF implementation provides a self-describing and machine-independent
format for representing multidimensional scientific data: the abstraction, the access
library, and the data format support the creation, access, and sharing of scientific
information.

The NetCDF data abstraction models a scientific data set as a collection of
named multidimensional variables (scalars and arrays of bytes, characters, integers,
and floating-point numbers) along with their coordinate systems and some of their
named auxiliary properties. Each variable has a type, a shape specified by a list of
named dimensions, and a set of other properties described by attribute pairs. The

600 R. Montella and I. Foster

NetCDF interface allows data to be accessed by providing a variable name and a
specification for what part of the data associated with that variable is to be read or
written, rather than by sequential access and individual reads and writes. A dimen-
sion is a named integer used to specify the shape of one or more variables, and
usually represents a real physical dimension, such as time, latitude, longitude, or
atmospheric level. A variable is an array of values of the same type, and is character-
ized by a name, a data type, and a shape described by a list of dimensions. Attributes
may be a single value or a vector of values. One dimension may be unbounded.
A variable with a shape that includes an unbounded dimension can grow to any
length along that dimension. The unbounded dimension is like a record number in
conventional files; it allows us to append data to variables.

NetCDF software interface implementations are available in C, Fortran, Java,
and MatLab, among others. We work here with the NetCDF-Java library, a 100%
Java framework for reading NetCDF and other file formats into the Common Data
Model (CDM), a generalization of the NetCDF, OpenDAP and HDF5 data models,
and for writing to the NetCDF file format. The NetCDF-Java library also imple-
ments NcML, which allows the developer to add metadata to CDM datasets, as well
as to create virtual datasets through aggregation. This library implementation per-
mits access to NetCDF files via network protocols such as HTTP and, via a plug in
architecture, enables the development of different data reader.

26.3.3 Enhancing the S3 APIs

S3 has two important limitations that complicate its use for large environmental
multidimensional data sets. The first is the five gigabyte maximum object size,
which is too small for environmental applications. For example, a real time weather
forecasting application developed at DSA/uniParthenope in 2003 and still running
today produces each day an 11 gigabyte NetCDF dataset just from runs performed
with the Weather Research and Forecast (WRF) model (Ascione, Giunta, Montella,
Mariani, & Riccio, 2006). The second is the requirement that an object must be
read or written in its entirety. The most basic operation performed on multidi-
mensional environmental datasets is subsetting: extraction of scalars, arrays, and
matrices along one or more dimensions. This operation requires random access to
stored objects. Thus, simply storing each NetCDF file as an S3 object is inefficient
and (for larger files) also infeasible.

On the positive side, S3 uses a highly reliable replica and location service com-
pletely transparent to the user: each object is named by a unique resource identifier
and accessed by an URL that can be made public. Multiple concurrent accesses to
different objects belonging to the same bucket are possible without an evident loss
in performance.

The design of our S3-enhanced Java API seeks to overcome S3’s limitations
while preserving S3’s high performance and availability (Figs. 26.1 and 26.2). As

26 Hybrid Grid/Cloud Computing Technologies 601

Fig. 26.1 Part of the enhanced S3 Java interface class diagram

Fig. 26.2 S3StripedObject class diagram

602 R. Montella and I. Foster

noted earlier, each S3 data object is identified via a URL. While S3 does not sup-
port a hierarchical file system, an S3 URL string can include most printable chars
including the slash, which is commonly used to structure folder and file names.
Internal Amazon services that use S3 for storage commonly partition large datasets
(e.g., VM images) across multiple S3objects, with the set of objects that make up
the dataset listed in a manifest file.

We adopt a similar approach for our NetCDF files. Specifically, we implement
a self-managed “framed object,” a virtual, large (perhaps more than five gigabyte)
object, identified by its name (no manifest file is needed) and partitioned across a
set of physical frames stored one per S3 object, with names chosen to describe a
subfolder-like organization. Each frame is identified by a “sub-name” coding the
number of the frame, the total number of frames, and the frame size. Because object
names are limited in size in 255 characters, we encode numbers in base 62, using
all printable characters compatible with internet URLs in the following orders: 10
digits, 26 lower case characters, and 26 upper case characters. In order to increase
the reliability of the service, each frame is digitally signed by MD5. Each time a
frame is retrieved it is checked against the signature and re-requested if an error is
detected.

Because saving space in S3 can both reduce costs (for storage and data trans-
fer) and improve performance, we compress each frame using the zip algorithm.
S3 supports high performance concurrent access, so we implement all writing and
reading operations using a shared blocking queue. Our API manages framed objects
in both write and read operations. A developer sees each read and write opera-
tion as atomic. When an object is to be stored on S3 using the framed approach,
it is divided into frames each of a size previously evaluated for best performance,
plus a last smaller frame for any remaining data. Then, each MD5-signed and com-
pressed frame is added to the queue to be written to S3. The queue is consumed
by a pool of worker threads. The number of threads depends on the deployment
conditions and can be tuned for best performance. Each worker thread can perform
both write and read operations. The framed object writing operation can be block-
ing or nonblocking. In the blocking case the caller program waits until each frame
is correctly stored on S3; in the nonblocking case, it is notified when the operation
terminates.

The developer also sees the framed object read operation as an atomic operation.
This operation first extracts object features (size, total amount of frames, size of
each frame plus the rest frame size) from the name of a stored frame. Then the
object is allocated in client memory and the required read operations are submitted
to the queue. The worker threads concurrently check for frame integrity using the
MD5 signature, uncompress the frame, and place it in the right position in memory.
The framed object read operation, like the write operation, can be either blocking or
nonblocking (Fig. 26.2).

The S3-enhanced Java API that we developed can be used as a middleware inter-
face to S3, on which we can then build higher-level software such as our S3-enabled
NetCDF Java interface.

26 Hybrid Grid/Cloud Computing Technologies 603

26.3.4 Enabling the NetCDF Java Interface to S3

The NetCDF-Java library supports access to environmental datasets stored both
locally, via file system operations, and remotely, via protocols such as HTTP and
OpenDAP. Data access is performed via an input/output service provider (IOSP)
interface. The developer can build custom IOSPs that implement methods for file
validity checking, file opening and closing, and data reading, in each case spec-
ifying the variable name and the section to read. An IOSP generates requests
to a low-level random access file (RAF) component, a buffered drop-in replace-
ment for the homonymous component present in the Java input/output package.
The use of RAF provides substantial speed increases through the use of buffering.
Unfortunately, RAFs are not structured in the NetCDF-Java library as a customiz-
able service provider, so developers cannot build and register their own random
access file component.

The NetCDF file format is self describing: data contain embedded metadata. The
NetCDF Markup Language (NcML) is an XML representation of netCDF metadata.
NcML is similar to the netCDF network Common data form Description Language
(CDL), but uses XML syntax. A NetCDF file can be seen as a folder in which each
variable can be considered a file. Thus, a NcML file description can be considered
as an aggregator for variables, dimensions and attributes.

In our S3-enabled NetCDF Java Interface we use the NcML file representation
as a manifest file, the NetCDF file name as a folder name, and each variable as a
framed object: basically a subfolder in which each variable is stored in frames. Thus,
if an S3-stored NetCDF file is named s3://bucketname/path/filename.ncml, then its
data is stored in s3://bucketname/path/filename/varname/framename objects.

Our S3IOServiceProvider open method interacts with our S3-enhanced Java
package to retrieve the NcML file representation and create an empty local image
of the remote netCDF file using the NcMLReader component. Thus, metadata are
available locally, but no variable data are actually downloaded from S3. In order
to implement this behavior we create a custom RAF, which defines three meth-
ods: canOpen returns true if the passed filename can be considered as a valid
file; getName returns the name of the RAF; and getRaf returns the underlying
random access file component. We also provide an abstract RAF provider com-
ponent that defines the RAF reference and implements the getRaf method. Finally,
we implemented the S3RandomAccessFileProvider component, which returns the
string “S3RAFProvider” as name and verifies that the filename begins with the “s3:”
string. The canOpen method creates an instance of the S3RandomAccessFile and
performs the needed initialization.

S3RandomAccessFile (S3RAF) is the key component in our S3-enabled NetCDF
service. It implements the low-level interaction with our S3 Java API. When a vari-
able section is read, S3RAF retrieves only the needed data frames stored on S3 and
writes them to a temporary NetCDF local file. If more than one frame is needed,
our S3 Java interface uses the framed object component to read them concurrently.
A caching mechanism ensures that we do not download the same frame twice. This

604 R. Montella and I. Foster

Fig. 26.3 The S3-enabled NetCDF Java interface class diagram

feature minimizes download time and reduces the number of S3 get operations and
consequently the overall cost (Fig. 26.3).

The following code reads a variable section from a NetCDF file stored on S3:

1: String fileName = "s3://12WREKPN1ZEX2RN4SZG2/

wrfout_d01_2009-02-10_00-00-00.nc_1_test";

2: S3ConnectionManager.setIdAndSecret

("12WREKPN1ZEX2RN4SZG2", ". . .");

3: NetcdfFile.registerIOProvider("ucar.unidata.io.s3.

S3IOServiceProvider");

4: NetcdfFile.registerRAFProvider("ucar.unidata.io.s3.

S3RandomAccessFileProvider");

5: NetcdfFile ncfile = NetcdfFile.open(testFileName);

6: String section = "1:1:1,1:19:,1:190:1,1:254:1";

7: Array arrayResult = ncfile.findVariable("U").read(range);

In line 1, we define the file name. The string “s3://” identifies the protocol, allow-
ing the S3RAFProvider component to recognize that the location can be accessed
by the S3RAF and that it must create an instance of this object. The string immedi-
ately following the protocol name is the bucket name. (Because bucket names must
be unique, a good strategy is to use the S3 user id.) The last part of the string is the
actual file name.

In line 2, we use the S3ConnectionManager component to set the user id and
password required by the S3 infrastructure. The S3ConnectionManager component

26 Hybrid Grid/Cloud Computing Technologies 605

also allows the developer to configure deployment and performance details, such as
the temporary file path, the size of the read and write queues, and the number of
worker threads.

In line 3, we register the S3IOServiceProvider using the standard NetCDF Java
interface, while in line 4 we register the S3RAFProvider, which as stated above
improves the standard NetCDF-Java interface to implement completely transparent
access to S3-stored datasets.

In line 5, we open the file, using the same syntax as for a local operation. Line
6 specifies that we wish to read just one time step of the whole two-dimensional
variable. We read variable in line 7, retrieving an Array object reference to data
in the same manner as for a local data access. Observe that the underlying cloud
complexity is completely hidden.

26.4 Cloud and Grid Hybridization: The NetCDF Service

The NetCDF service developed by Montella, Agrillo, Mastrangelo, and Menna
(2008) is a GT4-based web service. It leverages useful GT4 features and captures
much previous experience in environmental data delivery using grid tools. The ser-
vice integrates multiple data sources and data server interaction modes, interfaces to
an index service to permit discovery, and supports embedded data processing. Last
but not least, it is designed to work in a hybrid cloud/grid environment.

26.4.1 The NetCDF Service Architecture

The NetCDF service provides its clients with access to resources: an abstracted rep-
resentations of data objects that are completely disjoint from the underlying data
storage associated with the data objects. A connector links the NetCDF service
resource to a specific underlying data storage system. Available connectors include
the NetCDF file connector, which using our S3-enhanced NetCDF Java interface
can serve local files, DODS-served files, HTTP-served files and S3-stored files; the
GDS connector that can serve Grib and GrADS files served by a Grads Data Server;
and the Hyrax connector for OpenDAP Hyrax-based servers. We are also devel-
oping an instrument connector as a direct interface to data acquisition instruments
(Montella, Agrillo, Mastrangelo, & Menna, 2008) based on our Abstract Instrument
Framework (Montella, Agrillo, Di Lauro, 2008).

The primary purpose of a connector is to dispatch requests to different data
servers and to convert all responses into NetCDF datasets (Fig. 26.4).

Once a requested subset of a dataset is delivered by the data connector and
stored locally, the user can process that subset using local software. This feature is
implemented using another full customizable plug in. Thanks to the factory/instance
approach, each web service consumer deals with its own data in a temporary private
storage area physically close to the web service. The processor connector compo-
nent mission is to interface different out of the process NetCDF dataset processors

606 R. Montella and I. Foster

Fig. 26.4 The NetCDF service data connector architecture

caring out a standard way to perform data input, processing job submission and data
output (Fig. 26.5).

Two processor connectors are available. The GrADS processor connector pro-
vides access to NetCDF data as gridded data. A consumer can send to the processor
connector complex command sequences using a common Java interface or directly
with GrADS scripts. The GrADS processor connector is build on top the GrADSj
Java interface we developed in previous work (Montella & Agrillo, 2009a).

The NetCDF Operator connector is a Java interface to the homonymous software
suite. The netCDF Operators, or NCO, are a suite of standalone, command-
line programs that each take netCDF files as input, operate on those files (e.g.,
derive new data, compute averages, extract hyperslabs, manipulate metadata),
and produce a netCDF output file. NCO primarily aids manipulation and anal-
ysis of gridded scientific data. The single-command style of NCO allows users
to manipulate and analyze files interactively, with simple scripts that avoid some
overhead (and power) of higher level programming environments. As in the case
of the GrADS processor connector, the web service consumer interacts with the
NCO processor connector using a simple Java interface or directly with shell-
like scripts. As internally GrADSj, the NCO processor connector leverages on the

Fig. 26.5 The NetCDF
service processing connector
architecture

26 Hybrid Grid/Cloud Computing Technologies 607

AbstractExecutionFramework (AEF) we developed in order to manage the execu-
tion of out of the process software from the Java environment is a standard high
level fashion (Montella & Agrillo, 2009b).

