
الجامعة المستنصرية
كليـــــــــة العـــــلـوم
قسم علوم الحاسبات

حسن قاسم محمد/ المرحلة الثانية / البرمجة الكيانية

Object Oriented Programming

Abstraction

Abstract Classes and Methods

Data abstraction is the process of hiding certain details and showing only

essential information to the user.

Abstraction can be achieved with either abstract classes or interfaces

The abstract keyword is used for classes and methods:

Abstract class: is a restricted

class that cannot be used to

create objects (to access it, it

must be inherited from another

class).

Abstract method: can only be

used in an abstract class, and it

does not have a body. The body is

provided by the derived class

(inherited from).

An abstract class can have both abstract and regular methods:

https://www.w3schools.com/cs/cs_interface.asp

abstract class Animal

{

public abstract void animalSound();

public void sleep()

{

Console.WriteLine("ZZZ");

}

}

it is not possible to create an object of

the Animal class:

Animal myObj = new Animal();

Will generate an error (Cannot

create an instance of the abstract

class or interface 'Animal')

To access the abstract class, it must be

inherited from another class.

we use the override keyword to override

the base class method.

// Abstract class

abstract class Animal

{

// Abstract method (does not have a

body)

public abstract void animalSound();

// Regular method

public void sleep()

{

Console.WriteLine("ZZZ");

}

}

class Cat : Animal

{ public override void animalSound()

{ // The body of animalSound() is provided here

Console.WriteLine("The cat says: meao");

}

}

class Program

{ static void Main(string[] args)

{ Cat myCat = new Cat(); // Create a Cat object

myCat.animalSound(); // Call the abstract method

myCat.sleep(); // Call the regular method

} }

// Derived class

(inherit from Animal)

Why To Use Abstract Classes and Methods?

• To achieve security

• hide certain details

• show the important details of an object.

Abstraction can also be achieved with Interfaces

https://www.w3schools.com/cs/cs_interface.asp

Interface

Another way to achieve abstraction

An interface is a completely "abstract class", which can only contain abstract methods

and properties (with empty bodies):

Example

// interface

interface Animal

{

void animalSound(); // interface method (does not have a body)

void run(); // interface method (does not have a body)

}

https://www.w3schools.com/cs/cs_abstract.asp

To access the interface methods, the interface must be

"implemented" (kinda like inherited) by another class.

To implement an interface, use the : symbol (just like with

inheritance).

The body of the interface method is provided by the

"implement" class.

Note that you do not have to use the override keyword when

implementing an interface:

// Interface

interface IAnimal

{ void animalSound(); // interface method (does

not have a body)

}

// Cat "implements" the IAnimal interface

class Cat : IAnimal

{ public void animalSound()

{

// The body of animalSound() is provided here

Console.WriteLine("The Cat says: meao");

} }

class Program

{

static void Main(string[] args)

{

Cat myCat = new Cat(); // Create

a Cat object

myCat.animalSound();

}

}

Notes on Interfaces:

 Like abstract classes, interfaces cannot be used to create objects

 Interface methods do not have a body - the body is provided by the

"implement" class

 On implementation of an interface, you must override all of its methods

 Interface members are by default abstract and public

 An interface cannot contain a constructor (as it cannot be used to create

objects)

Note: To implement multiple interfaces, separate them with a comma

Multiple Interfaces

To implement multiple interfaces, separate

them with a comma:

interface IFirstInterface

{ void myMethod(); // interface method

}

interface ISecondInterface

{

void myOtherMethod(); // interface

method

}

// Implement multiple interfaces

class DemoClass : IFirstInterface, ISecondInterface

{ public void myMethod()

{ Console.WriteLine("Some text.."); }

public void myOtherMethod()

{ Console.WriteLine("Some other text..."); } }

class Program

{ static void Main(string[] args)

{ DemoClass myObj = new DemoClass();

myObj.myMethod();

myObj.myOtherMethod();

} }

Interfaces summary
An interface has the following properties:

 An interface is typically like an abstract base class with only abstract members. Any class or struct that

implements the interface must implement all its members. Optionally, an interface may define default

implementations for some or all of its members.

 An interface can't be instantiated directly. Its members are implemented by any class or struct that

implements the interface.

 A class or struct can implement multiple interfaces. A class can inherit a base class and also implement one

or more interfaces.

Thank’s

