***** Periodic Table

* The idea of arranging the elements into a periodic table had been considered by many chemists, but either the data to support the idea were insufficient or the classification scheme were incomplete. <u>Mendeleev</u> and <u>Meyer</u> organized the elements in order of atomic weight and then identified families of elements with similar properties.

* By arranging these families in *rows* or *columns*, and by considering similarities in chemical behavior as well as atomic weight, Mendeleev found vacancies in the table and was not able to predict the properties of several elements (*Gallium, Scandium, Germanium, and Polonium*), that had not yet been discovered.

* The discovery of additional elements not known in <u>Mendeleev's</u> time and the synthesis of heavy elements have led to the more complete modern periodic table.

* In the modern periodic table, a *horizontal row* of elements is called a *period*, and a *vertical column* is a *group* or *family*.

										_	-								18
	1	2														16	17	He	
	Li	Be												в	С	N	0	F	Ne
	Na	Mg	3 Sc		4		6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
	к	Ca			: Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pđ	Ag	Cd	In	Sn	Sb	Te	I	Xe
	Cs	Ba	*	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	T 1	Pb	Bi	Po	At	Rn
	Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh		Uuo
						-			1	r	-	-	-	-	·	-	-	-	
L	anth	anoi	ls*	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
Actinoids * *			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No			

* *Groups 1* and 2 and 13-18 represent the main group elements, and these groups correspond to the filling of the *s* and *p* orbitals, (*s-block*) and (*p-block*) elements.

**Groups 4 -11*, corresponding to the filling of the *d* orbitals, are classified as the *transition metals*, (*d-block*) elements.

* The elements of *Group 12*, although sometimes included among the transition metals, have a very different chemistry from that series; hence, *Group 12* will be considered separately.

* Several of the main groups have been given specific names:

For Example: *alkali metals* (Group 1),

Alkaline earth metals (Group 2),

pnictogens (a lesser used term for Group 15),

chalcogens (a lesser used term for Group 16),

Halogens (Group 17),

Coinage metals (Group 11),

and noble gases (Group 18),

*The elements corresponding to the filling of the **4f** orbitals are called the *lanthanoids* and those corresponding to the filling of the **5f** orbitals are called the *actinoids*. A collective name for the **Group 3** and **lanthanoid elements** is the *rare earth elements*.

