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Lecture UOne-2




Group Theory

Definition: A binary operation * on a set A is a rule that assign to each

ordered pair (a,b) of elements of A a unique element of A.

Example: Ordinary addition + and multiplication e are binary operations on

N, Z, R, or C.
Definition: A group, denoted by (G,*) (or ( G,*)), or simply G, is a G#¢ of

elements together with a binary operation *, s.t. the following axioms are
satisfied:

Closure: a*beG, Va,begG.

Associativity: (a*b)*c=a*(b*c), Va,b,ceG.

Existence of identity: J! element e€G, called the identity, s.t.
e*a=a*e=a, VaeG.

Existence of inverse: VaeG, 3! Element begG, s.t. a*b=b*a=e. This b is
denoted by a*! and called the inverse of a.

The group (G, *) is called commutative (abelian) group if it satisfies
further axiom: Commutativity: a*b=b*a, Va,beG.



Group Theory

Example: the set Z* with operation + is not group (3 no identity element), and it's not
group with operation ¢ (3 no inverse element in Z*).

Definition: If the binary operation of a group is +, then the identity of group is 0 and
the inverse of a€G is —a; this said to be an additive group.

If the binary operation of a group is ¢, then the identity of a group is 1 or e, this
group is said to be multiplicative group.

Definition: A group is called a finite group if it has finite number of elements;
otherwise it is called an infinite group.

Definition: The order of the group G, denoted by |G| (or by #(G)) is the number of
elements of G. for example: the order of Z is |Z|=w0.

Definition: Let a€G, where G is multiplicative group. The elements a’, where r is an
integer, form a subgroup of G, called the subgroup generated by a. A group G is cyclic
if 3 aeG s.t. the subgroup generated by a is the whole of G.

Remark: If G is a finite cyclic group with identity element e, the set of elements G
may be written {e,a,a?,...,a"1}, where a"=e and n is the smallest such positive integer.
Definition : A field by (F,®,®) (or (F®,®)) or simply F, is abelian group w.r.t. addition,
and F-{0} is abelian w.r.t. to multiplication.




Group Theory

Definition: A finite field is a field that has a finite number of
elements in it; we call the number the order of the field.

Theorem: 1 a field of order q iff g is prime power (i.e. g=p")
with p prime and reN.

Remark: A field of order g with g prime power is called Galois
field and is denoted by GF(q) or just F,.

Example : The finite field F. has elements {0,1,2,3,4} and is
described by the table( 4.1) addition and multiplication table.
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Boolean Ring and Boolean Algebra

Definition: Let A#¢ be a set, f be a binary operation on a set A
(f:AxA—A), we call the pair (A,f) as mathematical system.

Definition: Let X be the universal set, and let A and B be two subsets
of X, then:

The operation + defined as A+B=AlUB.
The operation @ defined on the power P(X) set of X by:
ADB=(A-B)U(B-A) s.t. A-B=A[)B', B' is the complement set of B.

The operation @ called Exclusive-OR (XOR) (or the symmetric
difference).

The operation ¢ defined as AeB=A(B.

Definition: Let (R,+,¢) be a ring with identity element, if the law be
satisfied a’=a, VacR, then the ring called Boolean ring.

Example: Let P(X) represents the set of all the subsets of the universal set
X, then the ring (P(X),®, ) is Boolean ring.




Boolean Ring and Boolean Algebra

Definition: In Boolean ring (B,®,*), we defined:
Complement: a=a®1, VaeB. and Sum (OR): a+tb=a®b®a.b Va,beB.

Definition: The Boolean algebra is the mathematical system (B,v,A) where B¢, and the
binary operations v and A defined on B as follows:

The operations v and A are commutative.
The operations v and A are satisfy the distribution law for each to other.

3 two identity distinct elements 0 and 1 of the operations v and A respectively s.t. av0=a and
anl=a, VaeB.

Example: The system (P(X),U,N) is boolean algebra, X#$, we use $=0 and X=1. If B be a set of
subsets of X including ¢ and X which is closed on U and complement then (B,U,)) is boolean
algebra too.

Theorem: Every boolean algebra (B,Vv,A) is boolean ring (B,®,¢) when we defined the
operations @ and as follows:

a®b=(anb')v(a'Ab). and aeb=anb, Va,beB.

Theorem: Every ring (B,®, ) is Boolean algebra (B,v,A) when we defined v and A as follows:
Va,beB. avb=a®b®aeb and anb=aeb.

Theorem: The ring (Z,,®,®) is field iff p is prime number s.t. a®b=a + b (mod p). And
a®b=aeb (mod p).

This field is Galois field and is denoted by GF(p), Va,be Z,,.