Once a data subset is extracted and processed, the main actor in the data pipeline
is the data transfer connector. This plug-in-like component permits the developer
to customize how the selected data is made available to the user. All transfer con-
nectors share the cache management system and the automatic publishing of data
descriptions into an index service. (These features are applied automatically only
when there are no privacy issues.) In general, subset data from a public available
dataset are still public, but the user can set a subsetting result as private; in con-
trast, a processing result is private by default, but the user can declare it as public
(Fig. 26.6).

Fig. 26.6 The NetCDF service transfer connector architecture

The caching and auto publication processes work on the two kinds of datasets in
the same way. Because each NetCDF file is completely described by its metadata,
each dataset can be uniquely identified by a MD5 hash of that metadata. Thus, we
sign each dataset generated by a subsetting or processing operation and copy it to a
caching area. Then, each time a NetCDF file is requested, we first evaluate the MD5
metadata signature and check the cache. In the case of a cache miss, the dataset
is requested for subsetting or submitted for processing. Following a cache hit the
dataset is copied from the cache area to the requestor’s temporary storage area, and
in addition the NetCDF dataset cache manager component increase the usage index
of the selected dataset. If this index overcomes a chosen threshold, the dataset is
promoted to be a stored dataset.

The web service resource manager explores resources and advertises them auto-
matically on the index service. The NetCDF dataset cache manager component
periodically explores the cache, decreasing the usage count of each cached NetCDF
dataset. A dataset is deleted if its count reaches zero, in order to save local storage
space. This usage checking process is performed even on promoted datasets. The
actual storage device priority sequence, ordered from the most frequently accessed
to the least is: local file system, EBS, S3 and then deleted. The policy that is used to
manage data movement of these storage devices is fully configurable and based on
the number of requests per unit of time multiplied by the space needs for the specific
device.

608 R. Montella and I. Foster

The transfer connector act as the main data delivery component implementing
how the web service result can be accessed by the user. The default transfer connec-
tor is the TransferServiceConnector. In this way we represent the result by an End
Point Reference (EPR) to a temporary resource managed by a TransferService. This
service is a wrapper over the GridFTP service. The TransferService uses the Grid
Security Infrastructure and works in an efficient and effective way for secure data
transfer. Other available transfer connectors include the HTTPTransferConnector
and the DODSTransferConnetor suitable for publically available result datasets.
Finally the S3TransferConnector stores the results on S3 and then the user can
access them directly (Fig. 26.7).

Fig. 26.7 NetCDF service architecture: the big picture

26.4.2 NetCDF Service Deployment Scenarios

The NetCDF Service represents the grid aggregator component for cloud hosted
multidimensional environmental data resources. We explore three different deploy-
ment scenarios, in which the NetCDF service is deployed variously (see Fig. 26.8):

1. on a computer outside the cloud (Grid+S3);
2. on an EC2 instance (Cloud); or
3. in a proxy-like configuration in which the service runs on a computer outside the

cloud and automatically runs one or more EC2 instances to manage operations
on datasets (Hybrid).

26 Hybrid Grid/Cloud Computing Technologies 609

Fig. 26.8 The three NetCDF service deployment scenarios: Grid+S3 (bottom left), Cloud (the
lower NetCDF service on the right), and Hybrid (top left)

In the Grid+S3 deployment scenario, a standalone NetCDF service runs on a
server external to the cloud. This server must be powerful enough and have enough
storage space to support subsetting and processing operations. Data can be hosted
locally, by DODS servers on secured private networks, and/or on S3-based cloud
services. Thanks to the AbstractExecutionFramework component, the processing
(GrADS and NCO) software can work as jobs submitted to a local queue and exe-
cute on a high performance computing cluster. In this scenario, we use the cloud
provider for data storage as in the case of locally stored large datasets and S3 stored
automatically promoted cached datasets.

In the Cloud scenario, the NetCDF service is deployed on an EC2 instance,
directly accessible from outside the cloud using Amazon’s Elastic IP service. Data
can be stored on EBS and accessed locally by the instance, while automatically pro-
moted cached datasets can be stored on EBS and/or S3, depending on frequency of
use. The EC2 instance has to provide enough computing power to satisfy dataset
processor needs. The advantage of this kind of deployment is high-speed access to
elastically stored datasets using EBS (faster) and S3 (slower, but accessible from
outside the cloud). The main drawback to this approach is that the user is charged
for the cost of a continuously running EC2 instance and the need for an assigned
Elastic IP.

610 R. Montella and I. Foster

The Hybrid scenario has the highest level of grid/cloud hybridization. Here, we
deploy the NetCDF service on a real computer outside the cloud infrastructure.
This service acts as a proxy for another instance of the service running (as an EC2
instance) in the cloud infrastructure. When the NetCDF service receives a request,
it checks to see if that EC2 instance is already running. If there is not, or if the run-
ning one is too busy (the virtual CPU’s load exceeds a threshold), a new instance
is created. If the data to be accessed is hosted by EBS, and an active EC2 instance
is connected to the EBS where the data is hosted. Because an EBS volume can be
connected to only one EC2 instance a time, the request must be directed to that.

In this scenario, a consumer interacts directly only with the NetCDF service run-
ning on the real machine; the interaction with the NetCDF service running on the
elastically allocated computing resource is completely transparent. The main advan-
tages of this approach are that (a) the user is charged for running AMIs only when
processing datasets and (b) there is no need for assigned Elastic IP. Moreover, the
amount of data that must be transferred from the cloud to the grid is limited because
most data processing is done inside the cloud. In addition, the elasticity provides for
scalability and the cloud infrastructure provides for predictable quality of service,
data availability, backups, and disaster recovery. Finally, the grid machine serving
the NetCDF service does not need huge computing power or storage space because
it acts only as a proxy providing a transparent interface to the cloud infrastructure.
The main drawback is the complexity of the deployment and the increased number
of interface layers.

26.5 Performance Evaluation

All software components developed in this work are high-quality prototypes ready
for real world application test beds and even production use. To evaluate the per-
formance of the different deployment methods, we measured performance in three
different scenarios: reading and writing data from S3 using the framed object imple-
mented in our Java interface; reading NetCDF data from S3 comparing intra-cloud
and extra-cloud performance; and NetCDF dataset serving comparing EBS and S3
storages.

26.5.1 Parameter Selection for the S3-Enhanced Java Interface

We must evaluate the I/O performance of the S3-enhanced Java interface in order
to identify an optimal framework configuration. The two developer-controllable
parameters are the frame size and number of concurrent threads used as workers by
the framed object components. (A third parameter, the size of the blocking queue,
was empirically evaluated as four times the number of worker threads.) The choice
of frame size is critical because, once set, the stored framed object must be re-
uploaded in order to change it. In contrast, the number of worker threads can vary
even while the application is running and can potentially be adjusted automatically
based on observed network congestion and machine CPU usage.

26 Hybrid Grid/Cloud Computing Technologies 611

We used a 130 MB NetCDF file to evaluate upload and download performance
for a range of frame sizes (1, 2, 4, and 8 MB) and thread counts (1–64 threads).
In each case, we ran the experiment 100 times and averaged the results. We used
a worst-case approach, storing the file in a US zone and accessing it from Europe
(Fig. 26.9).

Fig. 26.9 S3-enhanced Java interface tuning

The best performance for both reading and writing is achieved when using 8 MB
frames. The best number of concurrent threads vary depends on the operation: for
writing (uploading) the best performance is achieved 8–16 worker threads, while
for reading (downloading) the maximum number of tested worker threads, 64, was
the best. We have applied these lessons in an improved version of our S3-enhanced
Java interface that uses a live performance evaluator to vary the number of worker
threads over time.

26.5.2 Evaluation of S3- and EBS-Enabled NetCDF Java
Interfaces

Our second set of experiments compare the performance of our S3-enabled NetCDF
Java interface with analogous operations using EBS. We use a four-dimensional
NetCDF file of size ∼11 GB produced by the WRF model on a grid with 256 ×
192 cells and 28 vertical levels. This file contains six days (144 h) of 111 vari-
ables: 14 one-dimensional, varying in time; 10 two-dimensional, varying in time
and level; 72 three-dimensional, varying in time, latitude, and longitude; and 15
four-dimensional, varying in time, level, latitude, and longitude.

612 R. Montella and I. Foster

We define five separate tests, corresponding to reading the first one (5.5 MB),
24 (132 MB), 48 (264 MB), 72 (396 MB), and 144 h (792 MB), respectively, of a
single four-dimensional variable. The subset variable is the west to east component
of the wind speed U(X, Y, Z, T), where X, Y, and Z are the spatial dimensions and T
is the temporal dimension, in the order T, Z, Y, X, meaning that the disk file created
for that variable contains data for all time periods for (X = 0, Y = 0, Z = 0), then
data for all time periods for (X = 0, Y = 0, Z = 1), and so on. Thus, a request for
144 h of the variable involves a single contiguous sequence of bytes, while a request
for 1 h of the variable involves multiple small reads. As before, we run each test 100
times and average the results.

We ran the test suite in four configurations, in which the subsetting operation is
performed variously on:

1. a computer in Europe, outside the cloud, with the data on S3 in the US;
2. an EC2 virtual machine with the data on S3 in the same zone;
3. an EC2 virtual machine with data on an attached EBS volume; and
4. a server outside the cloud (a quad-core Xeon Linux based server) with the data

on that computer’s local disk.

As shown in Fig. 26.10, performance increases in all cases with subset time
period and thus read size. We also see that performance varies considerably across
the four different configurations. Accessing S3 from EC2 (EC2←S3) is faster than

Fig. 26.10 Performance in MB/s of the S3-enabled NetCDF Java interface for different subset
time periods and different data transfer scenarios

26 Hybrid Grid/Cloud Computing Technologies 613

when accessing S3 from outside the cloud (local←S3), with the difference being
proportionally larger for smaller reads. This result suggests that there may be advan-
tages to performing subsetting operations in the cloud and then moving only the
subset data to a remote client. We also see that EBS performance (EC2←EBS) is far
superior to S3 performance – indeed, superior to accessing local disk (local←local).
We might conclude from this result that data should always be located on EBS.
However, there are other subtle issues to consider when choosing between S3 and
EBS storage. If data are to be accessed only from an EC2 virtual machine, EBS is the
best choice. On the other hand, S3 permits data to be accessed directly (for example,
using our S3-enhanced Java NetCDF interface) from outside the cloud, and permits
multiple accesses to proceed concurrently. Cost must also be considered: running
instances on EC2 machines may or may not be cost effective, depending on work-
load. Creating virtual machine instances dynamically, only when needed for data
subsetting, analysis, and transfer purposes, could be a winning choice. We return to
these issues below.

26.5.3 Evaluation of NetCDF Service Performance

Our final experiments are designed to evaluate our NetCDF service from the per-
spectives of both cost and performance. For these studies, we developed an Amazon
Web Service Simulator (AWSS), a Java framework that simulates the behavior of
the Amazon EC2, EBS, and S3 components. Given specified data access and pric-
ing profiles, this simulator generates a performance and cost forecast. To evaluate
the simulator’s accuracy, we compared its predicted cost against results obtained
in which we ran data hosting and virtual machines instances without any kind of
cloud application. We obtained cost profiles comparable with the Amazon Simple
Monthly Simulator.

We evaluated the three scenarios described in Section 26.4.1. In Grid+S3, the
NetCDF service is hosted on a computer outside the cloud and accesses data hosted
on S3 via the Amazon HTTP-based S3 protocol.

In Cloud, the NetCDF service is hosted on a “standard.extralarge” EC2 instance
(15 GB of memory, 8 EC2 Compute Units, 1690 GB of local instance storage, 64-
bit platform) that runs continuously for the entire month. Data are hosted on 15 one
terabyte EBS volumes attached to this EC2 instance.

In Hybrid, the NetCDF service is hosted on an EC2 instance with the same con-
figuration as in Cloud. However, this instance is not run continuously but instead
is created when a request arrives and then shut down after two hours unless an
additional request arrives during that period.

Because Cloud and Hybrid generate subset data on EC2 instances, that data
must be transferred from the cloud to the outside world. We measured performance
for three different protocols – HTTP (∼2.5 MB/s), gridFTP (∼16 MB/s), and scp
(∼0.56 MB/s) – and use those numbers in our simulations.

614 R. Montella and I. Foster

We present results for the following configuration and workload. We assume 15
Tbyte of environmental data, already stored in the cloud; thus no data upload costs
are incurred. We consider a 30-day duration (during which time data storage costs
are incurred), with requests for varying subsets of the same four-dimensional dataset
arriving as follows:

• Days 0–2: No requests.
• Days 3–5: 144 requests, each for a 1 h subset (i.e., 5.5 MB).
• Days 6–8: 144 requests, each for a 24 h subset (132 MB).
• Days 9–11: 144 requests, each for a 48 h subset (264 MB).
• Days 12–14: 144 requests, each for a 72 h subset (396 MB).
• Days 15–17: 144 requests, each for a 144 h subset (792 MB).
• Days 18–29: No requests.

Requests arrive according to a normal distribution with a mean of 0.5 h; they
total 280 GB over the 30 days. We assume a worst-case situation with a machine
in Europe accessing AWS resources hosted in the US West zone. We use Amazon
costs as of March 2010, as summarized in Table 26.1.

Table 26.2 shows the cost predicted by our simulator for the three scenarios over
the simulated month (the Hybrid has been evaluated using EBS or S3 storages),
while Fig. 26.11 shows predicted time per request for the different combinations of
scenario, subset size, and transfer protocol.

Grid+S3 is the most expensive, due to its use of S3 and the associated storage and
data transfer costs. Its performance is good, especially for larger subsets, because
the S3 Enhanced Java interface that is used to move data outside the cloud performs
well with large data selections.

