
A note on good practice An allotrope is a particular molecular 
form of an element (such as O2 and O3) and may be solid, liquid, 
or gas. A polymorph is one of a number of solid phases of an ele-
ment or compound.

The number of phases in a system is denoted P. A gas, or a 
gaseous mixture, is a single phase (P = 1), a crystal of a sub-
stance is a single phase, and two fully mixed liquids form a 
single phase.

Brief illustration 4A.1

A solution of sodium chloride in water is a single phase (P = 1). 
Ice is a single phase even though it might be chipped into 
small fragments. A slurry of ice and water is a two-phase 
system (P = 2) even though it is difficult to map the physical 
boundaries between the phases. A system in which calcium 
carbonate undergoes the thermal decomposition CaCO3(s) → 
CaO(s) + CO2(g) consists of two solid phases (one consisting 
of calcium carbonate and the other of calcium oxide) and one 
gaseous phase (consisting of carbon dioxide), so P = 3.

Two metals form a two-phase system (P = 2) if they are im-
miscible, but a single-phase system (P = 1), an alloy, if they are 
miscible (and actually mixed). A solution of solid B in solid 
A—a homogeneous mixture of the two miscible substances—
is uniform on a molecular scale. In a solution, atoms of A are 
surrounded by atoms of A and B, and any sample cut from the 
sample, even microscopically small, is representative of the 
composition of the whole. It is therefore a single phase.

A dispersion is uniform on a macroscopic scale but not on 
a microscopic scale, because it consists of grains or droplets 
of one substance in a matrix of the other (Fig. 4A.1). A small 
sample could come entirely from one of the minute grains of 
pure A and would not be representative of the whole. A disper-
sion therefore consists of two phases.

(b) Phase transitions

A phase transition, the spontaneous conversion of one phase 
into another phase, occurs at a characteristic transition tem-
perature, Ttrs, for a given pressure. At the transition temperature 

One of the most succinct ways of presenting the physical 
changes of state that a substance can undergo is in terms of its 
‘phase diagram’. This material is also the basis of the discus-
sion of mixtures in Focus 5.

4A.1 The stabilities of phases

Thermodynamics provides a powerful framework for describ-
ing and understanding the stabilities and transformations of 
phases, but the terminology must be used carefully. In partic-
ular, it is necessary to understand the terms ‘phase’, ‘compo-
nent’, and ‘degree of freedom’.

(a) The number of phases

A phase is a form of matter that is uniform throughout in 
chemical composition and physical state. Thus, there are the 
solid, liquid, and gas phases of a substance, as well as various 
solid phases, such as the white and black allotropes of phos-
phorus, or the aragonite and calcite polymorphs of calcium 
carbonate.

TOPIC 4A Phase diagrams of 
pure substances

➤  Why do you need to know this material?

Phase diagrams summarize the behaviour of substances 
under different conditions, and identify which phase or 
phases are the most stable at a particular temperature 
and pressure. Such diagrams are important tools for 
understanding the behaviour of both pure substances and 
mixtures.

➤  What is the key idea?

A pure substance tends to adopt the phase with the lowest 
chemical potential.

➤  What do you need to know already?

This Topic builds on the fact that the Gibbs energy is a 
signpost of spontaneous change under conditions of con-
stant temperature and pressure (Topic 3D).
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the two phases are in equilibrium and the Gibbs energy of the 
system is a minimum at the prevailing pressure.

Brief illustration 4A.2

At 1 atm, ice is the stable phase of water below 0 °C, but above 
0 °C liquid water is more stable. This difference indicates that 
below 0 °C the Gibbs energy decreases as liquid water changes 
into ice, but that above 0 °C the Gibbs energy decreases as ice 
changes into liquid water. The numerical values of the Gibbs 
energies are considered in the next Brief illustration.

The detection of a phase transition is not always straight-
forward as there may be nothing to see, especially if the two 
phases are both solids. Thermal analysis, which takes advan-
tage of the heat that is evolved or absorbed during a transition, 
can be used. Thus, if the phase transition is exothermic and the 
temperature of a sample is monitored as it cools, the presence 
of the transition can be recognized by a pause in the otherwise 
steady fall of the temperature (Fig. 4A.2). Similarly, if a sample 
is heated steadily and the transition is endothermic, there will 

be a pause in the temperature rise at the transition tempera-
ture. Differential scanning calorimetry (Topic 2C) is also used 
to detect phase transitions, and X-ray diffraction (Topic 15B) 
is useful for detecting phase transitions in a solid, because the 
two phases will have different structures.

As always, it is important to distinguish between the ther-
modynamic description of a process and the rate at which the 
process occurs. A phase transition that is predicted by ther-
modynamics to be spontaneous might occur too slowly to be 
significant in practice. For instance, at normal temperatures 
and pressures the molar Gibbs energy of graphite is lower than 
that of diamond, so there is a thermodynamic tendency for 
diamond to change into graphite. However, for this transition 
to take place, the C atoms must change their locations, which, 
except at high temperatures, is an immeasurably slow process 
in a solid. The discussion of the rate of attainment of equilib-
rium is a kinetic problem and is outside the range of thermo-
dynamics. In gases and liquids the mobilities of the molecules 
allow phase transitions to occur rapidly, but in solids thermo-
dynamic instability may be frozen in. Thermodynamically un-
stable phases that persist because the transition is kinetically 
hindered are called metastable phases. Diamond is a metasta-
ble but persistent phase of carbon under normal conditions.

(c) Thermodynamic criteria of phase stability

All the following considerations are based on the Gibbs energy 
of a substance, and in particular on its molar Gibbs energy, 
Gm. In fact, this quantity plays such an important role in this 
Focus and elsewhere in the text that it is given a special name 
and symbol, the chemical potential, μ (mu). For a system that 
consists of a single substance, the ‘molar Gibbs energy’ and the 
‘chemical potential’ are exactly the same: μ = Gm. In Topic 5A 
the chemical potential is given a broader significance and a 
more general definition. The name ‘chemical potential’ is also 
instructive: as the concept is developed it will become clear 
that μ is a measure of the potential that a substance has for un-
dergoing change. In this Focus, and in Focus 5, it reflects the 
potential of a substance to undergo physical change. In Focus 
6, μ is the potential of a substance to undergo chemical change.

The discussion in this Topic is based on the following conse-
quence of the Second Law (Fig. 4A.3):

At equilibrium, the chemical potential of a 
substance is the same in and throughout every 
phase present in the system.

