Cryptography And Cryptanalysis

Ph. D. Course/ 2019-2020 Introduced By Dr. Faez Hassan Ali

Lecture One-2 Mathematical Basic Concepts

Group Theory

Definition: A **binary operation** * on a set A is a rule that assign to each ordered pair (a,b) of elements of A a unique element of A.

Example: Ordinary addition + and multiplication • are binary operations on N, Z, R, or C.

<u>Definition</u>: A group, denoted by $\langle G, * \rangle$ (or (G, *)), or simply G, is a G $\neq \phi$ of elements together with a binary operation *, s.t. the following axioms are satisfied:

- **Closure**: $a*b \in G$, $\forall a, b \in G$.
- Associativity: (a*b)*c=a*(b*c), ∀a,b,c∈G.
- Existence of identity: ∃! element e∈G, called the identity, s.t.
 e*a=a*e=a, ∀a∈G.
- Existence of inverse: ∀a∈G, ∃! Element b∈G, s.t. a*b=b*a=e. This b is denoted by a⁻¹ and called the inverse of a.
- The group (G,*) is called commutative (abelian) group if it satisfies further axiom: Commutativity: a*b=b*a, ∀a,b∈G.

Group Theory

Example: the set Z^+ with operation + is not group (\exists no identity element), and it's not group with operation • (\exists no inverse element in Z^+).

Definition: If the binary operation of a group is +, then the identity of group is 0 and the inverse of $a \in G$ is -a; this said to be an **additive group**.

If the binary operation of a group is •, then the identity of a group is 1 or e, this group is said to be **multiplicative group**.

Definition: A group is called a **finite group** if it has finite number of elements; otherwise it is called an **infinite group**.

<u>Definition</u>: The order of the group G, denoted by |G| (or by #(G)) is the number of elements of G. for example: the order of Z is $|Z|=\infty$.

<u>Definition</u>: Let $a \in G$, where G is multiplicative group. The elements a^r , where r is an integer, form a subgroup of G, called the **subgroup** generated by a. A group G is **cyclic** if $\exists a \in G$ s.t. the subgroup generated by a is the whole of G.

<u>Remark</u>: If G is a finite cyclic group with identity element e, the set of elements G may be written $\{e,a,a^2,...,a^{n-1}\}$, where $a^n=e$ and n is the smallest such positive integer.

<u>**Definition</u></u>: A field** by $\langle F, \oplus, \otimes \rangle$ (or (F, \oplus, \otimes)) or simply F, is abelian group w.r.t. addition, and F-{0} is abelian w.r.t. to multiplication.</u>

Group Theory

<u>**Definition</u>**: A **finite field** is a field that has a finite number of elements in it; we call the number the order of the field.</u>

<u>**Theorem</u>**: \exists a field of order q iff q is **prime power** (i.e. q=p^r) with p prime and r \in N.</u>

<u>**Remark</u>**: A field of order q with q prime power is called **Galois field** and is denoted by GF(q) or just F_q .</u>

Example: The finite field F_5 has elements {0,1,2,3,4} and is described by the table(4.1) addition and multiplication table.

•	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

8	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

Boolean Ring and Boolean Algebra

<u>Definition</u>: Let $A \neq \phi$ be a set, f be a binary operation on a set A (f:A×A→A), we call the pair (A,f) as **mathematical system**.

Definition: Let X be the universal set, and let A and B be two subsets of X, then:

The operation + defined as $A+B=A\cup B$.

The operation \oplus defined on the power P(X) set of X by:

 $A \oplus B = (A-B) \cup (B-A)$ s.t. $A-B = A \cap B'$, B' is the **complement** set of B.

The operation \oplus called **Exclusive-OR (XOR)** (or the **symmetric difference**).

The operation \bullet defined as $A \bullet B = A \cap B$.

<u>Definition</u>: Let $(R,+,\bullet)$ be a ring with identity element, if the **law** be satisfied $a^2=a$, $\forall a \in R$, then the ring called **Boolean ring**. **<u>Example</u>**: Let P(X) represents the set of all the subsets of the universal set X, then the ring (P(X), \oplus , \bullet) is Boolean ring.

