
TOPIC 5A  The thermodynamic  
description of mixtures

➤  Why do you need to know this material?

Chemistry deals with a wide variety of mixtures, including 
mixtures of substances that can react together. Therefore, 
it is important to generalize the concepts introduced in 
Focus 4 to deal with substances that are mingled together.

➤  What is the key idea?

The chemical potential of a substance in a mixture is a 
logarithmic function of its concentration.

➤  What do you need to know already?

This Topic extends the concept of chemical potential 
to substances in mixtures by building on the concept 
introduced in the context of pure substances (Topic 4A). 
It makes use of the relation between the temperature 
dependence of the Gibbs energy and entropy (Topic 3E), 
and the concept of partial pressure (Topic 1A). Throughout 
this and related Topics various measures of concentration 
of a solute in a solution are used: they are summarized in 
The chemist’s toolkit 11.

(a)  Partial molar volume

Imagine a huge volume of pure water at 25 °C. When a fur-
ther 1 mol H2O is added, the volume increases by 18 cm3 and 
it follows that the molar volume of pure water is 18 cm3 mol−1. 
However, upon adding 1 mol H2O to a huge volume of  
pure ethanol, the volume is found to increase by only 14 cm3. 
The reason for the different increase in volume is that the vol-
ume occupied by a given number of water molecules depends 
on the identity of the molecules that surround them. In the 
latter case there is so much ethanol present that each H2O 
molecule is surrounded by ethanol molecules. The network of 
hydrogen bonds that normally hold H2O molecules at certain 
distances from each other in pure water does not form; as a 
result the H2O molecules are packed more tightly and so in-
crease the volume by only 14 cm3. The quantity 14 cm3 mol−1 
is the ‘partial molar volume’ of water in pure ethanol. In gen-
eral, the partial molar volume of a substance A in a mixture 
is the change in volume per mole of A added to a large volume 
of the mixture.

The partial molar volumes of the components of a mix-
ture vary with composition because the environment of 
each type of molecule changes as the composition changes 
from pure A to pure B. This changing molecular environ-
ment, and the consequential modification of the forces 
acting between molecules, results in the variation of the 
thermodynamic properties of a mixture as its composition 
is changed. The partial molar volumes of water and etha-
nol across the full composition range at 25 °C are shown in  
Fig. 5A.1.

The partial molar volume, VJ, of a substance J at some gen-
eral composition is defined formally as follows:
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where the subscript n′ signifies that the amounts of all other 
substances present are constant. The partial molar volume is 
the slope of the plot of the total volume as the amount of J is 
changed, the pressure, temperature, and amount of the other 
components being constant (Fig. 5A.2). Its value depends on 
the composition, as seen for water and ethanol.

The consideration of mixtures of substances that do not react 
together is a first step towards dealing with chemical reactions 
(which are treated in Topic 6A). At this stage the discussion 
centres on binary mixtures, which are mixtures of two compo-
nents, A and B. In Topic 1A it is shown how the partial pressure, 
which is the contribution of one component to the total pres-
sure, is used to discuss the properties of mixtures of gases. For 
a more general description of the thermodynamics of mixtures 
other analogous ‘partial’ properties need to be introduced.

5A.1  Partial molar quantities

The easiest partial molar property to visualize is the ‘partial 
molar volume’, the contribution that a component of a mix-
ture makes to the total volume of a sample.
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A note on good practice  The IUPAC recommendation is to 
denote a partial molar quantity by X , but only when there is the 
possibility of confusion with the quantity X. For instance, to 
avoid confusion, the partial molar volume of NaCl in water could 
be written V(NaCl,aq) to distinguish it from the total volume of 
the solution, V.

The definition in eqn 5A.1 implies that when the composi-
tion of a binary mixture is changed by the addition of dnA of A 
and dnB of B, then the total volume of the mixture changes by
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    = +V n V nd dA A B B

This equation can be integrated with respect to nA and nB pro-
vided that the amounts of A and B are both increased in such 
a way as to keep their ratio constant. This linkage ensures that 
the partial molar volumes VA and VB are constant and so can 
be taken outside the integrals:
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� (5A.3)
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Although the two integrations are linked (in order to preserve 
constant relative composition), because V is a state function 
the final result in eqn 5A.3 is valid however the solution is in 
fact prepared.

Partial molar volumes can be measured in several ways. 
One method is to measure the dependence of the volume on 
the composition and to fit the observed volume to a function 
of the amount of the substance. Once the function has been 
found, its slope can be determined at any composition of inter-
est by differentiation.

Example 5A.1  Determining a partial molar volume

A polynomial fit to measurements of the total volume of 
a water/ethanol mixture at 25 °C that contains 1.000 kg of  
water is

v = 1002.93 + 54.6664z − 0.363 94z2 + 0.028 256z3	

where v = V/cm3, z = nE/mol, and nE is the amount of 
CH3CH2OH present. Determine the partial molar volume of 
ethanol.

Collect your thoughts  Apply the definition in eqn 5A.1,  
taking care to convert the derivative with respect to n to a 
derivative with respect to z and keeping the units intact.

The solution  The partial molar volume of ethanol, VE, is 
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Then, because

v
z z zd

d 54.6664 2(0.363 94) 3(0.028 256) 2= − + 	

it follows that

VE/(cm3 mol−1) = 54.6664 − 0.727 88z + 0.084 768z2	

Figure 5A.3 shows a graph of this function.
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Figure 5A.1  The partial molar volumes of water and ethanol  
at 25 °C. Note the different scales (water on the left, ethanol on 
the right).
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Figure 5A.2  The partial molar volume of a substance is the slope 
of the variation of the total volume of the sample plotted against 
the amount of that substance. In general, partial molar quantities 
vary with the composition, as shown by the different slopes at 
a and b. Note that the partial molar volume at b is negative: the 
overall volume of the sample decreases as A is added.
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Self-test 5A.1  At 25 °C, the mass density of a 50 per cent by 
mass ethanol/water solution is 0.914 g cm−3. Given that the 
partial molar volume of water in the solution is 17.4 cm3 mol−1, 
what is the partial molar volume of the ethanol?

 

Answer: 56.4 cm
3
 mol

−1
 by using eqn 5A.3;  

54.6 cm
3
 mol

−1
 by the formula above

Molar volumes are always positive, but partial molar quan-
tities need not be. For example, the limiting partial molar vol-
ume of MgSO4 in water (its partial molar volume in the limit 
of zero concentration) is −1.4 cm3 mol−1, which means that the 
addition of 1 mol MgSO4 to a large volume of water results in a 
decrease in volume of 1.4 cm3. The mixture contracts because 
the salt breaks up the open structure of water as the Mg2+ and 
SO4

2− ions become hydrated, so the structure collapses slightly.

