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Chapter 8            
Polynomials,            
Curve Fitting, and 
Interpolation

Polynomials are mathematical expressions that are frequently used for problem
solving and modeling in science and engineering. In many cases an equation that
is written in the process of solving a problem is a polynomial, and the solution of
the problem is the zero of the polynomial. MATLAB has a wide selection of func-
tions that are specifically designed for handling polynomials. How to use polyno-
mials in MATLAB is described in Section 8.1.

Curve fitting is a process of finding a function that can be used to model
data. The function does not necessarily pass through any of the points, but models
the data with the smallest possible error. There are no limitations to the type of the
equations that can be used for curve fitting. Often, however, polynomial, exponen-
tial, and power functions are used. In MATLAB curve fitting can be done by writ-
ing a program, or by interactively analyzing data that is displayed in the Figure
Window. Section 8.2 describes how to use MATLAB programming for curve fit-
ting with polynomials and other functions. Section 8.4 describes the basic fitting
interface that is used for interactive curve fitting and interpolation. 

Interpolation is the process of estimating values between data points. The
simplest kind of interpolation is done by drawing a straight line between the
points. In a more sophisticated interpolation, data from additional points is used.
How to interpolate with MATLAB is discussed in Sections 8.3 and 8.4.

8.1 POLYNOMIALS

Polynomials are functions that have the form:

The coefficients  are real numbers, and n, which is a nonnega-
f x( ) anxn an 1– xn 1– … a1x a0+ + + +=

an an 1– … a1 a0, , , ,
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tive integer, is the degree, or order, of the polynomial.
Examples of polynomials are:

  polynomial of degree 5.
  polynomial of degree 2.

  polynomial of degree 1.
A constant (e.g., ) is a polynomial of degree 0.

In MATLAB, polynomials are represented by a row vector in which the ele-
ments are the coefficients . The first element is the coefficient of
the x with the highest power. The vector has to include all the coefficients, includ-
ing the ones that are equal to 0. For example:

8.1.1 Value of a Polynomial
The value of a polynomial at a point x can be calculated with the function
polyval which has the form:

x can also be a vector or a matrix. In such a case the polynomial is calculated for
each element (element-by-element), and the answer is a vector, or a matrix, with
the corresponding values of the polynomial.

Sample Problem 8-1: Calculating polynomials with MATLAB

For the polynomial  :
(a) Calculate .
(b) Plot the polynomial for .
Solution
The problem is solved in the Command Window.
(a) The coefficients of the polynomials are assigned to vector p. The function

Polynomial MATLAB representation

p = [8  5]

d = [2  –4  10]

,  MATLAB form:  h = [6  0  –150]

,  MATLAB form:
                       

c = [5  0  0  6  –7  0]

f x( ) 5x5 6x2 7x 3+ + +=

f x( ) 2x2 4x– 10+=

f x( ) 11x 5–=

f x( ) 6=

an an 1– … a1 a0, , , ,

8x 5+

2x2 4x– 10+

6x2 150– 6x2 0x 150–+

5x5 6x2 7x–+

5x5 0x4 0x3 6x2 7x– 0+ + + +

polyval(p,x)

p is a vector with the coef-
ficients of the polynomial.

x is a number, or a variable that
has an assigned value, or a com-
putable expression. 

f x( ) x5 12.1x4– 40.59x3 17.015x2– 71.95x– 35.88+ +=

f 9( )
1.5– x 6.7≤ ≤
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polyval is then used to calculate the value at x = 9.

(b) To plot the polynomial, a vector x is first defined with elements ranging
from –1.5 to 6.7. Then a vector y is created with the values of the polynomial for
every element of x. Finally, a plot of y vs. x is made.

The plot created by MATLAB is presented below (axis labels were added with the
Plot Editor).

8.1.2 Roots of a Polynomial
The roots of a polynomial are the values of the argument for which the value of
the polynomial is equal to zero. For example, the roots of the polynomial

 are the values of x for which , which are 
and x = 3.

MATLAB has a function, called roots, that determines the root, or roots,
of a polynomial. The form of the function is:

For example, the roots of the polynomial in Sample Problem 8-1 can be deter-
mined by:

>> p = [1 -12.1 40.59 -17.015 -71.95 35.88];

>> polyval(p,9)

ans =
  7.2611e+003

>> x=-1.5:0.1:6.7;

>> y=polyval(p,x);

>> plot(x,y)

Calculating the value of the polyno-
mial for each element of the vector x.

-2 -1 0 1 2 3 4 5 6 7
-200

-150

-100

-50

0

50

100

150

x

y

f x( ) x2 2x– 3–= x2 2x– 3– 0= x 1–=

r = roots(p)

p is a row vector with the coef-
ficients of the polynomial.

r is a column vector with
the roots of the polynomial. 
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The roots command is very useful for finding the roots of a quadratic equation.
For example, to find the roots of , type:

When the roots of a polynomial are known, the poly command can be used
for determining the coefficients of the polynomial. The form of the poly com-
mand is:

For example, the coefficients of the polynomial in Sample Problem 8-1 can be
obtained from the roots of the polynomial (see above) by:

8.1.3 Addition, Multiplication, and Division of Polynomials
Addition:
Two polynomials can be added (or subtracted) by adding (subtracting) the vectors
of the coefficients. If the polynomials are not of the same order (which means that
the vectors of the coefficients are not of the same length), the shorter vector has to
be modified to be of the same length as the longer vector by adding zeros (called
padding) in front. For example, the polynomials
  and  can be added
by:

>> p= 1 -12.1 40.59 -17.015 -71.95 35.88];

>> r=roots(p)

r =
    6.5000
    4.0000
    2.3000
   -1.2000
    0.5000

>> roots([4 10 -8])

ans =
   -3.1375
    0.6375

>> r=6.5 4 2.3 -1.2 0.5];

>> p=poly(r)

p =
    1.0000  -12.1000   40.5900  -17.0150  -71.9500   35.8800

When the roots are known, the polynomial can
actually be written as:
f x( ) x 1.2+( ) x 0.5–( ) x 2.3–( ) x 4–( ) x 6.5–( )=

f x( ) 4x2 10x 8–+=

p = poly(r)

r is a vector (row or column) 
with the roots of the polynomial.

p is a row vector with the 
coefficients of the polynomial. 

f1 x( ) 3x6 15x5 10x3– 3x2– 15x 40–+ += f2 x( ) 3x3 2x– 6–=
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Multiplication:
Two polynomials can be multiplied using the MATLAB built-in function conv,
which has the form:

• The two polynomials do not have to be of the same order.

• Multiplication of three or more polynomials is done by using the conv func-
tion repeatedly.

