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Chapter 9          
Applications in 
Numerical Analysis

Numerical methods are commonly used for solving mathematical problems that
are formulated in science and engineering where it is difficult or impossible to
obtain exact solutions. MATLAB has a large library of functions for numerically
solving a wide variety of mathematical problems. This chapter explains a number
of the most frequently used of these functions. It should be pointed out here that
the purpose of this book is to show users how to use MATLAB. Some general
information on the numerical methods is given, but the details, which can be
found in books on numerical analysis, are not included.

The following topics are presented in this chapter: solving an equation with
one unknown, finding a minimum or a maximum of a function, numerical integra-
tion, and solving a first-order ordinary differential equation. 

9.1 SOLVING AN EQUATION WITH ONE VARIABLE

An equation with one variable can be written in the form . A solution to
the equation (also called a root) is a numerical value of x that satisfies the equa-
tion. Graphically, a solution is a point where the function  crosses or touches
the x axis. An exact solution is a value of x for which the value of the function is
exactly zero. If such a value does not exist or is difficult to determine, a numerical
solution can be determined by finding an x that is very close to the solution. This
is done by the iterative process, where in each iteration the computer determines a
value of x that is closer to the solution. The iterations stop when the difference in x
between two iterations is smaller than some measure. In general, a function can
have zero, one, several, or an infinite number of solutions.

f x( ) 0=

f x( )
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 In MATLAB a zero of a function can be determined with the command
(built-in function) fzero with the form:

The built-in function fzero is a MATLAB function function (see Section 7.9),
which means that it accepts another function (the function to be solved) as an
input argument.
Additional details on the arguments of fzero:

• x is the solution, which is a scalar.

• function is the function to be solved. It can be entered in several different
ways:
1. The simplest way is to enter the mathematical expression as a string.
2. The function is created as a user-defined function in a function file and
       then the function handle is entered (see Section 7.9.1). 
3. The function is created as an anonymous function (see Section 7.8.1)
       and then the name of the anonymous function (which is the name of the 
       handle) is entered (see Section 7.9.1).
 

(As explained in Section 7.9.2, it is also possible to pass a user-defined func-
tion and an inline function into a function function by using its name. How-
ever, function handles are more efficient and easier to use, and should be the
preferred method.)

• The function has to be written in a standard form. For example, if the function
to be solved is , it has to be written as . If this
function is entered into the fzero command as a string, it is typed as:
‘x*exp(-x)-0.2’.

• When a function is entered as an expression (string), it cannot include pre-
defined variables. For example, if the function to be entered is

, it is not possible to define b=0.2 and then enter
‘x*exp(-x)-b’.

• x0  can be a scalar or a two-element vector. If it is entered as a scalar, it has to
be a value of x near the point where the function crosses (or touches) the x axis.
If x0 is entered as a vector, the two elements have to be points on opposite
sides of the solution. If  crosses the x axis, then  has a different
sign than . When a function has more than one solution, each solution
can be determined separately by using the fzero function and entering values
for x0 that are near each of the solutions.

x = fzero(function,x0)

Solution The function to
be solved.

A value of x close to where
the function crosses the axis.

xe x– 0.2= f x( ) xe x– 0.2– 0= =

f x( ) xe x– 0.2–=

f x( ) f x0 1( )( )
f x0 2( )( )
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• A good way to find approximately where a function has a solution is to make a
plot of the function. In many applications in science and engineering the
domain of the solution can be estimated. Often when a function has more than
one solution only one of the solutions will have a physical meaning.

Sample Problem 9-1: Solving a nonlinear equation

Determine the solution of the equation  .

Solution
The equation is first written in the form of a
function: . A plot of the func-
tion, shown on the right, shows that the func-
tion has one solution between 0 and 1 and
another solution between 2 and 3. The plot is
obtained by typing

in the Command Window. The solutions of the function are found by using the
fzero command twice. First the equation is entered as a string expression, and a
value of x0 between 0 and 1 (x0 = 0.7) is used. Second, the equation to be solved
is written as an anonymous function, which is then used in fzero with x0
between 2 and 3 (x0 = 2.8). This is shown below:

Additional comments:

• The fzero command finds zeros of a function only where the function
crosses the x axis. The command does not find a zero at points where the func-
tion touches but does not cross the x axis.

• If a solution cannot be determined, NaN is assigned to x.

>> fplot('x*exp(-x)-0.2',[0 8])

>> x1=fzero('x*exp(-x)-0.2',0.7)

x1 =
    0.2592

>> F=@(x)x*exp(-x)-0.2
F = 
    @(x)x*exp(-x)-0.2

>> fzero(F,2.8)
ans =
    2.5426

xe x– 0.2=
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f x( ) xe x– 0.2–=

The function is entered as a
string expression. 
The first solution is 0.2592.

Creating an anonymous function.

Using the name of the anonymous function in fzero. 

The second solution is 2.5426.
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• The fzero command has additional options (see the Help Window). Two of
the more important options are:
[x fval]=fzero(function, x0) assigns the value of the function at x to
the variable fval.
x=fzero(function, x0, optimset(‘display’,‘iter’)) displays the
output of each iteration during the process of finding the solution.