(b)  Partial molar Gibbs energies

The concept of a partial molar quantity can be broadened to 
any extensive state function. For a substance in a mixture, the 
chemical potential is defined as the partial molar Gibbs energy: 
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� Chemical potential 
[definition]   (5A.4)

where n′ is used to denote that the amounts of all other compo-
nents of the mixture are held constant. That is, the chemical po-
tential is the slope of a plot of Gibbs energy against the amount 
of the component J, with the pressure, temperature, and the 
amounts of the other substances held constant (Fig. 5A.4). For 
a pure substance G = nJGJ,m, and from eqn 5A.4 it follows that 
µJ = GJ,m: in this case, the chemical potential is simply the molar 
Gibbs energy of the substance, as is used in Topic 4A.

By the same argument that led to eqn 5A.3, it follows that 
the total Gibbs energy of a binary mixture is

G = nAµA + nBµB� (5A.5)

where µA and µB are the chemical potentials at the composi-
tion of the mixture. That is, the chemical potential of a sub-
stance, multiplied by the amount of that substance present in 
the mixture, is its contribution to the total Gibbs energy of the 
mixture. Because the chemical potentials depend on composi-
tion (and the pressure and temperature), the Gibbs energy of 
a mixture may change when these variables change, and for a 
system of components A, B, …, eqn 3E.7 (dG = Vdp − SdT) for 
a general change in G becomes 

dG = Vdp − SdT + µAdnA + µBdnB + …

� Fundamental equation of chemical thermodynamics   (5A.6)

This expression is the fundamental equation of chemical 
thermodynamics. Its implications and consequences are ex-
plored and developed in this and the next Focus.

At constant pressure and temperature, eqn 5A.6 simplifies 
to 

dG = µAdnA + µBdnB + …� (5A.7)

As established in Topic 3E, under the same conditions dG = 
dwadd,max. Therefore, at constant temperature and pressure, 

dwadd,max = µAdnA + µBdnB + …� (5A.8)

That is, additional (non-expansion) work can arise from the 
changing composition of a system. For instance, in an electro-
chemical cell the chemical reaction is arranged to take place 
in two distinct sites (at the two electrodes) and the electrical 
work the cell performs can be traced to its changing composi-
tion as products are formed from reactants.
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Figure 5A.3  The partial molar volume of ethanol as expressed 
by the polynomial in Example 5A.1.
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Figure 5A.4  The chemical potential of a substance is the slope of 
the total Gibbs energy of a mixture with respect to the amount 
of substance of interest. In general, the chemical potential varies 
with composition, as shown for the two values at a and b. In this 
case, both chemical potentials are positive.
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(c)  The wider significance of the chemical 
potential

The chemical potential does more than show how G varies 
with composition. Because G = U + pV − TS, and therefore  
U = −pV + TS + G, the general form of an infinitesimal change 
in U for a system of variable composition is

dU = −pdV − Vdp + SdT + TdS + dG
   = −pdV − Vdp + SdT + TdS 
     + (Vdp − SdT + µAdnA + µBdnB + …)
   = −pdV + TdS + µAdnA + µBdnB + …

This expression is the generalization of eqn 3E.1 (that dU = 
TdS − pdV) to systems in which the composition may change. 
It follows that at constant volume and entropy, 

dU = µAdnA + µBdnB + …� (5A.9)

and hence that 

U
n

S V n
J

J , ,

µ = ∂
∂





 ′

� (5A.10)

Therefore, not only does the chemical potential show how G 
changes when the composition changes, it also shows how the 
internal energy changes too (but under a different set of condi-
tions). In the same way it is possible to deduce that 
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Thus, µJ shows how all the extensive thermodynamic proper-
ties U, H, A, and G depend on the composition. This is why the 
chemical potential is so central to chemistry.

(d)  The Gibbs–Duhem equation

Because the total Gibbs energy of a binary mixture is given by 
eqn 5A.5 (G = nAµA + nBµB), and the chemical potentials de-
pend on the composition, when the compositions are changed 
infinitesimally the Gibbs energy of a binary system is expected 
to change by

dG = µAdnA + µBdnB + nAdµA + nBdµB

However, at constant pressure and temperature the change in 
Gibbs energy is given by eqn 5A.7. Because G is a state func-
tion, these two expressions for dG must be equal, which im-
plies that at constant temperature and pressure

nAdµA + nBdµB = 0� (5A.12a)

This equation is a special case of the Gibbs–Duhem equation: 

∑ µ =n d 0
J

J J � Gibbs–Duhem equation   (5A.12b)

The significance of the Gibbs–Duhem equation is that 
the chemical potential of one component of a mixture can-
not change independently of the chemical potentials of the  
other components. In a binary mixture, if one chemical  
potential increases, then the other must decrease, with the two 
changes related by eqn 5A.12a and therefore

µ µ= − n
nd dB

A

B
A� (5A.13)

Brief illustration 5A.1

If the composition of a mixture is such that nA = 2nB, and a 
small change in composition results in µA changing by ∆µA = 
+1 J mol−1, µB will change by

µ∆ = − × = −− −2 (1Jmol ) 2JmolB
1 1

The same line of reasoning applies to all partial molar quan-
tities. For instance, changes in the partial molar volumes of 
the species in a mixture are related by

∑ =n Vd 0
J

J J � (5A.14a)

For a binary mixture, 

V n
n Vd dB

A

B
A= − � (5A.14b)

As seen in Fig. 5A.1, where the partial molar volume of water 
increases, the partial molar volume of ethanol decreases. 
Moreover, as eqn 5A.14b implies, and as seen from Fig. 5A.1, a 
small change in the partial molar volume of A corresponds to 
a large change in the partial molar volume of B if nA/nB is large, 
but the opposite is true when this ratio is small. In practice, the 
Gibbs–Duhem equation is used to determine the partial molar 
volume of one component of a binary mixture from measure-
ments of the partial molar volume of the second component.

Example 5A.2  Using the Gibbs–Duhem equation

The experimental values of the partial molar volume of 
K2SO4(aq) at 298 K are found to fit the expression

v = + z32.280 18.216B
1/2 	

where vB = VK SO2 4
/(cm3 mol−1) and z is the numerical value of 

the molality of K2SO4 (z = b/b⦵; see The chemist’s toolkit 11). 
Use the Gibbs–Duhem equation to derive an equation for the 
molar volume of water in the solution. The molar volume of 
pure water at 298 K is 18.079 cm3 mol−1.
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Collect your thoughts  Let A denote H2O, the solvent, and B 
denote K2SO4, the solute. Because the Gibbs–Duhem equation 
for the partial molar volumes of two components implies that 
dvA = −(nB/nA)dvB, vA can be found by integration: 

v v v
v n

n* dA A
B

A
B0

B

∫= − 	

where vA* = VA*/(cm3 mol−1) is the numerical value of the molar 
volume of pure A. The first step is to change the variable of 
integration from vB to z = b/b⦵; then integrate the right-hand 
side between z = 0 (pure A) and the molality of interest.

