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the reversible process because increasing the external pressure 
even infinitesimally at any stage results in compression. It can 
be inferred from this discussion that, because some pushing 
power is wasted when p > pex, the maximum work available 
from a system operating between specified initial and final 
states is obtained when the change takes place reversibly.

2A.4 Heat transactions

In general, the change in internal energy of a system is

dU = dq + dwexp + dwadd (2A.10)

where dwadd is work in addition (‘add’ for additional) to the ex-
pansion work, dwexp. For instance, dwadd might be the electrical 
work of driving a current of electrons through a circuit. A sys-
tem kept at constant volume can do no expansion work, so in 
that case dwexp = 0. If the system is also incapable of doing any 
other kind of work (if it is not, for instance, an electrochemical 
cell connected to an electric motor), then dwadd = 0 too. Under 
these circumstances:

dU = dq Heat transferred at 
constant volume  (2A.11a)

This relation can also be expressed as dU = dqV, where the sub-
script implies the constraint of constant volume. For a measura-
ble change between states i and f along a path at constant volume,
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which is summarized as

ΔU = qV (2A.11b)

Note that the integral over dq is not written as Δq because q, 
unlike U, is not a state function. It follows from eqn 2A.11b 
that measuring the energy supplied as heat to a system at con-
stant volume is equivalent to measuring the change in internal 
energy of the system.

(a) Calorimetry

Calorimetry is the study of the transfer of energy as heat dur-
ing a physical or chemical process. A calorimeter is a device for 
measuring energy transferred as heat. The most common de-
vice for measuring qV (and therefore ΔU) is an adiabatic bomb 
calorimeter (Fig. 2A.8). The process to be studied—which may 
be a chemical reaction—is initiated inside a constant-volume 
container, the ‘bomb’. The bomb is immersed in a stirred water 
bath, and the whole device is the calorimeter. The calorimeter 
is also immersed in an outer water bath. The water in the calo-
rimeter and of the outer bath are both monitored and adjusted 

to the same temperature. This arrangement ensures that there 
is no net loss of heat from the calorimeter to the surroundings 
(the bath) and hence that the calorimeter is adiabatic.

The change in temperature, ΔT, of the calorimeter is pro-
portional to the energy that the reaction releases or absorbs as 
heat. Therefore, qV and hence ΔU can be determined by meas-
uring ΔT. The conversion of ΔT to qV is best achieved by cali-
brating the calorimeter using a process of known output and 
determining the calorimeter constant, the constant C in the 
relation

q = CΔT (2A.12)

The calorimeter constant may be measured electrically by 
passing a constant current, I, from a source of known potential 
difference, Δϕ, through a heater for a known period of time, t, 
for then (The chemist’s toolkit 8)

q = ItΔϕ (2A.13)

Brief illustration 2A.4

If a current of 10.0 A from a 12 V supply is passed for 300 s, 
then from eqn 2A.13 the energy supplied as heat is

q = (10.0 A) × (300 s) × (12 V) = 3.6 × 104 A V s = 36 kJ

The result in joules is obtained by using 1 A V s = 1 (C s−1) V s = 
1 C V = 1 J. If the observed rise in temperature is 5.5 K, then 
the calorimeter constant is C = (36 kJ)/(5.5 K) = 6.5 kJ K−1.

Alternatively, C may be determined by burning a known 
mass of substance (benzoic acid is often used) that has a 
known heat output. With C known, it is simple to interpret an 
observed temperature rise as a release of energy as heat.

Thermometer
Oxygen input

Firing
leads

Sample

Oxygen
under pressure

Water

Bomb

Figure 2A.8 A constant-volume bomb calorimeter. The ‘bomb’ 
is the central vessel, which is strong enough to withstand high 
pressures. The calorimeter is the entire assembly shown here. 
To ensure adiabaticity, the calorimeter is immersed in a water 
bath with a temperature continuously readjusted to that of the 
calorimeter at each stage of the combustion.
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(b) Heat capacity

The internal energy of a system increases when its tempera-
ture is raised. This increase depends on the conditions under 
which the heating takes place. Suppose the system has a con-
stant volume. If the internal energy is plotted against tem-
perature, then a curve like that in Fig. 2A.9 may be obtained. 
The slope of the tangent to the curve at any temperature is 
called the heat capacity of the system at that temperature. 
The heat capacity at constant volume is denoted CV and is 
defined formally as

