Cryptography And Cryptanalysis

Ph. D. Course/ 2019-2020 Introduced By Dr. Faez Hassan Ali

Lecture One

Mathematical Basic Concepts

The following notation will be used throughout:

- Z denotes the set of integers; that is, the set {...,-2,-1,0,1,2,...}.
- Q denotes the set of rational numbers; that is, the set { $|a,b\in Z,b\neq 0$ }.
- R denotes the set of real numbers.
- [a, b] denotes the integers x satisfying $a \le x \le b$.
- $a \in A$ means that element a is a member of the set A.
- A<u></u>B means that A is a subset of B.
- A \subset B means that A is a proper subset of B; that is A \subseteq B and A \neq B.
- The intersection of sets A and B is the set $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.
- The union of sets A and B is the set $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$.
- The difference of sets A and B is the set $A-B = \{x | x \in A \text{ and } x \notin B\}$.
- The Cartesian product of sets A and B is the set $A \times B = \{(a,b) | a \in A \text{ and } b \in B\}$.
- $\sum_{i=1}^{n} a_i$ denotes the sum $a_1 + a_2 + ... + a_n$.
- $\prod_{i=1}^{n} a_i$ denotes the product $a_1.a_2....a_n$.
- For a positive integer n, the factorial function is n!=n(n-1)(n-2)...1. By convention, 0! = 1.

Number Theory - Primality

Definition (2.1): A positive integer n>1 that has only two distinct factors, 1 and n itself (when these are different), is called *prime*; otherwise, it is called **composite**.

Remark (2.2):

- It is interesting to note that primes thin out: there are eight up through 20, but only three between 80 and 100.
- Note that 2 is the only even prime, all the rest are odd.

0	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	52	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99

Number Theory - Multiplicativity

<u>Theorem</u>: the fundamental theorem of arithmetic

Any positive integer n>1 can be written uniquely in the following prime factorization form:

 $\mathbf{n} = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k} = \prod_{i=1}^{\kappa} p_i^{\alpha_i}$

where $p_1 < p_2 < ... < p_k$ are primes, and $\alpha_1, \alpha_2, ..., \alpha_k$ are non negative integers. Example:

1999 =	1999	,	$2000 = 2^4.5^3$,	2001 = 3.23.29
2002 =	2.7.11.13	,	2003 = 2003	,	$2004 = 2^3.3.167$
2005 =	5.401	,	2006 = 2.17.59	,	$2007 = 3^2.223$
2008 =	2 ³ .251	,	$2009 = 7^2.41$,	2010 = 2.3.5.67

Number Theory - Divisibility

Definition (2.2): Let a and b be two integers, not both zero. The largest divisor d s.t. d|a and d|b is called the **greatest common divisor** (gcd) of a and b, which is denoted by gcd(a,b).

Definition (2.3): Let a and b be two integers, not both zero. d is a common multiple of a and b, the least common multiple (lcm) of a and b, is the **smallest common multiple**, which is denoted by lcm(a,b).

Definition (2.4): Integers a and b are called **relatively prime** if gcd(a,b)=1. we say that integers $n_1,n_2,...n_k$ are relatively prime if, whenever $i\neq j$, we have $gcd(n_i,n_j)=1$, $\forall i,j, 1\leq i,j\leq k$.

Theorem (2.2): Suppose a and b are two positive integers.

If $a = \prod_{i=1}^{k} p_{i}^{\alpha_{i}}$ and $b = \prod_{i=1}^{k} p_{i}^{\beta_{i}}$, then $gcd(a,b) = \prod_{i=1}^{k} p_{i}^{\varepsilon_{i}}$, where $\varepsilon_{i} = min(\alpha_{i},\beta_{i}), \forall i, 1 \le i \le k.$ $lcm(a,b) = \prod_{i=1}^{k} p_{i}^{\delta_{i}}$, where $\delta_{i} = max(\alpha_{i},\beta_{i}), \forall i, 1 \le i \le k.$ <u>Example (2.2)</u>: Since the prime factorization of 240 and 560 are <u>Theorem (2.3)</u>: Suppose a and b $240=2^{4}.3.5$ and $560=2^{4}.5.7$, then the:

 $gcd(240,560) = 2^{\min(4,4)} \cdot 3^{\min(1,0)} \cdot 5^{\min(1,1)} \cdot 7^{\min(0,1)} = 2^4 \cdot 3^0 \cdot 5^1 \cdot 7^0 = 80. \qquad lcm(a,b) = \frac{a.b}{gcd(a,b)} \cdot lcm(240,560) = 2^{\max(4,4)} \cdot 3^{\max(1,0)} \cdot 5^{\max(1,1)} \cdot 7^{\max(0,1)} = 2^4 \cdot 3^1 \cdot 5^1 \cdot 7^1 = 1680.$