• When the function can be written in the form of a polynomial, the solution, or
the roots, can be found with the roots command, as explained in Chapter 8
(Section 8.1.2).

• The fzero command can also be used to find the value of x where the function
has a specific value. This is done by translating the function up or down. For
example, in the function of Sample Problem 9-1 the first value of x where the
function is equal to 0.1 can be determined by solving the equation

. This is shown below:

9.2 FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION

In many applications there is a need to determine the local minimum or maximum
of a function of the form . In calculus the value of x that corresponds to a
local minimum or maximum is determined by finding the zero of the derivative of
the function. The value of y is determined by substituting the x into the function.
In MATLAB the value of x where a one-variable function  within the interval

 has a minimum can be determined with the fminbnd command which
has the form:

• The function can be entered as a string expression, or as a function handle, in
the same way as with the fzero command. See Section 9.1 for details.

• The value of the function at the minimum can be added to the output by using
the option
            [x fval]=fminbnd(function,x1,x2)

where the value of the function at x is assigned to the variable fval.

• Within a given interval, the minimum of a function can either be at one of the
end points of the interval or at a point within the interval where the slope of the

>> x=fzero('x*exp(-x)-0.3',0.5)

x =
    0.4894

xe x– 0.3– 0=

y f x( )=

f x( )
x1 x x2≤ ≤

x = fminbnd(function,x1,x2)

The value of x where the
function has a minimum.

The function. The interval of x.
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function is zero (local minimum). When the fminbnd command is executed,
MATLAB looks for a local minimum. If a local minimum is found, its value is
compared to the value of the function at the end points of the interval. MAT-
LAB returns the point with the actual minimum value for the interval.

For example, consider the function
, which is plot-

ted in the interval  in the figure on the
right. It can be observed that there is a local
minimum between 5 and 6, and that the abso-
lute minimum is at . Using the fminbnd
command with the interval  to find the
location of the local minimum and the value of
the function at this point gives:

Notice that the fminbnd command gives the local minimum. If the interval is
changed to , fminbnd gives:

For this interval the fminbnd command gives the absolute minimum which is at
the end point .
• The fminbnd command can also be used to find the maximum of a function.

This is done by multiplying the function by –1 and finding the minimum. For
example, the maximum of the function  (from Sample Prob-
lem 9-1) in the interval  can be determined by finding the minimum of
the function  as shown below:

>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',3,8)

x =
    5.6073
fval =
  -11.8043

>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',0,8)

x =
     0
fval =
  -36.5000

>> [x fval]=fminbnd('-x*exp(-x)+0.2',0,8)

x =
    1.0000
fval =
   -0.1679
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f x( ) x3 12x2– 40.25x 36.5–+=
0 x 8≤ ≤

x 0=
3 x 8≤ ≤

The local minimum is at . The
value of the function at this point is –11.8043.

x 5.6073=

0 x 8≤ ≤

The minimum is at . The value
of the function at this point is –36.5.

x 0=

x 0=

f x( ) xe x– 0.2–=
0 x 8≤ ≤

f x( ) xe x–– 0.2+=

The maximum is at x = 1.0. The value of
the function at this point is 0.1679.



300 Chapter 9: Applications in Numerical Analysis

9.3 NUMERICAL INTEGRATION

Integration is a common mathematical operation in science and engineering. Cal-
culating area and volume, velocity from acceleration, and work from force and
displacement are just a few examples where integrals are used. Integration of sim-
ple functions can be done analytically, but more involved functions are frequently
difficult or impossible to integrate analytically. In calculus courses the integrand
(the quantity to be integrated) is usually a function. In applications of science and
engineering the integrand can be a function or a set of data points. For example,
data points from discrete measurements of flow velocity can be used to calculate
volume.

It is assumed in the presentation below that the reader has knowledge of
integrals and integration. A definite integral of a function  from a to b has the
form:

The function  is called the integrand, and the
numbers a and b are the limits of integration.
Graphically, the value of the integral q is the area
between the graph of the function, the x axis, and
the limits a and b (the shaded area in the figure).
When a definite integral is calculated analytically

 is always a function. When the integral is calculated numerically  can be
a function or a set of points. In numerical integration the total area is obtained by
dividing the area into small sections, calculating the area of each section, and add-
ing them up. Various numerical methods have been developed for this purpose.
The difference between the methods is in the way that the area is divided into sec-
tions and the method by which the area of each section is calculated. Books on
numerical analysis include details of the numerical techniques. 

The following discussion describes how to use the three MATLAB built-in
integration functions quad, quadl, and trapz. The quad and quadl com-
mands are used for integration when  is a function, and trapz is used when

 is given by data points.
The quad command:
The form of the quad command, which uses the adaptive Simpson method of
integration, is:

f x( )

q f x( ) xd
a

b

∫=

f x( )

f x( ) f x( )

f x( )
f x( )

q = quad(function,a,b)

The value of the integral. The function to
be integrated.

The integration limits.
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• The function can be entered as a string expression or as a function handle, in
the same way as with the fzero command. See Section 9.1 for details. The
first two methods are demonstrated in Sample Problem 9-2.

• The function  must be written for an argument x that is a vector (use
element-by-element operations) such that it calculates the value of the function
for each element of x.

