2. Divided Differences Interpolation:

**Newton's Divided Difference Interpolating Polynomial:

- The zeroth divided difference of the function f with respect to x_i , denoted $f[x_i]$, is simply the value of f at x_i : $f[x_i] = f(x_i)$
- The *first divided difference* of f with respect to x_i and x_{i+1} is denoted $f[x_i, x_{i+1}]$ and defined as

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

• The **second divided difference**, $f[x_i, x_{i+1}, x_{i+2}]$, is defined as

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

• Have been determined, the *kth divided difference* relative to x_i , x_{i+1} , x_{i+2} , ..., x_{i+k} is

$$\begin{split} f[x_i, x_{i+1}, \dots, x_{i+k-1}, x_{i+k}] \\ &= \frac{f[x_i, x_{i+1}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i} \end{split}$$

• The process ends with the single *nth divided difference*,

$$f[x_0,x_1,\dots,x_n] = \frac{f[x_1,x_2,\dots,x_n] - f[x_0,x_1,\dots,x_{n-1}]}{x_n - x_0}$$

Divided Difference Table

Hence, the interpolating polynomial is

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, ..., x_n](x - x_0)(x - x_1) ... (x - x_{n-1})$$

So $P_n(x)$ can be rewritten in a form called *Newton's Divided-Difference or (corresponding Collocation Polynomial):*

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0)(x - x_1) \dots (x - x_{k-1})$$

Example 1:

Consider the data in the following table:

x_i	0	1	3	6	10
$f(x_i)$	1	-6	4	169	921

Newton's Divided Difference Formula

First, we construct the divided-difference table from this data. The divided differences in the table are computed as follows:

The zeroth divided difference

$$f[x_0] = f(x_0) = 1$$

$$f[x_1] = f(x_1) = -6$$

$$f[x_2] = f(x_2) = 4$$

$$f[x_3] = f(x_3) = 169$$

$$f[x_4] = f(x_4) = 921$$

The first divided difference

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{-6 - 1}{1 - 0} = -7$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{4 - (-6)}{3 - 1} = 5$$

$$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2} = \frac{169 - 4}{6 - 3} = 55$$

$$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3} = \frac{921 - 169}{10 - 6} = 188$$

The second divided difference

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{5 - (-7)}{3 - 0} = 4$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{55 - 5}{6 - 1} = 10$$

$$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2} = \frac{188 - 55}{10 - 3} = 19$$

The third divided difference

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{10 - 4}{6 - 0} = 1$$

$$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1} = \frac{19 - 10}{10 - 1} = 1$$

The forth divided difference

$$f[x_0, x_1, x_2, x_3, x_4] = \frac{f[x_1, x_2, x_3, x_4] - f[x_0, x_1, x_2, x_3]}{x_4 - x_0}$$
$$= \frac{1 - 1}{10 - 0} = 0$$

Second, The resulting divided-difference table is

х	f(x)	$1^{st}DD$	$2^{nd}DD$	$3^{rd}DD$	4 th DD
0	1				
		-7			
1	-6		4		
		5		1	
3	4		10		0
		55		1	
6	169		19		
		188			
10	921				

Third, It follows that the interpolating polynomial $P_n(x)$ can be obtained using the Newton divided-difference formula as follows:

$$P_{n}(x) = f[x_{0}] + f[x_{0}, x_{1}](x - x_{0})$$

$$+ f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + \cdots$$

$$+ f[x_{0}, x_{1}, \dots, x_{n}](x - x_{0})(x - x_{1}) \dots (x - x_{n-1})$$

$$P_{n}(x) = 1 + (-7)(x - 0) + (4)(x - 0)(x - 1)$$

$$+ (1)(x - 0)(x - 1)(x - 3)$$

$$+ (0)(x - 0)(x - 1)(x - 3)(x - 6)$$

$$P_{n}(x) = 1 - 7x + 4x^{2} - 4x + x^{3} - 4x^{2} + 3x$$

$$\therefore P_{3}(x) = x^{3} - 8x + 1$$

To find f(4)

$$f(x) \approx P_3(x) = x^3 - 8x + 1$$

$$f(4) \approx (4)^3 - 8 * (4) + 1 = 33$$

Example 2:

Use Newton's divided difference formula to show that an interpolation for $\sqrt[3]{20}$ from the points

(0,0), (1,1), (8,2), (27,3), (64,4), on $f(x) = \sqrt[3]{x}$ is quite invalid.

