TOPIC 5A The thermodynamic
description of mixtures

» Why do you need to know this material?

Chemistry deals with a wide variety of mixtures, including
mixtures of substances that can react together. Therefore,
it is important to generalize the concepts introduced in
Focus 4 to deal with substances that are mingled together.

» What is the key idea?

The chemical potential of a substance in a mixture is a
logarithmic function of its concentration.

» What do you need to know already?

This Topic extends the concept of chemical potential
to substances in mixtures by building on the concept
introduced in the context of pure substances (Topic 4A).
It makes use of the relation between the temperature
dependence of the Gibbs energy and entropy (Topic 3E),
and the concept of partial pressure (Topic 1A). Throughout
this and related Topics various measures of concentration
of a solute in a solution are used: they are summarized in
The chemist’s toolkit 11.

The consideration of mixtures of substances that do not react
together is a first step towards dealing with chemical reactions
(which are treated in Topic 6A). At this stage the discussion
centres on binary mixtures, which are mixtures of two compo-
nents, A and B. In Topic 1A it is shown how the partial pressure,
which is the contribution of one component to the total pres-
sure, is used to discuss the properties of mixtures of gases. For
a more general description of the thermodynamics of mixtures
other analogous ‘partial’ properties need to be introduced.

sa1 Partial molar quantities

The easiest partial molar property to visualize is the ‘partial
molar volume’, the contribution that a component of a mix-
ture makes to the total volume of a sample.

@) Partial molar volume

Imagine a huge volume of pure water at 25°C. When a fur-
ther 1 mol H,O is added, the volume increases by 18 cm’ and
it follows that the molar volume of pure water is 18 cm’mol ™.
However, upon adding 1mol H,O to a huge volume of
pure ethanol, the volume is found to increase by only 14 cm’.
The reason for the different increase in volume is that the vol-
ume occupied by a given number of water molecules depends
on the identity of the molecules that surround them. In the
latter case there is so much ethanol present that each H,O
molecule is surrounded by ethanol molecules. The network of
hydrogen bonds that normally hold H,O molecules at certain
distances from each other in pure water does not form; as a
result the H,O molecules are packed more tightly and so in-
crease the volume by only 14cm’. The quantity 14cm’mol™
is the ‘partial molar volume’ of water in pure ethanol. In gen-
eral, the partial molar volume of a substance A in a mixture
is the change in volume per mole of A added to a large volume
of the mixture.

The partial molar volumes of the components of a mix-
ture vary with composition because the environment of
each type of molecule changes as the composition changes
from pure A to pure B. This changing molecular environ-
ment, and the consequential modification of the forces
acting between molecules, results in the variation of the
thermodynamic properties of a mixture as its composition
is changed. The partial molar volumes of water and etha-
nol across the full composition range at 25 °C are shown in
Fig. 5A.1.

The partial molar volume, V), of a substance J at some gen-
eral composition is defined formally as follows:

oV
p,T.n

where the subscript »n” signifies that the amounts of all other
substances present are constant. The partial molar volume is
the slope of the plot of the total volume as the amount of J is
changed, the pressure, temperature, and amount of the other
components being constant (Fig. 5A.2). Its value depends on
the composition, as seen for water and ethanol.

Partial molar volume

[definition] (5A.1)
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Figure 5A.1 The partial molar volumes of water and ethanol
at 25 °C. Note the different scales (water on the left, ethanol on
the right).

Total volume, V

Amount of J, n,

Figure 5A.2 The partial molar volume of a substance is the slope
of the variation of the total volume of the sample plotted against
the amount of that substance. In general, partial molar quantities
vary with the composition, as shown by the different slopes at

a and b. Note that the partial molar volume at b is negative: the
overall volume of the sample decreases as A is added.

A note on good practice The TUPAC recommendation is to
denote a partial molar quantity by X, but only when there is the
possibility of confusion with the quantity X. For instance, to
avoid confusion, the partial molar volume of NaCl in water could
be written V(NaCl,aq) to distinguish it from the total volume of
the solution, V.

The definition in eqn 5A.1 implies that when the composi-
tion of a binary mixture is changed by the addition of dn, of A

and dn, of B, then the total volume of the mixture changes by

awv=[ V) G (YY)
on, AT\ on, B
p.Tng pTony

=V,dn, +V,dn,

(5A.2)

This equation can be integrated with respect to n, and n, pro-
vided that the amounts of A and B are both increased in such
a way as to keep their ratio constant. This linkage ensures that
the partial molar volumes V, and V} are constant and so can
be taken outside the integrals:

=™ " v [™ " 5A.3
V=" Vidn,+ [ Vodn =V, [ Ndn 4V, [Tdn,  (5A3)
=V,n, +Vyn,

Although the two integrations are linked (in order to preserve
constant relative composition), because V is a state function
the final result in eqn 5A.3 is valid however the solution is in
fact prepared.

