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Introduction

Vectors are essential to physics and engineering. Many fundamental physical quantities are
vectors, including displacement, velocity, force, and electric and magnetic vector fields. Scalar
products of vectors define other fundamental scalar physical quantities, such as energy.

In introductory physics, vectors are Euclidean quantities that have geometric representations as
arrows in one dimension (in a line), in two dimensions (in a plane), or in three dimensions (in
space). They can be added, subtracted or multiplied. In this chapter, we explore elements of vector
algebra for applications in mechanics and in electricity and magnetism. Vector operations also
have numerous generalizations in other branches of physics.

1.1 Coordinate Systems

Many aspects of physics involve a description of a location in space. In Chapter 1, for example,
we saw that the mathematical description of an object’s motion requires a method for describing
the object’s position at various times. This description is accomplished with the use of coordinates,
and in Chapter 1 we used the Cartesian coordinate system, in which horizontal and vertical axes
intersect at a point defined as the origin (Fig. 1.1). Cartesian coordinates are also called
rectangular coordinates.

e (x y)

Figure 1.1 Designation of points in a Cartesian coordinate system. Every point is labeled with coordinates (x, ).
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Sometimes it is more convenient to represent a point in a plane by its plane polar coordinates (r,
0), as shown in Figurel.2a. In this polar coordinate system, r is the distance from the origin to the
point having Cartesian coordinates (X, y), and 0 is the angle between a line drawn from the origin
to the point and a fixed axis. This fixed axis is usually the positive x axis, and 0 is usually measured
counter clockwise from it. From the right triangle in Figure 1.2b, we find that sin 0 = y/r and that
cos 0 = x/r. Therefore, starting with the plane polar coordinates of any point, we can obtain the
Cartesian coordinates by using the equations:

(x, ¥)
X=1cos0O 1-1)
,
y=1rsin0 1-2)
58
7 *
(a)
sin@ = 2
¥
cosé =7 r
¥y
Figure 1.2 (a) The plane polar coordinates of a point are represented tan g = %
by the distance r and the angle 0, where 6 is measured counterclockwise
from the positive x axis. (b) The right triangle used to relate (x, y) to g

(©.0).

(b
Furthermore, the definitions of trigonometry tell us that

_y _
tanB—X 1-3)

=T (1-4)

Equation 1.4 is the familiar Pythagorean theorem.
These four expressions relating the coordinates (X, y) to the coordinates (r, 0) apply

only when 0 is defined as shown in Figure 1.2a—in other words, when positive 0 is an angle
measured counterclockwise from the positive x axis. (Some scientific calculators perform
conversions between Cartesian and polar coordinates based on these standard conventions.) If the
reference axis for the polar angle 0 is chosen to be one other than the positive x axis or if the sense
of increasing 0 is chosen differently, then the expressions relating the two sets of coordinates will
change.
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Example 1.1 Polar Coordinates

The Cartesian coordinates of a point in the xy plane are
(x, ) = (— 3.50, — 2.50) m, as shown in Figure 3.3. Find the
polar coordinates of this point.
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Strategy outlined at the end of Chapter 2. In subsequent
chapters, we will make fewer explicit references to this strat-
egy, as you will have become familiar with it and should be

applying it on your own. The drawing in Figure 3.3 helps us
to conceptualize the problem. We can categorize this as a plug-
in problem. From Equation 3.4,

Solution For the examples in this and the next two chap-
ters we will illustrate the use of the General Problem-Solving

y(m) r=vVZ + 2 =(-8.50m)? + (-2.50m) = 430m
8= and from Equation 3.3,
{ \ x(m)
P mnﬂ=%=%=0714
(3.50, ~2.50)
[ 1] ] = 216

Active Figure 3.3 (Example 3.1) Finding polar coordinates

when Cartesian coordinates are given. Note that you must use the signs of x and y to find that the

point lies in the third quadrant of the coordinate system.