C U
TV

V

= ∂
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 Heat capacity at constant volume 
[definition]  (2A.14)

(Partial derivatives and the notation used here are reviewed in 
The chemist’s toolkit 9.) The internal energy varies with the tem-
perature and the volume of the sample, but here only its varia-
tion with the temperature is important, because the volume is 
held constant (Fig. 2A.10), as signified by the subscript V.
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Figure 2A.9 The internal energy of a system increases as  
the temperature is raised; this graph shows its variation  
as the system is heated at constant volume. The slope of the 
tangent to the curve at any temperature is the heat capacity at 
constant volume at that temperature. Note that, for the system 
illustrated, the heat capacity is greater at B than at A.

The chemist’s toolkit 8 Electrical charge, current, power, and energy

Electrical charge, Q, is measured in coulombs, C. The funda-
mental charge, e, the magnitude of charge carried by a single 
electron or proton, is approximately 1.6 × 10−19 C. The motion 
of charge gives rise to an electric current, I, measured in cou-
lombs per second, or amperes, A, where 1 A = 1 C s−1. If the 
electric charge is that of electrons (as it is for the current in a 
metal), then a current of 1 A represents the flow of 6 × 1018 elec-
trons (10 μmol e−) per second.

When a current I flows through a potential difference Δϕ 
(measured in volts, V, with 1 V = 1 J A−1), the power, P, is

P = IΔϕ

It follows that if a constant current flows for a period t the 
energy supplied is

E = Pt = ItΔϕ

Because 1 A V s = 1 (C s−1) V s = 1 C V = 1 J, the energy is 
obtained in joules with the current in amperes, the potential 
difference in volts, and the time in seconds. That energy may be 
supplied as either work (to drive a motor) or as heat (through a 
‘heater’). In the latter case

q = ItΔϕ

Brief illustration 2A.5

In Brief illustration 2A.1 it is shown that the translational con-
tribution to the molar internal energy of a perfect monatomic 
gas is 3

2 RT. Because this is the only contribution to the internal 
energy, Um(T) = 3

2 RT. It follows from eqn 2A.14 that

C T RT RV ,m
3
2

3
2{ }= ∂

∂ =

The numerical value is 12.47 J K−1 mol−1.

Heat capacities are extensive properties: 100 g of water, for 
instance, has 100 times the heat capacity of 1 g of water (and 
therefore requires 100 times the energy as heat to bring about 
the same rise in temperature). The molar heat capacity at 
constant volume, CV,m = CV/n, is the heat capacity per mole of 
substance, and is an intensive property (all molar quantities 
are intensive). For certain applications it is useful to know the 

Figure 2A.10 The internal energy of a system varies with 
volume and temperature, perhaps as shown here by the surface. 
The variation of the internal energy with temperature at one 
particular constant volume is illustrated by the curve drawn 
parallel to the temperature axis. The slope of this curve at any 
point is the partial derivative (∂U/∂T)V.
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dU = CV dT 
Internal energy 
change on heating 
[constant volume]

 (2A.15a)

That is, at constant volume, an infinitesimal change in temper-
ature brings about an infinitesimal change in internal energy, 
and the constant of proportionality is CV. If the heat capacity 
is independent of temperature over the range of temperatures 
of interest, then
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The chemist’s toolkit 9 Partial derivatives

A partial derivative of a function of more than one variable, 
such as f(x,y), is the slope of the function with respect to one 
of the variables, all the other variables being held constant 
(Sketch 1). Although a partial derivative shows how a function 
changes when one variable changes, it may be used to deter-
mine how the function changes when more than one variable 
changes by an infinitesimal amount. Thus, if f is a function of 
x and y, then when x and y change by dx and dy, respectively, 
f changes by
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where the symbol ∂ (‘curly d’) is used (instead of d) to denote 
a partial derivative and the subscript on the parentheses indi-
cates which variable is being held constant. 
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y
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Sketch 1 

