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Group Theory 
Definition: A binary operation * on a set A is a rule that assign to each 
ordered pair (a,b) of elements of A a unique element of A. 

Example: Ordinary addition + and multiplication • are binary operations on 
N, Z, R, or C.  

Definition: A group, denoted by G,* (or ( G,*)), or simply G, is a G≠φ of 
elements together with a binary operation *, s.t. the following axioms are 
satisfied: 

• Closure: a*bG, a,bG. 

• Associativity: (a*b)*c=a*(b*c), a,b,cG. 

• Existence of identity: ! element eG, called the identity, s.t. 
e*a=a*e=a, aG. 

• Existence of inverse: aG, ! Element bG, s.t. a*b=b*a=e. This b is 
denoted by a-1 and called the inverse of a. 

• The group G,* is called commutative (abelian) group if it satisfies 
further axiom: Commutativity: a*b=b*a, a,bG. 

 



Group Theory 
Example: the set Z+ with operation + is not group ( no identity element), and it's not 
group with operation • ( no inverse element in Z+).   

Definition: If the binary operation of a group is +, then the identity of group is 0 and 
the inverse of aG is –a; this said to be an additive group. 

If the binary operation of a group is •, then the identity of a group is 1 or e, this 
group is said to be multiplicative group. 

Definition: A group is called a finite group if it has finite number of elements; 
otherwise it is called an infinite group.  

Definition: The order of the group G, denoted by |G| (or by #(G)) is the number of 
elements of G. for example: the order of Z is |Z|=.  

Definition: Let aG, where G is multiplicative group. The elements ar, where r is an 
integer, form a subgroup of G, called the subgroup generated by a. A group G is cyclic 
if  aG s.t. the subgroup generated by a is the whole of G.  

Remark: If G is a finite cyclic group with identity element e, the set of elements G 
may be written {e,a,a2,…,an-1}, where an=e and n is the smallest such positive integer. 

Definition : A field by F,, (or (F,,)) or simply F, is abelian group w.r.t. addition, 
and F-{0} is abelian w.r.t. to multiplication. 



Group Theory 
Definition: A finite field is a field that has a finite number of 
elements in it; we call the number the order of the field. 

Theorem:  a field of order q iff q is prime power (i.e. q=pr) 
with p prime and rN.  

Remark: A field of order q with q prime power is called Galois 
field and is denoted by GF(q) or just Fq. 

Example : The finite field F5 has elements {0,1,2,3,4} and is 
described by the table( 4.1) addition and multiplication table. 

 0 1 2 3 4 

  

  

0 0 1 2 3 4  1 2 3 4 

1 1 2 3 4 0 1 1 2 3 4 

2 2 3 4 0 1 2 2 4 1 3 

3 3 4 0 1 2 3 3 1 4 2 

4 4 0 1 2 3 4 4 3 2 1 



Boolean Ring and Boolean Algebra 
Definition: Let A≠φ be a set, f be a binary operation on a set A 
(f:AAA), we call the pair (A,f) as mathematical system. 
  
Definition: Let X be the universal set, and let A and B be two subsets 
of X, then: 
The operation + defined as A+B=AB. 
The operation  defined on the power P(X) set of X  by: 
AB=(A-B)(B-A) s.t. A-B=AB', B' is the complement set of B. 
The operation  called Exclusive-OR (XOR) (or the symmetric 
difference). 
The operation • defined as A•B=AB.  
  
Definition: Let (R,+,•) be a ring with identity element, if the law be 
satisfied a2=a, aR, then the ring called Boolean ring. 
Example: Let P(X) represents the set of all the subsets of the universal set 
X, then the ring (P(X),,•) is Boolean ring. 



Boolean Ring and Boolean Algebra 
Definition: In Boolean ring (B,,•), we defined: 

Complement: a=a1, aB. and Sum (OR): a+b=aba.b a,bB. 

Definition: The Boolean algebra is the mathematical system (B,,) where B≠φ, and the 
binary operations  and  defined on B as follows:  

The operations  and  are commutative. 

The operations  and  are satisfy the distribution law for each to other. 

 two identity distinct elements 0 and 1 of the operations  and  respectively s.t. a0=a and 
a1=a, aB. 

Example: The system (P(X),,) is boolean algebra, X≠φ, we use φ=0 and X=1. If B be a set of 
subsets of X including φ and X which is closed on  and complement then (B,,) is boolean 
algebra too.  

Theorem: Every boolean algebra (B,,) is boolean ring (B,,•) when we defined the 
operations  and as follows: 

ab=(ab')(a'b). and a•b=ab, a,bB.  

Theorem: Every ring (B,,•) is Boolean algebra (B,,) when we defined  and  as follows: 
a,bB. ab=aba•b and ab=a•b. 

Theorem: The ring (Zp,,) is field iff p is prime number s.t. ab=a + b (mod p). And 
ab=a•b (mod p). 

This field is Galois field and is denoted by GF(p), a,b Zp. 



Algebra Description of Logic Circuits 

(a).The gate AND: is multiplying the input variables. 