Table 26.1 Amazon Web Services costs as of March 2010

Component Cost ($US)

EC2 standard.extralarge, US East, per hour 0.68
Data transfer from outside to EC2, per Gbyte 0.15
S3 storage, per Gbyte per month 0.15
Data movement out of S3, per Gbyte 0.15
S3 10.000 get operations 0.01
EBS storage, per Gbyte per month 0.10
EBS million of I/O operations 0.10

Table 26.2 Simulated monthly costs for each approach

Approach Storage ($US) Computing ($US) Networking ($US) Total $US)

Grid+S3 2211 0 50 2261
Cloud EBS 1472 482 50 2004
Hybrid EBS 1474 231 49 1754
Hybrid S3 2216 233 49 2498

26 Hybrid Grid/Cloud Computing Technologies 615

Fig. 26.11 Modelled overall subsetting performance for each deployment scenario

Cloud is cheaper than Grid+S3 and has better performance than Grid+S3 (when
using GridFTP for external transfers), except in the 144 h (no subsetting) case.

Hybrid is the most cost effective because of its use of EBS to host data and its
creation of EC2 instances only when required. When using GridFTP to transfer data
outside the cloud, is more economical as problem size (storing, subsetting and trans-
fer data) increases. Grid+S3 is expensive and slow for small subsets, but becomes
competitive when the subset data grow.

One factor not addressed in these results is what happens when multiple remote
clients request data at the same time. In that situation, Grid+S3 may become more
competitive, as the fact that an EBS volume can be attached to only one EC2
instance at a time limits the performance of Hybrid.

It is also instructive to compare these results with what we know of ESG. As
of early 2010, ESG systems hold around 150 Terabytes of climate simulation data.
During 2009, one of the two major servers operating at that time (at NCAR) deliv-
ered a total of 112 Tbytes in response to 170,886 requests, for an average of 20
requests per hour and 654 MB/file. Our experimental configuration had 15 Tbytes
(∼1/10th of the total size) and returned a total of 280 GB in response to 720 requests,
for an average of 1 request per hour and 388 MB/file. We need to repeat our simu-
lations with an actual ESG workload, but an estimate based on Fig. 26.11 suggests
a cost of roughly $20,000 per month to host ESG on Amazon.

26.6 Conclusions and Future Directions

We have sought to answer in this chapter the question of whether it is feasible,
cost-effective, and efficient to use Amazon cloud services to host large environmen-
tal datasets. We believe that the answer to this question is “yes,” albeit with some
caveats.

616 R. Montella and I. Foster

To evaluate feasibility, we have developed a NetCDF service that uses a combina-
tion of external and cloud-based services to enable remote access to data hosted on
Amazon S3 storage. Underpinning this service is an S3-enabled NetCDF Java API
that uses a framed object abstraction to enable near random access read and write
access to NetCDF datasets stored in S3 objects. MD5 signatures and compression
enhance reliability and performance. The S3-enabled NetCDF-Java interface per-
mits the developer to access both local files and S3-stored (or EBS-stored) NetCDF
data in an identical manner. The use of Amazon storage is transparent with the only
difference being the need to provide access credentials. Overall, this experience
leads us to conclude that an Amazon-based ESG is feasible.

The NetCDF service is the product of our considerable previous work on (GT4-
based) environmental data provider web services. This service is highly modular
and based on a plug in architecture. Multidimensional environmental datasets are
exposed as resources that furthermore are advertised automatically via an index
service. The web service consumer interacts with a private, dynamically allocated
instance of the service resource. The operation provider permits data selection,
subsetting, processing, and transfer. Each feature is implemented by a provider
component that allows for improvements, expansion, and customization. The ser-
vice can be deployed in three main ways: stand alone on a machine belonging to
a computing grid to distribute data hosted locally, on secured custom servers, or
using the S3 service; stand alone on a virtual machine instance running in the EC2
ecosystem providing data stored on EBS or S3; and in a proxy mode running on an
external computer that acts as a proxy to service instances managing resources on
dynamically allocated EC2 instances.

To evaluate performance, we have conducted detailed experimental studies of
data access performance for our NetCDF service in these different configurations.
To evaluate cost, we developed and applied a simple cloud simulator. Based on
these results, we believe that the hybrid solution represented by the third NetCDF
Service deployment scenario, Hybrid, provides the best balance between external
and cloud hosted resources. This strategy minimizes costs because EC2 instances
are run only when required. Another cost reduction is achieved because there
is no need for Elastic IP: the service instance running on the virtual machine
connects to the one on the real machine identified by a fully qualified domain
name. Two other sources of costs are the put and get data operations on S3 and
the data transferred over the cloud infrastructure boundary. In Hybrid, most data
processing is performed inside the cloud, and thus a consumer who requests sub-
sets or analysis results retrieves less data. Less data transfer means also better
performance.

The use of EBS rather than S3 provides increased data access performance.
While this approach permits to use the S3 as an effective way to carry out the cloud
large datasets in an effective and efficient way leveraging on concurrent S3 object
access with the Java API we developed. Finally, as the need for storage is scaled by
the elastic computing approach typical for the cloud infrastructure, even the process-
ing computing power scales with the needs thanks to the possibility of instancing as
much EC2 instances hosting NetCDF Services as are needed.

26 Hybrid Grid/Cloud Computing Technologies 617

A more detailed comparison of cost and performance for ESG awaits the avail-
ability of detailed ESG access logs. However, it seems that the cost of hosting the
current ESG holdings on Amazon, and responding to current workloads, might be
∼$20,000 month. Determining ESG’s current data hosting costs would be difficult,
but when all costs are considered, it may not be too different.

ESG is now preparing for the next generation of climate models that will gener-
ate petabytes of output. A detailed performance vs. costs comparison will be needed
to evaluate the suitability of commercial cloud providers such as Amazon for such
datasets – a task for which our simulator is well prepared. Unfortunately, this com-
parison is difficult or impossible to perform at present because of lack of data on
future cloud configurations and costs, and on future client workloads. However,
we do note that server-side analysis is expected to become increasingly impor-
tant as data sizes grow, and infrastructures such as Amazon are well designed for
compute-intensive analysis of large quantities of data.

This work is the result of a year of prototyping and experiments in the use of
hybrid grid and cloud computing technologies for environmental data elastic storing,
processing, and delivery. The NetCDF service integrates multiple software layers to
identify a convenient hybrid deployment scenario. In an immediate next step, we
will apply this technology to more realistic weather forecast and climate simulation
scenarios. In the process, we will improve the stability of the individual components
and develop further features identified by experience.

References

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R. H., et al. (2009). Above
the clouds: A berkeley view of cloud computing, Electrical Engineering and Computer
Sciences University of California, Berkeley, (Technical Report No. UCB/EECS-2009-28).
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html, February 10, 2009.

Ascione, I., Giunta, G., Montella, R., Mariani, P., & Riccio, A. (2006). A grid computing based
virtual laboratory for environmental simulations. In W. E. Nagel, W. V. Nagel & W. Lehner
(Eds.), Euro-par 2006 parallel processing (pp. 1085–1094). LNCS 4128, Springer, Heidelberg.

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A. L., Foster, I., Kesselman, C., Meder, S.,
Nefedova, V., Quesnal, D., & Tuecke, S. (May 2002). Data management and transfer in high
performance computational grid environments. Parallel Computing Journal, 28 (5), 749–771.

Bernholdt, D. et al. (March 2005). The earth system grid: Supporting the next generation of climate
modeling research. Proceedings of the IEEE,93(3).

Buyya, R., Yeo, C. S., & Venugopal, S. (2008) Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities. Proceedings the of 10th IEEE
International Conference on High Performance Computing and Communications HPCC ’08,
Dalian, China.

Doty, B. E., Kinter III, J. L. (1995) Geophysical data analysis and visualization using GrADS. In E.
P. Szuszczewicz & J. H. Bredekamp (Eds.), Visualization techniques in space and atmospheric
sciences (pp. 209–219). NASA,Washington, DC.

Foster, I. (July 2002). What is the Grid? A Three Point Checklist.
Foster, I. (2006). Globus toolkit version 4: Software for service-oriented systems. Journal of

Computational Science and Technology, 21, 513–520.
Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing 360-degree

compared. Proceedings of Grid Computing Environments Workshop, GCE ’08, Austin, TX.

618 R. Montella and I. Foster

Giunta, G., Laccetti, G., & Montella, R. (2008). Five dimension environmental data resource bro-
kering on computational grids and scientific clouds (pp. 81–88), APSCC, IEEE Asia-Pacific
Services Computing Conference.

Gallagher, J., Potter, N., Sgouros, T. (2004). DAP Data Model Specification DRAFT, Rev.: 1.68,
www.opendap.org. November 6, 2004.

Gallagher, J., Potter, N., West, P., Garcia, J., & Fox, P. (2006). OPeNDAP’s Server4: Building a
High Performance Data Server for the DAP Using Existing Software, AGU Meeting in San
Francisco.

Mell, P., Tim, G. (July 2009). The NIST Definition of Cloud Computing, National Institute of
Standards and Technology, Version 15. Information Technology Laboratory.

Montella, R., Agrillo, G., & Di Lauro, R. (April 2008). Abstract Instrument Framework: Java
Interface for Instrument Abstraction,” (DSA Technical Report. Napoli).

Montella, R., Agrillo, G., Mastrangelo, D., & Menna, M. (June 2008). A globus toolkit 4 based
instrument service for environmental data acquisition and distribution. Proceedings of Upgrade
Content Workshop HPDC2008. Boston, MA.

Montella, R., Giunta, G., & Riccio, A. (June 2007). Using grid computing based components in on
demand environmental data delivery. Proceedings of upgrade content Workshop HPDC2007.
Monterey Bay.

Montella, R., & Agrillo, G. (April 2009). GrADSj: A GrADS Java interface (DSA Technical
Report, Napoli).

Montella, R., & Agrillo, G. (June 2009). Abstract Execution Framework: Java Interface for Out of
the Process Execution, (DSA Technical Report, Napoli).

Rew, R. K., & Davis, G. P. (July 1990). NetCDF: An interface for scientific data access. IEEE
Computer Graphics and Applications, 10(4), 76–82.

Sotomayor, B., Keahey, K., & Foster, I. (June 2008). Combining batch execution and leasing
using virtual machines. ACM/IEEE International Symposium on High Performance Distributed
Computing 2008 (HPDC 2008), Boston, MA.

Wielgosz, J. & Doty, J. A. B. (2003). The Grads-Dods Server: An Open-Source Tool for Distributed
Data Access and Analysis, 19th International Conference on Interactive Information and
Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology.

Wielgosz, J. (2004). Anagram – A modular java framework for high-performance scientific data
servers. 20th International Conference on Interactive Information and Processing Systems
(IIPS) for Meteorology, Oceanography, and Hydrology.

Index

A
Abstract execution framework (AEF), 607
Abstract instrument framework (AIF), 484
Abstraction, 50–54, 77, 88, 92, 188, 191–192,

202–203, 224–225, 245, 256, 328,
368–369, 372, 374, 379, 381, 392,
403, 485, 540, 548, 576, 584–585,
599, 616

Academic cluster computing initiative
(ACCI), 523

Access control list, 143
Access times, 138, 141, 522
Accredited Standards Committee, 559
Adaptative resource allocation (ARA),

371–372
Ad-hoc queries, 98–99
Admission and bidding controller

(ABC), 416
Admission discharge and transfers

(ADT), 559
Agent communication language

(ACL), 178
AGWL, 328
AIX, 29, 43
AJAX, 22, 459, 576
Algorithm

linear algebra, 495, 500
multi-objective genetic (MOGA), 409
optimization, 385, 400
parallelization, 226, 364
random, 291, 293
random-proportional, 290, 293
resource brokering, 478
round-robin, 290, 297

Always writable, 520
Amazon Elastic MapReduce, 100, 125,

544, 547
Amazon family, 348–352

Animoto, 351

HeroKu, 351
RightScale, 351–352
SmugMug, 352

Amazon machine image (AMI), 341, 459, 548
Amazon web services (AWS), 50, 142–143,

200, 274, 335, 342, 346, 351–352,
517, 525, 613

Amazon web service simulator (AWSS), 613
Analytics, 100, 245–247, 272, 283, 296,

446–447, 449
Analytic server (AS), 279, 281
Android, 461
Animoto software, 352
Ant colony optimization (ACO), 161
Apache Hadoop, see Hadoop
Apache web servers, 445
AppEngine, 22
Application-as-a-service (AaaS), 67, 258
Application cluster, 570
Application-level scheduling (AppLeS), 163
Application programming interface (API), 347,

456, 479
Application scalability, 369, 567
Application software, automation of, 29
Application-to-application integration, 77
AppNexus, 517
Artificial intelligence (AI), 247, 445
ASKALON, 327–328
Astrophysical cosmological simulation, 525
Astrophysical data analysis, 524–525
Astrophysics, 309, 316
AT&T, 35, 517
Atmospheric infrared sounder

(AIRS), 386, 403
Autonomic cloudburst, 202
Autonomic computing, 201–202, 575
Availability zone, 274, 497, 499, 507
Average performance, 495, 502, 512
Avro, 95, 98

B. Furht, A. Escalante (eds.), Handbook of Cloud Computing,
DOI 10.1007/978-1-4419-6524-0, C© Springer Science+Business Media, LLC 2010

619

620 Index

AWS, see Amazon web services (AWS)
Azure, 22, 153–156, 191, 200, 274, 335,

343–345, 520, 577
accessing data, 155
consistency and guarantees, 155
data placement, 155
failure, 154–155
replication, 154
security, 155–156

B
Backfilling, 203
Basic execution service (BES), 187
Basic linear algebra subroutines (BLAS), 499
Basic local alignment search tool

(BLAST), 544
Batch queue system, 518
BEA algorithm, 323
Beowulf Linux, 31
Berkeley orders of magnitude (BOOM), 369
Bidding function, 417–419
Bi-directional mirroring, 465
BigTable, 94, 98, 150–153, 383, 519–520,