74" At the Active Figures link at http://www.pse6.com, That is, # = 216° and not 35.5°.

you can move the point in the xy plane and see how its
Cartesian and polar coordinates change.

1.2 Vector and Scalar Quantities

As noted in our studies some physical quantities are scalar quantities whereas others are vector
quantities. When you want to know the temperature outside so that you will know how to dress,
the only information you need is a number and the unit “degrees C” or “degrees F.” Temperature
is therefore an example of a scalar quantity:

A scalar quantity is completely specified by a single value with an appropriate unit and has no
direction.

Other examples of scalar quantities are volume, mass, speed, and time intervals. The rules of
ordinary arithmetic are used to manipulate scalar quantities.

If you are preparing to pilot a small plane and need to know the wind velocity, you must know
both the speed of the wind and its direction. Because direction is important for its complete
specification, velocity is a vector quantity:
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A vector quantity is completely specified by a number and appropriate units plus a direction.

Figure 1.3 As a particle moves from (A) to (B) along an arbitrary
path represented by the broken line, its displacement is a vector
quantity shown by the arrow drawn from (A) to (B).

Quick Quiz 1.1 Which of the following are vector quantities and which are scalar quantities?
(a) your age (b) acceleration (c) velocity (d) speed (e) mass

1.3 Some Properties of Vectors

Equality of Two Vectors

For many purposes, two vectors A and B may be defined to be equal if they have the same
magnitude and point in the same direction. That is, A = B only if A = B and if A and B point in
the same direction along parallel lines. For example, all the vectors in Figure 1.4 are equal even
though they have different starting points. This property allows us to move a vector to a position
parallel to itself in a diagram without affecting the vector.

Figure 1.4 These four vectors are equal because they have equal
lengths and point in the same direction. v —

Adding Vectors

The rules for adding vectors are conveniently described by graphical methods. To add vector B
to vector A, first draw vector A on graph paper, with its magnitude represented by a convenient
length scale, and then draw vector B to the same scale with its tail starting from the tip of A, as
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shown in Figure 1.5. The resultant vector R = A + B is the vector drawn from the tail of A to
the tip of B.

Figure 1.5 When vector B is added to vector A, the
resultant R is the vector that runs from the tail of A
to the tip of B.

A

For example, if you walked 3.0 m toward the east and then 4.0 m toward the north, as shown in
Figure 1.6, you would find yourself 5.0 m from where you started, measured at an angle of 53°
north of east. Your total displacement is the vector sum of the individual displacements.

A geometric construction can also be used to add more than two vectors. This is shown in Figure
1.7 for the case of four vectors. The resultant vector R= A + B + C + D is the vector that
completes the polygon. In other words, R is the vector drawn from the tail of the first vector
to the tip of the last vector.

When two vectors are added, the sum is independent of the order of the addition.

X A

b
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6 = an-l( 35 = 53°
Figure 1.6 Vector addition. Walking first 3.0 m due Pl
east and then 4.0m due north leaves you 5.0 m from 11
. . 3.0 m
your starting point. O
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Figure 1.7 Geometric construction for summing four
vectors. The resultant vector R is by definition the
one that completes the polygon.

This can be seen from the geometric construction in Figure 1.8 and is known as the commutative
law of addition:
A+B=B+A (1-5)

When three or more vectors are added, their sum is independent of the way in which the individual
vectors are grouped together. A geometric proof of this rule for three vectors is given in Figure
1.9. This is called the associative law of addition:

A+(B+C)=A+B)+C (1-6)

In summary, a vector quantity has both magnitude and direction and also obeys the laws of vector
addition as described in Figures 1.5 to 1.9. When two or more vectors are added together, all of
them must have the same units and all of them must be the same type of quantity. It would be
meaningless to add a velocity vector (for example, 60 km/h to the east) to a displacement vector
(for example, 200 km to the north) because they represent different physical quantities. The same
rule also applies to scalars. For example, it would be meaningless to add time intervals to
temperatures.