Partial molar volumes can be measured in several ways.
One method is to measure the dependence of the volume on
the composition and to fit the observed volume to a function
of the amount of the substance. Once the function has been
found, its slope can be determined at any composition of inter-
est by differentiation.

el Determining a partial molar volume

A polynomial fit to measurements of the total volume of
a water/ethanol mixture at 25°C that contains 1.000kg of
water is

v =1002.93 + 54.6664z — 0.363 942* + 0.028 2562’

where v = V/cm®, z = ny/mol, and n, is the amount of
CH,CH,OH present. Determine the partial molar volume of
ethanol.

Collect your thoughts Apply the definition in eqn 5A.1,
taking care to convert the derivative with respect to n to a
derivative with respect to z and keeping the units intact.

The solution The partial molar volume of ethanol, Vi, is

( oV j [ o(V/em®) cm’
on, . d(n, / mol) S mol
(gyj cm’ mol™

z Ty

Then, because

Vi

d
546664 — 2(0.36394)z + 3(0.028 256)z

dz ™~
it follows that

V./(cm’mol™) = 54.6664 — 0.727 88z + 0.084 7687

Figure 5A.3 shows a graph of this function.
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Figure 5A.3 The partial molar volume of ethanol as expressed
by the polynomial in Example 5A.1.

Self-test 5A.1 At 25°C, the mass density of a 50 per cent by

mass ethanol/water solution is 0.914gcm™. Given that the

partial molar volume of water in the solution is 17.4 cm’ mol ™,
what is the partial molar volume of the ethanol?
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Molar volumes are always positive, but partial molar quan-
tities need not be. For example, the limiting partial molar vol-
ume of MgSO, in water (its partial molar volume in the limit
of zero concentration) is —1.4 cm> mol™, which means that the
addition of 1 mol MgSO, to a large volume of water resultsin a
decrease in volume of 1.4cm’. The mixture contracts because
the salt breaks up the open structure of water as the Mg** and
SO; ions become hydrated, so the structure collapses slightly.

(b) Partial molar Gibbs energies

The concept of a partial molar quantity can be broadened to
any extensive state function. For a substance in a mixture, the
chemical potential is defined as the partial molar Gibbs energy:

(%
Hy= on, o

where 1’ is used to denote that the amounts of all other compo-
nents of the mixture are held constant. That is, the chemical po-
tential is the slope of a plot of Gibbs energy against the amount
of the component J, with the pressure, temperature, and the
amounts of the other substances held constant (Fig. 5A.4). For
a pure substance G = n/G, , and from eqn 5A.4 it follows that
i, = G, .+ in this case, the chemical potential is simply the molar
Gibbs energy of the substance, as is used in Topic 4A.

By the same argument that led to eqn 5A.3, it follows that
the total Gibbs energy of a binary mixture is

Chemical potential

[definition] (5A.4)

G=n,U, +nyl, (5A.5)
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Figure 5A.4 The chemical potential of a substance is the slope of
the total Gibbs energy of a mixture with respect to the amount
of substance of interest. In general, the chemical potential varies
with composition, as shown for the two values at g and b. In this
case, both chemical potentials are positive.

where p, and i, are the chemical potentials at the composi-
tion of the mixture. That is, the chemical potential of a sub-
stance, multiplied by the amount of that substance present in
the mixture, is its contribution to the total Gibbs energy of the
mixture. Because the chemical potentials depend on composi-
tion (and the pressure and temperature), the Gibbs energy of
a mixture may change when these variables change, and for a
system of components A, B, ..., eqn 3E.7 (dG = Vdp — SdT) for
a general change in G becomes

dG=Vdp—SdT + u,dn, + pdn, + -

Fundamental equation of chemical thermodynamics ~ (5A.6)

This expression is the fundamental equation of chemical
thermodynamics. Its implications and consequences are ex-
plored and developed in this and the next Focus.

At constant pressure and temperature, eqn 5A.6 simplifies
to

dG=u,dn, + ydny+ --- (5A.7)
As established in Topic 3E, under the same conditions dG =
dw Therefore, at constant temperature and pressure,

add,max*

dw

add,max

=u,dn, + ppdng + - (5A.8)
That is, additional (non-expansion) work can arise from the
changing composition of a system. For instance, in an electro-
chemical cell the chemical reaction is arranged to take place
in two distinct sites (at the two electrodes) and the electrical
work the cell performs can be traced to its changing composi-
tion as products are formed from reactants.
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(© The wider significance of the chemical
potential

The chemical potential does more than show how G varies
with composition. Because G = U + pV — TS, and therefore
U=—pV+ TS+ G, the general form of an infinitesimal change
in U for a system of variable composition is

dU=—-pdV - Vdp + SAT + TdS+dG
=—pdV - Vdp +S8dT + TdS
+ (Vdp - SdT + p,dn, + pdng + ---)
=—pdV+ TdS+u,dn, + ydng +- -

This expression is the generalization of eqn 3E.1 (that dU =
TdS — pdV) to systems in which the composition may change.
It follows that at constant volume and entropy,

dU=p,dn, + y,dn,+--- (5A.9)
and hence that
U
U= () (5A.10)
: an] S,V

Therefore, not only does the chemical potential show how G
changes when the composition changes, it also shows how the
internal energy changes too (but under a different set of condi-
tions). In the same way it is possible to deduce that

oH 0A
(a) #J=(ai/l]j8pn' (b) #]=(anI)TVn'

Thus, ; shows how all the extensive thermodynamic proper-
ties U, H, A, and G depend on the composition. This is why the
chemical potential is so central to chemistry.