522, 527
accessing data, 152
consistency and guarantees, 152
data integrity, 152
data placement, 153
failures, 151–152
metadata, 153
replication, 151
security, 153

Bit-flips, 138
BitTorrent, 143, 587, 599
BladeCenterTM chassis Management, 268
BladeCenter cluster, 266
Blade server, 272
BLOB, 154–155
Blocking operator, 224, 227–229
Blogospheres, 441
Blogs, 439, 441
Blue cloud, 45, 220, 576
BOINC volunteer computing, 326
Boxwood project, 521–522
BPEL4WS, 305
Broadband internet, 65
Broadcast algorithm (BFACT), 499
B+tree structure, 103
Building-block component, 278
Built-in cache, 528
Business architecture development, 27
Business enterprise organisation, 240–242
Business process execution language (BPEL),

168, 195

C
C++, see Visual C++
CACM model, 408–410, 412–415, 417,

424–425, 430–432
Candidate processor set, 227–228
CAP theorem, 139, 156
Care delivery organization (CDO), 553
Cassandra, 520
Centralised management, 310
Chaining, 379, 401
Chatting, 464
Checksum, 138, 149
Chord, 522
Chromosome representation, 286–287
Chubby, 150–152, 369
Chukwa, 95, 98
Chunk server, 94, 147–150
Cisco, 71, 79, 270, 279, 282
ClassAd query, 477, 486
Clinical information system (CIS), 558
Cloud-as-a-Service, 257–258
Cloud-based projects, 543
CloudBLAST, 544
Cloudbus project, 326–327
Cloud cartography, 53
Cloud cell, 78
Cloud computing

architecture, 10
architecture, 41
basics of, 185–186
benefits, 336–337
business benefits for, 66
challenges, 3, 17–18

bandwidth cost, 18
control, 18
performance, 17
privacy, 17–18
reliability, 18
security, 17–18

defined, 3
examples in large enterprises, 17
features, 11–13

security, 12–13
standards, 11–12

in Future, 17–19
interaction models of, 186–188
interoperability forum, 207
key technologies used, 24
layered architecture, 5
layers of, 4–7
methodology overview, 26
platforms, 3, 13–15, 517

components and vendors, 15

Index 621

elements comprising, 15
key players in, 13
pricing, 13–15

rise of, 256
security, 24–25
tactics planning phase, 27
types of, 7
use of, 32–45

internet data center (IDC), 32–38
multiple data centers, 42–45
software parks, 38–40
SaaS, 45

value analysis, 25
Cloud computing, vs. cloud services, 8
Cloud deployment, 49, 77, 81, 597
Cloud deployment models and network, 66–73

hybrid cloud, 68–69
network architectures overview, 69–73
private cloud, 67–68
public cloud, 67

Cloud-enabling network, 66, 81
Cloudera, 125, 545
Cloud@Home, 575–593

aims and goals, 580–582
application scenarios, 582–584
goals of, 580
interoperability, 580
overview, 584–593

basic architecture, 585
frontend layer, 585–586
issues, challenges and open

problems, 584
management subsystem, 588–590
physical layer, 587–588
resource subsystem, 590–593
virtual layer, 586–587

security, 582
Cloud-in-a-box, 78–79
Cloud market, 348, 408–409, 412, 431
Cloud model application methodology, 25
Cloud monitor, 221, 223
Cloud scalability automation problem, 372
Cloud scheduler, 162
Cloud security, recommendations, 25
Cloud services, 3, 5–6, 8, 10, 13, 65–69,

71–74, 76–77, 79, 81, 84, 161, 255,
275, 310–311, 318, 344, 351, 375,
411, 540, 544, 546, 596–597,
609, 615

categories of, 5–6
cloud roles, 339–340
Platform, 410–412

CloudSim, 210, 326–327

Cloud types, 337–339
community, 339
hybrid, 339
private, 338
public, 337–338

CloudWatch, 191, 200, 202, 340
CloudWeaver, 219–222, 224

architecture of, 222
components, 222–224

cloud monitor, 223
generic cloud, 223–224
workload manager, 222

Cloud workflow, 309–314, 318–321, 323–324,
326–327, 329

Clustering, 323, 362, 389–390, 523, 537,
565, 568

Clustering algorithm, 323
Code profiling, 164
Collaborating agent (CA), 415–416
Combinatorial auction based cloud market

(CACM), 412–420
additional components, 414–415

admission and bidding controller
(ABC), 414

collaborating agent (CA), 415
collaborator selection controller

(CSC), 415
information repository (IR), 415
mediator (MR), 415
policy repository (PR), 415
price setting controller (PSC), 414
service registry (SR), 415

DC platform, 415–417
market architecture, 412–414
system model for auction, 417–420

Combiner function, 93, 97
Commercial cloud computing, 274
Commoditisation, 240
Commodity grid kit (CoG), 192
Commodity hardware, 96, 138
Community authorization service

(CAS), 189, 209
Community cloud, 337, 339
Component-based architecture, 256
Computational application programming

interfaces, 458
Computational efficiency, 493, 495, 514
Computational node image, 267
Computation as a Service (CaaS), 340
Computation capability, 537
Computer algebra system (CAS), 164
Computing cloud layout, 249
Computing grid, 476, 483

622 Index

Computing model application, 25–28
deployment phase, 27–28
strategy planning phase, 25–26
tactics planning phase, 27

Computing resources, automation of, 29
Conflict management, 529
Congestion, 75, 591, 610
Consistency, 139, 141, 370, 567
Content delivery network (CDN), 343
Control-theory, 371
Core transparency, 73
CPU utilization, 22, 199–200
CrossBow, 544
CROWN grid toolkit 2.5, 316
Cryptography, 328, 587
Customer relationship management (CRM),

56, 75, 240, 347
Customizability, 579

D
DAG, see Directed acyclic graph (DAG)
Daisy-chain internal chassis switches, 270
Dali server, 103–104
DAP format-specific software, 480
Data analysis and simulation, 519
Data analytics supercomputer (DAS), 83,

100–101, 482
Data as a Service (DaaS), 340
Database server (DB), 279, 281
Data center interconnect network (DCIN), 69,

72, 74, 79–81
Data center network (DCN), 65, 69–71, 74,

79–81
Data cloud capabilities, 526–529

database issues, 529
fault tolerance, 526
gap analysis, 526–529

distributed database, 529
fault tolerance, 526
impedance mismatch, 526
object oriented model, 527
performance optimization, 528
real-time data, 528
security and privacy, 529

legacy software, 527–528
scientific data format, 526–527

Data cloud technologies, 519–522
BigTable, 519
Cassandra, 520
Dryad, 520
Google Application Engine, 520
Google File System, 519
Map-Reduce, 519

Peta-scale datasets, 519
Pig, 520
Zookeeper, 520

Data corruption, 138, 141, 145, 157, 370, 518
Data delivery engine, 101–102
Dataflow graph processing model, see Dryad
Data gap, 86
Data grids, 88–89, 196, 476, 479, 517
Data hosting, 518, 613, 617
Data-intensive application, 17–18, 40, 85, 87,

89, 94, 105, 108–109, 111, 126,
195, 326–327, 476

Data-intensive computing, 83–91, 94,
100–101, 109–110, 125–126,
133, 522

challenges of, 83
characteristics, 88–89
cloud computing, 90–91
grid computing, 89–90
processing approach, 87–88

Data-intensive system architecture, 91–109
ECL, 105–109
Hadoop, 95–100
HPCC, 100–105
MapReduce, 92–95

Datalinks, 471
Data locality optimization, 97
Data management and security management,

311, 321
Data management issues, 518–519
Data refinery, 101
Data replication, 152, 196–197, 314,

323–324, 596
Data-Storage-as-a-Service (dSaaS), 5
Data storage on elastic resources, 597–605

Amazon cloud services, 598–599
elastic block store (EBS), 599
elastic compute cloud (EC2), 598
simple storage service (S3), 598

multidimensional environmental data
standard file format, 599–600

NetCDF Java interface to S3, 603–605
S3 APIs enhancing, 600–602

Data summarization, 98
Daytona, 109–110
DB2 Parallel Edition, 522
DBMS, 220, 283, 296, 525
Decentralized agent based solution, 169
Decision support system (DSS), 448
Declarative query, 520
De-duplication, 99, 112
Default index service, 478
Deficit Reduction Act, 556

Index 623

Desktop as a Service, 346
Development-platform-as-a-service, 67
DICOM, see Digital image communication in

medicine (DICOM)
Different provisioning technique, 203
Digital certificates, 168
Digital image communication in medicine

(DICOM), 554, 556–557, 559–560,
562–563, 565, 568

Digital solidarity, 472–473
Digitized experimental equipment, 528
Dijkstra’s algorithm, 305
DIKW Hierarchy, 438
Directed acyclic graph (DAG), 221, 224–225,

228, 232, 234, 382, 385, 388,
391, 394

Distinguished Names (DNs), 208
Distributed agent based scheduling, 169–179

negotiation, 173–177
communication language, 174
participation rules, 174
phase, 176
process, 177
protocol, 176
scheduling heuristics, 176

platform, 169–174
communication, 171
execution, 171
scheduling, 172
service discovery, 171

prototype implementation, 178–179
authentication and authorization, 178
JADE, 178
MinQL, 179
OSyRIS, 178

Distributed computing (DC), 159, 188, 310
Distributed file system, 112, 382
Distributed hash table (DHT), 522
Distributed key-value store, 520
Distributed locking, 195, 521
Distributed Management Task Force (DMTF),

80, 187
Distributed oceanographic data system

(DODS), 596
DMECT, 176–179
DNAs, 536
Dropbox, 343
Dryad, 224, 379–382, 384–386, 388, 391–392,

394, 403, 520, 525
DryadLINQ, 91, 520, 525
DS scheduling, 161–163
Dynamically scalable architecture, 565–571
Dynamic collaboration, 410

Dynamo, 143–147, 153
accessing data, 145
checkpointing, 144
consistency and guarantee, 146
data integrity, 145–146
data placement, 146–147
failure, 145
hash ring, 144
metadata, 146
replication, 144–145
security, 147

Dyno, 352

E
Earth remote sensing, 524
Earth system grid (ESG), 595
eBay, 21
e-Business, 41, 328
EC2, see Elastic compute cloud (EC2)
ECL, 100–113, 125–126, 133

key benefits of, 108–109
Eclipse, 106, 113, 178
ECLWatch, 113
e-commerce, 21, 56, 156, 252, 363
Economic crises, 28
Economic denial of sustainability (EDoS)

attacks, 368
Edge computing, 575
Efficiency scaling, 508
eFlow, 305
EKC, 239
Elastic block service, 521, 525
Elastic block store, 459, 461, 599
Elastic compute cloud (EC2), 50, 66, 68, 84,

100, 125, 156, 186, 220, 273–274,
340–341, 346, 348, 352, 453, 457,
459, 463, 472–473, 495–500, 502,
506, 514, 521, 536, 542, 547,
576, 598–599, 608–610, 612–613,
615–616

Elastic MapReduce, 84, 547
Elastic-R, 454–473

Ajax, 454
computational back-ends scalability,

467–468
computing environment, 464
computing toolkit, 466–467
data deluge, 463–464
distributed computing made easy, 468–469
extensions, 471–472
gap bridging between scientific computing,

465–466
gap bridging between scientific

environment, 465–466

624 Index

Elastic-R (cont.)
gap bridging between workflow

workbenches, 465–466
on-demand infrastructure, 463
plug-ins, 469–470
science gateways made easy, 465
security architecture, 468
spreadsheets, 470–471
extensions, 471–472

e-Learning, 473
Electronic medical records (EMR), 558
Email cloud, 68
Enabling technologies, 9–11

mashup, 10–11
service flow and workflows, 10
service oriented architecture, 10
virtualization, 9
web 2.0, 10–11

Encryption, 73, 325, 563
Encryption technology, 315
End point reference (EPR), 478, 608
End-to-end loop prevention, 72
End-user negotiation, 589
Enterprise architecture, 242–244
Enterprise computing cloud, 248–249
Enterprise data control language, 100–101
Enterprise Java beans application, 365
Enterprise knowledge architecture,

247–248
Enterprise knowledge cloud technologies,

250–252
automation, 250
scheduling, 250
virtualisation, 250

Enterprise knowledge management, 244–247,
252, 437–444, 450–452

See also Knowledge management
Enterprise management analytics, 245
Enterprise resources plan, 43
Error recovery, 145, 152, 382
e-Science, 195, 328, 453, 456, 463
Ethernet, 78
ETL, 101, 109, 125, 133, 220
Eucalyptus, 189–190, 209, 274, 460,

496, 549
European Network and Information Security

Agency (ENISA), 157
Event-condition-action rules, 448
Exchange server, 6
Extensible markup language (XML), 102, 108,

113, 194–195, 199, 305, 548, 558,
562–563, 603

Extremely large databases (XLDB), 524

F
Fabric extender, 71
Facebook, 91, 125, 347, 352, 520
Fault domain, 154–155
Fault tolerance, 94, 277–279, 304, 306, 327,

379, 383, 392, 403, 518, 520, 529,
558, 565

Feedback-based scheduling, 305
FileFetcher, 327
FileStager, 327
Filtering, 6, 99, 106, 526, 564–565
Firewall, 12, 18, 57, 67, 75, 77, 79, 339, 563
FITS, 526
Five dimension data distribution service

(FDDDS), 476–478, 480–483,
486–491, 597

Flow component, 316
Flow language, 99, 305, 520
Folksonomies, 439, 451
FORTRAN, 458
FOSS community, 472
Foundation for intelligent physical agents