To see the validity of this remark, consider a system in which 
the chemical potential of a substance is μ1 at one location 
and μ2 at another location. The locations may be in the same 
or in different phases. When an infinitesimal amount dn of 
the substance is transferred from one location to the other, 
the Gibbs energy of the system changes by −μ1dn (i.e. dG = 
−Gm,1dn) when material is removed from location 1. It changes 

Figure 4A.1 The difference between (a) a single-phase solution, in 
which the composition is uniform on a molecular scale, and (b) a 
dispersion, in which microscopic regions of one component are 
embedded in a matrix of a second component.

(a) (b)

Figure 4A.2 A cooling curve at constant pressure. The flat 
section corresponds to the pause in the fall of temperature while 
an exothermic transition (freezing) occurs. This pause enables Tf 
to be located even if the transition cannot be observed visually. 
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by +μ2dn (i.e. dG = Gm,2dn) when that material is added to loca-
tion 2. The overall change is therefore dG = (μ2 − μ1)dn. If the 
chemical potential at location 1 is higher than that at location 2,  
the transfer is accompanied by a decrease in G, and so has 
a spontaneous tendency to occur. Only if μ1 = μ2 is there no 
change in G, and only then is the system at equilibrium.

Brief illustration 4A.3

The standard molar Gibbs energy of formation of water 
vapour at 298 K (25 °C) is −229 kJ mol−1, and that of liquid 
water at the same temperature is −237 kJ mol−1. It follows that 
there is a decrease in Gibbs energy when water vapour con-
denses to the liquid at 298 K, so condensation is spontaneous 
at that temperature (and 1 bar).

4A.2 Phase boundaries

The phase diagram of a pure substance shows the regions 
of pressure and temperature at which its various phases are 
thermodynamically stable (Fig. 4A.4). In fact, any two inten-
sive variables may be used (such as temperature and magnetic 
field; in Topic 5A mole fraction is another variable), but this 
Topic focuses on pressure and temperature. The lines separat-
ing the regions, which are called phase boundaries (or coexist-
ence curves), show the values of p and T at which two phases 
coexist in equilibrium and their chemical potentials are equal. 
A single phase is represented by an area on a phase diagram.

(a) Characteristic properties related to phase 
transitions

Consider a liquid sample of a pure substance in a closed ves-
sel. The pressure of a vapour in equilibrium with the liquid 

is its vapour pressure (the property introduced in Topic 1C; 
Fig. 4A.5). Therefore, the liquid–vapour phase boundary in a 
phase diagram shows how the vapour pressure of the liquid 
varies with temperature. Similarly, the solid–vapour phase 
boundary shows the temperature variation of the sublimation 
vapour pressure, the vapour pressure of the solid phase. The 
vapour pressure of a substance increases with temperature be-
cause at higher temperatures more molecules have sufficient 
energy to escape from their neighbours.

When a liquid is in an open vessel and subject to an ex-
ternal pressure, it is possible for the liquid to vaporize from 
its surface. However, only when the temperature is such that 
the vapour pressure is equal to the external pressure will it be 
possible for vaporization to occur throughout the bulk of the 
liquid and for the vapour to expand freely into the surround-
ings. This condition of free vaporization throughout the liquid 
is called boiling. The temperature at which the vapour pres-

Same chemical
potential

Figure 4A.3 When two or more phases are in equilibrium, 
the chemical potential of a substance (and, in a mixture, a 
component) is the same in each phase, and is the same at all 
points in each phase. 
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Figure 4A.4 The general regions of pressure and temperature 
where solid, liquid, or gas is stable (that is, has minimum molar 
Gibbs energy) are shown on this phase diagram. For example, 
the solid phase is the most stable phase at low temperatures and 
high pressures.
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Figure 4A.5 The vapour pressure of a liquid or solid is the 
pressure exerted by the vapour in equilibrium with the 
condensed phase. 
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sure of a liquid is equal to the external pressure is called the 
boiling temperature at that pressure. For the special case of 
an external pressure of 1 atm, the boiling temperature is called 
the normal boiling point, Tb. With the replacement of 1 atm 
by 1 bar as standard pressure, there is some advantage in using 
the standard boiling point instead: this is the temperature 
at which the vapour pressure reaches 1 bar. Because 1 bar is 
slightly less than 1 atm (1.00 bar = 0.987 atm), the standard 
boiling point of a liquid is slightly lower than its normal boil-
ing point. For example, the normal boiling point of water is 
100.0 °C, but its standard boiling point is 99.6 °C.

Boiling does not occur when a liquid is heated in a rigid, 
closed vessel. Instead, the vapour pressure, and hence the den-
sity of the vapour, rises as the temperature is raised (Fig. 4A.6). 
At the same time, the density of the liquid decreases slightly as 
a result of its expansion. There comes a stage when the density 
of the vapour is equal to that of the remaining liquid and the 
surface between the two phases disappears. The temperature 
at which the surface disappears is the critical temperature, Tc, 
of the substance. The vapour pressure at the critical tempera-
ture is called the critical pressure, pc. At and above the criti-
cal temperature, a single uniform phase called a supercritical 
fluid fills the container and an interface no longer exists. That 
is, above the critical temperature, the liquid phase of the sub-
stance does not exist.

The temperature at which, under a specified pressure, the 
liquid and solid phases of a substance coexist in equilibrium is 
called the melting temperature. Because a substance melts at 
exactly the same temperature as it freezes, the melting temper-
ature of a substance is the same as its freezing temperature. 
The freezing temperature when the pressure is 1 atm is called 

the normal freezing point, Tf, and its freezing point when the 
pressure is 1 bar is called the standard freezing point. The 
normal and standard freezing points are negligibly different 
for most purposes. The normal freezing point is also called the 
normal melting point.

There is a set of conditions under which three different 
phases of a substance (typically solid, liquid, and vapour) all 
simultaneously coexist in equilibrium. These conditions are 
represented by the triple point, a point at which the three 
phase boundaries meet. The temperature at the triple point 
is denoted T3. The triple point of a pure substance cannot be 
changed: it occurs at a single definite pressure and tempera-
ture characteristic of the substance.

As can be seen from Fig. 4A.4, the triple point marks the 
lowest pressure at which a liquid phase of a substance can exist. 
If (as is common) the slope of the solid–liquid phase boundary 
is as shown in the diagram, then the triple point also marks 
the lowest temperature at which the liquid can exist.

Brief illustration 4A.4

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar, 
4.58 Torr), and the three phases of water (ice, liquid water, and 
water vapour) coexist in equilibrium at no other combination 
of pressure and temperature. This invariance of the triple 
point was the basis of its use in the now superseded definition 
of the Kelvin scale of temperature (Topic 3A).

