

Foundation of Mathematics I

Chapter 3 Relations on Sets

Dr. Bassam Jabar and Dr. Emad Bakr

Mustansiriyah University-College of Science-Department of Mathematics 2019-2020

Chapter Three Relations on Sets

3.1 Cartesian Product

Definition 3.1.1. A set A is called

- (i) finite set if A contains finite number of element, say n, and denote that by |A| = n. The symbol |A| is called the **cardinality** of A,
- (ii) infinite set if A contains infinite number of elements.

Definition 3.1.2. The **Cartesian product** (or cross product) of *A* and *B*, denoted by $A \times B$, is the set $A \times B = \{(a, b) \mid a \in A \text{ and } b \in B\}$.

- (1) The elements (a, b) of A × B are ordered pairs, a is called the first coordinate (component) of (a, b) and b is called the second coordinate (component) of (a, b).
- (2) For pairs (a, b), (c, d) we have $(a, b) = (c, d) \Leftrightarrow a = c$ and b = d.

(3) The *n*-fold product of sets $A_1, A_2, ..., A_n$ is the set of *n*-tuples

$$A_1 \times A_2 \times ..., X \times A_n = \{(a_1, a_2, ..., a_n) | a_i \in A_i \text{ for all } 1 \le i \le n\}.$$

Example 3.1.3. Let $A = \{1, 2, 3\}$ and $B = \{4, 5, 6\}$.

(i) $A \times B = \{(1,4), (1,5), (1,6), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6)\}.$

58 Dr. Bassam Jabar and Dr. Emad Bakr

(ii) $B \times A = \{(4, 1), (4, 2), (4, 3), (5, 1), (5, 2), (5, 3), (6, 1), (6, 2), (6, 3)\}.$

Remark 3.1.4.

(i) For any set A, we have $A \times \emptyset = \emptyset$ (and $\emptyset \times A = \emptyset$) since, if $(a, b) \in A \times \emptyset$, then $a \in A$ and $b \in \emptyset$, impossible.

(ii) If |A| = n and |B| = m, then $|A \times B| = nm$.

If A or B is infinite set then cross product $A \times B$ is infinite set.

(iii) Example 3.1.3 showed that $A \times B \neq B \times A$.

Theorem 3.1.5. For any sets *A*, *B*, *C*, *D*

- (i) $A \times B = B \times A \Leftrightarrow A = B$,
- (ii) if $A \subseteq B$, then $A \times C \subseteq B \times C$,
- (iii) $A \times (B \cap C) = (A \times B) \cap (A \times C)$,
- (iv) $A \times (B \cup C) = (A \times B) \cup (A \times C)$,
- (v) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D),$
- (vi) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. The equialty may not hold.
- (vii) $A \times (B C) = (A \times B) (A \times C)$.

Proof.

(i) The necessary condition. Let $A \times B = B \times A$. To prove A = B.

Let $x \in A \Rightarrow (x, y) \in A \times B, \forall y \in B$. Def. of \times $\Rightarrow (x, y) \in B \times A$ By hypothesis $\Leftrightarrow x \in B \land y \in A$ Def. of \times (1) $\Rightarrow x \in B \Rightarrow A \subseteq B$ Def. of \subseteq

(2) By the same way we can prove that $B \subseteq A$.

Therefore, A = B Inf(1),(2).

The sufficient condition. Let A = B. To prove $A \times B = B \times A$.

 $A \times B = A \times A = B \times A$ Hypothesis

(vii) $A \times (B - C) = (A \times B) - (A \times C)$.

Dr. Bassam Jabar and Dr. Emad Bakr

$(x, y) \in A \times (B - C) \Leftrightarrow x \in A \land y \in (B - C)$	Def. of \times
$\Leftrightarrow x \in A \land (y \in B \land y \notin C)$	Def. of –
$\Leftrightarrow (x \in A \land x \in A) \land (y \in B \land y \notin C)$	Idempotent Law of Λ
$\Leftrightarrow (x \in A \land y \in B) \land (x \in A \land y \notin C)$	Commut. and Assoc. Laws of Λ
$\Leftrightarrow (x, y) \in (A \times B) \land (x, y) \notin (A \times C)$	Def. of ×
$\Leftrightarrow (x, y) \in (A \times B) - (A \times C)$	Def. of –

3.2 Relations

Definition 3.2.1. Any subset "*R*" of $A \times B$ is called a **relation between** *A* **and** *B* and denoted by R(A, B). Any subset of $A \times A$ is called a **relation on** *A*.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since a relation R on A is a subset of $A \times A$, it is an element of the power set of $A \times A$; that is, $R \subseteq P(A \times A)$.

If R is a relation on A and $(x, y) \in R$, then we write xRy, read as "x is in R-relation to y", or simply, x is in relation to y, if R is understood.

Example 3.2.2.

(i) Let $A = \{2, 4, 6, 8\}$, and define the relation R on A by $(x, y) \in R$ iff x divides y. Then,

 $R = \{(2,2), (2,4), (2,6), (2,8), (4,4), (4,8), (6,6), (8,8)\}.$

(ii)Let $A = \{0,3,5,8\}$, and define $R \subseteq A \times A$ by xRy iff x and y have the same remainder when divided 3.

 $R = \{(0,0), (0,3), (3,0), (3,3), (5,5), (5,8), (8,5), (8,8)\}.$

Observe, that xRx for $x \in N$ and, whenever xRy then also yRx.

(iii) Let $A = \mathbb{R}$, and define the relation R on \mathbb{R} by xRy iff $y = x^2$. Then R consists of all points on the parabola $y = x^2$.