(FIPA), 178
FTP, 196, 459
Functionality and qualities, 56

G
GAE, see Google App Engine
Games development, 41
Game theory, 163, 174, 432
Gaussian distribution, 294, 296–297, 299
GenBank, 525
Gene mapping, 536
Genetic algorithm, 164, 284–285, 290,

409, 423
Geo grid services (GGS), 489–490
GEON LiDAR, 523
GEON Workflow, 523
Geo-potential height (GpH), 487–488
Geo-referenced matrix, 485
Geo-reprojection, 386–388, 391
George Mason University (GMU), 259
GFLOP, 495, 498, 510–512
GFS, see Google file system (GFS)
Global access to secondary storage

(GASS), 197
Global grid forum (GGF), 196
Globus monitoring and discovery system

(MDS), 199
Globus replica catalog, 196
Globus resource access and monitoring

(GRAM), 197

Index 625

Globus toolkit, 194, 197, 206, 316–317,
476, 478–479, 485, 490–491, 517,
596, 605

GMIS root certificate authority, 569
GoGrid, 340–342, 351, 517
Google analytics, 150
Google App Engine, 67, 161, 191, 200, 209,

220, 335, 343–344, 520, 536
Google Earth, 94, 150, 152, 528
Google file system (GFS), 94, 97, 147–150,

364, 369, 519
checkpointing, 147
consistency and guarantees, 149
data access, 148
data integrity, 149
data placement, 149–150
failures, 148
metadata, 149
replication, 148
security scheme, 150

Google MapReduce, 92–95
Google maps, 11
Gossip-based protocol, 145
GrADS, see Grid analysis and display system

(GrADS)
Grads data distribution service (GDDS), 476,

478, 480, 482, 597
3D Graphical rendering, 528
Graphical user interface (GUI), 380, 456
GraySort, 109
GrayWulf, 522–523
Greedy algorithm, 291, 293, 296, 299
Green computing, 575
Grid analysis and display system (GrADS),

327, 479–482, 597, 605–606, 609
Grid application, implementation of, 488–490
Grid application prototype (GAP), 328
Grid brokering systems, 203
Gridbus, 327
Grid computing, 3–4, 68, 89–90, 159, 183–185,

187, 192–197, 202–204, 206–207,
211–213, 256, 309–310, 312, 316,
326–328, 339, 475, 487, 517, 535,
537–538, 542, 546, 575, 579,
596, 598

autonomic computing, 201–202
basics of, 185
data management, 195–197
interaction models, 186–188
interoperability, 204–207

DEISA, 204
EGEE, 204
GridWay, 205

GridX1, 204
HPC-Europa, 204
InterGrid, 205
koala grid scheduler, 205
Latin American grid

meta-brokering, 205
PRACE, 204
TeraGrid, 204
VIOLA MetaScheduling, 206

layered models in, 188–193
API programming, 191–193
applications, 193
infrastructure, 189–191
physical resources, 191
platform, 191–193

modeling and Simulation, 210–211
GangSim, 210
GridSim, 210

monitoring, 197–200
scheduling, metascheduling, and resource

provisioning, 202–204
security and user management, 207–209

MyProxy, 208
public key infrastructure (PKI), 207
SSL/TLS, 207
X.509 proxy certificates, 208

service orientation and web services,
194–195

Gridded Binary (GriB), 596
GridFlow, 327–328
GridFTP, 190, 196–197, 327, 476, 482,

608, 615
Grid hybridization, 605–610

NetCDF architecture, 605–608
NetCDF deployment, 608–610

Grid job, 457, 463
Grid load balancing, 162
Grid monitoring, 197–198

Amazon CloudWatch, 200
architecture, 198
Azure diagnostic monitor, 200
Ganglia, 199
hyperic CloudStatus, 200
Mercury, 199
MonALISA, 199
network weather service (NWS), 199
Nimsoft monitoring solution, 200
OCM-G, 199
OpenNebula information manager, 200

Grid resource broker, 203, 327, 589
Grid security infrastructure (GSI), 207–208
Grid service developer, 365
GridSim, 210, 327

626 Index

Grid-SOAP, 168
GridSuperscalar, 192
GridTrust, 328
GripFTP, 196
Groovy interpreter, 465
Groupware, 439
Grunt, 113

H
Hadoop, 83, 90–91, 95–106, 109–113,

125–126, 133, 197, 219–222, 224,
227, 234–235, 267, 317, 343, 383,
520, 524–525, 544–546

Hadoop vs. HPCC, 109–126
architecture comparison, 125–126
pig vs. ECL, 111–124
terabyte sort benchmark, 109–111

Hardware-as-a-Service (HaaS), 257–258
Hardware calibration, 524
HBase, 95, 98, 102, 104, 125, 520
HDFS, 95, 97–98, 100, 103, 112, 221, 383, 520
Head-to-head comparison, 109
Health Insurance Portability and Account-

ability Act (HIPAA), 76, 553, 557,
559–561

Health language seven (HL7), 557
HeroKu, 352
Higher level services, 258
High-performance computing (HPC), 30–32,

100, 161, 188, 199, 202–203,
255, 257–261, 264–275, 465, 470,
493–496, 508, 523

High-performance computing cluster (HPCC),
30–32, 83, 87, 90, 100–102,
104–106, 109–113, 125–126, 133

Hive, 95, 98, 102, 104, 125, 520
Horizontal balancing, 296–297
Horizontal scaling, 358
Hospital information management systems

society (HIMSS), 557
Hospital information system (HIS), 558
HPC, see High-performance computing (HPC)
HPCC, see High-performance computing

cluster (HPCC)
HPL, Overview of, 499

block size (NB), 499
broadcast algorithm (BFACT), 499
process grid, 499

HP Labs, 18
HTTP proxy services, 565
Hybrid cloud, 7, 18–19, 49–50, 65–69, 73–81,

337–339, 542, 549, 581, 605
bandwidth, 75–76

challenging requirements, 74
latency, 75–76
network architecture, 77–80

cloud-in-a-box, 78–79
data center network and data center

interconnect network, 80
functional view of, 78
management of the network

architecture, 80
network service node, 79–80

resiliency, 76–77
scale, 75–76
security, 76–77
service management, 76–77
virtualization, automation and standards,

74–75
Hybrid hosting, 342
Hypervisor, 71, 78–80, 262, 341, 460, 540,

546, 576, 586–587, 590–591
Hyrax OpenDap server, 490

I
I/O tagging, 59–60
IaaS, see Infrastructure-as-a-Service (IaaS)
IBM DB2, 521
IBM Lotus Foundation, 45
IBM WebSphere, 45
IDC, see Internet data centers (IDC)
IDL, 482, 525
Image patches, 520
Impedance mismatch, 526
Imperative programming, 88, 112, 520
Independent software vendor (SV),

21, 548
InfiniBand, 272
Infiniband interconnected nodes, 266
Information explosion, 83, 86, 126
Information extraction, 109
Information infrastructure, 62
Information retrieval, 109
Infrastructure-as-a-Service (IaaS), 5, 21–23,

25, 35–36, 67, 84, 90–91, 95, 160,
184, 188, 194, 200, 206, 209, 258,
320, 337, 339–343, 346, 351, 359,
366–368, 371–372, 374–375, 414,
453, 456–457, 460–462, 539, 549

EC2, 340
GoGrid, 340–342
rackspace cloud, 343
simple storage service (S3), 342–343

Input/output service provider (IOSP), 603
Integrated development environment (IDE), 5,

79, 106, 109, 113

Index 627

Integrating healthcare enterprise (IHE), 557
Intel, 18, 110, 185, 266, 497–498, 501
Intelligent monitoring, 34
Interactive data language, 525
Intercloud, 77
Intergovernmental Panel on Climate Change

(IPCC), 596
Intermediate data dependency graph

(IDG), 323
International Grid Trust Federation

(IGTF), 328
Internet computing, 575
Internet data centers (IDC), 13, 24, 32–37, 86
Internet Engineering Task Force (IETF), 562
Internet protocol security (IPSEC), 565
Internode scaling, 506–514

HPL average evaluation, 512–514
HPL minimum evaluation, 507–512

Interoperability, 75, 80, 187–188, 194,
197–198, 204–206, 211–212, 410,
456, 547–548, 550, 556, 580,
582–583, 585, 593

Intra-cloud, 77, 598, 610
Intranode scaling, 499–505

DGEMM single node, 500–504
HPL single node, 504–505

Intrusion detection, 12–13, 133, 570
iPhone, 461
IP networking, 81
ISO27001 security standard, 37
ITaaS, 21–22
iTunes, 5

J
JADE, 178
Java, Elastic-R, 454, 459, 461, 470
Java API, 98, 600, 602–603, 616
Java code, 111
Java Virtual Machine, 465, 471
Jitter, 301
Job execution algorithm, 227
Job flow description language, 487
Job flow scheduler service (JFSS), 487
Job submission description language (JSDL),

187, 190
Jobtracker, 96
Just-in-time scalability, 368
JXTA, 316–317

K
Karajan, 327
Kepler, 327
K-means algorithm, 323
K-means clustering, 389–392

Knowledge-as-a-service, 441
Knowledge base management system

(KBMS), 440
Knowledge clouds (KC), 240
Knowledge consumers, 442
Knowledge management, 244, 437–452

application, 442
grids, 451
intelligent enterprise, 449–450
IT enterprise, 443–449

business intelligence and analytics,
446–447

decision making, 447–449
monitoring, tuning and automation,

445–446
problem solving, 444

knowledge content, 441
knowledge users, 442

Knowledge mart, 248
Knowledge providers, 442
Knowledge warehouse, 248

L
Language integrated query (LINQ), 520
Large hadron collider (LHC), 137, 212,

517–518
Largest job first (LJF), 203
Last-level cache (LLC), 343, 503–505
Latency, 17, 71, 75–76, 102, 142, 144–145,

147, 149–150, 152, 155, 184,
196, 198–199, 266–267, 272–274,
305–306, 361, 364, 383, 450, 494,
528–529

Latent semantic indices, 478
Layer-3 peering routing, 71
LexisNexis, 83, 86–87, 90–91, 100–105, 110,

125–126, 133
Linux, 29, 31, 94, 96–97, 100, 103, 260,

263–265, 267, 271–272, 290, 316,
362, 458, 497–498, 545–547, 565,
612

Literal virtualization, 56
LLC, see Last-level cache (LLC)
Load balancing, 104
Load distribution, 161, 277–282, 303–304, 306
LoadLeveler, 190
Load management, 310
Load profile-based model, 375
Load scalability, 357
Local waiting time (LWT), 176
Long Tail, 34–35, 579
Lossless accelerated presentation layer,

563–564

628 Index

M
Managed job factory, 478
Map phase, 92
Mapping information, 11
MapReduce, 83, 90–101, 104, 106, 111–113,

125–126, 133, 150, 221, 223,
233–234, 379–384, 386–388, 390,
392–394, 403, 520, 525, 544–545,
547

Map-Reduce-Merge, 384
Map task processing, 103
Market-oriented business model, 310
Mashup, 10–11, 22–24, 439
Mash-up language, 451
Master server see Jobtracker
Matlab, 458, 462, 465, 472, 482
MAXLENGTH, 113
Medical informatics network tool

(MTNL), 557
Medical information system, 553, 555–557,

559, 561, 565, 567
Medical messages interfacing, 561–563
Medical standards, 559–561

accuracy, availability and accessibility, 561
digital imaging and communication, 560
disaster recovery, 560
government compliance, 561
health insurance portability and

accountability, 560
health language 7, 559
integration, 561
patient safety, 560

Medicare Prescription Drug Improvement and
Modernization Act (MMA), 556

Message passing interface (MPI), 192, 269
Meta-brokering, 204–205
Metadata, 55, 59, 61, 94, 97–98, 103, 138,

142–143, 145–147, 149, 152–152,
196, 263, 272, 305, 323, 342,
345, 347–348, 476, 479, 481–482,
485–486, 490, 527, 593, 595, 598,
603, 606–607

Meta-scheduler, 162, 166–167, 171, 179, 203,
205, 210

MetGrid service (MGS), 489
Metropolitan area network (MAN), 70
Microsoft exchange hosted services, 6
Microsoft live mesh, 161
Microsoft SQL server, 521, 523
MinQL, 179
MOGA-IC, 409–410, 415, 423–425,

427–430, 432
MOGA technique, 109, 422

Mosso, 343
MPLS technology, 37
Multi-agent system (MAS), 169, 179
Multidimensional environmental data,

595–596
Multi-objective (MO) optimization model,

408, 421
Multiple jobs scheduling, 232
Multiple Thor cluster, 102
Multi-stage complex analysis tools, 479
Multi-tenancy, 22–24, 60, 345, 347, 496–497
Multithreading processor, 233
MV-to-VM compromise, 12
MyDB, 523
Myrinet, 272

N
Namenode, 97–98, 102, 221
Natural language processing (NLP), 106, 108
N-body shop, 524–525
N-body tree code, 524
NCBI, 519, 525, 542
NC State University Cloud Computing,

257–261
N-dimensional arrays, 526
NetCDF, 479–481, 483–486, 526, 594–596,

597–598, 602–611, 614–615
Netscape, 328
Network architecture, management of, 80
Network attached storage, 363
Networked service (XaaS), 366
Network monitoring tool, 12
3G network, 37–38
Network service node, 79–80
NexRed doppler radar, 528
Nimbus, 195, 326, 460, 496–497, 577, 581
Non-functional need, 27
Normalized Root Mean Square error

(nRMSd), 488
Ntropy, 525

O
Object management group (OMG), 80
Olympics, 35
One-time password (OTP), 562
On-site data management, 156
Open Cloud Computing Interface Working