• The user has to make sure that the function does not have a vertical asymptote
between a and b.

• quad calculates the integral with an absolute error that is smaller than 1.0e–6.
This number can be changed by adding an optional tol argument to the com-
mand:
      q = quad(‘function’,a,b,tol)
tol is a number that defines the maximum error. With larger tol the integral
is calculated less accurately but faster.

The quadl command:
The form of the quadl (the last letter is a lowercase L) command is exactly the
same as that of the quad command:

All of the comments that are listed for the quad command are valid for the
quadl command. The difference between the two commands is the numerical
method used for calculating the integration. The quadl command uses the adap-
tive Lobatto method, which can be more efficient for high accuracies and smooth
integrals.

Sample Problem 9-2: Numerical integration of a function

Use numerical integration to calculate the following integral:

f x( )

q = quadl(function,a,b)

The value of the integral. The function to
be integrated.

The integration limits.

xe x0.8– 0.2+( ) xd
0

8

∫
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Solution
For illustration, a plot of the function for the
interval  is shown on the right. The
solution uses the quad command and shows
how to enter the function in the command in
two ways. In the first, it is entered directly by
typing the expression as an argument. In the
second, an anonymous function is created and
its name is subsequently entered in the com-
mand.

The use of the quad command in the Command Window, with the function
to be integrated typed in as a string, is shown below. Note that the function is
typed with element-by-element operations.

The second method is to first create a user-defined function that calculates
the function to be integrated. The function file (named y=Chap9Sam2(x)) is:

Note again that the function is written with element-by-element operations such
that the argument x can be a vector. The integration is then done in the Command
Window by typing the handle @Chap9Sam2 for the argument function in the
quad command as shown below:

The trapz command:
The trapz command can be used for integrating a function that is given as data
points. It uses the numerical trapezoidal method of integration. The form of the
command is

where x and y are vectors with the x and y coordinates of the points, respectively.
The two vectors must be of the same length.

>> quad('x.*exp(-x.^0.8)+0.2',0,8)

ans =
    3.1604

function y=Chap9Sam2(x)

y=x.*exp(-x.^0.8)+0.2;

>> q=quad(@Chap9Sam2,0,8)

q =
    3.1604

0 x 8≤ ≤

q = trapz(x,y)
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9.4 ORDINARY DIFFERENTIAL EQUATIONS

Differential equations play a crucial role in science and engineering since they are
in the foundation of virtually every physical phenomenon that is involved in engi-
neering applications. Only a limited number of differential equations can be
solved analytically. Numerical methods, on the other hand, can result in an
approximate solution to almost any equation. Obtaining a numerical solution
might not be simple task however. This is because a numerical method that can
solve any equation does not exist. Instead, there are many methods that are suit-
able for solving different types of equations. MATLAB has a large library of tools
that can be used for solving differential equations. To fully utilize the power of
MATLAB, however, requires that the user have knowledge of differential equa-
tions and the various numerical methods that can be used for solving them.

This section describes in detail how to use MATLAB to solve a first-order
ordinary differential equation. The possible numerical methods that can be used
for solving such an equation are described in general terms, but are not explained
from a mathematical point of view. This section provides information for solving
simple, “nonproblematic” first-order equations. This solution provides the basis
for solving higher-order equations and systems of equations. 

An ordinary differential equation (ODE) is an equation that contains an
independent variable, a dependent variable, and derivatives of the dependent vari-
able. The equations that are considered here are of first order with the form

where x and y are the independent and dependent variables, respectively. A solu-
tion is a function  that satisfies the equation. In general, many functions
can satisfy a given ODE, and more information is required for determining the
solution of a specific problem. The additional information is the value of the func-
tion (the dependent variable) at some value of the independent variable. 
Steps for solving a single first-order ODE:
For the remainder of this section the independent variable is taken as t (time). This
is done because in many applications time is the independent variable, and also to
be consistent with the information in the Help menu of MATLAB. 
Step 1: Write the problem in a standard form.
Write the equation in the form:

     for  ,  with    at .

As shown above, three pieces of information are needed for solving a first order
ODE: An equation that gives an expression for the derivative of y with respect to t,
the interval of the independent variable, and the initial value of y. The solution is
the value of y as a function of t between  and .

dy
dx
------ f x y,( )=

y f x( )=

dy
dt
------ f t y,( )= t0 t tf≤ ≤ y y0= t t0=

t0 tf
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An example of a problem to solve is:

   for    with   at .

Step 2: Create a user-defined function (in a function file) or an anonymous
function.

The ODE to be solved has to be written as a user-defined function (in a function

file) or as an anonymous function. Both calculate  for given values of t and y.