(b) The phase rule

In one of the most elegant arguments in the whole of chemical 
thermodynamics, J.W. Gibbs deduced the phase rule, which 
gives the number of parameters that can be varied indepen-
dently (at least to a small extent) while the number of phases 
in equilibrium is preserved. The phase rule is a general rela-
tion between the variance, F, the number of components, C, 
and the number of phases at equilibrium, P, for a system of any 
composition. Each of these quantities has a precisely defined 
meaning:
•	 The variance (or number of degrees of freedom), F, of a 

system is the number of intensive variables that can be 
changed independently without disturbing the number 
of phases in equilibrium.

•	 A constituent of a system is any chemical species that is 
present.

•	 A component is a chemically independent constituent of 
a system.

•	 The number of components, C, in a system is the mini-
mum number of types of independent species (ions or 
molecules) necessary to define the composition of all the 
phases present in the system.

(a) (b) (c)

Figure 4A.6 (a) A liquid in equilibrium with its vapour. (b) When 
a liquid is heated in a sealed container, the density of the vapour 
phase increases and the density of the liquid decreases slightly. 
There comes a stage, (c), at which the two densities are equal and 
the interface between the fluids disappears. This disappearance 
occurs at the critical temperature.
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Brief illustration 4A.5

A mixture of ethanol and water has two constituents. A 
solution of sodium chloride has three constituents: water, 
Na+ ions, and Cl− ions, but only two components because the 
numbers of Na+ and Cl− ions are constrained to be equal by the 
requirement of charge neutrality.

The relation between these quantities, which is called the 
phase rule, is established by considering the conditions for 
equilibrium to exist between the phases in terms of the chemi-
cal potentials of all the constituents.

How is that done? 4A.1 Deducing the phase rule

The argument that leads to the phase rule is most easily appre-
ciated by first thinking about the simpler case when only one 
component is present and then generalizing the result to an 
arbitrary number of components.

Step 1 Consider the case where only one component is present
When only one phase is present (P = 1), both p and T can be 
varied independently, so F = 2. Now consider the case where 
two phases α and β are in equilibrium (P = 2). If the phases 
are in equilibrium at a given pressure and temperature, their 
chemical potentials must be equal:

μ(α; p,T) = μ(β; p,T)

This equation relates p and T: when the pressure changes, the 
changes in the chemical potentials are different in general, so 
in order to keep them equal, the temperature must change too. 
To keep the two phases in equilibrium only one variable can 
be changed arbitrarily, so F = 1.

If three phases of a one-component system are in mutual 
equilibrium, the chemical potentials of all three phases (α, β, 
and γ) must be equal:

μ(α; p,T) = μ(β; p,T) = μ(γ; p,T)

This relation is actually two equations μ(α; p,T) = μ(β; p,T)  
and μ(β; p,T) = μ(γ; p,T), in which there are two vari-
ables: pressure and temperature. With two equations for 
two unknowns, there is a single solution (just as the pair of 
algebraic equations x + y = xy and 3x − y = xy have the single, 
fixed solutions x = 2 and y = 2). There is therefore only one sin-
gle, unchangeable value of the pressure and temperature as a 
solution. The conclusion is that there is no freedom to choose 
these variables, so F = 0.

Four phases cannot be in mutual equilibrium in a one-
component system because the three equalities

μ(α; p,T) =  μ(β; p,T), μ(β; p,T) = μ(γ; p,T),  
and μ(γ; p,T) = μ(δ; p,T)

are three equations with only two unknowns (p and T), which 
are not consistent because no values of p and T satisfy all three 

equations (just as the three equations x + y = xy, 3x − y = xy, 
and 4x − y = 2xy2 have no solution).

In summary, for a one-component system (C = 1) it has 
been shown that: F = 2 when P = 1; F = 1 when P = 2; and F 
= 0 when P = 3. The general result is that for C = 1, F = 3 − P.

Step 2 Consider the general case of any number of components, C
Begin by counting the total number of intensive variables. 
The pressure, p, and temperature, T, count as 2. The compo-
sition of a phase is specified by giving the mole fractions of 
the C components, but as the sum of the mole fractions must 
be 1, only C − 1 mole fractions are independent. Because there 
are P phases, the total number of composition variables is 
P(C − 1). At this stage, the total number of intensive variables 
is P(C − 1) + 2.

At equilibrium, the chemical potential of a component J is 
the same in every phase:

μJ(α; p,T) = μJ(β; p,T) = … for P phases

There are P − 1 equations of this kind to be satisfied for each 
component J. As there are C components, the total number of 
equations is C(P − 1). Each equation reduces the freedom to 
vary one of the P(C − 1) + 2 intensive variables. It follows that 
the total number of degrees of freedom is

F = P(C − 1) + 2 − C(P − 1)

The right-hand side simplifies to give the phase rule in the 
form derived by Gibbs:

F = C − P + 2 
(4A.1)

The phase rule

The implications of the phase rule for a one-component sys-
tem, when

F = 3 − P  The phase rule
[C = 1]  (4A.2)

are summarized in Fig. 4A.7. When only one phase is present 
in a one-component system, F = 2 and both p and T can be var-
ied independently (at least over a small range) without chang-
ing the number of phases. The system is said to be bivariant, 
meaning having two degrees of freedom. In other words, a sin-
gle phase is represented by an area on a phase diagram.

When two phases are in equilibrium F = 1, which implies that 
pressure is not freely variable if the temperature is set; indeed, 
at a given temperature, a liquid has a characteristic vapour pres-
sure. It follows that the equilibrium of two phases is represented 
by a line in the phase diagram. Instead of selecting the tempera-
ture, the pressure could be selected, but having done so the two 
phases would be in equilibrium only at a single definite temper-
ature. Therefore, freezing (or any other phase transition) occurs 
at a definite temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system 
is invariant, meaning that it has no degrees of freedom. This 
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special condition can be established only at a definite tem-
perature and pressure that is characteristic of the substance 
and cannot be changed. The equilibrium of three phases is 
therefore represented by a point, the triple point, on a phase 
diagram. Four phases cannot be in equilibrium in a one-com-
ponent system because F cannot be negative.

4A.3 Three representative phase 
diagrams

Carbon dioxide, water, and helium illustrate the significance 
of the various features of a phase diagram.

(a) Carbon dioxide

Figure 4A.8 shows the phase diagram for carbon dioxide. 
The features to notice include the positive slope (up from left 
to right) of the solid–liquid phase boundary; the direction 
of this line is characteristic of most substances. This slope in-
dicates that the melting temperature of solid carbon dioxide 
rises as the pressure is increased. Notice also that, as the tri-
ple point lies above 1 atm, the liquid cannot exist at normal 
atmospheric pressures whatever the temperature. As a result, 
the solid sublimes when left in the open (hence the name ‘dry 
ice’). To obtain the liquid, it is necessary to exert a pressure 
of at least 5.11 atm. Cylinders of carbon dioxide generally con-
tain the liquid or compressed gas; at 25 °C that implies a va-
pour pressure of 67 atm if both gas and liquid are present in 
equilibrium. When the gas is released through a tap (which 
acts as a throttle) the gas cools by the Joule–Thomson effect, so 
when it emerges into a region where the pressure is only 1 atm, 
it condenses into a finely divided snow-like solid. That carbon  

dioxide gas cannot be liquefied except by applying high pres-
sure reflects the weakness of the intermolecular forces be-
tween the nonpolar carbon dioxide molecules (Topic 14B).