For example, multiplication of the polynomials  and  above gives:

which means that the answer is:
 
Division:
A polynomial can be divided by another polynomial with the MATLAB built-in
function deconv, which has the form:

For example, dividing  by  is done by:

>> p1=[3 15 0 -10 -3 15 -40];

>> p2=[3 0 -2 -6];

>> p=p1+[0 0 0 p2]

p =
     3    15     0    -7    -3    13   -46

>> pm=conv(p1,p2)

pm =
     9    45    -6   -78   -99    65   -54   -12   -10   240

>> u=[2 9 7 -6];

>> v=[1 3];

Three 0s are added in front
of p2, since the order of p1
is 6 and the order of p2 is 3.

c = conv(a,b)

a and b are the vectors of the
coefficients of the polynomials
that are being multiplied.

c is a vector of the coefficients
of the polynomial that is the
product of the multiplication. 

f1 x( ) f2 x( )

9x9 45x8 6x7– 78x6– 99x5– 65x4 54x3– 12x2– 10x– 240+ + +

[q,r] = deconv(u,v)

u is a vector with the coefficients of
the numerator polynomial.
v is a vector with the coefficients of
the denominator polynomial.

q is a vector with the coefficients
of the quotient polynomial.
r is a vector with the coefficients
of the remainder polynomial.

2x3 9x2 7x 6–+ + x 3+
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An example of division that gives a remainder is 
divided by : 

The answer is:  .

8.1.4 Derivatives of Polynomials
The built-in function polyder can be used to calculate the derivative of a single
polynomial, a product of two polynomials, or a quotient of two polynomials, as
shown in the following three commands.
k = polyder(p) Derivative of a single polynomial. p is a vector with

the coefficients of the polynomial. k is a vector with
the coefficients of the polynomial that is the derivative.

k = polyder(a,b) Derivative of a product of two polynomials. a and b
are vectors with the coefficients of the polynomials that
are multiplied. k is a vector with the coefficients of the
polynomial that is the derivative of the product.

[n d] = polyder(u,v) Derivative of a quotient of two polynomials. u and v
are vectors with the coefficients of the numerator and
denominator polynomials. n and d are vectors with the
coefficients of the numerator and denominator polyno-
mials in the quotient that is the derivative.

The only difference between the last two commands is the number of output argu-
ments. With two output arguments MATLAB calculates the derivative of the quo-
tient of two polynomials. With one output argument the derivative is of the
product.

>> [a b]=deconv(u,v)

a =
     2     3    -2

b =
     0     0     0     0

>> w=[2 -13 0 75 2 0 -60];

>> z=[1 0 -5];

>> [g h]=deconv(w,z)

g =
    2  -13   10   10   52

h =
    0   0   0   0   0   50   200

The answer is: .2x2 3x 2–+

Remainder is zero.

2x6 13x5– 75x3 2x2 60–+ +

x2 5–

The quotient is: .2x4 13x3– 10x2 10x 52+ + +

The remainder is: .50x 200+

2x4 13x3– 10x2 10x 52 50x 200+
x2 5–

------------------------+ + + +
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For example, if , and , the derivatives of

, , and  can be determined by:

8.2 CURVE FITTING

Curve fitting, also called regression analysis, is a process of fitting a function to a
set of data points. The function can then be used as a mathematical model of the
data. Since there are many types of functions (linear, polynomial, power, expo-
nential, etc.), curve fitting can be a complicated process. Many times one has
some idea of the type of function that might fit the given data and will need only
to determine the coefficients of the function. In other situations, where nothing is
known about the data, it is possible to make different types of plots that provide
information about possible forms of functions that might fit the data well. This
section describes some of the basic techniques for curve fitting and the tools that
MATLAB has for this purpose.

8.2.1 Curve Fitting with Polynomials; The polyfit Function
Polynomials can be used to fit data points in two ways. In one the polynomial
passes through all the data points, and in the other the polynomial does not neces-
sarily pass through any of the points, but overall gives a good approximation of
the data. The two options are described below.
Polynomials that pass through all the points:
When n points (xi, yi) are given, it is possible to write a polynomial of degree 
that passes through all the points. For example, if two points are given it is possi-
ble to write a linear equation in the form of  that passes through the
points. With three points the equation has the form of . With n

>> f1= 3 -2 4];
>> f2=[1 0 5];

>> k=polyder(f1)

k =
     6    -2

>> d=polyder(f1,f2)

d =
    12    -6    38   -10

>> [n d]=polyder(f1,f2)

n =
     2    22   -10

d =
     1     0    10     0    25

f1 x( ) 3x2 2x– 4+= f2 x( ) x2 5+=

3x2 2x– 4+ 3x2 2x– 4+( ) x2 5+( ) 3x2 2x– 4+
x2 5+

-----------------------------

Creating the vectors of coefficients of f1 and f2.

The derivative of f1 is: .6x 2–

The derivative of f1*f2 is: .12x3 6x2– 38x 10–+

The derivative of   is: .3x2 2x– 4+
x2 5+

----------------------------- 2x2 22x 10–+
x4 10x2 25+ +
-----------------------------------

n 1–

y mx b+=

y ax2 bx c+ +=
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points the polynomial has the form . The coef-
ficients of the polynomial are determined by substituting each point in the polyno-
mial and then solving the n equations for the coefficients. As will be shown later
in this section, polynomials of high degree might give a large error if they are used
to estimate values between data points.
Polynomials that do not necessarily pass through any of the points:
When n points are given, it is possible to write a polynomial of degree less than

 that does not necessarily pass through any of the points, but overall approxi-
mates the data. The most common method of finding the best fit to data points is
the method of least squares. In this method the coefficients of the polynomial are
determined by minimizing the sum of the squares of the residuals at all the data
points. The residual at each point is defined as the difference between the value of
the polynomial and the value of the data. For example, consider the case of find-
ing the equation of a straight line that best fits four data points as shown in Figure
8-1. The points are , , , and , and the polynomial of the

first degree can be written as . The residual, , at each point is
the difference between the value of the function at  and , . An
equation for the sum of the squares of the residuals  of all the points is given by 

or, after substituting the equation of the polynomial at each point, by:

At this stage R is a function of  and . The minimum of R can be determined
by taking the partial derivative of R with respect to  and  (two equations) and
equating them to zero.

  and  

Figure 8-1: Least squares fitting of first-degree polynomial to four points.

an 1– xn 1– an 2– xn 2– … a1x a0+ + + +

n 1–

x1 y1,( ) x2 y2,( ) x3 y3,( ) x4 y4,( )

(x1, y1)

R2

R1

R3

x

y

R4

 f(x1)
 f(x2)

 f(x3)

 f(x4)
(x2, y2)

(x3, y3)

(x4, y4)

f(x) = a1x + a0

f x( ) a1x a0+= Ri

xi yi Ri f xi( ) yi–=

Ri

R f x1( ) y1–[ ]2 f x2( ) y2–[ ]2 f x3( ) y3–[ ]2 f x4( ) y4–[ ]2+ + +=

R a1x1 a0 y1–+[ ]2 a1x2 a0 y2–+[ ]2 a1x3 a0 y3–+[ ]2 a1x4 a0 y4–+[ ]2+ + +=

a1 a0
a1 a0

∂R
∂a1
-------- 0= ∂R

∂a0
-------- 0=
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This results in a system of two equations with two unknowns,  and . The
solution of these equations gives the values of the coefficients of the polynomial
that best fits the data. The same procedure can be followed with more points and
higher-order polynomials. More details on the least squares method can be found
in books on numerical analysis.