For the example problem above, the user-defined function (which is saved as a
separate file) is:

When an anonymous function is used, it can be defined in the Command Window,
or be within a script file. For the example problem here the anonymous function
(named ode1) is:

Step 3: Select a method of solution.
Select the numerical method that you would like MATLAB to use in the solution.
Many numerical methods have been developed to solve first-order ODEs, and
several of the methods are available as built-in functions in MATLAB. In a typical
numerical method, the time interval is divided into small time steps. The solution
starts at the known point y0, and then by using one of the integration methods the
value of y is calculated at each time step. Table 9-1 lists seven ODE solver com-
mands, which are MATLAB built-in functions that can be used for solving a first-
order ODE. A short description of each solver is included in the table. 

function dydt=ODEexp1(t,y)

dydt=(t^3-2*y)/t;

>> ode1=@(t,y)(t^3-2*y)/t
ode1 = 
    @(t,y)(t^3-2*y)/t

Table 9-1: MATLAB ODE Solvers

ODE Solver Name Description

ode45 For nonstiff problems, one-step solver, best to apply
as a first try for most problems. Based on explicit
Runge-Kutta method. 

ode23 For nonstiff problems, one-step solver. Based on
explicit Runge-Kutta method. Often quicker but less
accurate than ode45.

ode113 For nonstiff problems, multistep solver.

dy
dt
------ t3 2y–

t
----------------= 1 t 3≤ ≤ y 4.2= t 1=

dy
dt
------
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In general, the solvers can be divided into two groups according to their
ability to solve stiff problems and according to whether they use on-step or multi-
step methods. Stiff problems are ones that include fast and slowly changing com-
ponents and require small time steps in their solution. One-step solvers use
information from one point to obtain a solution at the next point. Multistep solvers
use information from several previous points to find the solution at the next point.
The details of the different methods are beyond the scope of this book.

It is impossible to know ahead of time which solver is the most appropriate
for a specific problem. A suggestion is to first try ode45, which gives good
results for many problems. If a solution is not obtained because the problem is
stiff, trying the solver ode15s is suggested.
Step 4: Solve the ODE.
The form of the command that is used to solve an initial value ODE problem is the
same for all the solvers and for all the equations that are solved. The form is:

Additional information:
solver_name  Is the name of the solver (numerical method) that is used (e.g.

ode45 or ode23s)

ODEfun The function from Step 2 that calculates  for given values of

t and y. If it was written as a user-defined function, the function
handle is entered. If it was written as an anonymous function,
the name of the anonymous function is entered. (See the exam-
ple that follows.) 

tspan A vector that specifies the interval of the solution. The vector
must have at least two elements but can have more. If the vector
has only two elements, the elements must be [t0 tf], which
are the initial and final points of the solution interval. The

ode15s For stiff problems, multistep solver. Use if ode45
failed. Uses a variable order method.

ode23s For stiff problems, one-step solver. Can solve some
problems that ode15s cannot.

ode23t For moderately stiff problems.
ode23tb For stiff problems. Often more efficient than

ode15s.

Table 9-1: MATLAB ODE Solvers (Continued)

ODE Solver Name Description

[t,y] = solver_name(ODEfun,tspan,y0)

dy
dt
------

MAX 1
Highlight
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vector tspan can have, however, additional points between the
first and last points. The number of elements in tspan affects
the output from the command. See [t,y] below.

y0 The initial value of y (the value of y at the first point of the
interval).

[t,y] The output, which is the solution of the ODE. t and y are col-
umn vectors. The first and the last points are the beginning and
end points of the interval. The spacing and number of points in
between depends on the input vector tspan. If tspan has two
elements (the beginning and end points), the vectors t and y
contain the solution at every integration step calculated by the
solver. If tspan has more than two points (additional points
between the first and the last), the vectors t and y contain the
solution only at these points. The number of points in tspan
does not affect the time steps used for the solution by the pro-
gram.

 

For example, consider the solution to the problem stated in Step 1:

   for    with   at ,

If the ODE function is written as a user-defined function (see Step 2), then the
solution with MATLAB’s built-in function ode45 is obtained by:

The solution is obtained with the solver ode45. The name of the user-defined
function from Step 2 is ODEexp1. The solution starts at  and ends at 
with increments of 0.5 (according to the vector tspan). To show the solution, the
problem is solved again below using tspan with smaller spacing, and the solution

>> [t y]=ode45(@ODEexp1,[1:0.5:3],4.2) 

t =
    1.0000

    1.5000

    2.0000

    2.5000

    3.0000

y =
    4.2000

    2.4528

    2.6000

    3.7650

    5.8444

dy
dt
------ t3 2y–

t
----------------= 1 t 3≤ ≤ y 4.2= t 1=

The handle of the user-defined function ODEexp1.

The initial value.

The vector tspan.

t 1= t 3=
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is plotted with the plot command.

If the ODE function is written as an anonymous function called ode1 (see Step
2), then the solution (same as shown above) is obtained by typing:
[t y]=ode45(ode1,[1:0.5:3],4.2).

9.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 9-3: The gas equation

The ideal gas equation relates the volume (V in L), temperature (T in K), pressure
(P in atm), and the amount of gas (number of moles n) by:

where R = 0.08206 (L atm)/(mol K) is the gas constant.
The van der Waals equation gives the relationship between these quantities

for a real gas by

where a and b are constants that are specific for each gas.
Use the fzero function to calculate the volume of 2 mol CO2 at temperature of
50 C, and pressure of 6 atm. For CO2, a = 3.59 (L2 atm)/mol2, and b = 0.0427 L/
mol.
Solution
The solution written in a script file is shown below.