Brief illustration 4A.6

Consider the path ABCD in Fig. 4A.8. At A the carbon diox-
ide is a gas. When the temperature and pressure are adjusted 
to B, the vapour condenses directly to a solid. Increasing the 
pressure and temperature to C results in the formation of the 
liquid phase, which evaporates to the vapour when the condi-
tions are changed to D.

(b) Water

Figure 4A.9 shows the phase diagram for water. The liquid–
vapour boundary in the phase diagram summarizes how 
the vapour pressure of liquid water varies with temperature. 
It also summarizes how the boiling temperature varies with 
pressure: simply read off the temperature at which the vapour 
pressure is equal to the prevailing atmospheric pressure. The 
solid (ice I)–liquid boundary shows how the melting tempera-
ture varies with the pressure. Its very steep slope indicates 
that enormous pressures are needed to bring about significant 
changes. Notice that the line has a negative slope (down from 
left to right) up to 2 kbar, which means that the melting tem-
perature falls as the pressure is raised.

The reason for this almost unique behaviour can be traced 
to the decrease in volume that occurs on melting: it is more fa-
vourable for the solid to transform into the liquid as the pres-
sure is raised. The decrease in volume is a result of the very 
open structure of ice: as shown in Fig. 4A.10, the water mole-
cules are held apart, as well as together, by the hydrogen bonds 
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Figure 4A.8 The experimental phase diagram for carbon dioxide; 
note the break in the vertical scale. As the triple point lies at 
pressures well above atmospheric, liquid carbon dioxide does not 
exist under normal conditions; a pressure of at least 5.11 atm must 
be applied for liquid to be formed. The path ABCD is discussed in 
Brief illustration 4A.6.
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Brief illustration 4A.7

Consider the path ABCD in Fig. 4A.9. Water is present at A 
as ice V. Increasing the pressure to B at the same temperature 
results in the formation of ice VIII. Heating to C leads to the 
formation of ice VII, and reduction in pressure to D results in 
the solid melting to liquid.

(c) Helium

The two isotopes of helium,3He and 4He, behave differently 
at low temperatures because 4He is a boson whereas 3He is 
a fermion, and are treated differently by the Pauli principle 
(Topic 8B). Figure 4A.11 shows the phase diagram of he-
lium-4. Helium behaves unusually at low temperatures be-
cause the mass of its atoms is so low and there are only very 
weak interactions between neighbours. At 1 atm, the solid and 
gas phases of helium are never in equilibrium however low the 
temperature: the atoms are so light that they vibrate with a 
large-amplitude motion even at very low temperatures and the 
solid simply shakes itself apart. Solid helium can be obtained, 
but only by holding the atoms together by applying pressure.

Pure helium-4 has two liquid phases. The phase marked 
He-I in the diagram behaves like a normal liquid; the other 
phase, He-II, is a superfluid. It is so called because it flows 
without viscosity.1 The liquid–liquid phase boundary is called 
the λ-line (lambda line) for reasons related to the shape of a 
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Figure 4A.9 The phase diagram for water showing the different 
solid phases, which are indicated with Roman numerals I, II, …; 
solid phase I (ice I) is ordinary ice. The path ABCD is discussed in 
Brief illustration 4A.7.

between them, but the hydrogen-bonded structure partially 
collapses on melting and the liquid is denser than the solid. 
Other consequences of its extensive hydrogen bonding are the 
anomalously high boiling point of water for a molecule of its 
molar mass and its high critical temperature and pressure.

The diagram shows that water has one liquid phase but 
many different solid phases other than ordinary ice (‘ice I’). 
Some of these phases melt at high temperatures. Ice VII, for 
instance, melts at 100 °C but exists only above 25 kbar. Two 
further phases, Ice XIII and XIV, were identified in 2006 at 
−160 °C but have not yet been allocated regions in the phase 
diagram. Note that five more triple points occur in the dia-
gram other than the one where vapour, liquid, and ice I co-
exist. Each one occurs at a definite pressure and temperature 
that cannot be changed. The solid phases of ice differ in the 
arrangement of the water molecules: under the influence of 
very high pressures, hydrogen bonds buckle and the H2O mol-
ecules adopt different arrangements. These polymorphs of ice 
may contribute to the advance of glaciers, for ice at the bottom 
of glaciers experiences very high pressures where it rests on 
jagged rocks.

Figure 4A.10 A fragment of the structure of ice I. Each O atom is 
linked by two covalent bonds to H atoms and by two hydrogen 
bonds to a neighbouring O atom, in a tetrahedral array. 1 Water might also have a superfluid liquid phase.
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Figure 4A.11 The phase diagram for helium (4He). The λ-line 
marks the conditions under which the two liquid phases are in 
equilibrium; He-II is the superfluid phase. Note that a pressure of 
over 20 bar must be exerted before solid helium can be obtained. 
The labels hcp and bcc denote different solid phases in which the 
atoms pack together differently: hcp denotes hexagonal closed 
packing and bcc denotes body-centred cubic (Topic 15A). The 
path ABCD is discussed in Brief illustration 4A.8.
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plot of the heat capacity of helium-4 against temperature at the 
transition temperature (Fig. 4A.12).

Helium-3 also has a superfluid phase. Helium-3 is unusual 
in that melting is exothermic (∆fusH < 0) and therefore (from 
∆fusS = ∆fusH/Tf) at the melting point the entropy of the liquid is 
lower than that of the solid.

Brief illustration 4A.8

Consider the path ABCD in Fig. 4A.11. At A, helium is pre-
sent as a vapour. On cooling to B it condenses to helium-I, 
and further cooling to C results in the formation of helium-
II. Adjustment of the pressure and temperature to D results 
in a system in which three phases, helium-I, helium-II, and 
vapour are in mutual equilibrium.
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Figure 4A.12 The heat capacity of superfluid He-II increases 
with temperature and rises steeply as the transition temperature 
to He-I is approached. The appearance of the plot has led the 
transition to be described as a λ-transition and the line on the 
phase diagram to be called a λ-line.

Checklist of concepts

☐ 1. A phase is a form of matter that is uniform throughout 
in chemical composition and physical state.