Curve fitting with polynomials is done in MATLAB with the polyfit
function, which uses the least squares method. The basic form of the polyfit
function is:

For the same set of m points, the polyfit function can be used to fit poly-
nomials of any order up to . If n = 1 the polynomial is a straight line, if n = 2
the polynomial is a parabola, and so on. The polynomial passes through all the
points if  (the order of the polynomial is one less than the number of
points). It should be pointed out here that a polynomial that passes through all the
points, or polynomials with higher order, do not necessarily give a better fit over-
all. High-order polynomials can deviate significantly between the data points.

Figure 8-2 shows how polynomials of different degrees fit the same set of
data points. A set of seven points is given by (0.9, 0.9), (1.5, 1.5), (3, 2.5), (4, 5.1),

Figure 8-2: Fitting data with polynomials of different order.

a1 a0

p = polyfit(x,y,n)

x is a vector with the horizontal coordinates
of the data points (independent variable).
y is a vector with the vertical coordinates of
the data points (dependent variable).
n is the degree of the polynomial.

p is the vector of the coeffi-
cients of the polynomial 
that fits the data. 
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(6, 4.5), (8, 4.9), and (9.5, 6.3). The points are fitted using the polyfit function
with polynomials of degrees 1 through 6. Each plot in Figure 8-2 shows the same
data points, marked with circles, and a curve-fitted line that corresponds to a poly-
nomial of the specified degree. It can be seen that the polynomial with n = 1 is a
straight line, and with n = 2 is a slightly curved line. As the degree of the polyno-
mial increases, the line develops more bends such that it passes closer to more
points. When n = 6, which is one less than the number of points, the line passes
through all the points. However, between some of the points, the line deviates sig-
nificantly from the trend of the data. 

The script file used to generate one of the plots in Figure 8-2 (the polyno-
mial with n = 3) is shown below. Note that in order to plot the polynomial (the
line) a new vector xp with small spacing is created. This vector is then used with

x=[0.9 1.5 3 4 6 8 9.5];

y=[0.9 1.5 2.5 5.1 4.5 4.9 6.3];

p=polyfit(x,y,3)

xp=0.9:0.1:9.5;

yp=polyval(p,xp);

plot(x,y,'o',xp,yp)

xlabel('x'); ylabel('y')

Figure 8-2: Fitting data with polynomials of different order. (Continued)
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Create vectors x and y with the
coordinates of the data points.

Create a vector p using the polyfit function.
Create a vector xp to be used for plotting the polynomial.
Create a vector yp with values of the polynomial at each xp.

A plot of the seven points and the polynomial.



8.2 Curve Fitting 271

the function polyval to create a vector yp with the value of the polynomial for
each element of xp.

When the script file is executed, the following vector p is displayed in the
Command Window.

This means that the polynomial of the third degree in Figure 8-2 has the form
.

8.2.2 Curve Fitting with Functions Other than Polynomials
Many situations in science and engineering require fitting functions that are not
polynomials to given data. Theoretically, any function can be used to model data
within some range. For a particular data set, however, some functions provide a
better fit than others. In addition, determining the best-fitting coefficients can be
more difficult for some functions than for others. This section covers curve fitting
with power, exponential, logarithmic, and reciprocal functions, which are com-
monly used. The forms of these functions are:

     (power function)
  or  (exponential function)

  or     (logarithmic function)

  (reciprocal function)

All of these functions can easily be fitted to given data with the polyfit func-
tion. This is done by rewriting the functions in a form that can be fitted with a lin-
ear polynomial (n = 1), which is

The logarithmic function is already in this form, and the power, exponential and
reciprocal equations can be rewritten as:

(power function)
  or   (exponential function)

(reciprocal function)

These equations describe a linear relationship between  and  for the
power function, between  and x for the exponential function, between y and

 or  for the logarithmic function, and between 1/y and x for the recip-
rocal function. This means that the polyfit(x,y,1) function can be used to
determine the best-fit constants m and b for best fit if, instead of x and y, the

p =
    0.0220   -0.4005    2.6138   -1.4158

0.022x3 0.4005x2– 2.6138x 1.4148–+

y bxm=

y bemx= y b10mx=

y m x( )ln b+= y m x( )log b+=

y 1
mx b+
----------------=

y mx b+=

y( )ln m x( )ln bln+=

y( )ln mx b( )ln+= y( )log mx b( )log+=

1
y
--- mx b+=

y( )ln x( )ln
y( )ln

x( )ln x( )log
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following arguments are used.

The result of the polyfit function is assigned to p, which is a two-element vec-
tor. The first element, p(1), is the constant m, and the second element, p(2), is b
for the logarithmic and reciprocal functions,  or  for the exponential

function, and  for the power function (  or  for the expo-
nential function, and  for the power function).

For given data it is possible to estimate, to some extent, which of the func-
tions has the potential for providing a good fit. This is done by plotting the data
using different combinations of linear and logarithmic axes. If the data points in
one of the plots appear to fit a straight line, the corresponding function can pro-
vide a good fit according to the list below.

Other considerations in choosing a function:

• Exponential functions cannot pass through the origin.

• Exponential functions can fit only data with all positive y’s or all negative y’s.

• Logarithmic functions cannot model x = 0 or negative values of x.

• For the power function y = 0 when x = 0.

• The reciprocal equation cannot model y = 0.

Function polyfit function form

power             p=polyfit(log(x),log(y),1)

exponential       or
                      

p=polyfit(x,log(y),1)  or
p=polyfit(x,log10(y),1)

logarithmic        or
                      

p=polyfit(log(x),y,1) or
p=polyfit(log10(x),y,1)

reciprocal      p=polyfit(x,1./y,1)

x axis y axis Function

linear linear linear  
logarithmic logarithmic power  

linear logarithmic exponential    or  

logarithmic linear logarithmic   or  

linear linear
(plot 1/y)

reciprocal      

y bxm=

y bemx=

y b10mx=

y m x( )ln b+=

y m x( )log b+=

y 1
mx b+
----------------=

b( )ln b( )log

b( )ln b e p 2( )= b 10 p 2( )=

b e p 2( )=

y mx b+=

y bxm=

y bemx= y b10mx=

y m x( )ln b+= y m x( )log b+=

y 1
mx b+
----------------=
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The following example illustrates the process of fitting a function to a set of data
points.

Sample Problem 8-2: Fitting an equation to data points

The following data points are given. Determine a function  (t is the inde-
pendent variable, w is the dependent variable) with a form discussed in this sec-
tion that best fits the data.

Solution
The data is first plotted with linear scales
on both axes. The figure indicates that a
linear function will not give the best fit
since the points do not appear to line up
along a straight line. From the other possi-
ble functions, the logarithmic function is
excluded since for the first point ,
and the power function is excluded since at

, . To check if the other two
functions (exponential and reciprocal) might give a better fit, two additional plots,
shown below, are made. The plot on the left has a log scale on the vertical axis and
linear horizontal axis. In the plot on the right both axes have linear scales, and the
quantity 1/w is plotted on the vertical axis.