Figure 1.8 This construction shows that A+ B =B + A in other
words, that vector addition is commutative.
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Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives zero for the vector
sum. That is, A + (-A) = 0. The vectors A and -A have the same magnitude but point in opposite
directions.

Associative Law

Figure 1.9 Geometric constructions for verifying the associative law of addition.

Vector Subtraction

7

A
(a) (b)

Figure 1.10 (a) This construction shows how to subtract vector B from vector A. The vector
-B is equal in magnitude to vector B and points in the opposite direction. To subtract B from
A, apply the rule of vector addition to the combination of A and -B: Draw A along some
convenient axis, place the tail of -B at the tip of A, and C is the difference A - B. (b) A second
way of looking at vector subtraction. The difference vector C = A - B is the vector that we
must add to B to obtain A.
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Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of a vector. We
define the operation A - B as vector -B added to vector A:

A-B=A(-B) (1-7)

The geometric construction for subtracting two vectors in this way is illustrated in Figure 1.10a.

Another way of looking at vector subtraction is to note that the difference A - B between two
vectors A and B is what you have to add to the second vector to obtain the first. In this case, the
vector A - B points from the tip of the second vector to the tip of the first, as Figure 1.10b shows.

Quick Quiz 1.2 The magnitudes of two vectors A and B are A = 12 units and B = 8 units.
Which of the following pairs of numbers represents the largest and smallest possible values for
the magnitude of the resultant vector R = A + B? (a) 14.4 units, 4 units (b) 12 units, 8 units (c)
20 units, 4 units (d) none of these answers.

Quick Quiz 1.3 If vector B is added to vector A, under what condition does the resultant
vector A + B have magnitude A + B? (a) A and B are parallel and in the same direction. (b) A
and B are parallel and in opposite directions. (¢) A and B are perpendicular.

Quick Quiz 1.4 If vector B is added to vector A, which rwo of the following choices must be
true in order for the resultant vector to be equal to zero? (a) A and B are parallel and in the same
direction. (b) A and B are parallel and in opposite directions. (c) A and B have the same
magnitude. (d) A and B are perpendicular.
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Example 1.2 A Vacation Trip

A car travels 20.0 km due north and then 35.0 km in a direction 60.0° west of north, as shown in
Figure 1.11a. Find the magnitude and direction of the car’s resultant displacement.

|
.
W—HPHE
ylkm) 5 yikm)
! |
40 40
EH.\—‘-B
Pl 5007 i R
oy ] A
=l ap 20
B |8 N -
\\ 2] B ™ "\ B
SPTA L
N km) ] k
X KIm xikm)—
_20 0 (km) —_1o 0 E
(a) i)
I I

Figure 1.9 (Example 1.2) (a) Graphical method for finding the resultant displacement vector R = A + B.
(b) Adding the vectors in reverse order (B + A) gives the same result for R.

Solution

The vectors A and B drawn in Figure 1.11a help us to conceptualize the problem. We can categorize this
as a relatively simple analysis problem in vector addition. The displacement R is the resultant when the two
individual displacements A and B are added. We can further categorize this as a problem about the analysis
of triangles, so we appeal to our expertise in geometry and trigonometry.

In this example, we show two ways to analyze the problem of finding the resultant of two vectors. The first
way is to solve the problem geometrically, using graph paper and a protractor to measure the magnitude of
R and its direction in Figure 1.11a. (In fact, even when you know you are going to be carrying out a
calculation, you should sketch the vectors to check your results.) With an ordinary ruler and protractor, a
large diagram typically gives answers to two-digit but not to three-digit precision.