☐ 2. A phase transition is the spontaneous conversion of 
one phase into another.

☐ 3. The thermodynamic analysis of phases is based on the 
fact that at equilibrium, the chemical potential of a 
substance is the same throughout a sample.

☐ 4. A phase diagram indicates the values of the pressure 
and temperature at which a particular phase is most 
stable, or is in equilibrium with other phases.

☐ 5. The phase rule relates the number of variables that 
may be changed while the phases of a system remain in 
mutual equilibrium.

Checklist of equations

Property Equation Comment Equation number

Chemical potential μ = Gm For a single substance

Phase rule F = C – P + 2 F is the variance, C the number of  
components, and P the number of phases

4A.1

  



➤  Why do you need to know this material?

Thermodynamic arguments explain the appearance of 
phase diagrams and can be used to make predictions 
about the effect of pressure on phase transitions. They 
provide insight into the properties that account for the 
behaviour of matter under different conditions.

➤  What is the key idea?

The effect of temperature and pressure on the chemical 
potential of a substance in each phase depends on its 
molar entropy and molar volume, respectively.

➤  What do you need to know already?

You need to be aware that phases are in equilibrium when 
their chemical potentials are equal (Topic 4A) and that 
the variation of the molar Gibbs energy of a substance 
depends on its molar volume and entropy (Topic 3E). The 
Topic makes use of expressions for the entropy of transi-
tion (Topic 3B) and of the perfect gas law (Topic 1A).

TOPIC 4B Thermodynamic aspects 
of phase transitions

As explained in Topic 4A, the thermodynamic criterion for 
phase equilibrium is the equality of the chemical potentials of 
each substance in each phase. For a one-component system, 
the chemical potential is the same as the molar Gibbs energy 
(μ = Gm). In Topic 3E it is explained how the Gibbs energy var-
ies with temperature and pressure:

dG = −SdT at constant pressure; 
dG = Vdp at constant temperature

These expressions also apply to the molar Gibbs energy, and 
therefore to the chemical potential. By using the notation of 
partial derivatives (The chemist’s toolkit 9 in Topic 2A) they 
can be expressed as

T S
p

m
µ∂

∂






= −   
Variation of chemical 
potential with T
[constant p]

 (4B.1a)

p V
T

m
µ∂

∂






=   
Variation of chemical 
potential with p
[constant T ]

 (4B.1b)

By combining the equality of chemical potentials of a sub-
stance in each phase with these expressions for the variation of 
μ with temperature and pressure it is possible to deduce how 
phase equilibria respond to changes in the conditions.

4B.1 The dependence of stability on 
the conditions

At sufficiently low temperatures the solid phase of a substance 
commonly has the lowest chemical potential and is therefore 
the most stable phase. However, the chemical potentials of dif-
ferent phases depend on temperature to different extents (be-
cause the molar entropy of each phase is different), and above 
a certain temperature the chemical potential of another phase 
(perhaps another solid phase, a liquid, or a gas) might turn out 
to be lower. Then a transition to the second phase becomes 
spontaneous and occurs if it is kinetically feasible.

(a) The temperature dependence of phase 
stability

Because Sm > 0 for all substances above T = 0, eqn 4B.1a shows 
that the chemical potential of a pure substance decreases as 
the temperature is raised. That is, a plot of chemical potential 
against temperature slopes down from left to right. It also im-
plies that because Sm(g) > Sm(l), the slope is steeper for gases 
than for liquids. Because it is almost always the case that Sm(l) 
> Sm(s), the slope is also steeper for a liquid than the corre-
sponding solid. These features are illustrated in Fig. 4B.1. The 
steeper slope of μ(l) compared with that of μ(s) results in μ(l) 
falling below μ(s) when the temperature is high enough; then 
the liquid becomes the stable phase, and melting is spontane-
ous. The chemical potential of the gas phase plunges steeply 
downwards as the temperature is raised (because the molar 
entropy of the vapour is so high), and there comes a tempera-
ture at which it lies below that of the liquid. Then the gas is the 
stable phase and vaporization is spontaneous.
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Brief illustration 4B.1

The standard molar entropy of liquid water at 100 °C is 
86.8 J K−1 mol−1 and that of water vapour at the same tempera-
ture is 195.98 J K−1 mol−1. It follows that when the temperature 
is raised by 1.0 K the changes in chemical potential are

∆μ(l) ≈ −Sm(l)∆T = −87 J mol−1  
∆μ(g) ≈ −Sm(g)∆T = −196 J mol−1

At 100 °C the two phases are in equilibrium with equal chemi-
cal potentials. At 101 °C the chemical potential of both vapour 
and liquid are lower than at 100 °C, but the chemical potential 
of the vapour has decreased by a greater amount. It follows 
that the vapour is the stable phase at the higher temperature, 
so vaporization will be spontaneous.

(b) The response of melting to applied 
pressure

Equation 4B.1b shows that because Vm > 0, an increase in pres-
sure raises the chemical potential of any pure substance. In 
most cases, Vm(l) > Vm(s), so an increase in pressure increases 
the chemical potential of the liquid phase of a substance more 
than that of its solid phase. As shown in Fig. 4B.2(a), the effect 
of pressure in such a case is to raise the freezing temperature 
slightly. For water, however, Vm(l) < Vm(s), and an increase in 
pressure increases the chemical potential of the solid more 
than that of the liquid. In this case, the freezing temperature is 
lowered slightly (Fig. 4B.2(b)).
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Figure 4B.1 The schematic temperature dependence of the 
chemical potential of the solid, liquid, and gas phases of a 
substance (in practice, the lines are curved). The phase with the 
lowest chemical potential at a specified temperature is the most 
stable one at that temperature. The transition temperatures, 
the freezing (melting) and boiling temperatures (Tf and Tb, 
respectively), are the temperatures at which the chemical 
potentials of the two phases are equal. 

Example 4B.1 Assessing the effect of pressure on the 
chemical potential

Calculate the effect on the chemical potentials of ice and water 
of increasing the pressure from 1.00 bar to 2.00 bar at 0 °C. The 
mass density of ice is 0.917 g cm−3 and that of liquid water is 
0.999 g cm−3 under these conditions.

Collect your thoughts From dμ = Vmdp, you can infer that the 
change in chemical potential of an incompressible substance 
when the pressure is changed by Δp is Δμ = VmΔp. Therefore, 
you need to know the molar volumes of the two phases of 
water. These values are obtained from the mass density, ρ, 
and the molar mass, M, by using Vm = M/ρ. Then Δμ = MΔp/ρ. 
To keep the units straight, you will need to express the mass 
densities in kilograms per cubic metre (kg m−3) and the molar 
mass in kilograms per mole (kg mol−1), and use 1 Pa m3 = 1 J.