Group (OCCI-WG), 188
OpenDAP, 476, 479
Open Grid Forum (OGF), 90, 187, 194,

198–199, 206, 209, 549
Open grid services architecture (OGSA),

194, 196
Open grid services infrastructure (OGSI), 194

Index 629

OpenNebula, 189–190, 200, 202, 207,
460, 549

OpenOffice, 458, 465, 472
Open Science, 453–473
Open virtualization format (OVF), 55, 58, 582
Operational knowledge store, 248
Operation management platform, 41
Optical astronomy, 524
Optimization technique, 289–290, 370
Orchestration of resources, 22
OSyRIS, 177–178
Outsourcing software, 41–42
OWL, 396

P
PaaS, see Platform-as-a-Service (PaaS)
Pan-STARR, 517, 522–523
Parallel computing, 310
Parallel database, 232–233

Aster, 234
GAMMA, Bubba, PRISMA/DB, 232
GreenPlum, 234
Hadoop, 234
MapReduce, 233

Parallel data discovery, 527
Parallelism, 84–85, 90, 108, 111, 220,

223–224, 228, 232, 234, 303, 358,
372, 375, 385, 498, 535, 538,
540, 577

inter-operator, 232
intra-operator, 225, 232–233

Parallelization, 85, 224, 226, 361, 364, 369,
536, 542

Parallelized query, optimization of, 233
Parallel processing, 84–85
Paravirtualization, 475
Pareto front, 422, 427
Pareto-optimal, 415–416, 422, 427–430
PARSE operation, 108
Partition-tolerance, 139
Partner selection, model for, 420–423

MO optimization problem, 421
multi-objective genetic algorithm, 421–423
problem, 420–422

Partner selection problem (PSP), 410
Pastry, 522
Patient health record (PHR), 552–557
PATTERN, 106, 108
Paxos, 150
Pay-as-you-go, 69, 86, 90, 184, 274,

336–337, 544
Payoff function, 419
Pay-per-actual-use model, 366–367

Pay-per-use model, 274, 357, 576
PCI-type backplane, 78
Peer-coupled node, 103
Peer repository, 317
Peer-to-peer (p2p), 54, 305, 309, 311, 315–317,

319, 328–329
Performance evaluation, 608–613

NetCDF service, 611–613
S3- and EBS-Enabled NetCDF Java

interfaces, 609–611
S3-enhanced Java interface, 610–611

Performance monitoring tool, 198, 402
Perl, 458, 460, 467, 525
Picture archiving and communication system

(PACS), 557
Pig, 95, 99–100, 102, 104–105, 111–113,

125–126, 235, 520, 524–525
PigMix, 99–100
Pig vs. ECL, 111–124
Platform-as-a-Service (PaaS), 5–6, 22–23, 25,

84, 90–91, 95, 105, 133, 159, 184,
188, 191–192, 194, 200, 209, 258,
337, 339, 343–346, 351–352, 359,
366, 368–369, 372,
374–375, 539

App Engine, 343–344
Azure, 344–345
Force.com, 343–344

Platforms for Collaboration (PfC), 316
Plug-and-play, 34
2-point crossover, 287
Policy-based deployment, 59, 61
Policy-based management, 53, 57–62
Policy compliance, 60–63
Policy management authorities (PMAs), 328
Private cloud, 7, 18, 48–52, 54–55, 57, 59–61,

65–69, 73, 75–76, 78, 84, 100, 105,
133, 249, 251, 337–339, 437, 460,
540, 545–547

See also Public cloud
Problem resolution rate (PRR), 448
Problem resolution time (PRT), 448
Procedural programming, 520
Process definition language, see AGWL
Processor/tasks mapping, 226
Process repository and task repository, 317
Prototype-test-deploy cycle, 250
Provenance, 197, 263–264, 323, 396, 523–524
Provisioning model, 366
Proxy certificate, see X.509 certificate
Pseudocode, 285, 383, 387–388,

390–391, 395

630 Index

Public cloud, 7, 49–52, 60, 63, 65, 67–69, 71,
73, 75–77, 81, 84, 95, 133, 249,
251, 337, 339, 437, 456, 472, 490,
545–548

Public data sets, 525
Public internet, 69, 71, 81
Public key infrastructure (PKI), 143, 207, 561,

567–568, 584–585, 587
Pulsar searching, 309, 312–313
Purely random algorithm, 290

Q
Quality of experience, 75
Quality of Services (QoS), 11, 27, 203–204,

206, 280, 282, 303–305, 310,
313–315, 319–322, 324, 327,
329, 371–372, 398, 400–401, 574,
577–578, 580–584, 587, 591

QueryBuilder, 112
Query job, 222
Query mechanism, 198, 442, 527
Query processing, 104, 109, 125–126,

223, 233
Queue priority, 266
Queues, 102, 154, 172, 178, 231, 260, 266,

380, 603

R
R/Scilab package, 464
Rackspace, 340, 343, 517
Radio astronomy, 524
Radiological Society of North America

(RSNA), 555
Radiology information system (RIS), 556
RAID, 140–141
Random access file (RAF), 601
Rank scheduling policy, 190
Rapid Online XML Inquiry Engine see Roxie
Rational developer cloud, 22
Read-what-you-wrote consistency, 141
Ready-to-run virtual machine, 473
Real application cluster, 522
Real-time data, 528
Redhat, 45
Red shift theory, 576
Relational database management systems

(RDBMS), 565
Relational database service (RDS, 521
Reliable file transfer (RTF), 197, 476,

478–479
Remote frame buffering (RFB), 563
Remote procedure call protocol (RPC), 360
Remote sensing, 386–388, 391
R-enabled server-side spreadsheet, 454

Replica location service (RLS), 190, 197,
327–328

Request for service, 398
RESERVOIR, 206–207, 374
Reshape, 524
Resource brokering, 475–491
Resource contention, 58–59
Resource management systems (RMS), 160
Resource specification language (RSL), 190
Response variation control, 299–301
Reusability, 279
RightScale, 368
Routing, 75, 205, 268, 277–279, 281–282, 288,

290–303, 305–306, 343, 445
Roxie, 102–105
Run-time execution, 320

S
SaaS, see Software as a Service (SaaS)
Salesforce’s force.com, 191
Sarbanes Oxley (SOX), 76
Satellite remote sensing, 380, 386
Sawzall, 94–95, 99, 105, 111, 520
Scalability, 3, 11, 16, 58, 65, 87, 89–90,

104, 133, 162, 198, 234, 257, 277,
279, 309–311, 314–315, 320, 353,
357–360, 363–372, 374–375, 467,
495, 511, 525, 528, 530, 542, 555,
567, 596, 598, 610

foundations, 361–374
application scalability, 369–370
automating scalability, 370–372
client/server architectures, 360
decentralized applications, 360
grids and clouds, 364–369
mainframes, 360

warehouse-scale computers, 363–364
Scalable architecture, 125, 372–374

general cloud, 372–374
reservoir scalability, 374

Scale-out, 202
Scattering, 138
Scheduling, multi-site agent based, 162
Scheduling agent, 168, 174, 178
Scheduling algorithm, 160, 221, 223–225, 327,

497, 591
Scheduling composite service, 283–290

genetic algorithm, 284–288
online arriving request, 288–290
solution space, 283–284

Scheduling heuristics, see DMECT
Scheduling infrastructure, 94
Scheduling issues, 163–167

Index 631

internal resource scheduler, 166–167
multi-cloud environments trust, 167
negotiation between service providers,

165–166
service discovery, 164–165
task runtimes, 163–164
transfer costs, 163–164

Scheduling optimization, 172
Scheduling platform, 160, 169, 191–173, 175,

177, 179
SciDB, 518, 524, 526
Scientific computing, 379, 382, 396–403,

454–459, 495, 518, 522, 529, 535,
537–547, 549, 578

cloud architecture, 539–542
cloud-based applications, 542–544
composition, 403
discovery, 399
economical use of, 546–547
interaction capability, 458
mathematical and numerical capability, 458
monitoring, 401–403
negotiation, 399–401
orchestration capability, 458
persistence capability, 459
processing capability, 457
requirements, 396–399
tiny cloud infrastructure, 545–546

Scientific computing environment (SCE), 454
Scientific data management, 518, 528–530
Scientific data processing, stages of, 519
Scientific programming, 381–396

Dryad, 384–386
k-means clustering, 389–392
MapReduce, 382–384
remote sensing geo-reprojection, 386–389
singular value decomposition, 392–396

Scilab, 454, 458, 462, 464–465, 468–469, 472
Search heuristics, 284
Secured generalized Vickrey auction

(SGVA), 414
Secure open source initiative, 262
Secure socket layer (SSL), 562
Security-as-a-Service, 258
Security of user data, 24
Seismology, 524
Sensors, 198–201, 380, 485–486, 524, 528
Sequential data analysis language, 520
Serialization, 98, 459
Serial processing, 84
Server performance, 297–299
Service-centric perspective, 571
Service choreography, 402

Service flow, 9–10
Service industry, 38, 252
Service level agreement (SLA), 12, 28, 58–60,

76, 81, 90, 155, 202, 204, 210,
282–283, 301, 303, 305, 313, 337,
357, 400–402, 407, 411, 414, 416,
581–583, 587, 590

Service-management integration, 62–63
Service mashups, 576
Service oriented architecture (SOA), 9–11,

22–24, 63, 194–195, 248, 257,
277–279, 281, 306, 335, 456, 546,
552, 556, 559, 562, 574, 584

Service oriented atmospheric radiance
(SOAR), 380–381, 396, 398,
400–403

Service oriented computing, 310
Service oriented environment, 160, 163
Shared disks, 522
Shared-nothing architecture, 232, 522
SimpleDB, 220, 521
Simple Storage Service (S3), 66, 142, 190,

342, 523, 598
Single nucleotide polymorphism (SNP), 544
Single sign on (SSO), 347
Singular value decomposition (SVD), 392–395
Six computing paradigm, 4
SLA, see Service level agreement (SLA)
Slave servers, see Tasktracker
Slideshare, 342
Sloan digital sky survey, 525
Slugs, 352
Smallest cumulative demand first (SCDF), 203
Smallest job first (SJF), 203
SmugMug, 342, 352
SOA, see Service oriented architecture (SOA)
SOAP, 10, 104, 143, 164, 167, 172, 342, 381,

398, 402, 455, 458, 460, 464–466,
482, 484–485, 584,
586, 596

SOAPCALL, 105–106
SOAR, see Service oriented atmospheric

radiance (SOAR)
Social networking, 91, 439, 444
Software as a Service (SaaS), 5, 7, 11, 22–23,

25, 44–45, 76, 82, 159, 184, 188,
194, 200, 258, 337, 339, 346–348,
351, 359, 366, 368, 370, 373–374,
414, 539

desktop, 346
Google apps, 347
other software, 348
Salesforce, 347–348

632 Index

Software management, certification
standard of, 39

Software outsourcing, 38–40, 42
Software Park, 21, 38–40
Space scalability, 358
Spanning tree protocol (STP), 70–72
Spatial data, 525
Special Interest Group for Management of

Data (SIGMOD), 109
Spraying, 102
SQL, 91, 98, 220, 223–224, 234–235, 345,

520–522
S3RandomAccessFile (S3RAF), 603
SSTables, 150–153
Standardization activities, 188
Standard workload format (SWF), 211
Statistical computing, 453
Stochastic optimization, 289–290
Storage area network, 247
Storage master, 587, 590
Storing, 86, 94, 99, 140–141, 159, 483, 490,

527, 549, 560, 565, 592–593,
599–600, 611, 613, 617

Strategy planning, 25–26
Streaming, 97, 530
Structural operator, 526
Structural scalability, 358
Subsample, 524
Sun Grid engine, 190
Superfiles, concept of, 103
Survey telescope, 518
SVD, see Singular value decomposition (SVD)
Swinburne CS3, 316
Swinburne decentralised workflow, 311
Swinburne ESR, 316
SwinCloud, architecture of, 317
SwinDeW-C, 309, 311–312, 314–315,

317–327, 329
architecture, 317–321
components in, 321–325

data management, 323–324
QoS management, 322
security management, 324–325

overview of, 315–317
prototype, 327–326
requirement, 313–315

data management, 314
QoS management, 313–314
security management, 314–315

workflow application, 312–313
Switch virtualization, 71
SWORD, 305
Synaptic hosting, 517

Synchronization, 343, 345, 494, 565–566,
581, 589

Syntax-highlighting-enabled code editor, 458

T
Tablet, 94, 150–153, 528
Taobao, 21
Tapestry, 522
Task cancellation, 402
Task reallocation, 164–165
Task scheduling, 160–162, 169, 178–179, 233,

381, 384, 394
Tasktracker, 96, 98, 102, 221
Taverna, 327, 466
Templating, 164
Terabyte, 85, 109–111, 148, 382, 475, 611
Teragrid, 525
TeraInputFormat, 111
TeraOutputFormat, 111
Terasort, 109–111
Texas Advanced Computing Center

(TACC), 497
Thor, 101–106
TightVNC, 564–565
Time shift ensemble, 487
Time until deadline (TUD), 176–177
TIPSY, 525
TLS, see Transport layer security (TLS)
Tomcat, 564, 566
Total cost of ownership (TCO), 49, 133
Tracking usage, 140
Transactional architecture, 370
Transactional data management, 156
Transformation plan development, 27
Transport layer security (TLS), 167, 207, 209,

518, 570, 587
Twitter, 342, 347

U
Uncertain data, 524
Ungrib service (UGRBS), 489–490
Uni-chromosome mutation, 287
Unidata, 519, 528
Unified service management, 36
Universal description discovery and integration

(UDDI), 10, 165, 170
UNIX, 31, 360, 362
Utility computing, 184
Utilization efficiency, 22, 31–33

V
Validation service (VALS), 489
Value-added services, 33, 36
Value proposition, 26

Index 633

VCL cloud
access, 266–267
advantage, 274
architecture, 257, 262–268
computational/data node network,

267–268
installation, 270
internal details, 264
internal structure, 264–266
operational statistics, 273
performance and cost, 272