In the left figure the data points appear to line up along a straight line. This indi-
cates that an exponential function of the form  can give a good fit to the
data. A program in a script file that determines the constants b and m, and that
plots the data points and the function is given below.

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

w 6.00 4.83 3.70 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64

t=0:0.5:5;

w=[6 4.83 3.7 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64];

p=polyfit(t,log(w),1);

w f t( )=
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Create vectors t and w with the coordinates of the data points.

Use the polyfit function with t and log(w).
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When the program is executed, the values of the constants m and b are displayed
in the Command Window.

The plot generated by the program, which shows the data points and the function
(with axis labels added with the Plot Editor) is

It should be pointed out here that in addition to the power, exponential, log-
arithmic, and reciprocal functions that are discussed in this section, many other
functions can be written in a form suitable for curve fitting with the polyfit

function. One example where a function of the form  is fitted to
data points using the polyfit function with a third-order polynomial is
described in Sample Problem 8-7. 

8.3 INTERPOLATION

Interpolation is the estimation of values between data points. MATLAB has inter-
polation functions that are based on polynomials, which are described in this sec-
tion, and on Fourier transformation, which is outside the scope of this book. In
one-dimensional interpolation each point has one independent variable (x) and one
dependent variable (y). In two-dimensional interpolation each point has two inde-
pendent variables (x and y) and one dependent variable (z).

m=p(1)

b=exp(p(2))

tm=0:0.1:5;

wm=b*exp(m*tm);

plot(t,w,'o',tm,wm)

m =
   -0.4580

b =
    5.9889

Determine the coefficient b.
Create a vector tm to be used for plotting the polynomial.

Calculate the function value at each element of tm. 
Plot the data points and the function.
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One-dimensional interpolation:
If only two data points exist, the points can be connected with a straight line is and
a linear equation (polynomial of first order) can be used to estimate values
between the points. As was discussed in the previous section, if three (or four)
data points exist, a second- (or a third-) order polynomial that passes through the
points can be determined and then be used to estimate values between the points.
As the number of points increases, a higher-order polynomial is required for the
polynomial to pass through all the points. Such a polynomial, however, will not
necessarily give a good approximation of the values between the points. This is
illustrated in Figure 8-2 with n = 6.

A more accurate interpolation can be obtained if instead of considering all
the points in the data set (by using one polynomial that passes through all the
points), only a few data points in the neighborhood where the interpolation is
needed are considered. In this method, called spline interpolation, many low-order
polynomials are used, where each is valid only in a small domain of the data set.   

The simplest method of spline interpola-
tion is called linear spline interpolation. In this
method, shown on the right, every two adjacent
points are connected with a straight line (a poly-
nomial of first degree). The equation of a
straight line that passes through two adjacent
points (xi, yj) and (xi+1, yj+1) and that can be used
to calculate the value of y for any x between the
points is given by:

In a linear interpolation the line between two data points has a constant
slope, and there is a change in the slope at every point. A smoother interpolation
curve can be obtained by using quadratic or cubic polynomials. In these methods,
called quadratic splines and cubic splines, a second-, or third-order polynomial is
used to interpolate between every two points. The coefficients of the polynomial
are determined by using data from points that are adjacent to the two data points.
The theoretical background for the determination of the constants of the polyno-
mials is beyond the scope of this book and can be found in books on numerical
analysis.

y
yi 1+ yi–

xi 1+ xi–
--------------------x

yixi 1+ yi 1+ xi–

xi 1+ xi–
------------------------------------+=
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One-dimensional interpolation in MATLAB is done with the interp1 (the
last character is the number one) function, which has the form:

• The vector x must be monotonic (with elements in ascending or descending
order).

• xi can be a scalar (interpolation of one point) or a vector (interpolation of
many points). yi is a scalar or a vector with the corresponding interpolated
values.

• MATLAB can do the interpolation using one of several methods that can be
specified. These methods include:

‘nearest’ returns the value of the data point that is nearest to the
interpolated point.

‘linear’ uses linear spline interpolation.
‘spline’ uses cubic spline interpolation.
‘pchip’ uses piecewise cubic Hermite interpolation, also called

‘cubic’ 
• When the ‘nearest’ and the ‘linear’ methods are used, the value(s) of

xi must be within the domain of x. If the ‘spline’ or the ‘pchip’ meth-
ods are used, xi can have values outside the domain of x and the function
interp1 performs extrapolation.

• The ‘spline’ method can give large errors if the input data points are
nonuniform such that some points are much closer together than others.

• Specification of the method is optional. If no method is specified, the default is
‘linear’.

Sample Problem 8-3: Interpolation

The following data points, which are points of the function ,
are given. Use linear, spline, and pchip interpolation methods to calculate the
value of y between the points. Make a figure for each of the interpolation methods.
In the figure show the points, a plot of the function, and a curve that corresponds

yi = interp1(x,y,xi,‘method’)

yi is the 
interpolated 
value. 

x is a vector with the horizontal coordinates of
the input data points (independent variable).
y is a vector with the vertical coordinates of
the input data points (dependent variable).
xi is the horizontal coordinate of the interpo-
lation point (independent variable).

Method of 
interpola-
tion, typed as 
a string 
(optional).

f x( ) 1.5x 2x( )cos=
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to the interpolation method.

Solution
The following is a program written in a script file that solves the problem:

The three figures generated by the program are shown below (axes labels were
added with the Plot Editor). The data points are marked with circles, the interpola-
tion curves are plotted with dashed lines, and the function is shown with a solid
line. The left figure shows the linear interpolation, the middle is the spline, and the
figure on the right shows the pchip interpolation.

x 0 1 2 3 4 5
y 1.0 –0.6242 –1.4707 3.2406 –0.7366 –6.3717

x=0:1.0:5;

y=[1.0 -0.6242 -1.4707 3.2406 -0.7366 -6.3717];

xi=0:0.1:5;

yilin=interp1(x,y,xi,'linear');

yispl=interp1(x,y,xi,'spline');

yipch=interp1(x,y,xi,'pchip');

yfun=1.5.^xi.*cos(2*xi);

subplot(1,3,1)

plot(x,y,'o',xi,yfun,xi,yilin,'--');

subplot(1,3,2)

plot(x,y,'o',xi,yfun,xi,yispl,'--');

subplot(1,3,3)

plot(x,y,'o',xi,yfun,xi,yipch,'--');

Create vectors x and y with coordinates of the data points.

Create vector xi with points for interpolation.
Calculate y points from linear interpolation.
Calculate y points from spline interpolation.
Calculate y points from pchip interpolation.

Calculate y points from the function.
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8.4 THE BASIC FITTING INTERFACE

The basic fitting interface is a tool that can be used to perform curve fitting and
interpolation interactively. By using the interface the user can:
• Curve-fit the data points with polynomials of various degrees up to 10, and

with spline and Hermite interpolation methods.

• Plot the various fits on the same graph so that they can be compared.

• Plot the residuals of the various polynomial fits and compare the norms of the
residuals.

• Calculate the values of specific points with the various fits.

• Add the equations of the polynomials to the plot.