The second way to solve the problem is to analyze it algebraically. The magnitude of R can be obtained
from the law of cosines as applied to the triangle. With 6 = 180° - 60° = 120° and R> = 4>+ B? -24B cos 0,
we find that
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R=1A% + B? — 2ABcos#

= Y(20.0 km)? + (35.0 km)? — 2(20.0 km)(35.0 km) cos 120°
= 48.2 km
sinfB  sin#d
B R
i - 350 km 190 0 690

5 =—3 = ———=in 1207 = 0.62!
sin  Sin 389 gy S0

B = 39.0°

Multiplying a Vector by a Scalar

If vector A is multiplied by a positive scalar quantity m, then the product mA is a vector that has
the same direction as A and magnitude mA. If vector A is multiplied by a negative scalar quantity
-m, then the product -mA is directed opposite A. For example, the vector SA is five times as long
as A and points in the same direction as A; the vector -1/3A is one-third the length of A and points
in the direction opposite A.

1.4 Components of a Vector and Unit Vectors

The graphical method of adding vectors is not recommended whenever high accuracy is required
or in three-dimensional problems. In this section, we describe a method of adding vectors that
makes use of the projections of vectors along coordinate axes. These projections are called the
components of the vector. Any vector can be completely described by its components.

Consider a vector A lying in the xy plane and making an arbitrary angle 0 with the positive
x axis, as shown in Figure 1.12a. This vector can be expressed as the sum of two other vectors Ax
and Ay.
From Figure 1.12b, we see that the three vectors form a right triangle and that A = Ax + Ay. We
shall often refer to the “components of a vector A,” written Ax and Ay (without the boldface
notation). The component Ax represents the projection of A along the x axis, and the component
Ay represents the projection of A along the y axis. These components can be positive or negative.
The component Ax is positive if Ax points in the positive x direction and is negative if Ax points
in the negative x direction. The same is true for the component Ay.
From Figure 1.12 and the definition of sine and cosine, we see that cos 6 = Ax/A and that sin 6 "
Ay/A. Hence, the components of A are

A, =AcosH (1-98)

10
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A, =Asinb 1-9)

These components form two sides of a right triangle with a hypotenuse of length 4. Thus, it follows
that the magnitude and direction of A are related to its components through the expressions:

A= /sz +4,° (1-10)

A
6 = tan~! (A—y) (1-11)
X

Note that the signs of the components Ax and Ay depend on the angle 0. For example, if 0 =
120°, then Ax is negative and Ay is positive. If @ = 225°, then both Ax and Ay are negative. Figure
1.13 summarizes the signs of the components when A lies in the various quadrants.

When solving problems, you can specify a vector A either with its components Ax and Ay or with
its magnitude and direction A and 0.

11
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x
Figure 1.12 (a) A vector A lying in the xy plane can be represented
by its component vectors Ax and Ay . (b) The y component vector
Ay can be moved to the right so that it adds to Ax . The vector sum
¥ of the component vectors is A. These three vectors form a right
triangle.
(b)
Y
A, negative | A, positive
A_-; |:“37"Eili tive -”Jl_y Pﬂﬁilh‘f Figure 1.13 The signs of the components of a vector A depend on
: — X the quadrant in which the vector is located.
A, negative | A, positive
A, negative | A, negative

12
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Unit Vectors

(a)

(b}
Active Flgure]_ 15 (a) The unit
vectors i, j, and k are directed

along the x, ¥, and z axes, respec-
tvely. (b) Vector A = A,i + A,jly-
ing in the xy plane has campﬂﬁenu
Ay and Ay
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Vector quantities often are expressed in terms of unit vectors. A unit vector is a dimen-
sionless vector having a magmtude of exactly 1. Unit vectors are used to specify a
given direction and have no other physical significance. They are used solely as a conve-
nience in describing a direction in space. We shall use the symbols i, j, and k to repre-
sent unit vectors pointing in the positive x, y, and z directions, respectively. (The “hats” on
the symbols are a standard notation for unit vectors.) The unit vectors i,j, and k form a
set of mutually perpendicular vectors in a righthanded coordinate system, as shown in
Figure 1.15a The magnitude of each unit vector equals 1; that is, lil =il = k| =1.
Consider a vector A lving in the xy plane, as shown in Figure 1.15b . The product
of the component A, and the unit vector_ i is the vector A,i, which hes on the x axis
and has magnitude |rl |. (The vector *1r1 is an alternative representation of vector
A,) Likewise, A,j is a vector of magnitude | A, ;| lving on the y axis. (Again, vector A,r_]
is an alternative representation of vector A } Thus, the unit—vector notaton for the

vector A s
A=A+ Ay (1-12)

For example, consider a point lying in the xy plane and having Cartesian coordinates
(x,y), as in Figure 3.17. The point can be specified by the position vector r, which in
unit—vector form is given by

r=xi+}j] (1.134)

This notation tells us that the components of r are the lengths xand y.