The quantity df is also called the differential of f. Successive 
partial derivatives may be taken in any order:
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For example, suppose that f(x,y) = ax3y + by2 (the function plot-
ted in Sketch 1) then
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Then, when x and y undergo infinitesimal changes, f changes 
by

df = 3ax2y dx + (ax3 + 2by) dy

To verify that the order of taking the second partial derivative 
is irrelevant, form

y
f
x

ax y
y ax(3 ) 3

y x x

2
2∂

∂
∂
∂















 = ∂

∂






=

x
f
y

ax by
x ax( 2 ) 3

x y y

3
2∂

∂
∂
∂













= ∂ +
∂







=

Now suppose that z is a variable on which x and y depend (for 
example, x, y, and z might correspond to p, V, and T). The fol-
lowing relations then apply:

Relation 1. When x is changed at constant z:
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Combining Relations 2 and 3 results in the Euler chain relation:
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specific heat capacity (more informally, the ‘specific heat’) of 
a substance, which is the heat capacity of the sample divided 
by its mass, usually in grams: CV,s = CV/m. The specific heat 
capacity of water at room temperature is close to 4.2 J K−1 g−1. 
In general, heat capacities depend on the temperature and 
decrease at low temperatures. However, over small ranges of 
temperature at and above room temperature, the variation is 
quite small and for approximate calculations heat capacities 
can be treated as almost independent of temperature.

The heat capacity is used to relate a change in internal en-
ergy to a change in temperature of a constant-volume system. 
It follows from eqn 2A.14 that
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A measurable change of temperature, ΔT, brings about a meas-
urable change in internal energy, ΔU, with

ΔU = CVΔT 
Internal energy 
change on heating 
[constant volume]

 (2A.15b)

Because a change in internal energy can be identified with the 
heat supplied at constant volume (eqn 2A.11b), the last equa-
tion can also be written as

qV = CVΔT (2A.16)

This relation provides a simple way of measuring the heat 
capacity of a sample: a measured quantity of energy is 
transferred as heat to the sample (by electrical heating, for ex-
ample) under constant volume conditions and the resulting 
increase in temperature is monitored. The ratio of the energy 
transferred as heat to the temperature rise it causes (qV/ΔT) is 

the constant-volume heat capacity of the sample. A large heat 
capacity implies that, for a given quantity of energy trans-
ferred as heat, there will be only a small increase in tempera-
ture (the sample has a large capacity for heat).

Brief illustration 2A.6

Suppose a 55 W electric heater immersed in a gas in a constant-
volume adiabatic container was on for 120 s and it was found 
that the temperature of the gas rose by 5.0 °C (an increase 
equivalent to 5.0 K). The heat supplied is (55 W) × (120 s) = 
6.6 kJ (with 1 J = 1 W s), so the heat capacity of the sample is

C 6.6kJ
5.0K 1.3kJKV

1= = −

Property Equation Comment Equation number

First Law of thermodynamics ΔU = q + w Convention 2A.2

Work of expansion dw = −pexdV 2A.5a

Work of expansion against a constant external pressure w = −pexΔV pex = 0 for free expansion 2A.6

Reversible work of expansion of a gas w = −nRT ln(Vf/Vi) Isothermal, perfect gas 2A.9

Internal energy change ΔU = qV Constant volume, no other forms of work 2A.11b

Electrical heating q = ItΔϕ 2A.13

Heat capacity at constant volume CV = (∂U/∂T)V Definition 2A.14

Checklist of concepts

☐ 1. Work is the process of achieving motion against an 
opposing force.

☐ 2. Energy is the capacity to do work.

☐ 3. An exothermic process is a process that releases energy 
as heat.

☐ 4. An endothermic process is a process in which energy 
is acquired as heat.

☐ 5. Heat is the process of transferring energy as a result of 
a temperature difference.

☐ 6. In molecular terms, work is the transfer of energy that 
makes use of organized motion of atoms in the sur-
roundings and heat is the transfer of energy that makes 
use of their disorderly motion.

☐ 7. Internal energy, the total energy of a system, is a state 
function.

☐ 8. The internal energy increases as the temperature is raised.
☐ 9. The equipartition theorem can be used to estimate the 

contribution to the internal energy of each classically 
behaving mode of motion.

☐ 10. The First Law states that the internal energy of an iso-
lated system is constant.