To activate the basic fitting inter-
face, the user first has to make a plot of
the data points. Then the interface is
activated by selecting Basic Fitting in
the Tools menu, as shown on the right.
This opens the Basic Fitting Window,
shown in Figure 8-3. When the window
first opens, only one panel (the Plot fits
panel) is visible. The window can be
extended to show a second panel (the
Numerical results panel) by clicking
on the  button. One click adds the
first section of the panel, and a second
click makes the window look as shown in Figure 8-3. The window can be reduced
back by clicking on the  button. The first two items in the Basic Fitting Win-
dow are related to the selection of the data points:
Select data: Used to select a specific set of data points for curve fitting in a fig-

ure that has more than one set of data points. Only one set of data points can be
curve-fitted at a time, but multiple fits can be performed simultaneously on the
same set.

Center and scale x data:   When this box is checked, the data is centered at zero
mean and scaled to unit standard deviation. This might be needed in order to
improve the accuracy of numerical computation.

The next four items are in the Plot fits panel and are related to the display of the
fit.
Check to display fits on figure:   The user selects the fits to be displayed in the

figure. The selections include interpolation with spline interpolant (interpolation
method) that uses the spline function, interpolation with Hermite interpolant
that uses the pchip function, and polynomials of various degrees that use the
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polyfit function. Several fits can be selected and displayed simultaneously.
Show equations:   When this box is checked, the equations of the polynomials

that were selected for the fit are displayed in the figure. The equations are dis-
played with the number of significant digits selected in the adjacent sign menu.

Plot residuals:   When this box is checked, a plot that shows the residual at each
data point is created (residuals are defined in Section 8.2.1). Choices in the
menus include a bar plot, a scatter plot, and a line plot which can be displayed as
a subplot in the same Figure Window that has the plot of the data points, or as a
separate plot in a different Figure Window.

Show norm of residuals:   When this box is checked, the norm of the residuals is
displayed in the plot of the residuals. The norm of the residual is a measure of
the quality of the fit. A smaller norm corresponds to a better fit.

The next three items are in the Numerical results panel. They provide the numer-
ical information for one fit, independently of the fits that are displayed:
Fit:    The user selects the fit to be examined numerically. The fit is shown on the

plot only if it is selected in the Plot fit panel.
Coefficients and norm of residuals:   Displays the numerical results for the

polynomial fit that is selected in the Fit menu. It includes the coefficients of the
polynomial and the norm of the residuals. The results can be saved by clicking
on the Save to workspace button.

Figure 8-3: The Basic Fitting Window.
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Find y = f(x):   Provides a means for obtaining interpolated (or extrapolated)
numerical values for specified values of the independent variable. Enter the
value of the independent variable in the box, and click on the Evaluate button.
When the Plot evaluated results box is checked, the point is displayed on the
plot. 

As an example, the basic fitting interface is used for fitting the data points
from Sample Problem 8-3. The Basic Fitting Window is the one shown in Figure

8-3, and the corresponding Figure Window is shown in Figure 8-4. The Figure
Window includes a plot of the points, one interpolation fit (spline), two polyno-
mial fits (linear and cubic), a display of the equations of the polynomial fits, and a
mark of the point x = 1.5 that is entered in the Find y = f(x) box of the Basic Fitting
Window. The Figure Window also includes a plot of the residuals of the polyno-
mial fits and a display of their norm.

Figure 8-4: A Figure Window modified by the Basic Fitting Interface.
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8.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 8-4: Determining wall thickness of a box

The outside dimensions of a rectangular
box (bottom and four sides, no top), made
of aluminum, are 24 by 12 by 4 inches. The
wall thickness of the bottom and the sides
is x. Derive an expression that relates the
weight of the box and the wall thickness x.
Determine the thickness x for a box that
weighs 15 lb. The specific weight of alumi-
num is 0.101 lb/in.3.
Solution
The volume of the aluminum VAl is calculated from the weight W of the box by:

where γ is the specific weight. The volume of the aluminum based on the dimen-
sions of the box is given by

where the inside volume of the box is subtracted from the outside volume. This
equation can be rewritten as

which is a third-degree polynomial. A root of this polynomial is the required
thickness x. A program in a script file that determines the polynomial and solves
for the roots is:

Note in the second to last line that in order to add the quantity  to
the polynomial Vin it has to be written as a polynomial of the same order as Vin
(Vin is a polynomial of third order). When the program (saved as
Chap8SamPro4) is executed, the coefficients of the polynomial and the value of x
are displayed:

W=15; gamma=0.101;

VAlum=W/gamma;

a=[-2  24];

b=[-2  12];

c=[-1  4];

Vin=conv(c, conv(a,b));

polyeq=[0 0 0 (VAlum-24*12*4)]+Vin

x=roots(polyeq)

VAl
W
γ
-----=

VAl 24 12 4⋅ ⋅ 24 2x–( ) 12 2x–( ) 4 x–( )–=

24 2x–( ) 12 2x–( ) 4 x–( ) VAl 24 12 4⋅ ⋅( )–+ 0=

Assign W and gamma.
Calculate the volume of the aluminum.

Assign the polynomial 24 – 2x to a.
Assign the polynomial 12 – 2x to b.

Assign the polynomial 4 – x to c.
Multiply the three polynomials above.

Add VAl – 24*12*4 to Vin.
Determine the roots of the polynomial.

VAl 24 12 4⋅ ⋅( )–
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Sample Problem 8-5: Floating height of a buoy

An aluminum thin-walled sphere is used as a
marker buoy. The sphere has a radius of 60 cm
and a wall thickness of 12 mm. The density of
aluminum is  kg/m3. The buoy is
placed in the ocean, where the density of the
water is 1030 kg/m3. Determine the height h
between the top of the buoy and the surface of
the water.
Solution
According to Archimedes’ law, the buoyancy force applied to an object that is
placed in a fluid is equal to the weight of the fluid that is displaced by the object.
Accordingly, the aluminum sphere will be at a depth such that the weight of the
sphere is equal to the weight of the fluid displaced by the part of the sphere that is
submerged.

The weight of the sphere is given by

where  is the volume of the aluminum;  and  are the outside and inside
radii of the sphere, respectively; and g is the gravitational acceleration.

The weight of the water that is displaced by the spherical portion that is sub-
merged is given by:

Setting the two weights equal to each other gives the following equation:

The last equation is a third-degree polynomial for h. The root of the polynomial is
the answer.

A solution with MATLAB is obtained by writing the polynomials and using
the roots function to determine the value of h. This is done in the following
script file:

>> Chap8SamPro4

polyeq =
 -4.0000  88.0000 -576.0000  148.5149

x =
  10.8656 + 4.4831i
  10.8656 - 4.4831i
  0.2687

The polynomial is:
.4x3– 88x2 576x– 148.515+ +

The polynomial has one real root, x = 0.2687 in., 
which is the thickness of the aluminum wall.

ρAl 2690=

Wsph ρAlVAlg ρAl
4
3
---π ro

3 ri
3–( )g= =

VAl ro ri

Wwtr ρwtrVwtrg ρwtr
1
3
---π 2ro h–( )2 ro h+( )g= =

h3 3roh2– 4ro
3 4

ρAl

ρwtr
--------- ro

3 ri
3–( )–+ 0=
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When the script file is executed in the Command Window, as shown below, the
answer is three roots, since the polynomial is of the third degree. The only answer
that is physically possible is the second, where h = 0.9029 m.