The solution The molar mass of water is 18.02 g mol−1 (i.e. 
1.802 × 10−2 kg mol−1); therefore, when the pressure is increased 
by 1.00 bar (1.00 × 105 Pa)

µ = × × × = +
− −

−
−∆ (ice) (1.802 10 kgmol ) (1.00 10 Pa)

917kgm
1.97 Jmol

2 1 5

3
1

µ = × × ×

= +

− −

−

−

∆ (water) (1.802 10 kgmol ) (1.00 10 Pa)
999kgm

1.80Jmol

2 1 5

3

1
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Figure 4B.2 The pressure dependence of the chemical potential 
of a substance depends on the molar volume of the phase. The 
lines show schematically the effect of increasing pressure on the 
chemical potential of the solid and liquid phases (in practice, the 
lines are curved), and the corresponding effects on the freezing 
temperatures. (a) In this case the molar volume of the solid is 
smaller than that of the liquid and μ(s) increases less than μ(l). As 
a result, the freezing temperature rises. (b) Here the molar volume 
is greater for the solid than the liquid (as for water), μ(s) increases 
more strongly than μ(l), and the freezing temperature is lowered.
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Comment. The chemical potential of ice rises by more than 
that of water, so if they are initially in equilibrium at 1 bar, 
then there is a tendency for the ice to melt at 2 bar.

Self-test 4B.1 Calculate the effect of an increase in pressure 
of 1.00 bar on the liquid and solid phases of carbon dioxide 
(molar mass 44.0 g mol−1) in equilibrium with mass densities 
2.35 g cm−3 and 2.50 g cm−3, respectively.

Answer: Δμ(l) = +1.87 J mol
−1

, Δμ(s) = +1.76 J mol
−1

;  
solid tends to form.

(c) The vapour pressure of a liquid subjected 
to pressure

Pressure can be exerted on the condensed phase mechani-
cally or by subjecting it to the applied pressure of an inert gas 
(Fig. 4B.3). In the latter case, the partial vapour pressure is 
the partial pressure of the vapour in equilibrium with the con-
densed phase. When pressure is applied to a condensed phase, 
its vapour pressure rises: in effect, molecules are squeezed out 
of the phase and escape as a gas. The effect can be explored 
thermodynamically and a relation established between the 
applied pressure P and the vapour pressure p.

The chemical potential of the vapour changes by dμ(g) = 
Vm(g)dp, where dp is the change in the vapour pressure. If the 
vapour is treated as a perfect gas, the molar volume can be 
replaced by Vm(g) = RT/p, to give dμ(g) = (RT/p)dp.

Step 2 Equate the changes in chemical potentials of the vapour 
and the liquid
Equate dμ(l) = Vm(l)dP and dμ(g) = (RT/p)dp:

RT p
p V Pd (l)dm=

Be careful to distinguish between P, the total pressure, and p, 
the partial vapour pressure.

Step 3 Set up the integration of this expression by identifying 
the appropriate limits
When there is no additional pressure acting on the liquid, P 
(the pressure experienced by the liquid) is equal to the normal 
vapour pressure p*, so when P = p*, p = p* too. When there is 
an additional pressure ΔP on the liquid, so P = p + ΔP, the 
vapour pressure is p (the value required). Provided the effect 
of pressure on the vapour pressure is small (as will turn out 
to be the case) a good approximation is to replace the p in  
p + ΔP by p* itself, and to set the upper limit of the integral to  
p* + ΔP. The integrations required are therefore as follows:

RT p
p V Pd (l)d

p

p

p

p P

* m*

* ∆

∫ ∫′
′ =

+

(In the first integral, the variable of integration has been 
changed from p to p′ to avoid confusion with the p at the 
upper limit.)

Step 4 Carry out the integrations
Divide both sides by RT and assume that the molar volume of 
the liquid is the same throughout the small range of pressures 
involved:

��� ��� ��

∫ ∫ ∫′
′ = =

+ +p
p RT V P V

RT Pd 1 (1)d (l) d
p

p

p

p P

p

p P

* m*

* ∆
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* ∆

Both integrations are straightforward, and lead to

=p
p

V
RT Pln *

(1) ∆m

which (by using eln x = x) rearranges to

=p p*eV P RT(l)∆ /m   (4B.2)

One complication that has been ignored is that, if the 
condensed phase is a liquid, then the pressurizing gas might 
dissolve and change its properties. Another complication is 
that the gas-phase molecules might attract molecules out of 
the liquid by the process of gas solvation, the attachment of 
molecules to gas-phase species.

Integral A.1Integral A.2

Effect of applied pressure ∆P on partial 
vapour pressure p

Pressure, ΔP

Piston 
permeable to
vapour but
not liquid

Vapour plus
inert pressurizing
gas

(a) (b)

Vapour

Figure 4B.3 Pressure may be applied to a condensed phase 
either (a) by compressing it or (b) by subjecting it to an inert 
pressurizing gas. When pressure is applied, the vapour pressure 
of the condensed phase increases.

How is that done? 4B.1 Deriving an expression for the 
vapour pressure of a pressurized liquid

At equilibrium the chemical potentials of the liquid and its 
vapour are equal: μ(l) = μ(g). It follows that, for any change 
that preserves equilibrium, the resulting change in μ(l) must 
be equal to the change in μ(g); therefore, dμ(g) = dμ(l).

Step 1 Express changes in the chemical potentials that arise 
from changes in pressure
When the pressure P on the liquid is increased by dP, the 
chemical potential of the liquid changes by dμ(l) = Vm(l)dP. 
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Brief illustration 4B.2

For water, which has mass density 0.997 g cm−3 at 25 °C and 
therefore molar volume 18.1 cm3 mol−1, when the applied pres-
sure is increased by 10 bar (i.e. ΔP = 1.0 × 106 Pa)

= = × × ×
×

= …

− −

− −
p

p
V P

RTln *
(1)∆ (1.81 10 m mol ) (1.0 10 Pa)

(8.3145JK mol ) (298K)
0.0073

m
5 3 1 6

1 1

where 1 J = 1 Pa m3. It follows that p = 1.0073p*, an increase of 
only 0.73 per cent. 

4B.2 The location of phase 
boundaries

The precise locations of the phase boundaries—the pressures 
and temperatures at which two phases can coexist—can be 
found by making use once again of the fact that, when two 
phases are in equilibrium, their chemical potentials must be 
equal. Therefore, when the phases α and β are in equilibrium,

μ(α; p,T) = μ(β; p,T) (4B.3) 

Solution of this equation for p in terms of T gives an equation 
for the phase boundary (the coexistence curve).