The solution  It follows from the information in the question 
that, with B = K2SO4, dvB/dz = −z9.108 1/2. Therefore, the inte-
gration required is 

∫= − −
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The amount of A (H2O) is nA = (1 kg)/MA, where MA is the 
molar mass of water, and nB/(1 kg), which then occurs in the 
ratio nB/nA, will be recognized as the molality b of B:
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It then follows, by substituting the data (including MA = 1.802 ×  
10−2 kg mol−1, the molar mass of water), that

VA/(cm3 mol−1) = 18.079 − 0.1094(b/b⦵)3/2	

The partial molar volumes are plotted in Fig. 5A.5.

nA = (1 kg)/MA
nB /(1 kg) = b

Self-test 5A.2  Repeat the calculation for a salt B for which  
VB/(cm3 mol−1) = 6.218 + 5.146z − 7.147z2 with z = b/b⦵.

Answer: VA/(cm
3
 mol

−1
) = 18.079 − 0.0464z

2 
+ 0.0859z

3

5A.2  The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its com-
position is given by eqn 5A.5, and, as established in Topic 3E, 
at constant temperature and pressure systems tend towards 
lower Gibbs energy. This is the link needed in order to apply 
thermodynamics to the discussion of spontaneous changes of 
composition, as in the mixing of two substances. One simple 
example of a spontaneous mixing process is that of two gases 
introduced into the same container. The mixing is spontane-
ous, so it must correspond to a decrease in G.

(a)  The Gibbs energy of mixing of perfect 
gases

Let the amounts of two perfect gases in the two containers 
before mixing be nA and nB; both are at a temperature T and 
a pressure p (Fig. 5A.6). At this stage, the chemical potentials 
of the two gases have their ‘pure’ values, which are obtained 
by applying the definition µ = Gm to eqn 3E.15 (Gm(p) = G ⦵

m +  
RT ln(p/p⦵)):

µ µ= −−
−−RT p

p
+ ln○

○ �
Variation of chemical 
potential with pressure 
[perfect gas]

  (5A.15a)

where µ ⦵ is the standard chemical potential, the chemical po-
tential of the pure gas at 1 bar.

The notation is simplified by replacing p/p⦵ by p itself, for 
eqn 5A.15a then becomes 

µ µ= −− RT p+ ln○ � (5A.15b)
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Figure 5A.5  The partial molar volumes of the components of 
an aqueous solution of potassium sulfate.
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functions of mixing of two perfect gases.
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In practice, the replacement of p/p⦵ by p means using the nu-
merical value of p in bars. The total Gibbs energy of the sepa-
rated gases is then given by eqn 5A.5 as

Gi = nAµA + nBµB = nA(µ⦵

A + RT ln p) + nB(µ⦵

B + RT ln p)

� (5A.16a)

After mixing, the partial pressures of the gases are pA and pB, 
with pA + pB = p. The total Gibbs energy changes to

Gf = nA(µ⦵

A + RT ln pA) + nB(µ⦵

B + RT ln pB)� (5A.16b)

The difference Gf − Gi, the Gibbs energy of mixing, ΔmixG, is 
therefore

∆ = +G n RT p
p n RT p

pln lnmix A
A

B
B � (5A.16c)

At this point nJ can be replaced by xJn, where n is the total 
amount of A and B, and the relation between partial pressure 
and mole fraction (Topic 1A, pJ = xJp) can be used to write  
pJ/p = xJ for each component. The result is

∆mixG = nRT(xA ln xA + xB ln xB)�
Gibbs energy 
of mixing 
[perfect gas]

  (5A.17)

Because mole fractions are never greater than 1, the loga-
rithms in this equation are negative, and ∆mixG < 0 (Fig. 5A.7). 
The conclusion that ∆mixG is negative for all compositions con-
firms that perfect gases mix spontaneously in all proportions.

The chemist’s toolkit 11  Measures of concentration

Let A be the solvent and B the solute. The molar concentra-
tion (informally: ‘molarity’), cB or [B], is the amount of solute 
molecules (in moles) divided by the volume, V, of the solution:

c n
VB

B=

It is commonly reported in moles per cubic decimetre  
(mol dm−3) or, equivalently, in moles per litre (mol L−1). It is con-
venient to define its ‘standard’ value as c⦵ = 1 mol dm−3.

The molality, bB, of a solute is the amount of solute species (in 
moles) in a solution divided by the total mass of the solvent (in 
kilograms), mA:

b n
mB

B

A
=

Both the molality and mole fraction are independent of tempera-
ture; in contrast, the molar concentration is not. It is convenient 
to define the ‘standard’ value of the molality as b⦵ = 1 mol kg−1.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount 
n of molecules. If the mole fraction of the solute is xB, the 
amount of solute molecules is n x nB B= . The mole fraction of 
solvent molecules is xA = 1 − xB, so the amount of solvent mol-
ecules is nA = xAn = (1 − xB)n. The mass of solvent, of molar 
mass MA, present is m n M x nM(1 )A A A B A= = − . The molality of 
the solute is therefore

b n
m

x n
x nM

x
x M(1 ) (1 )B

B

A

B

B A

B

B A
= = − = −

The inverse of this relation, the mole fraction in terms of the 
molality, is

x b M
b M1B

B A

B A
= +

2. The relation between molality and molar  
concentration

The total mass of a volume V of solution (not solvent) of mass 
density ρ is m = ρV. The amount of solute molecules in this 
volume is nB = cBV. The mass of solute present is mB = nBMB = 
cBVMB. The mass of solvent present is therefore mA = m – mB  
= ρV − cBVMB = (ρ − cBMB)V. The molality is therefore

b n
m

c V
c M V

c
c M( )B

B

A

B

B B

B

B Bρ ρ= = − = −

The inverse of this relation, the molar concentration in terms 
of the molality, is

c b
b M1B
B

B B

ρ= +

3. The relation between molar concentration and  
mole fraction

By inserting the expression for bB in terms of xB into the expres-
sion for cB, the molar concentration of B in terms of its mole 
fraction is

c x
x M x MB

B

A A B B

ρ= +

with xA = 1 − xB. For a dilute solution in the sense that 
�x M x MB B A A,

c x M xB
A A

B
ρ≈ 



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If, moreover, �x 1B , so ≈x 1A , then

c M xB
A

B
ρ≈ 







5A  The thermodynamic description of mixtures   149

Example 5A.3  Calculating a Gibbs energy of mixing

A container is divided into two equal compartments  
(Fig. 5A.8). One contains 3.0 mol H2(g) at 25 °C; the other 
contains 1.0 mol N2(g) at 25 °C. Calculate the Gibbs energy of 
mixing when the partition is removed. Assume that the gases 
are perfect.

