

Foundation of Mathematics I

Chapter 2 Sets

Dr. Bassam Jabar and Dr. Emad Bakr

Dr. Bassam Jabar and Dr. Emad Bakr 2019-2020

(2019-2020)

Chapter Two Sets

2.1. Definitions

Definition 2.1.1. A set is a collection of (objects) things. The things in the collection are called **elements (member)** of the set.

A set with no elements is called **empty set** and denoted by \emptyset ; that is, $\emptyset = \{\}$. A set that has only one element, such as $\{x\}$, is sometimes called a **singleton set**.

List of the symbols we will be using to define other terminologies:

- **or:** : such that
- \in : an element of (belong to)
- \notin : not an element of (not belong to)
- \subset or \subsetneq : a proper subset of
- \subseteq : a subset of
- \nsubseteq : not a subset of
- \mathbb{N} : Set of all natural numbers
- Z : Set of all integer numbers
- \mathbb{Z}^+ : Set of all positive integer numbers
- \mathbb{Z}^- : Set of all negative integer numbers
- \mathbb{Z}_o : Set of all odd numbers
- \mathbb{Z}_e : Set of all even numbers
- \mathbb{Q} : Set of all rational numbers
- \mathbb{R} : Set of all real numbers

Set Descriptions 2.1.2.

(i) Tabulation Method

The elements of the set listed between commas, enclosed by braces.

- (1) {1,2,37,88,0}
- (2) $\{a, e, i, o, u\}$ Consists of the lowercase vowels in the English alphabet.
- $(3) \{..., -4, -2, 0, 2, 4, 6\}$ Continue from left side

{-4, -2,0,2,4,6, ... } Continue from right side

 $\{\dots, -4, -2, 0, 2, 4, 6, \dots\}$ Continue from left and right sides.

 $(4) B = \{\{2,4,6\},\{1,3,7\}\}.$

(2019-2020)

(ii) Rule Method

Describe the elements of the set by listing their properties writing as $S = \{x \mid A(x)\},\$ where A(x) is a statement related to the elements x. Therefore, $x \in S \iff A(x)$ is hold

(1) $A = \{x | x \text{ is a positive integers and } x > 10\}$ $A = \{x | x \in \mathbb{Z}^+ \text{ and } x > 10\}.$ (2) $\mathbb{Z}_o = \{x | x = 2n - 1 \text{ and } n \in \mathbb{Z}\}$ $= \{2n - 1 | n \in \mathbb{Z}\}.$ (3) $\{x \in \mathbb{Z} | |x| < 4\} = \{-3, -2, -1, 0, 1, 2, 3\}.$ (4) $\{x \in \mathbb{Z} | x^2 - 2 = 0\} = \emptyset.$

Examples 2.1.3.

(i) $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ Integer numbers. (ii) $\mathbb{Z}_e = \{x | x = 2n \text{ and } n \in \mathbb{Z}\}$ $= \{2n | n \in \mathbb{Z}\}$. Even numbers Note that 2 is an element of \mathbb{Z} , so we write 2 $\in \mathbb{Z}$. But 5 \notin

Note that 2 is an element of \mathbb{Z}_e so, we write $2 \in \mathbb{Z}$. But, $5 \notin \mathbb{Z}_e$.

(iii) Let C be the set of all natural numbers which are less than 0. In this set, we observe that there are no elements. Hence, C is an empty set; that is,

 $C = \emptyset$.

Definition 2.1.4.

(i) A set *A* is said to be a **subset** of a set *B* if every element of *A* is an element of *B* and denote that by $A \subseteq B$. Therefore,

 $A \subseteq B \Leftrightarrow \forall x (x \in A \Longrightarrow x \in B).$

(ii) If A is a nonempty subset of set B and B contains an element which is not a member of A, then A is said to be **proper subset** of B and denoted this by $A \subset B$ or $A \subsetneq B$; that is, A is said to be a **proper subset** of B if and only if $(1)A \neq \emptyset$, $(2)A \subset B$ and $(2)A \neq B$.

We use the expression $A \not\subseteq B$ means that A is **not** a subset of B.