Solution:

$$f[x_0] = f(x_0) = 0$$

$$f[x_1] = f(x_1) = 1$$

$$f[x_2] = f(x_2) = 2$$

$$f[x_3] = f(x_3) = 3$$

$$f[x_4] = f(x_4) = 4$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{1 - 0}{1 - 0} = 1$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{2 - 1}{8 - 1} = 0.142857$$

$$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2} = \frac{3 - 2}{27 - 8} = 0.052632$$

$$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3} = \frac{4 - 3}{64 - 27} = 0.027027$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{0.142857 - 1}{8 - 0}$$

$$= -0.107143$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{0.052632 - 0.142857}{27 - 1}$$

$$= -0.00347$$

$$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2} = \frac{0.027027 - 0.052632}{64 - 8}$$

$$= -0.000457$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$
$$= \frac{-0.00347 - (-0.107143)}{27 - 0} = 0.00384$$

$$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$$
$$= \frac{-0.000457 - (-0.00347)}{64 - 1} = 0.000048$$

$$f[x_0, x_1, x_2, x_3, x_4] = \frac{f[x_1, x_2, x_3, x_4] - f[x_0, x_1, x_2, x_3]}{x_4 - x_0}$$
$$= \frac{0.000048 - 0.00384}{64 - 0} = -0.000059$$

x_i	$f(x_i)$	$1^{st}DD$	$2^{nd}DD$	$3^{rd}DD$	$4^{th}DD$
0	0				
		1			
1	1		-0.107143		
		0.142857		0.00384	
8	2		-0.00347		-0.000059
		0.052632		0.000048	
27	3		-0.000457		
		0.027027			
64	4				

To find f(20), let

$$x_0 = 0, x_1 = 1, x_2 = 8, x_3 = 27, x_4 = 64$$

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$P_4(x) = 0 + (1)(x - 0) + (-0.107143)(x - 0)(x - 1) + (0.00384)(x - 0)(x - 1)(x - 8) + (-0.000059)(x - 0)(x - 1)(x - 8)(x - 27)$$

$$f(20) \approx P_4(20)$$

$$= (1)(20 - 0) + (-0.107143)(20 - 0)(20 - 1)$$

$$+ (0.00384)(20 - 0)(20 - 1)(20 - 8)$$

$$+ (-0.000059)(20 - 0)(20 - 1)(20 - 8)(20 - 27)$$

Please complete the solution...

Example 3:

Consider the data in the following table

x	-1	0	1	2
f(x)	3	-4	5	-6

use Newton's divided difference to estimate f(-1.5).

Solution:

$$f[x_0] = f(x_0) = 3$$

$$f[x_1] = f(x_1) = -4$$

$$f[x_2] = f(x_2) = 5$$

$$f[x_3] = f(x_3) = -6$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{-4 - 3}{0 - (-1)} = -7$$

$$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1} = \frac{5 - (-4)}{0 - 1} = 9$$

$$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2} = \frac{-6 - 5}{2 - 1} = -11$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{9 - (-7)}{1 - (-1)} = 8$$

$$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1} = \frac{-11 - 9}{2 - 0} = -10$$

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{-10 - 8}{2 - (-1)} = -6$$

x_i	$f(x_i)$	$1^{st}DD$	$2^{nd}DD$	$3^{rd}DD$
-1	3			
		- 7		
0	-4		8	
		9		- 6
1	5		-10	
_		-11		
2	-6			

To find f(1.5), let

$$x_0 = -1, x_1 = 0, x_2 = 1, x_3 = 2$$

$$P_n(x) = f[x_0] + f[x_0, x_1](x - x_0) + f[x_0, x_1, x_2](x - x_0)(x - x_1) + \cdots + f[x_0, x_1, \dots, x_n](x - x_0)(x - x_1) \dots (x - x_{n-1})$$

$$P_3(x) = 3 + (-7)(x - (-1)) + (8)(x - (-1))(x - 0) + (-6)(x - (-1))(x - 0)(x - 1)$$

$$P_3(x) = -6x^3 + 8x^2 + 7x - 4$$

$$f(1.5) \approx P_3(x) = -6(-1.5)^3 + 8(-1.5)^2 + 7(-1.5) - 4$$

Please complete the solution...

*Home work*1: (H.W. 1):

Given that

f(-2) = 46, f(-1) = 4, f(3) = 156 and f(4) = 484, compute f(0) by Newton's divided difference formula.

*Home work*2: (H.W. 2):

- (1) Complete the following divided difference table.
- (2) Find the interpolating polynomial.

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2},x_{i-1},x_i]$	$f[x_{i-3},,x_i]$	$f[x_{i-4},,x_i]$
0	1.0	0.7651977	-0.4837057			
1	1.3	0.6200860	-0.5489460			
2	1.6	0.4554022	-0.3469400	-0.0494433		
3	1.9					
4	2.2	0.1103623				