Correlation

Correlation is a measure of association between two variables .
The variables are not designated as dependent or independent.
The value of a correlation coefficient can vary from minus one to plus one (-1 to +1), where the calculated value of the correlation coefficient indicates the strength of the relationship while the negative or positive signal indicates the direction of the relationship (direct or negative correlation).
A minus one (-1) indicates a perfect negative correlation, while a plus one (+1) indicates a perfect positive correlation. A correlation of zero means there is no relationship between the two variables.
When there is a negative correlation between two variables, as the value of one variable increases, the value of the other variable decreases, and vise versa.
In other words, for a negative correlation, the variables work opposite each other. When there is a positive correlation between two variables, as the value of one variable increases, the value of the other variable also increases. The variables move together.

Note: In general,

- the relationship can be considered weak if the correlation coefficient value is less than 0.30 .
- the relationship can be considered as medium if the correlation coefficient value ranges from 0.30 to 0.70 .
- if the correlation coefficient value is more than 0.70 the strong relationship between the two variables.
- Note: we can use scatter diagramed $\{$ the value of the first variable on the x-axis and the value of the second variable on the y-axis \}to give a quick idea of the strength and direction of the correlation between two variables.

Different types of correlations

There are three ways to classify the correlation:

Type1

- Positive correlation: If two related variables are such that when one increases (decreases), the other also increases (decreases)
- Negative correlation: If two variables are such that when one increases (decreases), the other decreases increases)
- No correlation: If both the variables are independent.

Type 2

- Linear correlation: When plotted on a graph it tends to be a perfect line.
- Non-Linear correlation: When plotted on a graph it is not a straight line.

Type 3
Simple correlation: In this only two variables are studied.
Multiple correlation: In this three or more variables are studied simultaneously.
Partial correlation: we recognize more than two variables but consider only two variables to be influencing each other and effect of other influencing variables being kept constant.

Graphical representation of type 1 and type 2 correlation

Type 1

Type 2
Correlation $=1.0$

Positive linear

Negative linear

Non linear

Interpret a Correlation Coefficient

Correlation Coefficient $=0$	No linear relationship
Correlation Coefficient $= \pm(0.01-0.49)$	A weak linear relationship
Correlation Coefficient $= \pm(0.50-0.69)$	A moderate relationship
Correlation Coefficient $= \pm(0.70-0.90)$	A strong linear relationship
Correlation Coefficient $=$ Exactly ± 1.	A perfect linear relationship

Types of correlation coefficient formulas

Usually, in statistics, we measure four types of correlations:

1) Pearson correlation
2) Kendall rank correlation
3) Spearman correlation
4) Point-Biserial correlation.

1) Pearson Correlation(r)

A Pearson correlation is a statistical formula that measures linear correlation between two variables X and Y . It has a value between (+1 and -1), where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative linear correlation.
Pearson correlation is widely used in the sciences.

Pearson Correlation (r) - Formula

A Pearson correlation between variables X and Y is calculated by

$$
\mathrm{r}=\frac{\mathrm{n}\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{\left[n \sum X^{2}-\left(\sum X\right)^{2}\right]\left[n \sum Y^{2}-\left(\sum Y\right)^{2}\right]}}
$$

Where,

- $r=$ Pearson Coefficient
- $\mathrm{n}=$ number of the pairs of the stock
- $\sum x y=$ sum of products of the paired stocks
- $\sum \mathrm{x}=$ sum of the x scores
- $\sum y=$ sum of the y scores
- $\sum \mathrm{x}^{2}=$ sum of the squared x scores
- $\sum \mathrm{y}^{2}=$ sum of the squared y scores

Example 1

Find the Pearson Coefficient (r) for the following table:

No	(\mathbf{x})	(\mathbf{y})
1	40	78
2	21	70
3	25	60
4	31	55
5	38	80
6	47	66

Solution:

For the Calculation of the Pearson Correlation Coefficient, we will first calculate the following values,

Sr. No	$\mathbf{(x)}$	$\mathbf{(y)}$	$\mathbf{x y}$	\mathbf{x}^{2}	\mathbf{y}^{2}
1	40	78	3120	1600	6084
2	21	70	1470	441	4900
3	25	60	1500	625	3600
4	31	55	1705	961	3025
5	38	80	3040	1444	6400
6	47	66	3102	2209	4356
Total (£)	202	409	13937	7280	28365

Here the total number of variables are 6 so, $n=6$
Now the calculation of the Pearson (r) is as follows,

$$
\begin{aligned}
& \mathrm{r}=\frac{\mathrm{n}\left(\sum X Y\right)-\left(\sum X\right)\left(\sum Y\right)}{\sqrt{\left[n \sum X^{2}-\left(\sum X\right)^{2}\right]\left[n \sum Y^{2}-\left(\sum Y\right)^{2}\right]}} \\
& \mathrm{r}=\frac{6 *(13937)-(202)(409)}{\sqrt{\left[6 * 7280-(202)^{2}\right] *\left[6 * 28365-(409)^{2}\right]}} \\
& \mathrm{r}=0.35
\end{aligned}
$$

Thus the value of the Pearson correlation coefficient is 0.35
(A weak linear relationship)