Algebra Description of Logic Circuits
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(a).The gate AND: is multiplying the input variables.
(b).The gate OR: summing the input variables.
(c).The gate NOT: complement of the input variable.
(d).The gate XOR: summing XOR the input variables.

Definition (6.1): The logical function f is called the output function

defined f:B"—B, where B" is a set of n input binary data, f subject to the
Boolean algebra laws and we can apply the gates concepts on it, s.t.

x=feg, y=f+g, z=f, and w=fd®g, where f and g are Boolean functions.



Algebra Description of Logic Circuits

Q4. Draw and simplify the logical circuit:
F(a,b,c) = (ab®1) + acdé + 1 + ab(a@cdb) + 1

Then draw the simplified circuit. Check the equivalency of the two

circuits.
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Sequences and Series
Sequences

Definition : The sequence in the field F is a function 7, whose domain
is the set of non negative (or could be positive) integer, s.t. #Z—>F, and
its denoted by S = {S,, }.,=0

Definition : The Sequence S is periodic when dpeZ* s.t.
S0=SprS1=Sp1r+++) the minimum p is the period of S.

If z_={0,1,...,m-1}, where meZ*, then S is digital sequence. In special
case, if m=2 then S is binary sequence.

Series

Definition: An infinite series is an expression of the form:

¢ UptUy 2+ Upt..= Yo Ug

* LetS, denotesthe sum of the first nterms of the series s.t.

e S =Yr_qU, and {S,},,=, is called the sequence of partial sums.
e S=)7_, Uy is called the sum of the series.



Polynomials over Fields

Let f(x) =a,x"+a, X"t +a_,x"2+ ... +a,x+a,

be a polynomial of degree n in one variable x over a
field F (hamely a,, a, 4,..., 3;, ao€F).

Theorem: The equation f(x)=0 has at most n solutions
in F.

Irreducible Polynomials

Definition : A polynomial is irreducible in GF(p) if it
does not factor over GF(p). Otherwise it is reducible.

Examples:

The polynomial x>+x*+x3+x+1 is reducible in Z but
irreducible in Z,.




Polynomials over Fields

Implementing GF(p*) Arithmetic

Theorem: Let f(x) be an irreducible polynomial of degree k over Z,. The finite field GF(p) can be realized as the set
of degree k-1 polynomials over Z,, with addition and multiplication done modulo f(x).

Example: (Implementing GF(2¥))

By the theorem the finite field GF(2°) can be realized as the set of degree 4 polynomials over Z,, with addition and
multiplication done modulo the irreducible polynomial: f(x)=x>+x*+x3+x+1.

The coefficients of polynomials over Z, are 0 or 1. So a degree k polynomial can be written down by k+1 bits.
For example, with k=5: x3+x+1 (0,1,0,1,1), x*+ x3+x+1 (1,1,0,1,1).

Implementing GF(2¥)

Addition: bit-wise XOR (since 1+1=0)

X3+x+1 (0,1,0,1,1)

+

x*+ x3+x+1 (1,1,0,1,1)

x4, (1,0,0,0,0)
Multiplication: (x2+x+1)-(x3+x+1) in GF(25).
(1,1,1)(1,0,1,1)
1011
1011
1011

110001 =x>+x*+1



Polynomials over Fields

The Number of Irreducible and Primitive Polynomials

The function p : Z* — Z* defined by:
1lifn=1;

pw(n) = (—1)" if n = p1p2...pr, Where the p; are distinct primes;
0 if n has a squared factor

is called the M6bius Function.
The number of monic irreducible polynomials of degree k over F, is given by: \Vq(k) dzlk:“( )’

Clearly, not every monic irreducible polynomial in F;[x] is necessarily a Erimitive polynomial over F,. In fact, the
number of primitive polynomials of degree k over F is: (k)

k
Example : Consider (monic) irreducible polynomials of degree 8 over F,=Z,. The positive divisors of 8 are d = 1,

2,4,8sothat 8/d =8, 4,2,1and u(8/d)=0, 0,-1, 1. Therefore, the number of monic irreducible polynomials of
degree 8 ir1 F,[x] |§

W, (8) = —JT,u( )2° = (0+0 - 16 + 256)/8= 30.

Furthermore, the number of primitive polynomials of degree 8 in F,[x] is:
2° -1 $(255)  $(3.5.17) _2.4.16
s 8 8 8 =16
Hence, just over half the irreducible polynomials of degree 8 in Z,[x] are primitive.

However, if 25 - 1 is prime then (2% - 2)/k so that every irreducible polynomial of degree k is in fact a primitive
polynomial in Z,[x]. It is therefore beneficial, in the practical sense, to choose a reasonably large value of k such
that 2k - 1 is prime.