The solution  Given that the pressure of nitrogen is p, the 
pressure of hydrogen is 3p. Therefore, the initial Gibbs  
energy is

Gi = (3.0 mol){µ⦵(H2) + RT ln 3p} 	

      + (1.0 mol){µ⦵(N2) + RT ln p}	

When the partition is removed and each gas occupies twice 
the original volume, the final total pressure is 2p. The partial 
pressure of nitrogen falls to 1

2 p and that of hydrogen falls to  
3
2 p. Therefore, the Gibbs energy changes to

Gf = (3.0 mol){µ⦵(H2) + RT ln 32 p} 	

    + (1.0 mol){µ⦵(N2) + RT ln 12 p}	

The Gibbs energy of mixing is the difference of these two 
quantities:

∆ = +G RT p
p RT p

p(3.0mol) ln 3 (1.0mol) lnmix

3
2

1
2 	

         RT RT(3.0mol) ln2 (1.0mol) ln2= − − 	

         RT(4.0mol) ln2 6.9kJ= − = − 	

Comment. In this example, the value of ∆mixG is the sum 
of two contributions: the mixing itself, and the changes in 
pressure of the two gases to their final total pressure, 2p. Do 
not be misled into interpreting this negative change in Gibbs 
energy as a sign of spontaneity: in this case, the pressure 
changes, and ΔG < 0 is a signpost of spontaneous change only 
at constant temperature and pressure. When 3.0 mol H2 mixes 
with 1.0 mol N2 at the same pressure, with the volumes of the 
vessels adjusted accordingly, the change of Gibbs energy is 
−5.6 kJ. Because this value is for a change at constant pres-
sure and temperature, the fact that it is negative does imply 
spontaneity.

Self-test 5A.3  Suppose that 2.0 mol H2 at 2.0 atm and 25 °C 
and 4.0 mol N2 at 3.0 atm and 25 °C are mixed by removing 
the partition between them. Calculate ∆mixG.

Answer: −9.7 kJ

(b)  Other thermodynamic mixing functions

In Topic 3E it is shown that (∂G/∂T)p = −S. It follows immedi-
ately from eqn 5A.17 that, for a mixture of perfect gases ini-
tially at the same pressure, the entropy of mixing, ∆mixS, is

∆ = − ∂∆
∂







= − +S G
T nR x x x x( ln ln )

p
mix

mix
A A B B

�
Entropy of mixing 
[perfect gases, constant T and p]   (5A.18)

Because ln x < 0, it follows that ∆mixS > 0 for all compositions 
(Fig. 5A.9).
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Figure 5A.7  The Gibbs energy of mixing of two perfect gases 
at constant temperature and pressure, and (as discussed later) 
of two liquids that form an ideal solution. The Gibbs energy of 
mixing is negative for all compositions, so perfect gases mix 
spontaneously in all proportions.
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Figure 5A.8  The initial and final states considered in the 
calculation of the Gibbs energy of mixing of gases at different 
initial pressures.

Collect your thoughts  Equation 5A.17 cannot be used directly 
because the two gases are initially at different pressures, so 
proceed by calculating the initial Gibbs energy from the 
chemical potentials. To do so, calculate the pressure of each 
gas: write the pressure of nitrogen as p, then the pressure of 
hydrogen as a multiple of p can be found from the gas laws. 
Next, calculate the Gibbs energy for the system when the par-
tition is removed. The volume occupied by each gas doubles, 
so its final partial pressure is half its initial pressure.
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Brief illustration 5A.2

For equal amounts of perfect gas molecules that are mixed at 
the same pressure, set xA = xB = 1

2  and obtain

∆mixS = −nR { }+ln ln1
2

1
2

1
2

1
2  = nR ln 2

with n the total amount of gas molecules. For 1 mol of each 
species, so n = 2 mol,

∆mixS = (2 mol) × R ln 2 = +11.5 J K−1

An increase in entropy is expected when one gas disperses 
into the other and the disorder increases.

Under conditions of constant pressure and temperature, the 
enthalpy of mixing, ∆mixH, the enthalpy change accompany-
ing mixing, of two perfect gases can be calculated from ∆G = 
∆H − T∆S. It follows from eqns 5A.17 and 5A.18 that

∆ =H 0mix � Enthalpy of mixing 
[perfect gases, constant T and p]   (5A.19)

The enthalpy of mixing is zero, as expected for a system in 
which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that, because the entropy 
of the surroundings is unchanged, the whole of the driv-
ing force for mixing comes from the increase in entropy of  
the system.

5A.3  The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures it 
is necessary to know how the Gibbs energy of a liquid varies 
with composition. The calculation of this dependence uses the 
fact that, as established in Topic 4A, at equilibrium the chemi-
cal potential of a substance present as a vapour must be equal 
to its chemical potential in the liquid.

(a)  Ideal solutions

Quantities relating to pure substances are denoted by a super-
script *, so the chemical potential of pure A is written µA* and 
as µA*(l) when it is necessary to emphasize that A is a liquid. 
Because the vapour pressure of the pure liquid is pA* it fol-
lows from eqn 5A.15b that the chemical potential of A in the  
vapour (treated as a perfect gas) is µ⦵

A + RT ln pA (with pA to be 
interpreted as pA/p⦵). These two chemical potentials are equal 
at equilibrium (Fig. 5A.10), so

RT p*(1) (g) ln *A A A

� ���� �����
○µ µ= + � (5A.20a)

If another substance, a solute, is also present in the liquid, the 
chemical potential of A in the liquid is changed to µA and its 
vapour pressure is changed to pA. The vapour and solvent are 
still in equilibrium, so

RT p(1) (g) lnA A A
○µ µ= + � (5A.20b)
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Figure 5A.9  The entropy of mixing of two perfect gases at 
constant temperature and pressure, and (as discussed later) of 
two liquids that form an ideal solution. The entropy increases 
for all compositions, and because there is no transfer of heat to 
the surroundings when perfect gases mix, the entropy of the 
surroundings is unchanged. Hence, the graph also shows the 
total entropy of the system plus the surroundings; because  
the total entropy of mixing is positive at all compositions,  
perfect gases mix spontaneously in all proportions.

liquid vapour

A(g) + B(g)

A(l) + B(l)

μA(g, p)

μA(l)