Boolean Ring and Boolean Algebra

Definition: In Boolean ring (B, \oplus, \bullet) , we defined:

Complement: $a=a\oplus 1$, $\forall a \in B$. and **Sum (OR)**: $a+b=a\oplus b\oplus a.b \forall a,b\in B$.

Definition: The **Boolean algebra** is the mathematical system (B, \lor , \land) where B $\neq \phi$, and the binary operations \lor and \land defined on B as follows:

The operations \lor and \land are commutative.

The operations \lor and \land are satisfy the distribution law for each to other.

 \exists two identity distinct elements 0 and 1 of the operations \lor and \land respectively s.t. a \lor 0=a and a \land 1=a, $\forall a \in B$.

Example: The system (P(X), \bigcup , \bigcap) is boolean algebra, X $\neq \phi$, we use $\phi=0$ and X=1. If B be a set of subsets of X including ϕ and X which is closed on \bigcup and complement then (B, \bigcup , \bigcap) is boolean algebra too.

<u>**Theorem</u>**: Every boolean algebra (B, \lor, \land) is boolean ring (B, \oplus, \bullet) when we defined the operations \oplus and as follows:</u>

 $a \oplus b = (a \land b') \lor (a' \land b)$. and $a \bullet b = a \land b$, $\forall a, b \in B$.

<u>**Theorem</u>**: Every ring (B, \oplus, \bullet) is Boolean algebra (B, \lor, \land) when we defined \lor and \land as follows: $\forall a, b \in B$. $a \lor b = a \oplus b \oplus a \bullet b$ and $a \land b = a \bullet b$.</u>

<u>**Theorem</u>**: The ring (Z_p, \oplus, \otimes) is field iff p is prime number s.t. $a \oplus b = a + b \pmod{p}$. And $a \otimes b = a \bullet b \pmod{p}$.</u>

This field is **Galois field** and is denoted by GF(p), $\forall a, b \in Z_p$.

Algebra Description of Logic Circuits

 \oplus

0

1

0

()

1

0

(a).The gate AND: is multiplying the input variables.

(b).The gate OR: summing the input variables.

(c).The gate NOT: complement of the input variable.

(d).The gate XOR: summing XOR the input variables.

Definition (6.1): The logical function f is called the **output function** defined $f:B^n \rightarrow B$, where B^n is a set of n input binary data, f subject to the Boolean algebra laws and we can apply the gates concepts on it, s.t. $x=f \cdot g, y=f+g, z=\overline{f}, and w=f \oplus g, where f and g are Boolean functions.$

Algebra Description of Logic Circuits

Q4. Draw and simplify the logical circuit:

 $F(a, b, c) = (\overline{ab} \oplus 1) + \overline{ac} \oplus \overline{c} + 1 + ab(\overline{ac} \oplus b) + 1$

Then draw the simplified circuit. Check the equivalency of the two circuits.

 $F(a,b,c) = (ab \oplus X \oplus X) + (ac \oplus Y \oplus C \oplus A) + X + ab(ac \oplus 1 \oplus b) + X$ $= ab + (ac \oplus c) + ab (ac \oplus b \oplus 1) +$ ab+ (ac@c)+abc@ab@ab+ ab + (acce) + abc + 1

Algebra Description of Logic Circuits

Sequences and Series

Sequences

<u>**Definition**</u>: The sequence in the field F is a function *f*, whose domain is the set of non negative (or could be positive) integer, s.t. $f:Z \rightarrow F$, and its denoted by $S = \{S_n\}_{n=0}$

Definition: The Sequence S is **periodic** when $\exists p \in Z^+$ s.t.

 $s_0 = s_p, s_1 = s_{p+1}, ..., the minimum p is the$ **period**of S.

If $Z_m = \{0, 1, ..., m-1\}$, where $m \in Z^+$, then S is digital sequence. In special case, if m=2 then S is binary sequence.