Sample Problem 8-6: Determining the size of a capacitor

An electrical capacitor has an unknown
capacitance. In order to determine its capaci-
tance it is connected to the circuit shown.
The switch is first connected to B and the
capacitor is charged. Then, the switch is con-
nected to A and the capacitor discharges
through the resistor. As the capacitor is dis-
charging, the voltage across the capacitor is measured for 10 s in intervals of 1 s.
The recorded measurements are given in the table below. Plot the voltage as a
function of time and determine the capacitance of the capacitor by fitting an expo-
nential curve to the data points.

Solution
When a capacitor discharges through a resistor, the voltage of the capacitor as a
function of time is given by

where  is the initial voltage, R the resistance of the resistor, and C the capaci-
tance of the capacitor. As was explained in Section 8.2.2 the exponential function
can be written as a linear equation for ln(V) and t in the form:

rout=0.60; rin=0.588;

rhoalum=2690; rhowtr=1030;

a0=4*rout^3-4*rhoalum*(rout^3-rin^3)/rhowtr;

p = [1 -3*rout 0 a0];

h = roots(p)

>> Chap8SamPro5

h =
    1.4542
    0.9029
   -0.5570

t (s) 1 2 3 4 5 6 7 8 9 10
V (V) 9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58

Assign the radii to variables.
Assign the densities to variables.

Assign the coefficient a0.
Assign the coefficient vector of the polynomial.

Calculate the roots of the polynomial.

The polynomial has three roots. The only one that is
physically possible for the problem is 0.9029 m.

V V0e t–( ) RC( )⁄=

V0

V( )ln 1–
RC
--------t V0( )ln+=
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This equation, which has the form , can be fitted to the data points by
using the polyfit(x,y,1) function with t as the independent variable x and
ln(V) as the dependent variable y. The coefficients m and b determined by the
polyfit function are then used to determine C and  by:

  and  

The following program written in a script file determines the best-fit exponential
function to the data points, determines C and , and plots the points and the fit-
ted function.

When the script file is executed (saved as Chap8SamPro6) the values of C and 
are displayed in the Command Window as shown below:

The program creates also the following plot (axis labels were added to the plot
using the Plot Editor): 

R=2000;

t=1:10;

v=[9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58];

p=polyfit(t,log(v),1);

C=-1/(R*p(1))

V0=exp(p(2))

tplot=0:0.1:10;

vplot=V0*exp(-tplot./(R*C));

plot(t,v,'o',tplot,vplot)

>> Chap8SamPro6

C =
    0.0016

V0 =
   13.2796

y mx b+=

V0

C t–
Rm
--------= V0 eb=

V0

Define R.
Assign the data points to vectors t and v.

Use the polyfit function with t and log(v).
Calculate C from p(1), which is m in the equation.

Calculate V0 from p(2), which is b in the equation.
Create vector tplot of time for plotting the function.

Create vector vplot for plotting the function.

V0

The capacitance of the capacitor is 1,600 μF.
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Sample Problem 8-7: Temperature dependence of viscosity

Viscosity, μ, is a property of gases and fluids that characterizes their resistance to
flow. For most materials viscosity is highly sensitive to temperature. Below is a
table that gives the viscosity of SAE 10W oil at different temperatures (Data from
B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics,
4th ed., John Wiley and Sons, 2002). Determine an equation that can be fitted to
the data.

Solution
To determine what type of equation
might provide a good fit to the data, μ
is plotted as a function of T (absolute
temperature) with a linear scale for T
and a logarithmic scale for μ. The
plot, shown on the right, indicates
that the data points do not appear to
line up along a straight line. This
means that a simple exponential
function of the form , which
models a straight line with these
axes, will not provide the best fit. Since the points in the figure appear to lie along
a curved line, a function that can possibly have a good fit to the data is:

This function can be fitted to the data by using MATLABs polyfit(x,y,2)
function (second-degree polynomial), where the independent variable is T and the
dependent variable is ln(μ). The equation above can be solved for μ to give the vis-
cosity as a function of temperature:

The following program determines the best fit to the function and creates a plot
that displays the data points and the function.

T   ( C) –20 0 20 40 60 80 100 120

μ (N s/m2)
( )

4 0.38 0.095 0.032 0.015 0.0078 0.0045 0.0032

T=[-20:20:120];

mu=[4 0.38 0.095 0.032 0.015 0.0078 0.0045 0.0032];

TK=T+273;

p=polyfit(TK,log(mu),2)

Tplot=273+[-20:120];

°

5–×10
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10
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2 )

y bemx=

μ( )ln a2T2 a1T a0+ +=

μ e
a2T2 a1T a0+ +( )

e
a0e

a1T
e

a2T2

= =
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When the program executes (saved as Chap8SamPro7), the coefficients that are
determined by the polyfit function are displayed in the Command Window
(shown below) as three elements of the vector p.   

With these coefficients the viscosity of the oil as a function of temperature is:

The plot that is generated shows that the equation correlates well to the data points
(axis labels were added with the Plot Editor).

8.6 PROBLEMS

1. Plot the polynomial  in the domain .
First create a vector for x, next use the polyval function to calculate y, and
then use the plot function.

2. Plot the polynomial  in the
domain . First create a vector for x, next use the polyval function
to calculate y, and then use the plot function.

3. Use MATLAB to carry out the following multiplication of two polynomials:
 

muplot = exp(p(1)*Tplot.^2 + p(2)*Tplot + p(3));

semilogy(TK,mu,'o',Tplot,muplot)

>> Chap8SamPro7

p =
    0.0003   -0.2685   47.1673

μ e 0.0003T2 0.2685T– 47.1673+( ) e47.1673e 0.2685–( )Te0.0003T2

= =

250 300 350 400
10

-3

10
-2

10
-1

10
0

10
1

Temperature (K)

V
is

co
si

ty
 (

N
*s

/m
2 )

y 0.4x4– 7x2 20.5x– 28–+= 5– x 4≤ ≤

y 0.001x4– 0.051x3 0.76x2– 3.8x 1.4–+ +=
1 x 14≤ ≤

2x2 3+( ) x3 3.5x2 5x 16–+ +( )
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4. Use MATLAB to carry out the following multiplication of polynomials:
 

Plot the polynomial for .

5. Divide the polynomial  by the polynomial
.

6. Divide the polynomial  by the polynomial
.

7. The product of three consecutive integers is 1,716. Using MATLAB’s built-in
function for operations with polynomials, determine the three integers.

8. The product of four consecutive even integers is 13,440. Using MATLAB’s
built-in function for operations with polynomials, determine the four integers.

9. A cylindrical aluminum fuel tank has an outside diameter
of 30 in. and a height of 50 in. The the thickness of the
wall is t, and the bottom and top ends are 25% thicker.
Determine t if the weight of the tank is 152 lb. The spe-
cific weight of aluminum is 165 lb/ft3.