=

Figure 5A.10  At equilibrium, the chemical potential of the 
gaseous form of a substance A is equal to the chemical  potential 
of its condensed phase. The equality is preserved if a solute is 
also present. Because the chemical potential of A in the vapour 
depends on its partial vapour pressure, it follows that the 
chemical potential of liquid A can be related to its partial vapour 
pressure.
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The next step is the combination of these two equations to 
eliminate the standard chemical potential of the gas, µ⦵

A(g). To 
do so, write eqn 5A.20a as µ⦵

A(g) = µA*(1) − RT ln pA* and substi-
tute this expression into eqn 5A.20b to obtain

RT p RT p RT p
p

(1) *(1) ln * ln * *(1) ln *A A A A A
A

A

� ��� ���
µ µ µ= − + = + � (5A.21)

The final step draws on additional experimental informa-
tion about the relation between the ratio of vapour pressures 
and the composition of the liquid. In a series of experiments 
on mixtures of closely related liquids (such as benzene and 
methylbenzene), François Raoult found that the ratio of the 
partial vapour pressure of each component to its vapour pres-
sure when present as the pure liquid, pA/pA*, is approximately 
equal to the mole fraction of A in the liquid mixture. That is, 
he established what is now called Raoult’s law:

pA = xA pA*� Raoult’s law 
[ideal solution]   (5A.22)

This law is illustrated in Fig. 5A.11. Some mixtures obey 
Raoult’s law very well, especially when the components are 
structurally similar (Fig. 5A.12). Mixtures that obey the law 
throughout the composition range from pure A to pure B are 
called ideal solutions.

Brief illustration 5A.3

The vapour pressure of pure benzene at 20 °C is 75 Torr and 
that of pure methylbenzene is 25 Torr at the same tempera-
ture. In an equimolar mixture xbenzene = xmethylbenzene = 1

2  so the 
partial vapour pressure of each one in the mixture is

pbenzene = 1
2  × 80 Torr = 40 Torr

pmethylbenzene = 1
2  × 25 Torr = 12.5 Torr

The total vapour pressure of the mixture is 48 Torr. Given the 
two partial vapour pressures, it follows from the definition 
of partial pressure (Topic 1A) that the mole fractions in the 
vapour are 

xvap,benzene = (40 Torr)/(48 Torr) = 0.83 

and 

xvap,methylbenzene = (12.5 Torr)/(48 Torr) = 0.26 

The vapour is richer in the more volatile component  
(benzene).

For an ideal solution, it follows from eqns 5A.21 and 5A.22 
that

RT x(1) *(1) lnA A Aµ µ= + � Chemical potential 
[ideal solution]

  (5A.23)

This important equation can be used as the definition of an 
ideal solution (so that it implies Raoult’s law rather than stem-
ming from it). It is in fact a better definition than eqn 5A.22 
because it does not assume that the vapour is a perfect gas.

The molecular origin of Raoult’s law is the effect of the sol-
ute on the entropy of the solution. In the pure solvent, the mol-
ecules have a certain disorder and a corresponding entropy; 
the vapour pressure then represents the tendency of the sys-
tem and its surroundings to reach a higher entropy. When a 
solute is present, the solution has a greater disorder than the 
pure solvent because a molecule chosen at random might or 
might not be a solvent molecule. Because the entropy of the 
solution is higher than that of the pure solvent, the solution 
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Figure 5A.11  The partial vapour pressures of the two 
components of an ideal binary mixture are proportional to the 
mole fractions of the components, in accord with Raoult’s law. 
The total pressure is also linear in the mole fraction of either 
component.
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Figure 5A.12  Two similar liquids, in this case benzene and 
methylbenzene (toluene), behave almost ideally, and the variation 
of their vapour pressures with composition resembles that for an 
ideal solution.
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has a lower tendency to acquire an even higher entropy by the 
solvent vaporizing. In other words, the vapour pressure of the 
solvent in the solution is lower than that of the pure solvent.

Some solutions depart significantly from Raoult’s law  
(Fig. 5A.13). Nevertheless, even in these cases the law is obeyed 
increasingly closely for the component in excess (the solvent) 
as it approaches purity. The law is another example of a lim-
iting law (in this case, achieving reliability as xA → 1) and is 
a good approximation for the properties of the solvent if the 
solution is dilute.

(b)  Ideal–dilute solutions

In ideal solutions the solute, as well as the solvent, obeys 
Raoult’s law. However, William Henry found experimentally 
that, for real solutions at low concentrations, although the va-
pour pressure of the solute is proportional to its mole fraction, 
the constant of proportionality is not the vapour pressure of 
the pure substance (Fig. 5A.14). Henry’s law is:

pB = xBKB�
Henry’s law 
[ideal–dilute solution]   (5A.24)

In this expression xB is the mole fraction of the solute and KB  
is an empirical constant (with the dimensions of pressure)  
chosen so that the plot of the vapour pressure of B against its 
mole fraction is tangent to the experimental curve at xB = 0. 
Henry’s law is therefore also a limiting law, achieving reliabil-
ity as xB → 0.

Mixtures for which the solute B obeys Henry’s law and the 
solvent A obeys Raoult’s law are called ideal–dilute solutions. 
The difference in behaviour of the solute and solvent at low  
concentrations (as expressed by Henry’s and Raoult’s laws, 
respectively) arises from the fact that in a dilute solution the  
solvent molecules are in an environment very much like 
the one they have in the pure liquid (Fig. 5A.15). In contrast,  
the solute molecules are surrounded by solvent molecules, 

which is entirely different from their environment when it is in 
its pure form. Thus, the solvent behaves like a slightly modified 
pure liquid, but the solute behaves entirely differently from its 
pure state unless the solvent and solute molecules happen to be 
very similar. In the latter case, the solute also obeys Raoult’s law.

Example 5A.4  Investigating the validity of Raoult’s and 
Henry’s laws

The vapour pressures of each component in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C) 
were measured at 35 °C with the following results:

xC 0 0.20 0.40 0.60 0.80 1
pC/kPa 0 4.7 11 18.9 26.7 36.4
pA/kPa 46.3 33.3 23.3 12.3 4.9 0
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Figure 5A.13  Strong deviations from ideality are shown by 
dissimilar liquids (in this case carbon disulfide and acetone 
(propanone)). The dotted lines show the values expected from 
Raoult’s law.
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Figure 5A.14  When a component (the solvent) is nearly pure, it 
has a vapour pressure that is proportional to the mole fraction 
with a slope pB* (Raoult’s law). When it is the minor component (the 
solute) its vapour pressure is still proportional to the mole fraction, 
but the constant of proportionality is now KB (Henry’s law).