Vertical scaling, 358
Vinton Cerf, 86
VioCluster, 202
Virtual application, 55–61, 63
Virtual blade switch (VBS), 71
Virtual cluster, 521
Virtual computer (VC), 346
Virtual data centers and applications,

52–56
Virtual desktop infrastructure (VDI), 346
Virtual ethernet, 70–71
Virtualization, 9, 15–16, 21–22, 24, 29, 31–32,

34, 43, 50, 52–57, 61, 63, 67, 69–70,
74, 76, 79–81, 137, 158, 164, 184,
187, 193, 212, 220, 224, 256, 335,
340, 346, 359, 362–363, 365, 368,
374, 379–380, 453, 475, 485, 492,
502, 540, 546, 549, 575–576, 582,
585–586

Virtualization machine monitor (VMM), 540
Virtual machine, 16, 59, 161, 190, 192, 362,

375, 460, 465, 471, 539, 546
Virtual machine image (VMI), 539, 545–547
Virtual organization, 166, 187, 194, 207, 362,

365, 577–578
Virtual private cloud (VPC), 49–52, 54, 56–63
Virtual private network (VPN), 9, 30, 49–52,

55–56, 67, 72, 77, 268, 340,
562, 565

Virtual sprawl, 57
Visual C++, 94–97, 102, 105–106, 111–112,

290, 424, 458, 467
Visualization tool, 528
VLAN, 70, 72, 268–269
VM schedulers, 587, 590
VMWare, 264, 269, 317, 547
VMware, 78, 317, 362, 462, 473
VNetwork Distributed Switch, 79
VNTT, 45
Volunteer computing, 339, 578–582
VPC, see Virtual private cloud (VPC)
VPN, see Virtual private network (VPN)

W
WAN, 70, 73, 77, 79, 81
WCCS architecture, 31
Weather forecast, 486–488, 491
Weather research and forecast (WRF) model,

480, 483, 487, 598, 609
Web 2.0, 9–10, 22, 24, 33, 165, 184, 335, 439,

451, 574, 584, 586
Web and application server (WAS), 279, 281
Web application deployment, 16–17
Web service description language (WSDL), 10,

172, 174, 305, 546
Web service resource framework (WSRF),

195, 485
Web-SOAP, 167
WebSphere portal express, 45
Wide-area networking, 89
Wikis, 439
Windows, 31, 45, 200, 260, 263–265, 267,

344–345, 520, 523, 543
Word counting, 383
Workflow application, 312
Workflow management, 94, 311, 319–321,

326, 439, 441
Workflow scheduling, 160, 167–169, 310, 327
Workload manager (WLM), 219–221, 224–232

balancing pipelined operators, 230–231
balancing tiers, 230
dynamic parallelization, 228–230
job execution algorithm, 227–228
operator parallelization, 226–227
scheduling multiple jobs, 231–232
terminology, 225–226

Workload migration, 538
Workqueue, 95
World Wide Web Consortium (W3C), 560
WSSecurity standard, 167
Wuxi, 21, 40

X
X.509 certificate, 167, 208–209, 481
Xen, 264, 341, 473, 497, 547
xFS, 141–142

consistency and guarantees, 141–142
data access, 140–141
data placement, 142
failure model, 140
integrity, 141
metadata, 142
replication, 140
security, 142

XML, see Extensible markup language (XML)
XOR, 140

634 Index

Y
Yahoo, 11, 18, 91, 95, 99, 110–111, 125, 234,

363, 520
YAWL, 168

Z

Zip algorithm, 602

ZooKeeper, 95, 98

	Cover
	Handbook of CloudComputing
	ISBN 9781441965233
	Preface
	Contents
	Contributors
	About the Editors

	Part I: Technologies and Systems
	1 Cloud Computing Fundamentals
	1.1 Introduction
	1.1.1 Layers of Cloud Computing
	1.1.2 Types of Cloud Computing
	1.1.3 Cloud Computing Versus Cloud Services

	1.2 Enabling Technologies
	1.2.1 Virtualization
	1.2.2 Web Service and Service Oriented Architecture
	1.2.3 Service Flow and Workflows
	1.2.4 Web 2.0 and Mashup

	1.3 Cloud Computing Features
	1.3.1 Cloud Computing Standards
	1.3.2 Cloud Computing Security

	1.4 Cloud Computing Platforms
	1.4.1 Pricing
	1.4.2 Cloud Computing Components and Their Vendors

	1.5 Example of Web Application Deployment
	1.6 Cloud Computing Challenges
	1.6.1 Performance
	1.6.2 Security and Privacy
	1.6.3 Control
	1.6.4 Bandwidth Costs
	1.6.5 Reliability

	1.7 Cloud Computing in the Future
	References

	2 Cloud Computing Technologies and Applications
	2.1 Cloud Computing: IT as a Service
	2.2 Cloud Computing Security
	2.3 Cloud Computing Model Application Methodology
	2.3.1 Cloud Computing Strategy Planning Phase
	2.3.2 Cloud Computing Tactics Planning Phase
	2.3.3 Cloud Computing Deployment Phase

	2.4 Cloud Computing in Development/Test
	2.5 Cloud-Based High Performance Computing Clusters
	2.6 Use Cases of Cloud Computing
	2.6.1 Case Study: Cloud as Infrastructure for an Internet Data Center (IDC)
	2.6.1.1 The Bottleneck on IDC Development
	2.6.1.2 Cloud Computing Provides IDC with a New Infrastructure Solution
	2.6.1.3 The Value of Cloud Computing for IDC Service Providers
	2.6.1.4 The Value Brought by Cloud Computing for IDC Users
	2.6.1.5 Cloud Computing Can Make Fixed Costs Variable
	2.6.1.6 An IDC Cloud Example
	2.6.1.7 The Influence of Cloud Computing in 3G Era

	2.6.2 Case Study -- Cloud Computing for Software Parks
	2.6.2.1 Cloud Computing Architecture
	2.6.2.2 Outsourcing Software Research and Development Platform

	2.6.3 Case Study -- an Enterprise with Multiple Data Centers
	2.6.3.1 Overall Design of the Cloud Computing Platform in an Enterprise

	2.6.4 Case Study: Cloud Computing Supporting SaaS

	2.7 Conclusion

	3 Key Enabling Technologies for Virtual Private Clouds
	3.1 Introduction
	3.2 Virtual Private Clouds
	3.3 Virtual Data Centers and Applications
	3.3.1 Virtual Data Centers
	3.3.2 Virtual Applications

	3.4 Policy-Based Management
	3.4.1 Policy-Based Deployment
	3.4.2 Policy Compliance

	3.5 Service-Management Integration
	3.6 Conclusions
	References

	4 The Role of Networks in Cloud Computing
	4.1 Introduction
	4.2 Cloud Deployment Models and the Network
	4.2.1 Public Cloud
	4.2.2 Private Cloud
	4.2.3 Hybrid Cloud
	4.2.4 An Overview of Network Architectures for Clouds
	4.2.4.1 Data Center Network
	4.2.4.2 Data Center Interconnect Network

	4.3 Unique Opportunities and Requirements for Hybrid Cloud Networking
	4.3.1 Virtualization, Automation and Standards -- The Foundation
	4.3.2 Latency, Bandwidth, and Scale -- The Span
	4.3.3 Security, Resiliency, and Service Management -- The Superstructure

	4.4 Network Architecture for Hybrid Cloud Deployments
	4.4.1 Cloud-in-a-Box
	4.4.2 Network Service Node
	4.4.3 Data Center Network and Data Center Interconnect Network
	4.4.4 Management of the Network Architecture

	4.5 Conclusions and Future Directions
	References

	5 Data-Intensive Technologies for Cloud Computing
	5.1 Introduction
	5.1.1 Data-Intensive Computing Applications
	5.1.2 Data-Parallelism
	5.1.3 The ''Data Gap''

	5.2 Characteristics of Data-Intensive Computing Systems
	5.2.1 Processing Approach
	5.2.2 Common Characteristics
	5.2.3 Grid Computing
	5.2.4 Applicability to Cloud Computing

	5.3 Data-Intensive System Architectures
	5.3.1 Google MapReduce
	5.3.2 Hadoop
	5.3.3 LexisNexis HPCC
	5.3.4 ECL

	5.4 Hadoop vs. HPCC Comparison
	5.4.1 Terabyte Sort Benchmark
	5.4.2 Pig vs. ECL
	5.4.3 Architecture Comparison

	5.5 Conclusions
	References

	6 Survey of Storage and Fault Tolerance Strategies Used in Cloud Computing
	6.1 Introduction
	6.1.1 Theme 1: Voluminous Data
	6.1.2 Theme 2: Commodity Hardware
	6.1.3 Theme 3: Distributed Data
	6.1.4 Theme 4: Expect Failures
	6.1.5 Theme 5: Tune for Access by Applications
	6.1.6 Theme 6: Optimize for Dominant Usage
	6.1.7 Theme 7: Tradeoff Between Consistency and Availability

	6.2 xFS
	6.2.1 Failure Model
	6.2.2 Replication
	6.2.3 Data Access
	6.2.4 Integrity
	6.2.5 Consistency and Guarantees
	6.2.6 Metadata
	6.2.7 Data placement
	6.2.8 Security

	6.3 Amazon S3
	6.3.1 Data Access and Management
	6.3.2 Security
	6.3.3 Integrity

	6.4 Dynamo
	6.4.1 Checkpointing
	6.4.2 Replication
	6.4.3 Failures
	6.4.4 Accessing Data
	6.4.5 Data Integrity
	6.4.6 Consistency and Guarantees
	6.4.7 Metadata
	6.4.8 Data Placement
	6.4.9 Security

	6.5 Google File System
	6.5.1 Checkpointing
	6.5.2 Replication
	6.5.3 Failures
	6.5.4 Data Access
	6.5.5 Data Integrity
	6.5.6 Consistency and Guarantees
	6.5.7 Metadata
	6.5.8 Data Placement
	6.5.9 Security Scheme

	6.6 Bigtable
	6.6.1 Replication
	6.6.2 Failures
	6.6.3 Accessing Data
	6.6.4 Data Integrity
	6.6.5 Consistency and Guarantees
	6.6.6 Metadata
	6.6.7 Data Placement
	6.6.8 Security

	6.7 Microsoft Azure
	6.7.1 Replication
	6.7.2 Failure
	6.7.3 Accessing Data
	6.7.4 Consistency and Guarantees
	6.7.5 Data Placement
	6.7.6 Security

	6.8 Transactional and Analytics Debate
	6.9 Conclusions
	References

	7 Scheduling Service Oriented Workflows Inside Clouds Using an Adaptive Agent Based Approach
	7.1 Introduction
	7.2 Related Work on DS Scheduling
	7.3 Scheduling Issues Inside Service Oriented Environments
	7.3.1 Estimating Task Runtimes and Transfer Costs
	7.3.2 Service Discovery and Selection
	7.3.3 Negotiation Between Service Providers
	7.3.4 Overcoming the Internal Resource Scheduler
	7.3.5 Trust in Multi-cloud Environments

	7.4 Workflow Scheduling
	7.5 Distributed Agent Based Scheduling Platform Inside Clouds
	7.5.1 The Scheduling Platform
	7.5.2 Scheduling Through Negotiation
	7.5.3 Prototype Implementation Details

	7.6 Conclusions
	References

	8 The Role of Grid Computing Technologies in Cloud Computing
	8.1 Introduction
	8.2 Basics of Grid and Cloud Computing
	8.2.1 Basics of Grid Computing
	8.2.2 Basics of Cloud Computing
	8.2.3 Interaction Models of Grid and Cloud Computing
	8.2.4 Distributed Computing in the Grid and Cloud

	8.3 Layered Models and Usage patterns in Grid and Cloud
	8.3.1 Infrastructure
	8.3.2 Platform
	8.3.2.1 Abstraction from Physical Resources
	8.3.2.2 Programming API to Support New Services

	8.3.3 Applications

	8.4 Techniques
	8.4.1 Service Orientation and Web Services
	8.4.2 Data Management
	8.4.3 Monitoring
	8.4.4 Autonomic Computing
	8.4.5 Scheduling, Metascheduling, and Resource Provisioning
	8.4.6 Interoperability in Grids and Clouds
	8.4.7 Security and User Management
	8.4.8 Modeling and Simulation of Clouds and Grids

	8.5 Concluding Remarks
	References

	9 Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds
	9.1 Introduction
	9.2 System Overview
	9.2.1 Components
	9.2.1.1 Workload Manager
	9.2.1.2 Cloud Monitor
	9.2.1.3 Generic Cloud

	9.3 Workload Manager
	9.3.1 Terminology
	9.3.2 Operator Parallelization Status
	9.3.3 Job Execution Algorithm
	9.3.4 Dynamic Parallelization for Job Execution
	9.3.5 Balancing Pipelined Operators
	9.3.6 Balancing Tiers
	9.3.7 Scheduling Multiple Jobs

	9.4 Related Work
	9.4.1 Parallel Databases
	9.4.2 Data Processing in Cluster

	9.5 Conclusion
	References

	Part II: Architectures
	10 Enterprise Knowledge Clouds: Architecture and Technologies
	10.1 Introduction
	10.2 Business Enterprise Organisation
	10.3 Enterprise Architecture
	10.4 Enterprise Knowledge Management
	10.5 Enterprise Knowledge Architecture
	10.6 Enterprise Computing Clouds
	10.7 Enterprise Knowledge Clouds
	10.8 Enterprise Knowledge Cloud Technologies
	10.9 Conclusion: Future Intelligent Enterprise
	References

	11 Integration of High-Performance Computing into Cloud Computing Services
	11.1 Introduction
	11.2 NC State University Cloud Computing Implementation
	11.3 The VCL Cloud Architecture
	11.3.1 Internal Structure
	11.3.1.1 Storage
	11.3.1.2 Partner's Program