☐ 11. Free expansion (expansion against zero pressure) does 
no work.

☐ 12. A reversible change is a change that can be reversed by 
an infinitesimal change in a variable.

☐ 13. To achieve reversible expansion, the external pressure 
is matched at every stage to the pressure of the system.

☐ 14. The energy transferred as heat at constant volume is 
equal to the change in internal energy of the system.

☐ 15. Calorimetry is the measurement of heat transactions.

Checklist of equations



2B.1 The definition of enthalpy

The enthalpy, H, is defined as

H = U + pV Enthalpy 
[definition]  (2B.1)

where p is the pressure of the system and V is its volume. 
Because U, p, and V are all state functions, the enthalpy is a 
state function too. As is true of any state function, the change 
in enthalpy, ΔH, between any pair of initial and final states is 
independent of the path between them.

(a) Enthalpy change and heat transfer

An important consequence of the definition of enthalpy in 
eqn 2B.1 is that it can be shown that the change in enthalpy is 
equal to the energy supplied as heat under conditions of con-
stant pressure.

How is that done? 2B.1 Deriving the relation between 
enthalpy change and heat transfer at constant pressure

In a typical thermodynamic derivation, as here, a common 
way to proceed is to introduce successive definitions of the 
quantities of interest and then apply the appropriate con-
straints.

Step 1 Write an expression for H + dH in terms of the defini-
tion of H
For a general infinitesimal change in the state of the system, 
U changes to U + dU, p changes to p + dp, and V changes to  
V + dV, so from the definition in eqn 2B.1, H changes by dH to

H + dH = (U + dU) + (p + dp)(V + dV) 

    = U + dU + pV + pdV + Vdp + dpdV 
The last term is the product of two infinitesimally small quan-
tities and can be neglected. Now recognize that U + pV = H on 
the right (in blue), so

H + dH = H + dU + pdV + Vdp 

and hence

dH = dU + pdV + Vdp 

Step 2 Introduce the definition of dU
Because dU = dq + dw this expression becomes

dH = dq + dw + pdV + Vdp 

TOPIC 2B Enthalpy

➤  Why do you need to know this material?

The concept of enthalpy is central to many thermody-
namic discussions about processes, such as physical trans-
formations and chemical reactions taking place under 
conditions of constant pressure.

➤  What is the key idea?

A change in enthalpy is equal to the energy transferred as 
heat at constant pressure.

➤  What do you need to know already?

This Topic makes use of the discussion of internal energy 
(Topic 2A) and draws on some aspects of perfect gases 
(Topic 1A).

The change in internal energy is not equal to the energy trans-
ferred as heat when the system is free to change its volume, 
such as when it is able to expand or contract under conditions 
of constant pressure. Under these circumstances some of the 
energy supplied as heat to the system is returned to the sur-
roundings as expansion work (Fig. 2B.1), so dU is less than dq. 
In this case the energy supplied as heat at constant pressure 
is equal to the change in another thermodynamic property of 
the system, the ‘enthalpy’.

Energy
as heat

Energy as work

ΔU < q

Figure 2B.1 When a system is subjected to constant pressure 
and is free to change its volume, some of the energy supplied 
as heat may escape back into the surroundings as work. In such 
a case, the change in internal energy is smaller than the energy 
supplied as heat.
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Step 3 Apply the appropriate constraints
If the system is in mechanical equilibrium with its sur-
roundings at a pressure p and does only expansion work, 
then dw = −pdV, which cancels the other pdV term, leaving

dH = dq + Vdp 

At constant pressure, dp = 0, so

dH = dq (at constant pressure, no additional work) 

The constraint of constant pressure is denoted by a p, so this 
equation can be written

dH = dqp 
Heat transferred at constant 
pressure [infinitesimal change]  (2B.2a)

This equation states that, provided there is no additional 
(non-expansion) work done, the change in enthalpy is equal to 
the energy supplied as heat at constant pressure.