>> [t y]=ode45(@ODEexp1,[1:0.01:3],4.2);

>> plot(t,y)

>> xlabel('t'), ylabel('y')

global P T n a b R

1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

5.5

6

t

y

p nRT
V

----------=

P n2a
V2
--------+⎝ ⎠

⎛ ⎞ V nb–( ) nRT=

°
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The program first calculates an estimated value of the volume using the ideal gas
equation. This value is then used in the fzero command for the estimate of the
solution. The van der Waals equation is written as a user-defined function named
Waals, which is shown below:

In order for the script and function files to work correctly, the variables P, T, n, a,
b, and R are declared global. When the script file (saved as Chap9SamPro3) is
executed in the Command Window, the value of V is displayed, as shown next:

Sample Problem 9-4: Maximum viewing angle

To get the best view of a movie, a person has to
sit at a distance x from the screen such that the
viewing angle θ is maximum. Determine the
distance x for which θ is maximum for the con-
figuration shown in the figure.

Solution
The problem is solved by writing a function
for the angle θ in terms of x, and then finding
the x for which the angle is maximum. In the
triangle that includes θ, one side is given (the
height of the screen), and the other two sides
can be written in terms of x, as shown in the
figure. One way in which θ can be written in terms of x is by using the Law of
Cosines:

R=0.08206;

P=6; T=323.2; n=2; a=3.59; b=0.047;

Vest=n*R*T/P;

V=fzero(@Waals,Vest)

function fofx=Waals(x)

global P T n a b R

fofx=(P+n^2*a/x^2)*(x-n*b)-n*R*T;

>> Chap9SamPro3

V =
    8.6613

Calculating an estimated value for V.

Function handle @waals is used to pass the 
user-defined function waals into fzero.

The volume of the gas is 8.6613 L.

x2 52+

x2 412+ 36

θ

θ( )cos x2 52+( ) x2 412+( ) 362–+

2 x2 52+ x2 412+
-------------------------------------------------------------------=
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The angle θ is expected to be between 0 and
π/2. Since  and the cosine is
decreasing with increasing θ, the maximum
angle corresponds to the smallest cos(θ). A
plot of  as a function of x shows that the
function has a minimum between 10 and 20.
The commands for the plot are:

The minimum can be determined with the fminbnd command:

Sample Problem 9-5: Water flow in a river

To estimate the amount of water that flows in
a river during a year, a section of the river is
made to have a rectangular cross section as
shown. In the beginning of every month
(starting at January 1st) the height h of the
water and the speed v of the water flow are
measured. The first day of measurement is
taken as 1, and the last day—which is Janu-
ary 1st of the next year—is day 366. The following data was measured:

Use the data to calculate the flow rate, and then integrate the flow rate to obtain an
estimate of the total amount of water that flows in the river during a year.

>>fplot('((x^2+5^2)+(x^2+41^2)-36^2)/(2*sqrt(x^2+ 5^2)*sqrt(x^2+
                                               41^2))',[0 25])

>> xlabel('x'); ylabel('cos(\theta)')

>>[x anglecos]=fminbnd('((x^2+5^2)+(x^2+41^2)-36^2)/
                    (2*sqrt(x^2+5^2)*sqrt(x^2+41^2))',10,20)

x =
   14.3178
anglecos =
    0.6225

>> angle=anglecos*180/pi
angle =
   35.6674

Day 1 32 60 91 121 152 182 213 244 274 305 335 366
h (m) 2.0 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0
v (m/s) 2.0 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2.0

0 5 10 15 20 25
0.6
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0.7

0.75

0.8

0.85

0.9

0.95

1

x

co
s(
θ)

0( )cos 1=

θ( )cos

The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.
The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.
The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.

In degrees the angle is 35.6674 .°
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Solution
The flow rate, Q (volume of water per second), at each data point is obtained by
multiplying the water speed by the width and height of the cross-sectional area of
the water that flows in the channel:

   (m3/s)
The total amount of water that flows is estimated by the integral:

The flow rate is given in cubic meters per second, which means that time must
have units of seconds. Since the data is given in terms of days, the integral is mul-
tiplied by  s/day.

The following is a program written in a script file that first calculates Q and
then carries out the integration using the trapz command. The program also
generates a plot of the flow rate versus time.

When the file (saved as Chap9SamPro5) is executed in the Command Window,
the estimated amount of water is displayed and the plot is generated. Both are
shown below:.

w=8;

d=[1 32 60 91 121 152 182 213 244 274 305 335 366];

h=[2 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0];

speed=[2 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2];

Q=speed.*w.*h;

Vol=60*60*24*trapz(d,Q);

fprintf('The estimated amount of water that flows in the
river in a year is %g cubic meters.',Vol)

plot(d,Q)

xlabel('Day'), ylabel('Flow Rate (m^3/s)')

>> Chap9SamPro5

The estimated amount of water that flows in the river in a
year is 2.03095e+009 cubic meters.

Q vwh=

V 60 60 24⋅ ⋅( ) Q td
t1

t2

∫=

60 60 24⋅ ⋅( )
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Sample Problem 9-6: Car crash into a safety bumper 

A safety bumper is placed at the end of a
racetrack to stop out-of-control cars. The
bumper is designed such that the force that
the bumper applies to the car is a function
of the velocity v and the displacement x of
the front edge of the bumper according to the equation:

where K = 30 (s kg)/m5 is a constant.
A car with a mass m of 1,500 kg hits the bumper at a speed of 90 km/h.