(a) The slopes of the phase boundaries

Imagine that at some particular pressure and temperature the 
two phases are in equilibrium: their chemical potentials are 
then equal. Now p and T are changed infinitesimally, but in 
such a way that the phases remain in equilibrium: after these 
changes, the chemical potentials of the two phases change but 
remain equal (Fig. 4B.4). It follows that the change in the 

chemical potential of phase α must be the same as the change 
in chemical potential of phase β, so dμ(α) = dμ(β). 

 Equation 3E.7 (dG = Vdp − SdT) gives the variation of G 
with p and T, so with μ = Gm, it follows that dμ = Vmdp − SmdT 
for each phase. Therefore the relation dμ(α) = dμ(β) can be 
written

Vm(α)dp − Sm(α)dT = Vm(β)dp − Sm(β)dT

where Sm(α) and Sm(β) are the molar entropies of the two 
phases, and Vm(α) and Vm(β) are their molar volumes. Hence

{Sm(β) − Sm(α)}dT = {Vm(β) − Vm(α)}dp

The change in (molar) entropy accompanying the phase tran-
sition, ΔtrsS, is the difference in the molar entropies ΔtrsS = 
Sm(β) − Sm(α), and likewise for the change in (molar) volume, 
ΔtrsV = Vm(β) − Vm(α). Therefore,

ΔtrsSdT = ΔtrsVdp

This relation turns into the Clapeyron equation:

=p
T

S
V

d
d

∆
∆

trs

trs
 Clapeyron equation  (4B.4a)

The Clapeyron equation is an exact expression for the slope of 
the tangent to the phase boundary at any point and applies to 
any phase equilibrium of any pure substance. It implies that 
thermodynamic data can be used to predict the appearance of 
phase diagrams and to understand their form. A more practi-
cal application is to the prediction of the response of freezing 
and boiling points to the application of pressure, when it can 
be used in the form obtained by inverting both sides:

=T
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V
S

d
d

∆
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trs

trs

 (4B.4b)

Brief illustration 4B.3

For water at 0 °C, the standard volume of transition of ice 
to liquid is −1.6 cm3 mol−1, and the corresponding standard 
entropy of transition is +22 J K−1 mol−1. The slope of the solid–
liquid phase boundary at that temperature is therefore

T
p

d
d

1.6 10 m mol
22JK mol

7.3 10 K
Jm

7.3 10 KPa

6 3 1

1 1
8

3

8 1

= − × = − ×

= − ×

− −

− −
−

−

− −

which corresponds to −7.3 mK bar−1. An increase of 100 bar 
therefore results in a lowering of the freezing point of water 
by 0.73 K.
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Figure 4B.4 When pressure is applied to a system in which two 
phases are in equilibrium (at a), the equilibrium is disturbed. It can 
be restored by changing the temperature, so moving the state of 
the system to b. It follows that there is a relation between dp and 
dT that ensures that the system remains in equilibrium as either 
variable is changed.
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(b) The solid–liquid boundary

Melting (fusion) is accompanied by a molar enthalpy change 
ΔfusH, and if it occurs at a temperature T the molar entropy of 
melting is ΔfusH/T (Topic 3B); all points on the phase bound-
ary correspond to equilibrium, so T is in fact a transition tem-
perature, Ttrs. The Clapeyron equation for this phase transition 
then becomes

=p
T

H
T V

d
d

∆
∆
fus

fus
 Slope of solid–liquid boundary  (4B.5)

where ΔfusV is the change in molar volume that accompanies 
melting. The enthalpy of melting is positive (the only excep-
tion is helium-3); the change in molar volume is usually posi-
tive and always small. Consequently, the slope dp/dT is steep 
and usually positive (Fig. 4B.5).

The equation for the phase boundary is found by integrat-
ing dp/dT and assuming that ΔfusH and ΔfusV change so little 
with temperature and pressure that they can be treated as con-
stant. If the melting temperature is T* when the pressure is p*, 
and T when the pressure is p, the integration required is
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∫ ∫=p H
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T

T

*

fus

fus *

Therefore, the approximate equation of the solid–liquid 
boundary is

= +p p H
V

T
T* ∆

∆ ln *
fus

fus

 (4B.6) 

This equation was originally obtained by yet another 
Thomson—James, the brother of William, Lord Kelvin.

When T is close to T*, the logarithm can be approxi-
mated by using the expansion ln(1 + x) = x – 1

2 x2 + … (see The  

Integral A.2

chemist’s toolkit 12 in Topic 5B) and neglecting all but the 
leading term:

T
T

T T
T

T T
Tln * ln 1 *

*
*

*= + −



 ≈ −

Therefore

≈ + −p p H
T V T T* ∆

*∆ ( *)fus

fus
 (4B.7) 

This expression is the equation of a steep straight line when p 
is plotted against T (as in Fig. 4B.5).

Brief illustration 4B.4

The enthalpy of fusion of ice at 0 °C (273 K) and 1 bar is 
6.008 kJ mol−1 and the volume of fusion is −1.6 cm3 mol−1. It 
follows that the solid–liquid phase boundary is given by the 
equation

≈ × + ×
× − ×

−
−

− −p T T1.0 10 Pa 6.008 10 Jmol
(273K) ( 1.6 10 m mol )

( *)5
3 1

6 3 1

≈ × − × −− T T1.0 10 Pa 1.4 10 PaK ( *)5 7 1

That is,

= − −p T T/bar 1 140( *)/K

with T* = 273 K. This expression is plotted in Fig. 4B.6.
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Figure 4B.5 A typical solid–liquid phase boundary slopes steeply 
upwards. This slope implies that, as the pressure is raised, the 
melting temperature rises. Most substances behave in this way, 
water being the notable exception.
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Figure 4B.6 The solid–liquid phase boundary (the melting 
point curve) for water as calculated in Brief illustration 4B.4. For 
comparison, the boundary for benzene is included.

 (c) The liquid–vapour boundary

The entropy of vaporization at a temperature T is equal to 
ΔvapH/T (as before, all points on the phase boundary corre-
spond to equilibrium, so T is a transition temperature, Ttrs), so 
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the Clapeyron equation for the liquid–vapour boundary can 
therefore be written

=p
T

H
T V

d
d

∆
∆
vap

vap
 Slope of liquid–vapour boundary  (4B.8)

The enthalpy of vaporization is positive and ΔvapV is large 
and positive, so dp/dT is positive, but much smaller than for 
the solid–liquid boundary. Consequently dT/dp is large, and 
the boiling temperature is more responsive to pressure than the 
freezing temperature.

Example 4B.2 Estimating the effect of pressure on the 
boiling temperature

Estimate the typical size of the effect of increasing pressure on 
the boiling point of a liquid.