Examples 2.1.5.

(i) An empty set \emptyset is a subset of any set *B*; that is, for every set *B*, $\phi \subseteq B$.

If this were not so, there would be some element $x \in \emptyset$ such that $x \notin B$. However, this would contradict with the definition of an empty set as a set with no elements.

(ii) Let *B* be the set of natural numbers. Let *A* be the set of even natural numbers. Clearly, *A* is a subset of *B*. However, *B* is not a subset of *A*, for $3 \in B$, but $3 \notin A$.

Theorem 2.1.6. (Properties of Sets)

Let *A*, *B*, and *C* be sets. (i) For any set *A*, $A \subseteq A$. (Reflexive Property) (ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$. (Transitive Property)

Proof.

(ii)

1 $(A \subseteq B) \Leftrightarrow \forall x (x \in A \Longrightarrow x \in B)$ 2 $(B \subseteq C) \Leftrightarrow \forall x (x \in B \Longrightarrow x \in C)$ $\Rightarrow \forall x (x \in A \Longrightarrow x \in C)$ $\Leftrightarrow A \subseteq C$ Hypothesis and Def. \subseteq Hypothesis and Def. \subseteq Inf. (1),(2) Syllogism Law Def. of \subseteq

Definition 2.1.7 If X is a set, the **power set** of X is another set, denoted as P(X) and defined to be the set of all subsets of X. In symbols,

$$\mathsf{P}(X) = \{A | A \subseteq X\}.$$

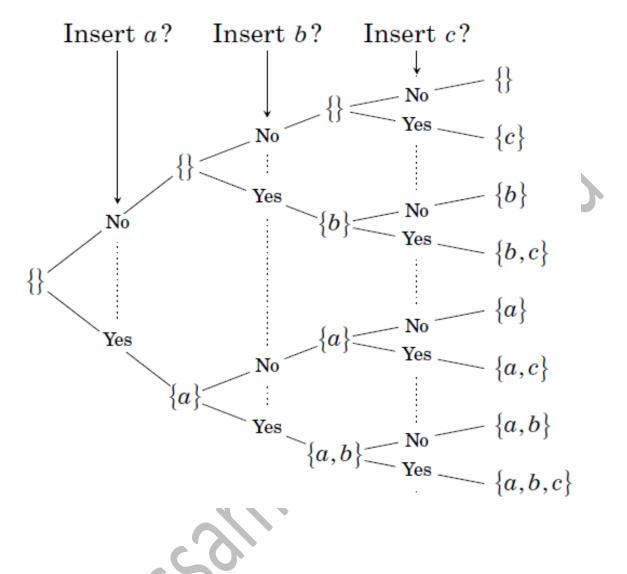
That is, $A \subseteq X$ if and only if $A \in P(X)$

Example 2.1.8.

- (i) \emptyset and a set X are always members of P(X).
- (ii) suppose $X = \{a, b, c\}$. Then

$$P(X) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$$

The way to finding all subsets of X is illustrated in the following figure.



From the above example, if a finite set X has n elements, then it has 2^n subsets, and thus its power set has 2^n elements.

- (iii) $P(\{1,2,4\}) = \{\emptyset, \{0\}, \{1\}, \{4\}, \{0,1\}, \{0,4\}, \{1,4\}, \{1,2,4\}\}.$
- (iv) $P(\emptyset) = \{\emptyset\}.$
- (v) $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$

(vi)
$$P(\{\mathbb{Z}, \mathbb{R}\}) = \{\emptyset, \{\mathbb{Z}\}, \{\mathbb{R}\}, \{\mathbb{Z}, \mathbb{R}\}\}.$$

The following are wrong statements.

- $(\mathbf{v}) \quad P(1) = \{\emptyset, \{1\}\}.$
- (vi) $P(\{1,\{1,2\}\}) = \{ \emptyset, \{1\}, \{1,2\}, \{1,\{1,2\}\} \}.$
- (vii) $P(\{1,\{1,2\}\}) = \{ \emptyset, \{\{1\}\}, \{\{1,2\}\}, \{1,\{1,2\}\} \}.$