	11.3.2 Access
	11.3.2.1 Standard
	11.3.2.2 Special needs

	11.3.3 Computational/Data Node Network

	11.4 Integrating High-Performance Computing into the VCL Cloud Architecture
	11.5 Performance and Cost
	11.6 Summary
	References

	12 Vertical Load Distribution for Cloud Computing via Multiple Implementation Options
	12.1 Introduction
	12.2 Overview
	12.3 Scheduling Composite Services
	12.3.1 Solution Space
	12.3.2 Genetic algorithm
	12.3.2.1 Chromosome Representation of a Solution
	12.3.2.2 Chromosome Recombination
	12.3.2.3 GA Evaluation Function

	12.3.3 Handling Online Arriving Requests

	12.4 Experiments and Results
	12.4.1 Baseline Configuration Results
	12.4.2 Effect of Service Types
	12.4.3 Effect of Service Type Instances
	12.4.4 Effect of Servers (Horizontal Balancing)
	12.4.5 Effect of Server Performance
	12.4.6 Effect of Response Variation Control
	12.4.7 Effect of Routing Against Conservative SLA
	12.4.8 Summary of Experiments

	12.5 Related Work
	12.6 Conclusion
	References

	13 SwinDeW-C: A Peer-to-Peer Based Cloud Workflow System
	13.1 Introduction
	13.2 Motivation and System Requirement
	13.2.1 Large Scale Workflow Applications
	13.2.2 System Requirements
	13.2.2.1 QoS Management
	13.2.2.2 Data Management
	13.2.2.3 Security Management

	13.3 Overview of SwinDeW-G Environment
	13.4 SwinDeW-C System Architecture
	13.4.1 SwinCloud Infrastructure
	13.4.2 Architecture of SwinDeW-C
	13.4.3 Architecture of SwinDeW-C Peers

	13.5 New Components in SwinDeW-C
	13.5.1 QoS Management in SwinDeW-C
	13.5.2 Data Management in SwinDeW-C
	13.5.3 Security Management in SwinDeW-C

	13.6 SwinDeW-C System Prototype
	13.7 Related Work
	13.8 Conclusions and Feature Work
	References

	Part III: Services
	14 Cloud Types and Services
	14.1 Introduction
	14.2 Cloud Types
	14.2.1 Public Cloud
	14.2.2 Private Cloud
	14.2.3 Hybrid Cloud
	14.2.4 Community Cloud

	14.3 Cloud Services and Cloud Roles
	14.4 Infrastructure as a Service
	14.4.1 Amazon Elastic Compute Cloud (EC2)
	14.4.2 GoGrid
	14.4.3 Amazon Simple Storage Service (S3)
	14.4.4 Rackspace Cloud

	14.5 Platform as a Service
	14.5.1 Google App Engine
	14.5.2 Microsoft Azure
	14.5.3 Force.com

	14.6 Software as a Service
	14.6.1 Desktop as a Service
	14.6.2 Google Apps
	14.6.3 Salesforce
	14.6.4 Other Software as Service Examples

	14.7 The Amazon Family
	14.7.1 RightScale: IaaS Based on AWS
	14.7.2 HeroKu: Platform as a Service Using Amazon Web Service
	14.7.3 Animoto Software as Service Using AWS
	14.7.4 SmugMug Software as Service Using AWS

	14.8 Conclusion
	References

	15 Service Scalability Over the Cloud
	15.1 Introduction
	15.2 Foundations
	15.2.1 History on Enterprise IT Services
	15.2.2 Warehouse-Scale Computers
	15.2.3 Grids and Clouds
	15.2.4 Application Scalability
	15.2.5 Automating Scalability

	15.3 Scalable Architectures
	15.3.1 General Cloud Architectures for Scaling
	15.3.2 A Paradigmatic Example: Reservoir Scalability

	15.4 Conclusions and Future Directions
	References

	16 Scientific Services on the Cloud
	16.1 Introduction
	16.1.1 Outline

	16.2 Service Oriented Atmospheric Radiances (SOAR)
	16.3 Scientific Programming Paradigms
	16.3.1 MapReduce
	16.3.1.1 MapReduce Merge

	16.3.2 Dryad
	16.3.3 Remote Sensing Geo-Reprojection
	16.3.3.1 Remote Sensing Geo-Reprojection with MapReduce
	16.3.3.2 Remote Sensing Geo-reprojection with Dryad

	16.3.4 K-Means Clustering
	16.3.4.1 K-Means Clustering with MapReduce
	16.3.4.2 K-Means Clustering with Dryad

	16.3.5 Singular Value Decomposition
	16.3.5.1 Singular Value Decomposition with MapReduce
	16.3.5.2 Singular Value Decomposition with Dryad

	16.4 Delivering Scientific Computing services on the Cloud
	16.4.1 Service Requirements
	16.4.2 Service Discovery
	16.4.3 Service Negotiation
	16.4.4 Service Composition
	16.4.5 Service Consumption and Monitoring

	16.5 Summary/Conclusions
	References

	17 A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform
	17.1 Introduction
	17.2 Related Works
	17.3 A Dynamic Collaborative Cloud Services Platform
	17.4 Proposed Combinatorial Auction Based Cloud Market (CACM) Model to Facilitate a DC Platform
	17.4.1 Market Architecture
	17.4.2 Additional Components of a CP to Form a DC Platform in CACM
	17.4.3 Formation of a DC Platform in CACM Model
	17.4.4 System Model for Auction in CACM
	17.4.4.1 Single and Group Bidding Functions of CPs
	17.4.4.2 Payoff Function of the User/Consumer
	17.4.4.3 Profit of the CPs to form a Group

	17.5 Model for Partner Selection
	17.5.1 Partner Selection Problem
	17.5.2 MO Optimization Problem for Partner Selection
	17.5.3 Multi-objective Genetic Algorithm

	17.6 Evaluation
	17.6.1 Evaluation Methodology
	17.6.1.1 Simulation Examples

	17.6.2 Simulation Results
	17.6.2.1 Appropriate Approach to Develop the MOGA-IC
	17.6.2.2 Performance comparison of MOGA-IC with MOGA-I in CACM Model

	17.7 Conclusion and Future Work
	References

	Part IV: Applications
	18 Enterprise Knowledge Clouds:Applications and Solutions
	18.1 Introduction
	18.2 Enterprise Knowledge Management
	18.2.1 EKM Applications

	18.3 Knowledge Management in the Cloud
	18.3.1 Knowledge Content
	18.3.2 Knowledge Users
	18.3.3 Enterprise IT
	18.3.3.1 Problem Solving
	18.3.3.2 Monitoring, Tuning and Automation
	18.3.3.3 Business Intelligence and Analytics
	18.3.3.4 Decision Making

	18.3.4 The Intelligent Enterprise

	18.4 Moving KM Applications to the Cloud
	18.5 Conclusions and Future Directions
	References

	19 Open Science in the Cloud: Towards a Universal Platform for Scientific and Statistical Computing
	19.1 Introduction
	19.2 An Open Platform for Scientific Computing, the Building Blocks
	19.2.1 The Processing Capability
	19.2.2 The Mathematical and Numerical Capability
	19.2.3 The Orchestration Capability
	19.2.4 The Interaction Capability
	19.2.5 The Persistence Capability

	19.3 Elastic-R and Infrastructure-as-a-Service
	19.3.1 The Building Blocks of a Traceable and Reproducible Computational Research Platform
	19.3.2 The Building Blocks of a Platform for Statistics and Applied Mathematics Education

	19.4 Elastic-R, an e-Science Enabler
	19.4.1 Lowering the Barriers for Accessing on-Demand Computing Infrastructures. Local/Remote Transparency
	19.4.2 Dealing with the Data Deluge
	19.4.3 Enabling Collaboration Within Computing Environments
	19.4.4 Science Gateways Made Easy
	19.4.5 Bridging the Gap Between Existing Scientific Computing Environments and Grids/Clouds
	19.4.6 Bridging the Gap Between Mainstream Scientific Computing Environments
	19.4.7 Bridging the Gap Between Mainstream Scientific Computing Environments and Workflow Workbenches
	19.4.8 A Universal Computing Toolkit for Scientific Applications
	19.4.9 Scalability for Computational Back-Ends
	19.4.10 Distributed Computing Made Easy

	19.5 Elastic-R, an Application Platform for the Cloud
	19.5.1 The Elastic-R Plug-ins
	19.5.2 The Elastic-R Spreadsheets
	19.5.3 The Elastic-R extensions

	19.6 Cloud Computing and Digital Solidarity
	19.7 Conclusions and Future Directions
	References

	20 Multidimensional Environmental Data Resource Brokering on Computational Grids and Scientific Clouds
	20.1 Introduction
	20.2 Resource Discovery and Selection Using a Resource Broker Service
	20.3 Anagram Based GrADS Data Distribution Service
	20.4 Hyrax Based Five Dimension Distribution Data Service
	20.5 Design and Implementation of an Instrument Service for NetCDF Data Acquisition
	20.6 A Weather Forecast Quality Evaluation Scenario
	20.7 Implementation of the Grid Application
	20.8 Conclusions and Future Work
	References

	21 HPC on Competitive Cloud Resources
	21.1 Introduction
	21.2 Related Work
	21.3 Background
	21.3.1 Overview of Amazon EC2 Setup
	21.3.2 Overview of HPL

	21.4 Intranode Scaling
	21.4.1 DGEMM Single Node Evaluation
	21.4.2 HPL Single Node Evaluation

	21.5 Internode Scaling
	21.5.1 HPL Minimum Evaluation
	21.5.2 HPL Average Evaluation

	21.6 Conclusions
	References

	22 Scientific Data Management in the Cloud: A Survey of Technologies, Approaches and Challenges
	22.1 Introduction
	22.2 Data Management Issues Within Scientific Experiments
	22.3 Data Clouds: Emerging Technologies
	22.4 Case Studies: Harnessing the Data Cloud for Scientific Data Management
	22.4.1 Pan-STARRS Data with GrayWulf
	22.4.2 GEON Workflow with the CluE Cluster
	22.4.3 SciDB
	22.4.4 Astrophysical Data Analysis with Pig/Hadoop
	22.4.5 Public Data Hosting by Amazon Web Services

	22.5 A Gap Analysis of Data Cloud Capabilities
	22.5.1 The Impedance Mismatch
	22.5.2 Fault Tolerance
	22.5.3 Scientific Data Format and Analysis Tools
	22.5.4 Integration with the Object Oriented Programming Model
	22.5.5 Working with Legacy Software
	22.5.6 Real-Time Data
	22.5.7 Programmable Interfaces to Performance Optimizations
	22.5.8 Distributed Database Issues
	22.5.9 Security and Privacy

	22.6 Conclusions
	References

	23 Feasibility Study and Experience on Using Cloud Infrastructure and Platform for Scientific Computing
	23.1 Introduction
	23.2 Scientific Compute Tasks
	23.3 Scientific Computing in the Cloud
	23.3.1 Cloud Architecture as Foundation of Cloud-Based Scientific Applications
	23.3.2 Emergence of Cloud-Based Scientific Computational Applications

	23.4 Building Cloud Infrastructure for Scientific Computing
	23.4.1 Setup and Experiment on Tiny Cloud Infrastructure and Platform
	23.4.2 On Economical Use of the Enterprise Cloud

	23.5 Toward Integration Of Private and Public Enterprise Cloud Environment
	23.6 Conclusion
	References

	24 A Cloud Computing Based Patient Centric Medical Information System
	24.1 Introduction
	24.2 Potential Impact of Proposed Medical Informatics System
	24.3 Background and Related Work
	24.4 Brief Discussion of Medical Standards
	24.5 Architecture Description and Research Methods
	24.5.1 Objective 1: A Service Oriented Architecture for Interfacing Medical Messages
	24.5.2 Objective 2: Lossless Accelerated Presentation Layer for Viewing DICOM Objects on Cloud
	24.5.3 Objective 3: Web Based Interface for Patient Health Records
	24.5.4 Objective 4: A Globally Distributed Dynamically Scalable Cloud Based Application Architecture
	24.5.4.1 Distributed Data Consistency Across Clouds
	24.5.4.2 Higher availability and application scalability
	24.5.4.3 Concerning Low Level Security

	References

	25 Cloud@Home: A New Enhanced Computing Paradigm
	25.1 Introduction
	25.2 Why Cloud@Home?
	25.2.1 Aims and Goals
	25.2.2 Application Scenarios

	25.3 Cloud@Home Overview
	25.3.1 Issues, Challenges and Open Problems
	25.3.2 Basic Architecture
	25.3.3 Frontend Layer
	25.3.4 Virtual Layer
	25.3.5 Physical Layer
	25.3.6 Management Subsystem
	25.3.7 Resource Subsystem

	25.4 Ready for CloudHome?
	References

	26 Using Hybrid Grid/Cloud Computing Technologies for Environmental Data Elastic Storage, Processing,and Provisioning
	26.1 Introduction
	26.2 Distributing Multidimensional Environmental Data
	26.3 Environmental Data Storage on Elastic Resources
	26.3.1 Amazon Cloud Services
	26.3.2 Multidimensional Environmental Data Standard File Format
	26.3.3 Enhancing the S3 APIs
	26.3.4 Enabling the NetCDF Java Interface to S3

	26.4 Cloud and Grid Hybridization: The NetCDF Service
	26.4.1 The NetCDF Service Architecture
	26.4.2 NetCDF Service Deployment Scenarios

	26.5 Performance Evaluation
	26.5.1 Parameter Selection for the S3-Enhanced Java Interface
	26.5.2 Evaluation of S3- and EBS-Enabled NetCDF Java Interfaces
	26.5.3 Evaluation of NetCDF Service Performance

	26.6 Conclusions and Future Directions
	References

	Index