Collect your thoughts To use eqn 4B.8 you need to estimate 
the right-hand side. At the boiling point, the term ΔvapH/T is 
Trouton’s constant (Topic 3B). Because the molar volume of a 
gas is so much greater than the molar volume of a liquid, you 
can write ∆ = − ≈V V V V(g) (1) (g)vap m m m  and take for Vm(g) the 
molar volume of a perfect gas (at low pressures, at least). You 
will need to use 1 J = 1 Pa m3.

The solution Trouton’s constant has the value 85 J K−1 mol−1. 
The molar volume of a perfect gas is about 25 dm3 mol−1 at 
1 atm and near but above room temperature. Therefore,

≈
×

= ×
− −

− −
−p

T
d
d

85JK mol
2.5 10 m mol

3.4 10 PaK
1 1

2 3 1
3 1

This value corresponds to 0.034 atm K−1 and hence to dT/dp = 
29 K atm−1. Therefore, a change of pressure of +0.1 atm can be 
expected to change a boiling temperature by about +3 K.

Self-test 4B.2 Estimate dT/dp for water at its normal boiling 
point using the information in Table 3B.2 and Vm(g) = RT/p.

Answer: 28 K atm
−1

Because the molar volume of a gas is so much greater than 
the molar volume of a liquid, ΔvapV ≈ Vm(g) (as in Example 
4B.2). Moreover, if the gas behaves perfectly, Vm(g) = RT/p. 
These two approximations turn the exact Clapeyron equation 
into

= =p
T

H
T RT p

p H
RT

d
d

∆
( / )

∆vap vap
2

By using dx/x = d ln x, this expression can be rearranged into 
the Clausius–Clapeyron equation for the variation of vapour 
pressure with temperature:

=p
T

H
RT

dln
d

∆vap
2  Clausius–Clapeyron equation  (4B.9)

Like the Clapeyron equation (which is exact), the Clausius–
Clapeyron equation (which is an approximation) is impor-
tant for understanding the appearance of phase diagrams, 
particularly the location and shape of the liquid–vapour and 
solid–vapour phase boundaries. It can be used to predict how 
the vapour pressure varies with temperature and how the boil-
ing temperature varies with pressure. For instance, if it is also 
assumed that the enthalpy of vaporization is independent of 
temperature, eqn 4B.9 can be integrated as follows:
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where p* is the vapour pressure when the temperature is T*, 
and p the vapour pressure when the temperature is T. It follows 
that 

χ= = −





χ−p p
H

R T T*e
∆ 1 1

*
vap  (4B.10) 

Equation 4B.10 is plotted as the liquid–vapour boundary in 
Fig. 4B.7. The line does not extend beyond the critical temper-
ature, Tc, because above this temperature the liquid does not 
exist.

Brief illustration 4B.5

Equation 4B.10 can be used to estimate the vapour pressure 
of a liquid at any temperature from knowledge of its normal 
boiling point, the temperature at which the vapour pressure 
is 1.00 atm (101 kPa). The normal boiling point of benzene is 
80 °C (353 K) and (from Table 3B.2) ∆vapH

⦵ = 30.8 kJ mol−1. 

Integral A.1, 
with x = ln p Integral A.1
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Figure 4B.7 A typical liquid–vapour phase boundary. The 
boundary can be interpreted as a plot of the vapour pressure 
against the temperature. This phase boundary terminates at the 
critical point (not shown). 
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Therefore, to calculate the vapour pressure at 20 °C (293 K), 
write

3.08 10 Jmol
8.3145JK mol

1
293K

1
353K

4 1

1 1χ = × −





−

− −

 = …2.14

and substitute this value into eqn 4B.10 with p* = 101 kPa. The 
result is 12 kPa. The experimental value is 10 kPa.

A note on good practice Because exponential functions are so 
sensitive, it is good practice to carry out numerical calculations 
like this without evaluating the intermediate steps and using 
rounded values.

(d) The solid–vapour boundary

The only difference between the solid−vapour and the liquid−
vapour boundary is the replacement of the enthalpy of va-
porization by the enthalpy of sublimation, ΔsubH. Because the 
enthalpy of sublimation is greater than the enthalpy of vapori-
zation (recall that ΔsubH = ΔfusH + ΔvapH), at similar tempera-
tures the equation predicts a steeper slope for the sublimation 
curve than for the vaporization curve. These two boundaries 
meet at the triple point (Fig. 4B.8).

Brief illustration 4B.6

The enthalpy of fusion of ice at the triple point of water 
(6.1 mbar, 273 K) is negligibly different from its standard 
enthalpy of fusion at its freezing point, which is 6.008 kJ mol−1. 
The enthalpy of vaporization at that temperature is 45.0 kJ mol−1 

(once again, ignoring differences due to the pressure not being 
1 bar). The enthalpy of sublimation is therefore 51.0 kJ mol−1. 
Therefore, the equations for the slopes of (a) the liquid–vapour 
and (b) the solid–vapour phase boundaries at the triple point 
are

p
T(a) dln

d
45.0 10 Jmol

(8.3145J K mol ) (273K)
0.0726K

3 1

1 1 2
1= ×

×
=

−

− −
−

p
T(b) dln

d
51.0 10 Jmol

(8.3145J K mol ) (273K)
0.0823K

3 1

1 1 2
1= ×

×
=

−

− −
−

The slope of ln p plotted against T is greater for the solid–
vapour boundary than for the liquid–vapour boundary at the 
triple point.

Figure 4B.8 At temperatures close to the triple point the solid–
vapour boundary is steeper than the liquid–vapour boundary 
because the enthalpy of sublimation is greater than the enthalpy 
of vaporization. 
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Checklist of concepts

☐ 1. The chemical potential of a substance decreases with 
increasing temperature in proportion to its molar entropy.

☐ 2. The chemical potential of a substance increases with 
increasing pressure in proportion to its molar volume.

☐ 3. The vapour pressure of a condensed phase increases 
when pressure is applied.

☐ 4. The Clapeyron equation is an exact expression for the 
slope of a phase boundary.

☐ 5. The Clausius–Clapeyron equation is an approximate 
expression for the boundary between a condensed 
phase and its vapour.

Checklist of equations

Property Equation Comment Equation number

Variation of μ with temperature (∂μ/∂T)p = −Sm μ = Gm 4B.1a

Variation of μ with pressure (∂μ/∂p)T = Vm 4B.1b

Vapour pressure in the presence of applied pressure =p p*eV P RT(l)∆ /m ∆P = P – p* 4B.2

Clapeyron equation dp/dT = ∆trsS/∆trsV 4B.4a

Clausius–Clapeyron equation d ln p/dT = ∆vapH/RT2 Assumes Vm(g) >> Vm(l) or Vm(s), 
and vapour is a perfect gas

4B.9