10. A cylindrical aluminum fuel tank has a flat bottom and a
semi-spherical top. The outside diameter is 25 cm, and
the height of the cylindrical section is 40 cm. The thick-
ness of the side and the semi-spherical top walls is t, and
the thickness of the flat bottom is 1.5t. Determine t if the
mass of the tank is 27.5 kg. The density of aluminum is
2.7 g/cm3.

11. A 24 ft–long rod is cut into 12 pieces, which are welded
together to form the frame of a rectangular box. The
length of the box’s base is three times its width. 
(a) Create a polynomial expression for the volume V in

terms of x.
(b) Make a plot of V versus x.
(c) Determine the x that maximizes the volume and

determine that volume.

x 1.4+( ) x 0.4–( )x x 0.6+( ) x 1.4–( )
1.5– x 1.5≤ ≤

0.6x5– 7.7x3 8x2– 24.6x– 48+ +

0.6x3– 4.1x 8–+

x4 6x3– 13x2 12x– 4+ +

x3 3x2– 2+

50 in.

30 in.

t

40 cm

12.5 cm

x3x

h
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12. A rectangular piece of cardboard, 40 inches
long by 22 inches wide, is used for making a
rectangular box (open top) by cutting out
squares of x by x from the corners and folding
up the sides.
(a) Create a polynomial expression for the vol-

ume V in terms of x.
(b) Make a plot of V versus x.
(c) Determine x if the volume of the box is

1,000 in.3.
(d) Determine the value of x that corresponds to the box with the largest pos-

sible volume, and determine that volume.

13. Write a user-defined function that adds or subtracts two polynomials of any
order. Name the function p=polyadd(p1,p2,operation). The first
two input arguments p1 and p2 are the vectors of the coefficients of the two
polynomials. (If the two polynomials are not of the same order, the function
adds the necessary zero elements to the shorter vector.) The third input argu-
ment operation is a string that can be either ‘add’ or ‘sub’, for adding
or subtracting the polynomials, respectively, and the output argument is the
resulting polynomial.

Use the function to add and subtract the following polynomials:
 and .

14. Write a user-defined function that multiplies two polynomials. Name the
function p=polymult(p1,p2). The two input arguments p1 and p2 are
vectors of the coefficients of the two polynomials. The output argument p is
the resulting polynomial.

Use the function to multiply the following polynomials:
 and .

Check the answer with MATLAB’s built-in function conv.

15. Write a user-defined function that calculates the maximum (or minimum) of a
quadratic equation of the form:

Name the function [x,y,w] = maxormin(a,b,c). The input arguments are
the coefficients a, b, and c. The output arguments are x, the coordinate of the
maximum (or minimum); y, the maximum (or minimum) value; and w, which
is equal to 1 if y is a maximum and equal to 2 if y is a minimum.

Use the function to determine the maximum or minimum of the following
functions:
(a)               (b)

40 in.

22 in.

x
x

L
W

H

f1 x( ) x5 7x4– 11x3 4x2– 5x– 2–+= f2 x( ) 9x2 10x– 6+=

f1 x( ) x5 7x4– 11x3 4x2– 5x– 2–+= f2 x( ) 9x2 10x– 6+=

f x( ) ax2 bx c+ +=

f x( ) 3x2 7x– 14+= f x( ) 5x2– 11x– 15+=



8.6 Problems 289

16. A cylinder of radius r and height h is constructed
inside a cone with base radius in. and
height  in., as shown in the figure.
(a) Create a polynomial expression for the vol-

ume V of the cylinder in terms of r.
(b) Make a plot of V versus r.
(c) Determine r if the volume of the cylinder is

800 in.3.
(d) Determine the value of r that corresponds to

the cylinder with the largest possible volume,
and determine that volume.

17. Consider the parabola  and the
point .
(a) Create a polynomial expression for the distance

d from point P to an arbitrary point Q on the
parabola.

(b) Make a plot of d versus x for .
(c) Determine the coordinates of Q if .
(d) Determine the coordinates of Q that correspond

to the smallest d, and calculate the correspond-
ing value of d.

18. The boiling temperature of water  at various alti-
tudes h is given in the following table. Determine a linear equation in the form

 that best fits the data. Use the equation for calculating the
boiling temperature at 16,000 ft. Make a plot of the points and the equa-
tion. 

19. The number of bacteria  measured at different times t is given in the fol-
lowing table. Determine an exponential function in the form  that
best fits the data. Use the equation to estimate the number of bacteria after
60 min. Make a plot of the points and the equation. 

h (ft) 0 2000 5000 7500 10000 20000 26000

T ( F ) 212 210 203 198 194 178 168

t (min) 10 20 30 40 50
NB 15,000 215,000 335,000 480,000 770,000

r
R

H

R 10=
H 30=

2 4

2

4

6
d

P (3, 5.5)

Q

x

yy 1.5 x 5–( )2 1+=

P 3 5.5,( )

3 x 6≤ ≤
d 28=

TB

TB mh b+=

°

NB

NB Neα t=
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20. The van der Waals equation gives a relationship between the pressure p (in
atm), volume V (in L), and temperature T (in K) for a real gas:

where n is the number of moles, (L atm)/(mol K) is the gas con-
stant, and a (in L2 atm/mol2), and b (in L/mol) are material constants. The
equation can be easily used for calculating p (given T and V) or T (given p and
V). The equation is not as readily solved for V when p and T are given, since it
is nonlinear in V. One useful way to solve for V is by rewriting the equation as
a third-order polynomial

and calculating the root of the polynomial.
Write a user-defined function that calculates V for given p, T, n, a, and b.

For function name and arguments use V=waals(p,T,n,a,b). The func-
tion calculates V by using MATLAB’s built-in function roots. Note that the
solution of the polynomial can have non-real (complex) roots. The output
argument V in waals should be the physically realistic solution (positive and
real). (MATLAB’s built-in function imag(x) can be used for determining
which root is real.)

Use the user-defined function to calculate V for atm, K,
,  L2 atm/mol2,  L/mol.

21. The population of the world for selected years from 1750 to 2009 is given in
the following table: 

(a) Determine the exponential function that best fits the data. Use the func-
tion to estimate the population in 1980. Make a plot of the points and the
function.

(b) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the population in 1980. Make a plot of the points and the polyno-
mial.

(c) Fit the data with linear and spline interpolations. Estimate the population
in 1975 with linear and spline interpolations. Make a plot of the data
points and curves made of the interpolated points.

In each part make a plot of the data points (circle markers) and the fit curve or
the interpolation curves. Note that part (c) has two interpolation curves.
The actual population of the world in 1980 was 4453.8 million.

Year 1750 1800 1850 1900 1950 1990 2000 2009

Population 
(millions)

791 980 1,260 1,650 2,520 5,270 6,060 6,800

p nRT
V nb–
---------------- n2a

V2
--------–=

R 0.08206=

V3 nb nRT
p

----------+⎝ ⎠
⎛ ⎞V2–

n2a
p

--------V n3ab
p

------------–+ 0=

p 30= T 300=

n 1.5= a 1.345= b 0.0322=
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22. The following points are given:

(a) Fit the data with a first-order polynomial. Make a plot of the points and
the polynomial.

