M.Sc (Chemistry)	
	Thermal Analysis
- anno	Syllabus:
	Theory and applications of
	TGA – Thermogravimetric Analysis
	DTG – Derived Thermogravimetry
	DTA - Differential Thermal analysis
	DSC - Differential Scanning Calorimetry
	EGD - Evolved Gas Detection
	TMA – Thermomechanical Analysis

Thermal Analysis Techniques	
	- 6
temperature.	OT
Differential Thermal analysis (DTA): Change in thermal energy as a function temperature. (exo- or endothermic).	of
Differential scanning calorimetry (DSC): Change in heat as a function of temperature.	
Evolved Gas Detection (EGD): Evolved Cas is detected	
Evolved Gas Delection (EGD): Evolved Gas is delected	
Evolved Gas Detection (EGA): Evolved Gas is analysis	
Thermomechanical analysis (TMA): Change of dimensions.	
	2
	2

TGA – Thermogravimetric Analysis: Example				
	Decomposition of ca	lcium oxalate		
Step	I			
($CaC_2O_4.H_2O \Rightarrow C$	$CaC_2O_4 + H_2$	O ₂	
MW	146	128	18	
Step	П			
	$CaC_2O_4 \Rightarrow 0$	$CaCo_3 + CC$	С	
MW	128	100	28	
Step	ш			
	$CaCo_3 \Rightarrow 0$	$CaO + CO_2$		
MW	100	56 4	4	
				4

TGA – Thermogravimetric Analysis: Instrumentation

It is a thermo balance consisting of

- High precision balance
- A furnace for achieving high temperatures, e.g.., 1500 °C
- A temperature programmer
- Data acquisition system
- Auxiliary equipment to provide inert atmosphere
- Thermobalance allows for monitoring sample weight as a function of temperature
- Weight calibration using calibrated weights
- Temperature calibration based on ferromagnetic transition of Curie point standards (e.g., Ni)
- Larger sample masses, lower temperature gradients, and higher purge rates minimize undesirable buoyancy effects

6

TGA – Thermogravimetric Analysis: Requirements of a TG Balance

- 1. A thermo balance should provide accurate weight of the sample as a function of temperature. (capacity upto 1g, typical sample in mg). Its reproducibility should be very high and also highly sensitive.
- 2. It should operate over a wide temperature range, say from RT to 1000/1500 °C.
- 3. The design of thermo balance should be such that sample container is always located within a uniform hot zone inside the furnace.
- 4. The sample container should be such that it does not react with the sample at any given temperature.
- 5. The balance should not be subject to radiation or convection effects arising from the proximity of the furnace.
- 6. It will be advantageous if thermo balance can be coupled to a GC or IR or to QMS.

TGA – Thermogravimetric Analysis: Types of Balance

Null point balance:

As weight change occurs, the balance beam starts to deviate from its normal position, a sensor detects the deviation and triggers the restoring force to bring the balance beam back to the null position. <u>The restoring force is directly proportional to the weight change.</u>

Deflection balance:

When balance arm is deflected by a change in weight, the relative illumination of photocells from light source changes due to the movement of shutter attached to the balance beam, resulting in flow of compensating current through one of the pair of photocells.

The current produced is proportional to the change in sample weight and after amplification is passed to the coil thus restoring it to its original position. There are two types of deflection balances, (i) Beam type and (ii) Cantilever type.

TGA – Thermogravimetric Analysis: Sources of Error						
1. Buoyancy effe	ect of sample o	container				
 It is nothing but apparent gain in weight when an empty, thermally inert crucible is heated. 						
Modern instru crucible is	ments take c always prefe	are of these factors. A blank run with an empty erable.				
The density o	f gases decre	eases with increasing temperature :				
e.g. Air :	25°C	1.29 mg/ml				
	225°C	0.62 mg/ml				
	425°C	0.41 mg/ml				

TGA – Thermogravimetric Analysis: Sources of Error
2. Furnace and temperature effects
Heat from the furnace may cause convection.
Magnetic and inductive interaction between certain samples and winding of the furnace.
Thermocouple calibration
3. Other effects
Turbulence in the gas flow.
Temperature measurement effects.
Placement of the thermocouple.
> Quantity of sample used for analysis.
Packing of the sample
Container materials. Mostly Pt, Alumina crucibles are used.
Gas flow to evacuate the decomposition products.

DTA – Differential Thermal Analysis: Instrumentation
Sample holder:
sample and reference cells (AI)
Sensors:
Pt/Rh or chromel/alumel thermocouples
one for the sample and one for the reference
joined to differential temperature controller
Furnace:
 alumina block containing sample and reference cells
Temperature controller
 controls for temperature program and furnace atmosphere

EGD/EGA – Evolved Gas Detection & Analysis

technique in which the nature and/or amount of volatile product(s) released by a substance subjected to a controlled temperature program is determined

Evolved Gas Detection (EGD): Single preselected component of evolved gas is sensesd Evolved Gas Detection (EGA): absolute identity of evolved gas is analyzed

By combining appropriate analyzer to a thermogravimetric system for performing either EGA or EGD The TG-MS combination is used for EGA

The TG-FID (Flame Ionization Detectors) is used for EGD

e.g. using a jet separator interface to a ms; or using intermittent gc sampling coupled to DSC. Given are TG-DTA-MS curves for decomposition of hydrated Co(C4H406) 2.5 H20 in Ar, with heating rate 2.5 °C min⁻¹

293 373 473 573 673 773
DTA

$$m/e = 18 = H_2O^+$$

 $m/e = 44 = CO_2^+$
 $m/e = 58 = C_2H_2O_2^+$
293 373 473 573 673 773 T(K)