(b).The gate OR: summing the input variables. 

(c).The gate NOT: complement of the input variable. 

(d).The gate XOR: summing XOR the input variables. 

• 0 1 

 

+ 0 1 

 

a a 

 

 0 1 

0 0 0 0 0 1 0 1 0 0 1 

1 0 1 1 1 1 1 0 1 1 0 
 

Definition (6.1): The logical function f is called the output function 

defined f:B
n
→B, where B

n
 is a set of n input binary data, f subject to the 

Boolean algebra laws and we can apply the gates concepts on it, s.t. 

x=f•g, y=f+g, z=f, and w=fg, where f and g are Boolean functions. 



Algebra Description of Logic Circuits 



Algebra Description of Logic Circuits 



Sequences and Series 
Sequences 
Definition : The sequence in the field F is a function f, whose domain 
is the set of non negative (or could be positive) integer, s.t. f:Z→F, and 
its denoted by 𝑆 = {𝑆𝑛}𝑛=0 

Definition : The Sequence S is periodic when pZ+ s.t. 
s0=sp,s1=sp+1,…, the minimum p is the period of S. 

If Zm={0,1,…,m-1}, where mZ+, then S is digital sequence. In special 
case, if m=2 then S is binary sequence. 

 Series 
Definition: An infinite series is an expression of the form: 

• u1+u2+…uk+…=  𝑢𝑘
∞
𝑘=1   

• Let Sn denotes the sum of the first n terms of the series s.t. 

• Sn=  𝑢𝑘
𝑛
𝑘=1 , and {𝑆𝑛}𝑛=0 is called the sequence of partial sums. 

• S=  𝑢𝑘
∞
𝑘=1  is called the sum of the series. 



Polynomials over Fields 

Let f(x) = an·xn + an-1·xn-1 + an-2·xn-2 + … + a1·x + a0 

be a polynomial of degree n in one variable x over a 
field F (namely an, an-1,…, a1, a0F). 

Theorem: The equation f(x)=0 has at most n solutions 
in F.  

Irreducible Polynomials 

Definition : A polynomial is irreducible in GF(p) if it 
does not factor over GF(p). Otherwise it is reducible.  

Examples: 

The polynomial x5+x4+x3+x+1 is reducible in Z5 but 
irreducible in Z2. 



Polynomials over Fields 
Implementing GF(pk) Arithmetic 
Theorem: Let f(x) be an irreducible polynomial of degree k over Zp. The finite field GF(pk) can be realized as the set 
of degree k-1 polynomials over Zp, with addition and multiplication done modulo f(x). 

Example: (Implementing GF(2k)) 

By the theorem the finite field GF(25) can be realized as the set of degree 4 polynomials over Z2, with addition and 
multiplication done modulo the irreducible polynomial: f(x)=x5+x4+x3+x+1. 

The coefficients of polynomials over Z2 are 0 or 1. So a degree k polynomial can be written down by k+1 bits. 

For example, with k=5: x3+x+1 (0,1,0,1,1),   x4+ x3+x+1 (1,1,0,1,1).  

Implementing GF(2k) 
Addition: bit-wise XOR (since 1+1=0) 

x3+x+1         (0,1,0,1,1) 

+ 

x4+ x3+x+1  (1,1,0,1,1) 

------------------------------- 

x4 ,               (1,0,0,0,0) 

Multiplication: (x2+x+1)(x3+x+1) in GF(25). 

(1,1,1)(1,0,1,1) 

1 0 1 1 

   1 0 1 1 

      1 0 1 1 

----------------- 

1 1 0 0 0 1 = x5+x4+1 



Polynomials over Fields 
The Number of Irreducible and Primitive Polynomials 
The function μ : Z+  Z+ defined by:     

 

 

 

is called the Möbius Function. 

The number of monic irreducible polynomials of degree k over Fq is given by: 

Clearly, not every monic irreducible polynomial in Fq[x] is necessarily a primitive polynomial over Fq. In fact, the 
number of primitive polynomials of degree k over Fq is: 

  

Example : Consider (monic) irreducible polynomials of degree 8 over F2=Z2. The positive divisors of 8 are d = 1, 
2, 4, 8 so that 8/d = 8, 4, 2, 1 and μ(8/d)= 0, 0,−1, 1. Therefore, the number of monic irreducible polynomials of 
degree 8 in F2[x] is: 

                                        = (0 + 0 − 16 + 256)/8= 30. 

 

Furthermore, the number of primitive polynomials of degree 8 in F2[x] is: 

                                                                                                

                       = 16. 

Hence, just over half the irreducible polynomials of degree 8 in Z2[x] are primitive. 

However, if 2k − 1 is prime then (2k − 2)/k so that every irreducible polynomial of degree k is in fact a primitive 
polynomial in Z2[x]. It is therefore beneficial, in the practical sense, to choose a reasonably large value of k such 
that 2k − 1 is prime. 

      1 if n = 1; 

μ(n) =       (−1)
r
 if n = p1p2...pr, where the pi are distinct primes; 

       0 if n has a squared factor 
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