						1																					p
7	He	Helium 4.003	10	Ne	Nean 20.1797	18	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	86	Rn	Radon (222)					71	Lu	Lutetium 174.967	103	Ľ	Lawrenciur
			6	Ц	Fhorine 18.9984032	17	Ū	Chlorine 35.4527	35	Br	Bromine 70 004	53	Ι	lodine 126.90447	85	At	Astatine (210)					70	Yb	Ytterbium 173.04	102	No	Nobelium
			8	0	Oxygen 15.9994	16	s	Sulfur 32.066	34	Se	Selenium 78 QK	52	Te	Telburium 127.60	84	\mathbf{P}_{0}	Polonium (209)					69	Πm	Thulium 168.93421	101	рМ	Mendelevium
			7	Z	Nitrogen 14.00674	15	Ч	Phosphana 30.973761	33	As	Anenie 74 97 160	51	\mathbf{Sb}	Antimeny 121.760	83	Bi	Bismuth 208.98038					89	Ē	Erbium 167.26	100	Fm	Cominue
			9	U	Carbon 12.0107	14	Si	Silicon 28.0855	32	g	Germmium 77 KI	50	Sn	Tin 118.710	82	$\mathbf{P}\mathbf{b}$	Lead 207.2	114				67	Ηo	Holmium 164.93032	66	\mathbf{Es}	Cinetainium
			5	B	Boron 10.811	13	Ν	Ahmimum 26.981538	31	Ga	Gallium 60 703	49	In	Indium 114.818	81	IT	Thallium 204.3833	113				99	Dy	Dyspresium 162.50	98	C	0.00
									30	Zn	Zine AS 30	48	Cd	Cadmium 112.411	80	Hg	Mercury 200.59	112		(277)		65	$\mathbf{T}\mathbf{b}$	Terhium 158.92534	97	Bk	
									29	Cu	Copper 63 546	47	Ag	Silver 107.8682	79	Αu	Gold 196.96655	111		(272)		64	Gd	Gadolinium 157.25	96	Cm	į
									28	Ż	Nickel 58 6014	46	Ρd	Palladium 106.42	78	Pt	Pletinum 195.078	110		(269)		63	Eu	Europium 151.964	95	Am	
									27	ပိ	Cohelt 58 031200	45	Rh	Rhodium 102.90550	77	lr	Indium 192.217	109	Mt	Meitnerium (266)		62	Sm	Semenium 150.36	94	Ри	Marrie 1
																			Hs			61	Pm	Promethium (145)	93	dN	
									25	Mn	Manganese 54.038/040	43	Tc	Technetium (98)	75	Re	Rhenium 186.207	107	Bh	Bohrium (262)		60	ΡN	Neodymium 144.24	92	D	
									24		Е —		Mo	8		M	Tungsten 183.84	106	Sg			59	Pr	Przeodymium 140.90765	91	Pa	
									23	>	Varadium SO 041 S	41	q	Niohium 92.90638	73	Ta	Tantalum 180.9479	105		Dubnium (262)		28	ပီ	Cerium 140.116		ЧŢ	
									22	ï	Tianium 47 RA7	40	Zr	Zirconium 91.224	72	Ηf	Hefnium 178.49	104	Rf	Rutherfordium (261)							
									21	Sc	Scandium 44 05 5010	39	Y	Vtrium 88.90585	57	La	Lentherror 138.9055	89		Actinium (227)							
			4	Be	Beryllium 9.012182	12		Magnesium 24.3050	20		_ ~		Sr.	Strantium 87.62	56	Ba	Barium 137.327	80	Ra	Radium (226)							
1	Η	Hydrogen 1.00794	e	Ľ.	Lithium 6.941	Ξ	Na	Sodium 22.989770	19	X	Potassium 10 0083	37	Rb	Ruhidium 85.4678	55	ő	Cesium 132.90545	87	Ηr	Francium (223)							

The Periodic Table of the Elements

*The *first* period contains only two elements, *hydrogen* and *helium*. The *second* and *third* periods each contain *eight* elements, while the *fourth* and **fifth** periods contain *18 elements* each. The sixth period contains 32 elements

* Classifications of the Elements

* At 25°C; [(**Br**) and (**Hg**) are *Liquids*], [(**H**, **N**, **O**, **F**, **Cl**, **He**, **Ne**, **Ar**, **Kr**, **Xe** and **Rn**) are *gases*], while all others are [*Solids*].

*[(B, Si, Ge, As, Sb and Te) are *semimetals* or *metalloids*], [(H, C, N, P, O, S, Se, F, Cl, Br, I, At, He, Ne, Ar, Kr, Xe and Rn) are *nonmetals*], while all others are *[metals*].

* <u>Block structure</u>: The table divides naturally into *s*, *p*, *d* and **f** blocks according to the outer electron configurations, *s* and *p* blocks formed the main groups or representative elements (groups 1, 2, 13-18 and H), the *d* block forms the transition elements (groups 3-12), and the *f* block or **Inner Transition Elements** the *lanthanides* and *actinides*.

s bl	ock																											p bl	ock		18 84
1 1A	2 2A																						ſ	1 İs		13 3A	14 4A	15 5A	16 6A	17 7A	2
3 2s	4																d block									5 2p	6	7	8	9	10
11 3s	12															3 38	á 4B	5 58	6 6B	7 78	8 8B	9 8B	10 8B	11 1B	12 2B	13 3p	14	15	16	17	18
19 45	20															21 3d	22	23	24	25	26	27	28	29	30	31 4p	32	33	34	35	36
37 5s	38	fblock													39 4d	40	41	42	43	44	45	46	47	48	49 5p	50	51	52	53	54	
55 6s	56	57 4f	58	59	60	61	62	63	64	65	66	67	68	69	70	71 5d	72	73	74	75	76	Π	78	79	80	81 6p	82	83	84	85	86
87 7s	88	89 5f	90	91	92	93	94	95	96	97	98	99	100	101	102	103 6d	104	105	106	107	108	109	110	111	112	113 7р	114	115	116	117	118