Figure 5A.15  In a dilute solution, the solvent molecules (the blue 
spheres) are in an environment that differs only slightly from 
that of the pure solvent. The solute particles (the red spheres), 
however, are in an environment totally unlike that of the pure 
solute.
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Confirm that the mixture conforms to Raoult’s law for the 
component in large excess and to Henry’s law for the minor 
component. Find the Henry’s law constants.

Collect your thoughts  Both Raoult’s and Henry’s laws are 
statements about the form of the graph of partial vapour 
pressure against mole fraction. Therefore, plot the partial 
vapour pressures against mole fraction. Raoult’s law is tested 
by comparing the data with the straight line pJ = xJpJ* for each 
component in the region in which it is in excess (and acting 
as the solvent). Henry’s law is tested by finding a straight line  
pJ = xJKJ that is tangent to each partial vapour pressure curve 
at low x, where the component can be treated as the solute.

The solution  The data are plotted in Fig. 5A.16 together with 
the Raoult’s law lines. Henry’s law requires KA = 24.5 kPa for 
acetone and KC = 23.5 kPa for chloroform.

x 0.005 0.009 0.019 0.024
p/kPa 27.3 48.4 101 126

Estimate the Henry’s law constant for chloromethane.

Answer: 5 MPa

For practical applications, Henry’s law is expressed in terms 
of the molality, b, of the solute, pB = bBKB. Some Henry’s law 
data for this convention are listed in Table 5A.1. As well as 
providing a link between the mole fraction of the solute and 
its partial pressure, the data in the table may also be used to 
calculate gas solubilities. Knowledge of Henry’s law constants 
for gases in blood and fats is important for the discussion of 
respiration, especially when the partial pressure of oxygen is 
abnormal, as in diving and mountaineering, and for the dis-
cussion of the action of gaseous anaesthetics.

Figure 5A.16  The experimental partial vapour pressures 
of a mixture of chloroform (trichloromethane) and acetone 
(propanone) based on the data in Example 5A.4. The values 
of K are obtained by extrapolating the dilute solution vapour 
pressures, as explained in the Example.
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Comment. Notice how the system deviates from both Raoult’s 
and Henry’s laws even for quite small departures from  
x = 1 and x = 0, respectively. These deviations are discussed 
in Topic 5E.

Self-test 5A.4  The vapour pressure of chloromethane at  
various mole fractions in a mixture at 25 °C was found to be 
as follows:

Table 5A.1  Henry’s law constants for gases in water at 298 K*

K/(kPa kg mol−1)

CO2 3.01 × 103

H2 1.28 × 105

N2 1.56 × 105

O2 7.92 × 104

* More values are given in the Resource section.

Brief illustration 5A.4

To estimate the molar solubility of oxygen in water at 25 °C 
and a partial pressure of 21 kPa, its partial pressure in the 
atmosphere at sea level, write

b
p
K

21kPa
7.9 10 kPa kgmol

2.9 10 molkgO
O

O
4 1

4 1
2

2

2

= =
×

= ×−
− −

The molality of the saturated solution is therefore 0.29 mmol 
kg−1. To convert this quantity to a molar concentration, as-
sume that the mass density of this dilute solution is essentially 
that of pure water at 25 °C, or ρ = 0.997 kg dm−3. It follows that 
the molar concentration of oxygen is

b[O ] (2.9 10 molkg ) (0.997kgdm )

0.29mmoldm
2 O

4 1 3

3
2
ρ= = × ×

=

− − −

−

Checklist of concepts

☐	 1.	 The partial molar volume of a substance is the contri-
bution to the volume that a substance makes when it is 
part of a mixture.

☐	 2.	 The chemical potential is the partial molar Gibbs 
energy and is the contribution to the total Gibbs energy 
that a substance makes when it is part of a mixture.
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☐	 3.	 The chemical potential also expresses how, under a 
variety of different conditions, the thermodynamic 
functions vary with composition.

☐	 4.	 The Gibbs–Duhem equation shows how the changes in 
chemical potentials (and, by extension, of other partial 
molar quantities) of the components of a mixture are 
related.

☐	 5.	 The Gibbs energy of mixing is negative for perfect 
gases at the same pressure and temperature.

☐	 6.	 The entropy of mixing of perfect gases initially at the 
same pressure is positive and the enthalpy of mixing is 
zero.

☐	 7.	 Raoult’s law provides a relation between the vapour pres-
sure of a substance and its mole fraction in a mixture.

☐	 8.	 An ideal solution is a solution that obeys Raoult’s law 
over its entire range of compositions; for real solutions 
it is a limiting law valid as the mole fraction of the spe-
cies approaches 1.

☐	 9.	 Henry’s law provides a relation between the vapour 
pressure of a solute and its mole fraction in a mixture; it 
is the basis of the definition of an ideal–dilute solution.

☐	10.	 An ideal–dilute solution is a solution that obeys 
Henry’s law at low concentrations of the solute, and for 
which the solvent obeys Raoult’s law.

Checklist of equations

Property Equation Comment Equation number

Partial molar volume VJ = (∂V/∂nJ)p,T,n′ Definition 5A.1

Chemical potential µJ = (∂G/∂nJ)p,T,n′ Definition 5A.4

Total Gibbs energy G = nAµA + nBµB Binary mixture 5A.5

Fundamental equation of chemical  
  thermodynamics

dG = Vdp − SdT + µAdnA + µBdnB + … 5A.6

Gibbs–Duhem equation ∑JnJdµJ = 0 5A.12b

Chemical potential of a gas RT p pln( / )○ ○µ µ= +  Perfect gas 5A.15a

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.17

Entropy of mixing ΔmixS = −nR(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.18

Enthalpy of mixing ΔmixH = 0 Perfect gases and ideal solutions 5A.19

Raoult’s law pA = xApA* True for ideal solutions; limiting law as xA → 1 5A.22

Chemical potential of component RT x(1) *(1) lnA A Aµ µ= + Ideal solution 5A.23

Henry’s law pB = xBKB True for ideal–dilute solutions; limiting law as xB → 0 5A.24



TOPIC 5B  The properties of solutions

➤  Why do you need to know this material?

Mixtures and solutions play a central role in chemistry, 
and so it is important to understand how their composi-
tions affect their thermodynamic properties, such as their 
boiling and freezing points. One very important physi-
cal property of a solution is its osmotic pressure, which 
is used, for example, to determine the molar masses of  
macromolecules.

➤  What is the key idea?

The chemical potential of a substance in a mixture is the 
same in every phase in which it occurs.

➤  What do you need to know already?