Euclidean Algorithm

Fact (2.1) If a and b are positive integers with a>b, then:

gcd(a,b)=gcd(b, a mod b). The Euclidean algorithm:

- **INPUT**: two non-negative integers a and b with $a \ge b$.
- **OUTPUT**: the gcd of a and b.
- 1. WHILE $b \neq 0$ DO the following:
- 1.1 Set $r \leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$.
- 2. **RETURN**(a).
- **Example(2.3)**: for computing gcd(4864,3458)
- 4864 = 1·3458 + 1406
- 3458 = 2·1406 + 646
- 1406 = 2·646 + 114
- 646 = 5·114 + 76
- 114 = 1·76 + 38
- 76 = 2·**38** + 0.
- Then gcd = 38.

The integers modulo n

Let n be a positive integer.

<u>Definition</u>: If a and b are integers, then a is said to be congruent to b modulo n, written: $a \equiv b \pmod{n}$, if n divides (a-b). The integer n is called the modulus of the congruence.

Example

- $24 \equiv 9 \pmod{5}$ since 24 9 = 3.5.
- $-11 \equiv 17 \pmod{7}$ since -11 17 = -4.7.
- if a = qn + r, where $0 \le r < n$, then $a \equiv r \pmod{n}$.

<u>Definition</u>: The integers modulo n, denoted Z_n, is the set of (equivalence classes of) integers{0,1,2,...,n–1}. Addition, subtraction, and multiplication in Zn are performed modulo n.

Example: Z₂₅ ={0,1,2,...,24}.In Z₂₅,

13+16=4, since 13+16=29=4 (mod 25). Similarly, $13 \cdot 16 = 8$ in Z_{25} .

Arithmetic Functions

Definition: A **function** *f* is a rule that assigns to each element in a set D (called **Domain** of *f*) one and only one element in a set B. the set of images called the **range** (R) of *f*.

Definition: The function *f* has the property of being "**one-to-one**" (or "**injective**") if no two elements in D are mapped into the same element in R.

The function *f* has the property of being "**onto**" (or "**surjective**") if the range R of *f* is all of B (R=B).

<u>**Definition**</u>: Given functions f and g, the **composition** of f with g, denoted by $f \circ g$ is the function by: $(f \circ g)(x) = f(g(x))$, The domain of $f \circ g$ is defined to consists of all x in the domain of g for which g(x) is in the domain of f.

Definition : A function *f* is called an **arithmetic function** or a **number theoretic** function if it assigns to each positive integer n a unique real or complex number *f*(n). Typically, an arithmetic function is a real-valued function whose domain is the set of positive integer.

Example: the equation \sqrt{n} , $n \in N$, defines an arithmetic function f which assigns the real number \sqrt{n} to each positive integer.

Definition : A real function defined on the positive integers is said to be **multiplicative** if: f(m)f(n) = f(mn), $\forall m, n \in \mathbb{N}$ with gcd(m,n)=1.

Arithmetic Functions

<u>Definition</u>: Let n be a positive integer. **Euler's** Φ -function, $\Phi(n)$ defined to be the number of positive integer k less than n which are relatively prime to n:

$$\Phi(n) = \sum_{\substack{1 \le k < n \\ \gcd(k,n) = 1}} 1$$

n Φ(n)

Example: By definition:

<u>Theorem</u>: Let $n \in Z^+$, then $\Phi(n)$ is multiplicative i.e. $\Phi(mn) = \Phi(m) \Phi(n)$.

if n is prime, say p, then $\Phi(p)=p-1$, and if n is prime power p^{α} , then

- $\Phi(p^{\alpha})=p^{\alpha}-p^{\alpha-1}=p^{\alpha-1}(p-1).$
- if n is composite and has the standard prime factorization form, then
- $\Phi(n) = \prod_{i=1}^{k} p_i^{\alpha_i 1}(p_i 1)$
- $\Phi(n)=(p-1)(q-1)$ if n=pq, where p and q are prime numbers.

<u>Definition</u>: Let $x \in R^+ \ge 1$, then $\pi(x)$ is defined as follows: $\pi(x) = \sum_{p \in x \ p \text{ prime}}^{1} \pi(x)$ is called the **prime counting** function (or the **prime distribution function**).

Example: $\pi(1)=0$, $\pi(2)=2$, $\pi(10)=4$, $\pi(20)=8$, $\pi(50)=15$, $\pi(75)=21$, $\pi(100)=25$.