Step 4 Evaluate ΔH by integration
For a measurable change between states i and f along a path 
at constant pressure, the preceding expression is integrated 
as follows
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Note that the integral over dq is not written as Δq because q, 
unlike H, is not a state function and qf − qi is meaningless. The 
final result is

ΔH = qp  
 (2B.2b)

Brief illustration 2B.1

Water is heated to boiling under a pressure of 1.0 atm. When an 
electric current of 0.50 A from a 12 V supply is passed for 300 s 
through a resistance in thermal contact with the water, it is 
found that 0.798 g of water is vaporized. The enthalpy change is

ΔH  = qp = ItΔϕ = (0.50 A) × (300 s) × (12 V)   
= 0.50 × 300 J × 12

where 1 A V s = 1 J. Because 0.798 g of water is (0.798 g)/
(18.02 g mol−1) = (0.798/18.02) mol H2O, the enthalpy of vapor-
ization per mole of H2O is

= × × = + −H∆ 0.50 12 300J
(0.798/18.02)mol 41kJmolm

1

(b) Calorimetry

An enthalpy change can be measured calorimetrically by 
monitoring the temperature change that accompanies a physi-
cal or chemical change at constant pressure. A calorimeter for 

studying processes at constant pressure is called an isobaric 
calorimeter. A simple example is a thermally insulated vessel 
open to the atmosphere: the energy released as heat in the re-
action is monitored by measuring the change in temperature 
of the contents. For a combustion reaction an adiabatic flame 
calorimeter may be used to measure ΔT when a given amount 
of substance burns in a supply of oxygen (Fig. 2B.2). The most 
sophisticated way to measure enthalpy changes, however, is to 
use a differential scanning calorimeter (DSC), as explained in 
Topic 2C. Changes in enthalpy and internal energy may also 
be measured by non-calorimetric methods (Topic 6C).

One route to ΔH is to measure the internal energy change by 
using a bomb calorimeter (Topic 2A), and then to convert ΔU 
to ΔH. Because solids and liquids have small molar volumes, 
for them pVm is so small that the molar enthalpy and molar 
internal energy are almost identical (Hm = Um + pVm ≈ Um).  
Consequently, if a process involves only solids or liquids, the 
values of ΔH and ΔU are almost identical. Physically, such  
processes are accompanied by a very small change in volume; 
the system does negligible work on the surroundings when the 
process occurs, so the energy supplied as heat stays entirely 
within the system.

Example 2B.1 Relating ΔH and ΔU

The change in molar internal energy when CaCO3(s) as cal-
cite converts to its polymorph aragonite, is +0.21 kJ mol−1. 
Calculate the difference between the molar enthalpy and 
internal energy changes when the pressure is 1.0  bar. The 
mass densities of the polymorphs are 2.71 g cm−3 (calcite) and  
2.93 g cm−3 (aragonite).

Collect your thoughts The starting point for the calculation 
is the relation between the enthalpy of a substance and its 
internal energy (eqn 2B.1). You need to express the difference 
between the two quantities in terms of the pressure and the 
difference of their molar volumes. The latter can be calculated 

Heat transferred at 
constant pressure 
[measurable change]

Gas, vapour

Oxygen

Products

Figure 2B.2 A constant-pressure flame calorimeter consists of 
this component immersed in a stirred water bath. Combustion 
occurs as a known amount of reactant is passed through to fuel 
the flame, and the rise of temperature is monitored.
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from their molar masses, M, and their mass densities, ρ, by 
using ρ = M/Vm.

The solution The change in enthalpy when the transition 
occurs is

ΔHm = Hm(aragonite) − Hm(calcite) 
        = {Um(a) + pVm(a)} − {Um(c) + pVm(c)} 
        = ΔUm + p{Vm(a) − Vm(c)} 

where a denotes aragonite and c calcite. It follows by substitut-
ing Vm = M/ρ that

ρ ρ− = −



H U pM∆ ∆ 1

(a)
1
(c)m m

 

Substitution of the data, using M = 100.09 g mol−1, gives

− = × ×

× −
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− −
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    2.8 10 Pacm mol 0.28Pam mol5 3 1 3 1= − × = −− −

Hence (because 1 Pa m3 = 1 J), ΔHm − ΔUm = −0.28 J mol−1, 
which is only 0.1 per cent of the value of ΔUm.

Comment. It is usually justifiable to ignore the difference 
between the molar enthalpy and internal energy of condensed 
phases except at very high pressures when pΔVm is no longer 
negligible.