Determine and plot the velocity of the car as a function of its position for 
m.
Solution
The deceleration of the car once it hits the bumper can be calculated from New-
ton’s second law of motion,

which can be solved for the acceleration a as a function of v and x:

The velocity as a function of x can be calculated by substituting the acceleration in
the equation

which gives

The last equation is a first-order ODE that needs to be solved for the interval
 with the initial condition  km/h at .

A numerical solution of the differential equation with MATLAB is shown in
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a
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3 /s

)

F Kv3 x 1+( )3=

0 x 3≤ ≤

ma Kv3 x 1+( )3–=

a Kv3 x 1+( )3–
m

--------------------------------=

vdv adx=

dv
dx
------ Kv2 x 1+( )3–

m
--------------------------------=

0 x 3≤ ≤ v 90= x 0=
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the following program, which is written in a script file:

Note that the function handle @bumper is used for passing the user-defined func-
tion bumper into ode45. The listing of the user-defined function with the differ-
ential equation, named bumper, is: 

When the script file executes (saved as Chap9SamPro6) the vectors x and v are
displayed in the Command Window (actually, they are displayed on the screen
one after the other, but to save room they are displayed below next to each other). 

global k m

k=30; m=1500; v0=90;

xspan=[0:0.2:3];

v0mps=v0*1000/3600;

[x v]=ode45(@bumper,xspan,v0mps)

plot(x,v)

xlabel('x (m)'); ylabel('velocity (m/s)')

function dvdx=bumper(x,v)

global k m

dvdx=-(k*v^2*(x+1)^3)/m;

>> Chap9SamPro6

x =
         0

v =
   25.0000

    0.2000    22.0420

    0.4000    18.4478

    0.6000    14.7561

    0.8000    11.4302

    1.0000     8.6954

    1.2000     6.5733

    1.4000     4.9793

    1.6000     3.7960

    1.8000     2.9220

    2.0000     2.2737

    2.2000     1.7886

    2.4000     1.4226

    2.6000     1.1435

    2.8000     0.9283

A vector that specifies the interval of the solution.
Changing the units of v0 to m/s.

Solving the ODE.
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The plot generated by the program of the velocity as a function of distance is: 

9.6 PROBLEMS

1. Determine the solution of the equation  .

2. Determine the solution of the equation  .

3. Determine the three positive roots of the equation .

4. Determine the positive roots of the equation .

5. A block of mass kg is being pulled
by a cable as shown. The force that is
required to move the box is given by:

where m,  is the friction
coefficient, and m/s2. Determine
the distance x when the pulling force is equal to 230 N.

6. A scale is made of two springs, as
shown in the figure. The springs
are nonlinear such that the force
they apply is given by

, where the K’s
are constants and  is the

elongation of the spring (  and  are the cur-
rent and initial lengths of the springs, respectively). Initially, the springs are

    3.0000     0.7607
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0
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ve
lo

ci
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 (
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)

e0.5x x– 3=

3 3 xsin+ 0.5x3=

x3 8x2– 17x x+ + 10=

x2 5x 3x( )sin– 3+ 0=

F
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x

h

15o

m 20=

F μmg 15°cos mg 15°sin+( ) x2 h2+
x μh+

---------------------------------------------------------------------------------------=

h 8= μ 0.45=
g 9.81=
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FS K1u K2u3+=

u L L0–=

L a2 b x+( )2+= L0 a2 b2+=
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not stretched. When an object is attached to the ring, the springs stretch and
the ring is displaced downward a distance x. The weight of the object can be
expressed in terms of the distance x by:

For the given scale m, m, and the springs’ constants are
N/m and N/m3. Plot W as a function of x for
. Determine the distance x when a 400 N object is attached to the

scale.

7. An estimate of the minimum velocity required for a round flat stone to skip
when it hits the water is given by (Lyderic Bocquet, “The Physics of Stone
Skipping,” Am. J. Phys., vol. 71, no. 2, February 2003)

where M and d are the stone mass and diameter,  is the water density, C is a
coefficient,  is the tilt angle of the stone,  is the incidence angle, and

m/s2. Determine d if m/s. (Assume that kg, ,
kg/m3, and .)

8. The diode in the circuit shown is forward
biased. The current I flowing through the
diode is given by:

where  is the voltage drop across the
diode, T is the temperature in kelvins,

A is the saturation current,
coulombs is the elementary charge value, and
joule/K is Boltzmann’s constant. The current I flowing

through the circuit (the same as the current in the diode) is given also by:

Determine  if V, K, and Ω. (Substitute I from
one equation into the other equation and solve the resulting nonlinear equa-
tion.)

W 2 FS
b x+( )

L
----------------=

a 0.22= b 0.08=

K1 1600= K2 100000=

0 x 0.25≤ ≤

V

16Mg
πCρwd2
--------------------

1 8M βtan2

πd3Cρw θsin
-------------------------------–

--------------------------------------------=

ρw

θ β

g 9.81= V 0.8= M 0.1= C 1=

ρw 1000= β θ 10°= =

Rvs
+
_

D

vDI

I IS e
qvD
kT

---------
1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vD

IS 10 12–=

q 1.6 10 19–×=

k 1.38 10 23–×=

I
vS vD–

R
----------------=

vD vS 2= T 297= R 1000=
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9. Determine the minimum and the maximum of the function

.

