Exercise Lecture 2

Q1/ Which statements are true and which of them are false?

- 1. If an air parcel is lifted adiabatically, its temperature will increase.
- 2. According to the lapse rate equation, a negative lapse rate means temperature decreases with height.
- 3. According to the density, if an air parcel is lighter than the environment, the acceleration will be upward, and thus the air parcel will sink.
- 4. Stable atmosphere is when the environmental lapse rate is larger than the dry adiabatic lapse rate
- 5. If the potential temperature is increasing with height, then the atmosphere is stable.

Q2/ A dry air parcel has a temperature of 20° C. The environmental lapse rate is 5° C/km, and the dry adiabatic lapse rate is 10° C/km, the air parcel is forced to rise over a mountain that is 3 km high.

- **1.** What is the temperature of the air parcel at the top of the mountain? (ans. 10 C)
- 2. What is the temperature of the environment at the top of the mountain? (ans. 5 C)
- 3. What is the buoyant acceleration of the air parcel at the top of the mountain? (-30 m/s^2)
- **4.** Is the atmosphere stable or unstable? and why?

Q3/ For the following data,

Altitude (m)	Pressure (hPa)	Temp (°C)	Θ (°K)
1480	850	7	?
5700	500	-15	?

- 1. Find the potential temperature (in kelvin) at the two altitudes, $c_p = 1005$ J/ kg K, and $R_d = 287.1$ J/kg K.
- 2. Is the atmosphere stable or unstable?