Now let us see how to use components to add vectors when the graphical method is
not sufficienty accurate. Suppose we wish to add vector B to vector A in Equation 3.12,
where vector B has components B, and B, All we do is add the x and y components
separately. The resultant vector R = A + B is therefore

R = (i + Ayj) + (Bii + Byj)

or
R = (A, + B)i + (A, + B)j (1-14)
Because R = R,1 + Rj.j, we see that the components of the resultant vector are
R,= A, + B, (1-15)
Ry = Ay + B,

13



CHAPTER 1 VECTORS

‘We obtain the magnitude of R and the angle it makes with the x axis from it compo-
nents, using the relationships

R=VR2+ R2 = (4 + B)? + (4, + B)* (1-16)
B _AH+E 1-17)
Al == A+ B,

‘We can check this addition by components with a geometric construction, as shown
in Figure 3.18. Remember that you must note the signs of the components when using
either the algebraic or the graphical method.

At times, we need to consider situations involving motion in three component direc-
tions. The extension of our methods to three-dimensional vectors is straightforward. If
A and B both have x, y, and z components, we express them in the form

A=A+ Ajj + Ak (1-18)
B = B.i + Bj+ Bk (1-19)

The sum of A and B is
R=(Ac+ B)i+ (4 + B)j+ (A + Bk (1-20)

Note that Equation 1 20 differs from Equation 1.14 in Equation 1-20 the resultant vec-
tor also has a z component R, = A; + B,. If a vector R has x, y, and z components, the

magnitude of the vector is R = ‘.f.fi_‘x'-’ + H,F + R The angle #, that R makes with the
x axis is found from the expression cos #, = R, /R, with similar expressions for the an-

Dr. MOHAMMED JASSIM

L2

e— A —l--l-BI—l-

Figure 1,17 This geomerric con-
struction wn the sum of two vectors
shows the relatonship between the
components of the resultant R and
the componenis of the individual
VeCtors.

gles with respect w the yand 2 axes.

Example 1.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane
and given by
A= (20i+20j) m

and B = (20i—40j)m

Solutfon You may wish to draw the vectors to conceplualize
the situation. We categorize this as a simple plugin problem.
Comparing this expression for A with the general expres-
sion A = Agi + A;j, we see that Ay = 20 m and 4; = 2.0 m.

Likewise, By = 2.0 m and By = — 4.0 m. We obtain the resul-
tant vector R, using Equation | 14

R=A+B=(20+20)im+ (20— 40)jm
= (4.0i — 2.0)) m
or

Ry=40m Ry,=—20m

The magnitude of R is found using Equation {1.16

R =VRZ +R? =V(40m)? + (—20m)? = {20 m

= 45m

We can find the direction of R from Equation 3.17:

RJ,I _Eﬂl'l'l
anf = T i0m

= —0.50

Your calculator likely gives the answer —27° for #=
tan~!(—0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from

the + x axis, and that angle for this vectoris # = 333° .

14
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Examplel.4 The Resultant Displacement

A particle undergoes three consecutive displacements:
d, = (15i +30j + 12k) cm, dy = (23i — 14j — 5.0k) cm
and ds = (—13i + 15j) cm. Find the components of the
resultant displacement and its magnitude.