Self-test 2B.1 Calculate the difference between ΔH and ΔU 
when 1.0 mol Sn(s, grey) of density 5.75 g cm−3 changes to  
Sn(s, white) of density 7.31 g cm−3 at 10.0 bar.

Answer: ΔH − ΔU = −4.4 J

In contrast to processes involving condensed phases, the 
values of the changes in internal energy and enthalpy might 
differ significantly for processes involving gases. The enthalpy 
of a perfect gas is related to its internal energy by using pV = 
nRT in the definition of H: 

H = U + pV = U + nRT (2B.3) 

This relation implies that the change of enthalpy in a 
reaction that produces or consumes gas under isothermal 
conditions is

ΔH = ΔU + ΔngRT Relation between ΔH and ΔU 
[isothermal process, perfect gas]

 (2B.4)

where Δng is the change in the amount of gas molecules in the 
reaction. For molar quantities, replace Δng by Δνg.

Brief illustration 2B.2

In the reaction 2 H2(g) + O2(g) → 2 H2O(l), 3 mol of gas-phase 
molecules are replaced by 2 mol of liquid-phase molecules, 

so Δng = −3 mol and Δνg = −3. Therefore, at 298 K, when RT = 
2.5 kJ mol−1, the enthalpy and internal energy changes taking 
place in the system are related by

ΔHm − ΔUm = (−3) × RT ≈ −7.5 kJ mol−1

Note that the difference is expressed in kilojoules, not joules 
as in Example 2B.1. The enthalpy change is smaller than the 
change in internal energy because, although energy escapes 
from the system as heat when the reaction occurs, the system 
contracts as the liquid is formed, so energy is restored to it as 
work from the surroundings.

2B.2 The variation of enthalpy with 
temperature

The enthalpy of a substance increases as its temperature is 
raised. The reason is the same as for the internal energy: mole-
cules are excited to states of higher energy so their total energy 
increases. The relation between the increase in enthalpy and 
the increase in temperature depends on the conditions (e.g. 
whether the pressure or the volume is constant).

(a) Heat capacity at constant pressure

The most frequently encountered condition in chemistry 
is constant pressure. The slope of the tangent to a plot of en-
thalpy against temperature at constant pressure is called the 
heat capacity at constant pressure (or isobaric heat capacity), 
Cp, at a given temperature (Fig. 2B.3). More formally:

C H
Tp

p

= ∂
∂







 Heat capacity at constant pressure 
[definition]

 (2B.5)
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Figure 2B.3 The constant-pressure heat capacity at a particular 
temperature is the slope of the tangent to a curve of the enthalpy 
of a system plotted against temperature (at constant pressure). 
For gases, at a given temperature the slope of enthalpy versus 
temperature is steeper than that of internal energy versus 
temperature, and Cp,m is larger than CV,m.
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The heat capacity at constant pressure is the analogue of the 
heat capacity at constant volume (Topic 2A) and is an exten-
sive property. The molar heat capacity at constant pressure, 
Cp,m, is the heat capacity per mole of substance; it is an inten-
sive property.

The heat capacity at constant pressure relates the change in 
enthalpy to a change in temperature. For infinitesimal changes 
of temperature, eqn 2B.5 implies that

dH = CpdT (at constant pressure) (2B.6a) 

If the heat capacity is constant over the range of temperatures 
of interest, then for a measurable increase in temperature
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which can be summarized as

ΔH = CpΔT (at constant pressure) (2B.6b)

Because a change in enthalpy can be equated to the energy 
supplied as heat at constant pressure, the practical form of this 
equation is

qp = CpΔT (2B.7)

This expression shows how to measure the constant-pressure 
heat capacity of a sample: a measured quantity of energy is 
supplied as heat under conditions of constant pressure (as in 
a sample exposed to the atmosphere and free to expand), and 
the temperature rise is monitored.

The variation of heat capacity with temperature can some-
times be ignored if the temperature range is small; this is an 
excellent approximation for a monatomic perfect gas (for in-
stance, one of the noble gases at low pressure). However, when 
it is necessary to take the variation into account for other sub-
stances, a convenient approximate empirical expression is

C a bT c
Tp ,m 2= + +

 
(2B.8)

The empirical parameters a, b, and c are independent of tem-
perature (Table 2B.1) and are found by fitting this expression 
to experimental data.