(b) Fit the data with a second-order polynomial. Make a plot of the points and
the polynomial.

(c) Fit the data with a fourth-order polynomial. Make a plot of the points and
the polynomial.

(d) Fit the data with an eight-order polynomial. Make a plot of the points and
the polynomial.

23. The standard air density, D (average of measurements made), at different
heights, h, from sea level up to a height of 33 km is given below.

(a) Make the following four plots of the data points (density as a function of
height): (1) both axes with linear scale; (2) h with log axis, D with linear
axis; (3) h with linear axis, D with log axis; (4) both log axes. According
to the plots choose a function (linear, power, exponential, or logarithmic)
that best fits the data points and determine the coefficients of the function.

(b) Plot the function and the points using linear axes.

24. Write a user-defined function that fits data points to a power function of the
form . Name the function [b,m] = powerfit(x,y), where the
input arguments x and y are vectors with the coordinates of the data points,
and the output arguments b and m are the constants of the fitted exponential
equation. Use powerfit to fit the data below. Make a plot that shows the
data points and the function.

x –5 –3.4 –2.0 –0.8 0 1.2 2.5 4 5.0 7 8.5

y 4.4 4.5 4 3.6 3.9 3.8 3.5 2.5 1.2 0.5 -0.2

h (km) 0 3 6 9 12 15

D (kg/m3) 1.2 0.91 0.66 0.47 0.31 0.19

h (km) 18 21 24 27 30 33

D (kg/m3) 0.12 0.075 0.046 0.029 0.018 0.011

x 0.5 2.4 3.2 4.9 6.5 7.8

y 0.8 9.3 37.9 68.2 155 198

y bxm=
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25. The aerodynamic drag force  that is
applied to a car is given by:

where  kg/m3 is the air density,
 is the drag coefficient, A is the pro-

jected front area of the car, and v is the speed of the car (in units of m/s) rela-
tive to the wind. The product  characterizes the air resistance of a car. (At
speeds above 70 km/h the aerodynamic drag force is typically more than half
of the total resistance to motion.) Data obtained in a wind tunnel test is dis-
played in the table. Use the data to determine the product  for the tested
car using curve fitting. Make a plot of the data points and the curve-fitted
equation. 

26. Viscosity is a property of gases and fluids that characterizes their resistance to
flow. For most materials viscosity is highly sensitive to temperature. For
gases, the variation of viscosity with temperature is frequently modeled by an
equation of the form

where μ is the viscosity, T is the absolute temperature, and C and S are empiri-
cal constants. Below is a table that gives the viscosity of air at different tem-
peratures (data from B.R. Munson, D.F. Young, and T.H. Okiishi,
Fundamentals of Fluid Mechanics, 4th ed., John Wiley and Sons, 2002).

Determine the constants C and S by curve-fitting the equation to the data
points. Make a plot of viscosity versus temperature (in C). In the plot show
the data points with markers and the curve-fitted equation with a solid line.

The curve fitting can be done by rewriting the equation in the form

and using a first-order polynomial.

v  (km/h) 20 40 60 80 100 120 140 160

 (N) 10 50 109 180 300 420 565 771

T   ( C) –20 0 40 100 200 300 400 500 1,000

μ (N s/m2)
( )

1.63 1.71 1.87 2.17 2.53 2.98 3.32 3.64 5.04

FD

FD
1
2
---ρCDAv2=

ρ 1.2=

CD

CDA

CDA

FD

μ CT 3 2⁄

T S+
--------------=

°

5–×10

°

T 3 2⁄

μ
---------- 1

C
----T S

C
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 27. Measurements of the fuel efficiency of a car FE at various speeds v are shown
in the table.

(a) Curve-fit the data with a second-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.
(b) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.
(c) Fit the data with linear and spline interpolations. Estimate the fuel effi-
ciency at 60 mi/h with linear and spline interpolations. Make a plot that shows
the data points and curves made of interpolated points.

28. The relationship between two variables P and t is known to be:

The following data points are given 

Determine the constants m and b by curve-fitting the equation to the data
points. Make a plot of P versus t. In the plot show the data points with markers
and the curve-fitted equation with a solid line. (The curve fitting can be done
by writing the reciprocal of the equation and using a first-order polynomial.)

29. The yield strength, σy, of many metals depends on the size of the grains. For
these metals the relationship between the yield stress and the average grain
diameter d can be modeled by the Hall-Petch equation:

The following are results from measurements of average grain diameter
and yield stress.

(a) Using curve fitting, determine the constants σ0 and k in the Hall-Petch
equation for this material. Using the constants determine with the equa-
tion the yield stress of material with a grain size of 0.05 mm. Make a plot
that shows the data points with circle markers and the curve derived from
the Hall-Petch equation with a solid line.

v (mi/h) 5 15 25 35 45 55 65 75
FE (mpg) 11 22 28 29.5 30 30 27 23

t 1 3 4 7 8 10
P 2.1 4.6 5.4 6.1 6.4 6.6

d (mm) 0.005 0.009 0.016 0.025 0.040 0.062 0.085 0.110

σy (MPa) 205 150 135 97 89 80 70 67

P mt
b t+
-----------=

σy σ0 kd
1–

2
------⎝ ⎠
⎛ ⎞

+=
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(b) Use linear interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and the linear interpolation with a solid line.

(c) Use cubic interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and cubic interpolation with a solid line.

30. The stress concentration factor k is the
ratio between the maximum stress 
and the average stress ,

. For a stepped shaft
loaded in torsion, with dimensions as
shown in the figure, k is a function of  and the maximum stress is at the
rounded corner. The average stress is given by , where T
is the applied torque. The stress concentration factors measured in tests using
shafts with  and various ratios of  are given in the table.

(a) Use an power function  to model the relationship between k
and . Determine the values of b and m that best-fit the data.
(b) Plot the data points and the curve-fitted model.
(c) Use the model to predict the stress concentration factor for .

31. The ideal gas equation relates the volume, pressure, temperature, and the
quantity of a gas by:

where V is the volume in liters, P is the pressure in atm, T is the temperature in
kelvins, n is the number of moles, and R is the gas constant.

An experiment is conducted for determining the value of the gas constant
R. In the experiment 0.05 mol of gas is compressed to different volumes by
applying pressure to the gas. At each volume the pressure and temperature of
the gas are recorded. Using the data given below, determine R by plotting V
versus T/P and fitting the data points with a linear equation.

r/d 0.3 0.26 0.22 0.18 0.14 0.1 0.06 0.02
k 1.18 1.19 1.21 1.26 1.32 1.43 1.6 1.98

V  (L) 0.75 0.65 0.55 0.45 0.35

T  ( C) 25 37 45 56 65

P  (atm) 1.63 1.96 2.37 3.00 3.96

dD

r
T T

τmax
τave

k τmax τave⁄=

r d⁄
τave 16T( ) πd3( )⁄=

d D⁄ 2= r d⁄

k b r d⁄( )m=

r d⁄

r d⁄ 0.04=

V nRT
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