Series

Definition: An infinite series is an expression of the form:

•
$$u_1 + u_2 + \dots + u_k + \dots = \sum_{k=1}^{\infty} u_k$$

- Let S_n denotes the sum of the first *n* terms of the series s.t.
- $S_n = \sum_{k=1}^n u_k$, and $\{S_n\}_{n=0}$ is called the **sequence of partial sums**.
- $S = \sum_{k=1}^{\infty} u_k$ is called the **sum** of the series.

Polynomials over Fields

Let $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + a_{n-2} \cdot x^{n-2} + \dots + a_1 \cdot x + a_0$ be a polynomial of degree n in one variable x over a field F (namely a_n , a_{n-1} ,..., a_1 , $a_0 \in F$).

Theorem: The equation f(x)=0 has at most n solutions in F.

Irreducible Polynomials

Definition: A polynomial is irreducible in GF(p) if it does not factor over GF(p). Otherwise it is reducible.

Examples:

The polynomial $x^5+x^4+x^3+x+1$ is **reducible** in Z₅ but **irreducible** in Z₂.

Polynomials over Fields

Implementing GF(p^k) Arithmetic

<u>**Theorem</u>**: Let f(x) be an irreducible polynomial of degree k over Z_p . The finite field $GF(p^k)$ can be realized as the set of degree k-1 polynomials over Z_p , with addition and multiplication done modulo f(x).</u>

Example: (Implementing GF(2^k))

By the theorem the finite field $GF(2^5)$ can be realized as the set of degree 4 polynomials over Z_2 , with addition and multiplication done modulo the irreducible polynomial: $f(x)=x^5+x^4+x^3+x+1$.

The coefficients of polynomials over Z₂ are 0 or 1. So a degree k polynomial can be written down by k+1 bits.

For example, with k=5: x^3+x+1 (0,1,0,1,1), x^4+x^3+x+1 (1,1,0,1,1).

Implementing GF(2^k)

Polynomials over Fields

The Number of Irreducible and Primitive Polynomials

The function $\mu : Z^+ \rightarrow Z^+$ defined by: $\mu(n) = \begin{cases} 1 \text{ if } n = 1; \\ (-1)^r \text{ if } n = p_1 p_2 \dots p_r, \text{ where the } p_i \text{ are distinct primes}; \\ 0 \text{ if } n \text{ has a squared factor} \end{cases}$

is called the Möbius Function.

The number of monic irreducible polynomials of degree k over F_q is given by: $\Psi_q(k) = \frac{1}{k} \sum_{d \in \mathcal{K}} \mu(\frac{k}{d}) q^d$

Clearly, not every monic irreducible polynomial in $F_q[x]$ is necessarily a primitive polynomial over F_q . In fact, the number of primitive polynomials of degree k over F_q is: $\lambda_q(k) = \frac{\phi(q^k - l)}{k}$

Example: Consider (monic) irreducible polynomials of degree 8 over $F_2=Z_2$. The positive divisors of 8 are d = 1, 2, 4, 8 so that 8/d = 8, 4, 2, 1 and $\mu(8/d) = 0$, 0,-1, 1. Therefore, the number of monic irreducible polynomials of degree 8 in $F_2[x]$ is: $\psi_2(8) = \frac{1}{8} \sum_{d=0}^{2} \mu(\frac{3}{d})2^d = (0 + 0 - 16 + 256)/8 = 30.$

Furthermore, the number of primitive polynomials of degree 8 in $F_2[x]$ is:

 $\lambda_2(8) = \frac{\phi(2^8 - 1)}{8} = \frac{\phi(255)}{8} = \frac{\phi(3.5.17)}{8} = \frac{2.4.16}{8} = 16.$

Hence, just over half the irreducible polynomials of degree 8 in $Z_2[x]$ are primitive.

However, if $2^k - 1$ is prime then $(2^k - 2)/k$ so that every irreducible polynomial of degree k is in fact a primitive polynomial in $Z_2[x]$. It is therefore beneficial, in the practical sense, to choose a reasonably large value of k such that $2^k - 1$ is prime.