This Topic is based on the expression derived from Raoult’s 
law (Topic 5A) in which chemical potential is related to 
mole fraction. The derivations make use of the Gibbs–
Helmholtz equation (Topic 3E) and the effect of pressure 
on chemical potential (Topic 5A). Some of the derivations 
are the same as those used in the discussion of the mixing 
of perfect gases (Topic 5A).

gases (Topic 5A). The total Gibbs energy before the liquids are 
mixed is

Gi = nAµA* + nBµB*� (5B.2a)

where the * denotes the pure liquid. When they are mixed, the 
individual chemical potentials are given by eqn 5B.1 and the 
total Gibbs energy is

Gf = nA(µA* + RT ln xA) + nB(µB* + RT ln xB)� (5B.2b) 

Consequently, the Gibbs energy of mixing, the difference of 
these two quantities, is

∆mixG = nRT(xA ln xA + xB ln xB)
�   Gibbs energy of mixing 

[ideal solution]   (5B.3) 

where n = nA + nB. As for gases, it follows that the ideal entropy 
of mixing of two liquids is

∆mixS = −nR(xA ln xA + xB ln xB)� Entropy of mixing 
[ideal solution]   (5B.4)

Then from ΔmixG = ΔmixH − TΔmixS it follows that the ideal  
enthalpy of mixing is zero, ΔmixH = 0. The ideal volume of 
mixing, the change in volume on mixing, is also zero. To see 
why, consider that, because (∂G/∂p)T = V (eqn 3E.8), ΔmixV = 
(∂ΔmixG/∂p)T. But ΔmixG in eqn 5B.3 is independent of pressure, 
so the derivative with respect to pressure is zero, and therefore 
ΔmixV = 0.

Equations 5B.3 and 5B.4 are the same as those for the 
mixing of two perfect gases and all the conclusions drawn 
there are valid here: because the enthalpy of mixing is zero 
there is no change in the entropy of the surroundings so the 
driving force for mixing is the increasing entropy of the sys-
tem as the molecules mingle. It should be noted, however, 
that solution ideality means something different from gas 
perfection. In a perfect gas there are no interactions between 
the molecules. In ideal solutions there are interactions, but 
the average energy of A–B interactions in the mixture is the 
same as the average energy of A–A and B–B interactions 
in the pure liquids. The variation of the Gibbs energy and 
entropy of mixing with composition is the same as that for 
gases (Figs. 5A.7 and 5A.9); both graphs are repeated here 
(as Figs. 5B.1 and 5B.2).

Thermodynamics can provide insight into the properties of 
liquid mixtures, and a few simple ideas can unify the whole 
field of study.

5B.1  Liquid mixtures

The development here is based on the relation derived in Topic 
5A between the chemical potential of a component (which 
here is called J, with J = A or B in a binary mixture) in an ideal 
mixture or solution, µJ, its value when pure, µ J*, and its mole 
fraction in the mixture, xJ:

RT x* lnJ J Jµ µ= + � Chemical potential 
[ideal solution]   (5B.1) 

(a)  Ideal solutions

The Gibbs energy of mixing of two liquids to form an ideal  
solution is calculated in exactly the same way as for two  
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A note on good practice  It is on the basis of this distinction that 
the term ‘perfect gas’ is preferable to the more common ‘ideal 
gas’. In an ideal solution there are interactions, but they are effec-
tively the same between the various species. In a perfect gas, not 
only are the interactions the same, but they are also zero. Few 
people, however, trouble to make this valuable distinction.

Brief illustration 5B.1

Consider a mixture of benzene and methylbenzene, which 
form an approximately ideal solution, and suppose 1.0 mol 
C6H6(l) is mixed with 2.0 mol C6H5CH3(l). For the mixture, 
xbenzene = 0.33 and xmethylbenzene = 0.67. The Gibbs energy and 
entropy of mixing at 25 °C, when RT = 2.48 kJ mol−1, are

∆mixG/n �= (2.48 kJ mol−1) × (0.33 ln 0.33 + 0.67 ln 0.67)  
= −1.6 kJ mol−1

∆mixS/n �= −(8.3145 J K−1 mol−1) × (0.33 ln 0.33 + 0.67 ln 0.67)  
= +5.3 J K−1 mol−1

The enthalpy of mixing is zero (presuming that the solution 
is ideal).

Real solutions are composed of molecules for which the 
A–A, A–B, and B–B interactions are all different. Not only 
may there be enthalpy and volume changes when such liq-
uids mix, but there may also be an additional contribution to 
the entropy arising from the way in which the molecules of  
one type might cluster together instead of mingling freely 
with the others. If the enthalpy change is large and positive, or 
if the entropy change is negative (because of a reorganization 
of the molecules that results in an orderly mixture), the Gibbs 
energy of mixing might be positive. In that case, separation 
is spontaneous and the liquids are immiscible. Alternatively, 
the liquids might be partially miscible, which means that they  
are miscible only over a certain range of compositions.

(b)  Excess functions and regular solutions

The thermodynamic properties of real solutions are expressed 
in terms of the excess functions, XE, the difference between 
the observed thermodynamic function of mixing and the 
function for an ideal solution:

XE
 = ∆mixX − ∆mixXideal� Excess function 

[definition]   (5B.5) 

The excess entropy, SE, for example, is calculated by using the 
value of ∆mixS

ideal given by eqn 5B.4. The excess enthalpy and 
volume are both equal to the observed enthalpy and volume of 
mixing, because the ideal values are zero in each case.

Figure 5B.3 shows two examples of the composition de-
pendence of excess functions. Figure 5B.3(a) shows data for 
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Figure 5B.1  The Gibbs energy of mixing of two liquids that form 
an ideal solution.
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Figure 5B.3  Experimental excess functions at 25 °C. (a) HE for 
benzene/cyclohexane; this graph shows that the mixing is 
endothermic (because ∆mixH = 0 for an ideal solution). (b) The 
excess volume, VE, for tetrachloroethene/cyclopentane; this graph 
shows that there is a contraction at low tetrachloroethene mole 
fractions, but an expansion at high mole fractions (because  
∆mixV = 0 for an ideal mixture).
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a benzene/cyclohexane mixture: the positive values of HE, 
which implies that ∆mixH > 0, indicate that the A–B interac-
tions in the mixture are less attractive than the A–A and B–B 
interactions in the pure liquids. The symmetrical shape of the 
curve reflects the similar strengths of the A–A and B–B inter-
actions. Figure 5B.3(b) shows the composition dependence of 
the excess volume, VE, of a mixture of tetrachloroethene and 
cyclopentane. At high mole fractions of cyclopentane, the so-
lution contracts as tetrachloroethene is added because the ring 
structure of cyclopentane results in inefficient packing of the 
molecules, but as tetrachloroethene is added, the molecules in 
the mixture pack together more tightly. Similarly, at high mole 
fractions of tetrachloroethene, the solution expands as cy-
clopentane is added because tetrachloroethene molecules are 
nearly flat and pack efficiently in the pure liquid, but become 
disrupted as the bulky ring cyclopentane is added.