10. A paper cup shaped as a cone is designed to have a vol-
ume of 250 cm3. Determine the radius  and height h
such that the least amount of paper will be used for mak-
ing the cup.

11. Consider again the block that is being pulled in Problem 5. Determine the dis-
tance x at which the force that is necessary to pull the box is the smallest.
What is the magnitude of this force?

12. Determine the dimensions (radius r and height h)
and the volume of the cylinder with the largest vol-
ume that can be made inside of a sphere with a
radius R of 14 in.

13. Consider the ellipse . Determine

the sides a and b of the rectangle with the larg-
est area that can be enclosed by the ellipse. 

14. Planck’s radiation law gives the spectral radiancy R as a function of the wave
length λ and temperature T (in kelvins):

where m/s is the speed of light, J s is Planck’s
constant, and J/K is the Boltzmann’s constant.

Plot R as a function of λ for m at K,
and determine the wavelength that gives the maximum R at this temperature.

f x( ) x 2–
x 2–( )4 2+[ ]1.8

--------------------------------------=

h

R

R

rh

R=14 in

x

y

a

b

x2

192
-------- y2

52
-----+ 1=

R 2πc2h
λ5

--------------- 1
e hc( ) λkT( )⁄ 1–
--------------------------------=

c 3.0 108×= h 6.63 10 34–×=

k 1.38 10 23–×=

0.2 10 6–× λ 6.0 10 6–×≤ ≤ T 1500=
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15. A 108 in.–long beam AB is attached to the
wall with a pin at point A and to a 68 in.–
long cable CD. A load lb is
attached to the beam at point B. The ten-
sion in the cable T is given by 

where L and LC are the lengths of the beam and the cable, respectively, and d
is the distance from point A to point D, where the cable is attached. Make a
plot of T versus d. Determine the distance d where the tension in the cable is
the smallest.

16. Use MATLAB to calculate the following integral:

(a) (b)

17. Use MATLAB to calculate the following integrals:

(a) (b)

18. The speed of a race car during the first seven seconds of a race is given by:

Determine the distance the car traveled during the first six seconds.

19. The length L of the main supporting cable
of a suspension bridge can be calculated
by

where a is half the length of the bridge
and h is the distance from the deck to the top of the tower where the cable is
attached. Determine the length of a bridge with m and m.

t (s) 0 1 2 3 4 5 6 7
v (mi/h) 0 14 39 69 95 114 129 139

L

Wd

LC

A B

C

D

W 250=

T
W L LC

d LC
2 d2–

-------------------------=

2x2

1 x+
---------------- xd

1

6

∫ 2xcos
x

-------------- xd
1

2

∫

e2x

x
------- xd

1

2

∫ e x2– xd
1–

1

∫

x

y
h

aL 2 1 4h2

a4
--------x2+

⎝ ⎠
⎜ ⎟
⎛ ⎞

1 2⁄

xd
0

a

∫=

a 80= h 18=
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20. The flow rate Q (volume of fluid per sec-
ond) in a round pipe can be calculated
by:

For turbulent flow the velocity profile 

can be estimated by: . Determine Q for in., 

, in./s.

21. The electric field E due to a charged circular disk
at a point at a distance z along the axis of the disk
is given by

where  is the charge density,  is the
permittivity constant, C2/(N m2),
and R is the radius of the disk. Determine the electric field at a point located 5
cm from a disk with a radius of 6 cm, charged with μC/m2.

22. The length of a curve given by a parametric equation ,  is given by:

The cycloid curve is given by , and . Deter-
mine the length of a cycloid with in. for .

23. The variation of gravitational acceleration g with altitude y is given by

where km is the radius of the earth, and m/s2 is the gravi-
tational acceleration at sea level. The change in the gravitational potential
energy, ΔU, of an object that is raised from the earth is given by:

Determine the change in the potential energy of a satellite with a mass of 500
kg that is raised from the surface of the earth to a height of 800 km.

rR

Q 2πvr rd
0

r

∫=

v vmax 1 r
R
---–⎝ ⎠

⎛ ⎞ 1 n⁄
= R 0.25=

n 7= vmax 80=

E σz
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-------- z2 r2+( ) 3 2⁄– 2r( ) rd
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σ ε0

ε0 8.85 10 12–×=

σ 300=

x t( ) y t( )

x′ t( )[ ]2 y′ t( )[ ]2+ td
a
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∫
x R t tsin–( )= y R 1 tcos–( )=
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g R2

R y+( )2
-------------------g0=

R 6371= g0 9.81=

ΔU mg yd
0

h

∫=
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24. A cross section of a river with
measurements of its depth at
intervals of 40 ft is shown in the
figure. Use numerical integra-
tion to estimate the cross-sec-
tional area of the river.