Example 2B.2 Evaluating an increase in enthalpy with 
temperature

What is the change in molar enthalpy of N2 when it is heated 
from 25 °C to 100 °C? Use the heat capacity information in 
Table 2B.1.

Collect your thoughts The heat capacity of N2 changes with 
temperature significantly in this range, so you cannot use  
eqn 2B.6b (which assumes that the heat capacity of the  
substance is constant). Therefore, use eqn 2B.6a, substitute 
eqn 2B.8 for the temperature dependence of the heat capacity, 
and integrate the resulting expression from 25 °C (298 K) to 
100 °C (373 K).

The solution For convenience, denote the two temperatures T1 
(298 K) and T2 (373 K). The required relation is

H a bT c
T

Td d
H T

H T

T

T

m( )

( )

2
m 1

m 2

1

2

∫ ∫= + +



  

By using Integral A.1 in the Resource section for each term, it 
follows that

H T H T a T T b T T c T T( ) ( ) ( ) ( ) 1 1
m 2 m 1 2 1

1
2 2

2
1
2

2 1
− = − + − − −





Substitution of the numerical data results in

Hm(373 K) = Hm(298 K) + 2.20 kJ mol−1 

Comment. If a constant heat capacity of 29.14 J K−1 mol−1 (the 
value given by eqn 2B.8 for T = 298 K) had been assumed, 
then the difference between the two enthalpies would have 
been calculated as 2.19 kJ mol−1, only slightly different from 
the more accurate value.

Self-test 2B.2 At very low temperatures the heat capacity of a 
solid is proportional to T 3, and Cp,m = aT 3. What is the change 
in enthalpy of such a substance when it is heated from 0 to a 
temperature T (with T close to 0)?

Answer: ΔHm = 1
4 aT 

4

(b) The relation between heat capacities

Most systems expand when heated at constant pressure. Such 
systems do work on the surroundings and therefore some of 
the energy supplied to them as heat escapes back to the sur-
roundings as work. As a result, the temperature of the system 
rises less than when the heating occurs at constant volume. A 
smaller increase in temperature implies a larger heat capac-
ity, so in most cases the heat capacity at constant pressure of a 
system is larger than its heat capacity at constant volume. As 
shown in Topic 2D, there is a simple relation between the two 
heat capacities of a perfect gas:

Cp − CV = nR Relation between heat capacities 
[perfect gas]  (2B.9)

Table 2B.1 Temperature variation of molar heat capacities,  
Cp,m/(J K−1 mol−1) = a + bT + c/T 2*

a b/(10−3 K−1) c/(105 K2)

C(s, graphite) 16.86 4.77 −8.54

CO2(g) 44.22 8.79 −8.62

H2O(l) 75.29 0  0

N2(g) 28.58 3.77 −0.50

* More values are given in the Resource section.
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It follows that the molar heat capacity of a perfect gas is 
about 8 J K−1 mol−1 larger at constant pressure than at constant  
volume. Because the molar constant-volume heat capacity 
of a monatomic gas is about 3

2 R = 12 J K−1 mol−1 (Topic 2A), 

the difference is highly significant and must be taken into  
account. The two heat capacities are typically very similar for 
condensed phases, and for them the difference can normally 
be ignored.

Checklist of concepts

☐ 1. Energy transferred as heat at constant pressure is equal 
to the change in enthalpy of a system.

☐ 2. Enthalpy changes can be measured in a constant-pres-
sure calorimeter.

☐ 3. The heat capacity at constant pressure is equal to the 
slope of enthalpy with temperature.

Checklist of equations

Property Equation Comment Equation number

Enthalpy H = U + pV Definition 2B.1

Heat transfer at constant pressure dH = dqp,
ΔH = qp

No additional work 2B.2

Relation between ΔH and ΔU at a 
temperature T

ΔH = ΔU + ΔngRT Molar volumes of the participating condensed  
 phases are negligible

2B.4

Heat capacity at constant pressure Cp = (∂H/∂T)p Definition 2B.5

Relation between heat capacities Cp − CV = nR Perfect gas 2B.9
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