Deviations of the excess enthalpy from zero indicate the 
extent to which the solutions are non-ideal. In this connec-
tion a useful model system is the regular solution, a solution 
for which HE ≠ 0 but SE = 0. A regular solution can be thought 
of as one in which the two kinds of molecules are distributed 
randomly (as in an ideal solution) but have different energies 
of interaction with each other. To express this concept more 
quantitatively, suppose that the excess enthalpy depends on 
composition as

HE = nξRTxAxB� (5B.6) 

where ξ (xi) is a dimensionless parameter that is a measure 
of the energy of A–B interactions relative to that of the A–A 
and B–B interactions. (For HE expressed as a molar quantity,  
discard the n.) The function given by eqn 5B.6 is plotted in  
Fig. 5B.4; it resembles the experimental curve in Fig. 5B.3a. If 
ξ < 0, then mixing is exothermic and the A–B interactions are 
more favourable than the A–A and B–B interactions. If ξ > 0, 

then the mixing is endothermic. Because the entropy of mix-
ing has its ideal value for a regular solution, the Gibbs energy 
of mixing is

� �� �� � ����� �����
ξ

ξ
∆ = − − +

= + +
G n RTx x T nR x x x x

nRT x x x x x x
[ ( ln ln )]

( ln ln )
mix A B A A B B

A A B B A B

� (5B.7) 

Figure 5B.5 shows how ∆mixG varies with composition for 
different values of ξ. The important feature is that for ξ > 2 the 
graph shows two minima separated by a maximum. The im-
plication of this observation is that, provided ξ > 2, the system 
will separate spontaneously into two phases with composi-
tions corresponding to the two minima, because such a sepa-
ration corresponds to a reduction in Gibbs energy. This point 
is developed in Topic 5C.

Example 5B.1  Identifying the parameter for a 
regular solution

Identify the value of the parameter ξ that would be appropriate 
to model a mixture of benzene and cyclohexane at 25 °C, and 
estimate the Gibbs energy of mixing for an equimolar mixture.

Collect your thoughts  Refer to Fig. 5B.3a and identify the 
value of the maximum in the curve; then relate it to eqn 5B.6 
written as a molar quantity (HE = ξRTxAxB). For the second 
part, assume that the solution is regular and that the Gibbs 
energy of mixing is given by eqn 5B.7.

The solution  In the experimental data the maximum occurs 
close to xA = xB = 1

2  and its value is close to 701 J mol−1. It fol-
lows that
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Figure 5B.4  The excess enthalpy according to a model in which it 
is proportional to ξxAxB, for different values of the parameter ξ.
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The total Gibbs energy of mixing to achieve the stated compo-
sition (provided the solution is regular) is therefore

∆mixG/n = 1
2 RT ln 12  + 1

2 RT ln 12  + 701 J mol−1	

        = −RT ln 2 + 701 J mol−1	

        = −1.72 kJ mol−1 + 0.701 kJ mol−1 = −1.02 kJ mol−1

Self-test 5B.1  The graph in Fig. 5B.3a suggests the following 
values:

x	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9
HE/(J mol−1)	 150	 350	 550	 680	 700	 690	 600	 500	 280 

Use a curve-fitting procedure to fit these data to an expression 
of the form in eqn 5B.6 written as HE/n = Ax(1 − x).

Answer: The best fit is with A = 690 J mol
−1

5B.2  Colligative properties

A colligative property is a physical property that depends on 
the relative number of solute particles present but not their 
chemical identity (‘colligative’ denotes ‘depending on the col-
lection’). They include the lowering of vapour pressure, the el-
evation of boiling point, the depression of freezing point, and 
the osmotic pressure arising from the presence of a solute. In 
dilute solutions these properties depend only on the number 
of solute particles present, not their identity.

In this development, the solvent is denoted by A and the sol-
ute by B. There are two assumptions. First, the solute is not 
volatile, so it does not contribute to the vapour. Second, the 
solute does not dissolve in the solid solvent: that is, the pure 
solid solvent separates when the solution is frozen. The latter 
assumption is quite drastic, although it is true of many mix-
tures; it can be avoided at the expense of more algebra, but that 
introduces no new principles.

(a)  The common features of colligative 
properties

All the colligative properties stem from the reduction of 
the chemical potential of the liquid solvent as a result of 
the presence of solute. For an ideal solution (one that obeys 
Raoult’s law, Topic 5A; pA = xApA*), the reduction is from µA* 
for the pure solvent to µA = µA* + RT ln xA when a solute is 
present (ln xA is negative because xA < 1). There is no direct 
influence of the solute on the chemical potential of the sol-
vent vapour and the solid solvent because the solute appears 
in neither the vapour nor the solid. As can be seen from  
Fig. 5B.6, the reduction in chemical potential of the solvent 
implies that the liquid–vapour equilibrium occurs at a higher 

temperature (the boiling point is raised) and the solid–liquid  
equilibrium occurs at a lower temperature (the freezing 
point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is not the energy of interaction of the solute and solvent 
particles, because the lowering occurs even in an ideal solu-
tion (for which the enthalpy of mixing is zero). If it is not an 
enthalpy effect, it must be an entropy effect.1 When a solute 
is present, there is an additional contribution to the entropy 
of the solvent which results is a weaker tendency to form the 
vapour (Fig. 5B.7). This weakening of the tendency to form a 
vapour lowers the vapour pressure and hence raises the boil-
ing point. Similarly, the enhanced molecular randomness of 
the solution opposes the tendency to freeze. Consequently, a 
lower temperature must be reached before equilibrium be-
tween solid and solution is achieved. Hence, the freezing point 
is lowered.

The strategy for the quantitative discussion of the elevation 
of boiling point and the depression of freezing point is to look 
for the temperature at which, at 1 atm, one phase (the pure sol-
vent vapour or the pure solid solvent) has the same chemical 
potential as the solvent in the solution. This is the new equilib-
rium temperature for the phase transition at 1 atm, and hence 
corresponds to the new boiling point or the new freezing point 
of the solvent.
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Figure 5B.6  The chemical potential of the liquid solvent in a 
solution is lower than that of the pure liquid. As a result, the 
temperature at which the chemical potential of the solvent is 
equal to that of the solid solvent (the freezing point) is lowered, 
and the temperature at which it is equal to the vapour (the 
boiling point) is raised. The lowering of the liquid’s chemical 
potential has a greater effect on the freezing point than on the 
boiling point because of the angles at which the lines intersect.

1  More precisely, if it is not an enthalpy effect (that is, an effect arising 
from changes in the entropy of the surroundings due to the transfer of energy 
as heat into or from them), then it must be an effect arising from the entropy 
of the system.