25. An approximate map of the state of Ohio
is shown in the figure. Measurements of
the width of the state are marked at inter-
vals of 30 miles. Use numerical integra-
tion to estimate the area of the state.
Compare the result with the actual area
of Ohio, which is 44,825 square miles.

26. The time-dependent relaxation modulus  of many biological materials
can be described by Fung’s reduced relaxation function:

Use numerical integration to find the relaxation modulus at 10 s, 100 s, and
1,000 s. Assume ksi, , s, and s. 

27. The orbit of Pluto is elliptical in shape, with
km and km.

The perimeter of an ellipse can be calculated by

where . Determine the distance

Pluto travels in one orbit. Calculate the average speed at which Pluto travels
(in km/h) if one orbit takes about 248 years.

28. The Fresnel integrals are:

 and 

Calculate  and  for  (use spacing of 0.05). In one figure plot
two graphs—one of  versus x and the other of  versus x. In a second
figure plot  versus .
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29. Solve:

  for    with  

Plot the solution.

30. Solve:

  for    with  

Plot the solution.

31. Solve:

  for    with  

Plot the solution.

32. A water tank shaped as an ellipsoid ( m,
m, m) has a circular hole at the bot-

tom, as shown. According to Torricelli’s law, the
speed v of the water that is discharging from the
hole is given by

where h is the height of the water and m/
s2. The rate at which the height, h, of the water in
the tank changes as the water flows out through
the hole is given by

where  is the radius of the hole.
Solve the differential equation for y. The initial height of the water is

m. Solve the problem for different times and find an estimate for the
time when m. Make a plot of y as a function of time.

dy
dx
------ x x2 y

4
------------+= 1 x 5≤ ≤ y 1( ) 1=

dy
dx
------ xy 0.5ye 0.1x––= 0 x 4≤ ≤ y 0( ) 6.5=
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dt
------ 80e 1.6 t– 4t( )cos 0.4y–= 0 t 4≤ ≤ y 0( ) 0=
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33. The growth of a fish is often modeled by the von Bertalanffy growth model:

where w is the weight and a and b are constants. Solve the equation for w for
the case lb1/3, day–1, and lb. Make sure that the
selected time span is just long enough so that the maximum weight is
approached. What is the maximum weight for this case? Make a plot of w as a
function of time. 

34. The sudden outbreak of an insect population can be modeled by the equation

The first term relates to the well-known logistic population growth model
where N is the number of insects, R is an intrinsic growth rate, and C is the
carrying capacity of the local environment. The second term represents the
effects of bird predation. Its effect becomes significant when the population
reaches a critical size . r is the maximum value that the second term can
reach at large values of N.

Solve the differential equation for days and two growth rates,
 and  day–1, and with . The other parameters

are , ,  day–1. Make one plot comparing the two
solutions and discuss why this model is called an “outbreak” model.

35. An airplane uses a parachute and
other means of braking as it slows
down on the runway after land-
ing. Its acceleration is given by

m/s2. Since

, the rate of change of the

velocity is given by:

Consider an airplane with a velocity of 300 km/h that opens its parachute and
starts decelerating at t = 0 s. 
(a) By solving the differential equation, determine and plot the velocity as a

function of time from t = 0 s until the airplane stops.
(b) Use numerical integration to determine the distance x the airplane travels

as a function of time. Make a plot of x versus time.

dw
dt
------- aw2 3⁄ bw–=

a 5= b 2= w 0( ) 0.5=

dN
dt
------- RN 1 N

C
----–⎝ ⎠

⎛ ⎞ rN2

Nc
2 N2+

-------------------–=

Nc

0 t 50≤ ≤
R 0.55= R 0.58= N 0( ) 10000=

C 104= Nc 104= r 104=

a 0.0035v2– 3–=

a dv
dt
------=

dv
dt
------ 0.0035v2– 3–=
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36. An RC circuit includes a voltage
source , a resistor  Ω, and a
capacitor F, as shown
in the figure. The differential equation
that describes the response of the cir-
cuit is:

where  is the voltage of the capacitor. Initially, , and then at  the
voltage source is changed. Determine the response of the circuit for the fol-
lowing three cases:
(a) V for .
(b) V for .
(c) V for s, and then  for  s (rectangular

pulse).
Each case corresponds to a different differential equation. The solution is the
voltage of the capacitor as a function of time. Solve each case for s.
For each case plot  and  versus time (make two separate plots on the same
page).

37. An RL circuit includes a voltage
source , a resistor  Ω, and an
inductor H, as shown in the
figure. The differential equation that
describes the response of the circuit is

where  is the current in the inductor. Initially , and then at  the
voltage source is changed. Determine the response of the circuit for the fol-
lowing three cases:
(a) V for .

(b) V for .
Each case corresponds to a different differential equation. The solution is the
current in the inductor as a function of time. Solve each case for s.
For each case plot  and  versus time (make two separate plots on the same
page).
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38. Tumor growth can be modeled with the equation

where  is the area of the tumor and , k, and  are constants. Solve the
equation for  days, given , , , and

mm2. Make a plot of A as a function of time.

dA
dt
------- αA 1 A

k
---⎝ ⎠

⎛ ⎞
υ

–=

A t( ) α υ
0 t 30≤ ≤ α 0.8= k 60= υ 0.25=

A 0( ) 1=
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