Solution Threedimensional displacements are more diffi-
cult to imagine than those in two dimensions, because the
latter can be drawn on paper. For this problem, let us concef-
tualize that you start with your pencil at the origin of a piece
of graph paper on which you have drawn x and y axes. Move
your pencil 15 cm to the right along the x axis, then 30 cm
upward along the y axis, and then 12 cm vertically away from
the graph paper. This provides the displacement described
by d,. From this point, move your pencil 23 cm to the right
parallel to the x axis, 14 cm parallel to the graph paper in
the —y direction, and then 5.0 cm vertically downward to-
ward the graph paper. You are now at the displacement
from the origin described by d; + dg. From this point, move
your pencil 13 cm to the left in the — x direction, and (fi-
nally!) 15 cm parallel to the graph paper along the y axis.

Example 1.5 Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the
second day, she walks 40.0 km in a direction 60.0° north of
east, at which point she discovers a forest ranger's tower.

(A) Determine the components of the hiker’s displacement
for each day.

Solution We conceptualize the problem by drawing a sketch as
in Figure] 1§ If we denote the displacement vectors on the

first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 1.18 Drawing the resultant R, we can now categorize this
as a problem we've solved before—an addition of two vectors.
This should give you a hint of the power of categorization—
many new problems are very similar to problems that we have
already solved if we are careful to conceptualize them.
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Your final position is at a displacement d, + dy + d3 from
the origin.

Despite the difficulty in conceptualizing in three dimen-
sions, we can categorize this problem as a plug-in problem due
to the careful bookkeeping methods that we have developed
for vectors. The mathematical manipulation keeps track of
this motion along the three perpendicular axes in an orga-
nized, compact way:

R=d|+d2+d5

=(15+23—13)icm + (30 — 14 + 15)jcm
+ (12 — 50+ 0)k cm

= (25i + 31j + 7.0k) cm

The resultant displacement has components Ry = 25 cm,
Ry= 31 cm, and R; = 7.0 cm. Its magnitude is

R =VR2+ R+ R?

=v(@5em)? + (3l em)? + (7.0cm)? = 40em

Interactive

We will analyze this problem by using our new knowledge
of vector components. Displacement A has a magnitude of
25.0 km and is directed 45.0° below the positive x axis. From
Equations 3.8 and 3.9, its components are

A, = Acos (—45.0°) = (25.0km)(0.707) = 17.7km

Ay = Asin(—45.0°) = (25.0km)(—0.707) = —17.7km

The negative value of A, indicates that the hiker walks in the
negative y direction on the first day. The signs of A, and 4,
also are evident from Figure 1.18

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

15
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B, = Bcos 60.0° = (40.0 km) (0.500) = 20.0 km

By = Bsin 60.0° = (40.0 km) (0.866) = 34.6 km

(B) Determine the components of the hiker's resultant dis-
placement R for the trip. Find an expression for R in terms
of unit vectors.

y(km) N
L]
W—r=t
20 S T
| ower
Im R _.ﬂ""r‘f
|
- (‘laﬂrl / x{km}
'i 45,0°_20 ESU__d-GI__ 50
T . | .? B
| A G0L0°
I AL
=20 Tent
| 1 1

Figure 1 15 (Example | 5 The total displace-
ment of the hiker is the vecor R = A + B.
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Solution The resultant displacement forthe ipR=A + B
has components given by Equation ] 15

R,= A, + B,= 17.7km + 20.0km = 37.7km

Ry=Ay+ B;= —17.7km + 346km = 169 km

In unit-vector form, we can write the total displacement as
R= (37.7i + 16.9j) km

Using Equations 1.16 and 1.17 we find that the vector R
has a magnitude of 41.3 km and is directed 24.1° north of
east.

Let us finalize. The units of R are km, which is reason-
able for a displacement. Looking at the graphical represen-
tation in Figure 1.18 we estimate that the final position of
the hiker is at about (38 km, 17 km) which is consistent with
the components of R in our final result. Also, both compo-
nents of R are positive, putting the final position in the first
quadrant of the coordinate system, which is also consistent
with Figureq 13

16
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