(5A.11)

(d) The Gibbs-Duhem equation

Because the total Gibbs energy of a binary mixture is given by
eqn 5A.5 (G = n, U, + nylL,), and the chemical potentials de-
pend on the composition, when the compositions are changed
infinitesimally the Gibbs energy of a binary system is expected
to change by

dG=p,dn, + pdny + n,du, +nydu,

However, at constant pressure and temperature the change in
Gibbs energy is given by eqn 5A.7. Because G is a state func-
tion, these two expressions for dG must be equal, which im-
plies that at constant temperature and pressure

n,du, +n,dy, =0 (5A.12a)

This equation is a special case of the Gibbs-Duhem equation:

Zﬂldﬂl =0
]

The significance of the Gibbs-Duhem equation is that
the chemical potential of one component of a mixture can-
not change independently of the chemical potentials of the
other components. In a binary mixture, if one chemical
potential increases, then the other must decrease, with the two
changes related by eqn 5A.12a and therefore

Gibbs-Duhem equation  (5A.12b)

n
duy =— idﬂA

Brief illustration 5A.1

If the composition of a mixture is such that n, = 2n,, and a
small change in composition results in y, changing by Au, =
+1Jmol™, u, will change by

(5A.13)

Apty=-2x(1Jmol ")=—2Jmol ™

The same line of reasoning applies to all partial molar quan-
tities. For instance, changes in the partial molar volumes of
the species in a mixture are related by

> ndv,=0 (5A.14a)
]
For a binary mixture,
nA
dV,=—"-24dV, (5A.14b)
nB

As seen in Fig. 5A.1, where the partial molar volume of water
increases, the partial molar volume of ethanol decreases.
Moreover, as eqn 5A.14b implies, and as seen from Fig. 5A.1, a
small change in the partial molar volume of A corresponds to
alarge change in the partial molar volume of B if n,/n; is large,
but the opposite is true when this ratio is small. In practice, the
Gibbs-Duhem equation is used to determine the partial molar
volume of one component of a binary mixture from measure-
ments of the partial molar volume of the second component.

Using the Gibbs-Duhem equation

The experimental values of the partial molar volume of
K,SO,(aq) at 298K are found to fit the expression

v, =32.280+18.216z""

where v, = VKZSW/(c:m3 mol™) and z is the numerical value of
the molality of K,SO, (z = b/b°; see The chemist’s toolkit 11).
Use the Gibbs-Duhem equation to derive an equation for the
molar volume of water in the solution. The molar volume of
pure water at 298 K is 18.079 cm® mol ™.
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Collect your thoughts Let A denote H,O, the solvent, and B
denote K,SO,, the solute. Because the Gibbs-Duhem equation
for the partial molar volumes of two components implies that
dv, =—(ny/n,)dv,, v, can be found by integration:

v 1
— gt B
UA—UA—J‘O n, dv,

where % = V#/(cm®mol™) is the numerical value of the molar
volume of pure A. The first step is to change the variable of
integration from vy to z = b/b°; then integrate the right-hand
side between z = 0 (pure A) and the molality of interest.

The solution It follows from the information in the question
that, with B = K,SO,, dv,/dz = 9.108z™"*. Therefore, the inte-
gration required is

e o,
UA=UX—9.108J B 2"z
0 LON

The amount of A (H,0) is n, = (1kg)/M,, where M, is the
molar mass of water, and n,/(1 kg), which then occurs in the
ratio n,/n,, will be recognized as the molality b of B:

n,= (1kg)/M, ng/(1kg)=b

hng ¥ Ny _ngM, T __©
n,~ (kg)/M,  1kg ~Ma=2b M,

Hence
bIb°®
v, =vi—9.108 M, b° JU z"dz
=vF—2(9.108M,b°)(b/b°)"

It then follows, by substituting the data (including M, =1.802 X
107 kgmol™, the molar mass of water), that

V,/(cm’mol™) = 18.079 — 0.1094(b/b°)*"

The partial molar volumes are plotted in Fig. 5A.5.
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Figure 5A.5 The partial molar volumes of the components of
an aqueous solution of potassium sulfate.

Self-test 5A.2 Repeat the calculation for a salt B for which
Vy/(cm® mol™) = 6.218 + 5.146z — 7.1472" with z = b/b°.
26580°0 +,279%0°0 — 6£0°81 = (_[ow ;wd)/ YA amsuy

5A2 The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its com-
position is given by eqn 5A.5, and, as established in Topic 3E,
at constant temperature and pressure systems tend towards
lower Gibbs energy. This is the link needed in order to apply
thermodynamics to the discussion of spontaneous changes of
composition, as in the mixing of two substances. One simple
example of a spontaneous mixing process is that of two gases
introduced into the same container. The mixing is spontane-
ous, so it must correspond to a decrease in G.

(@) The Gibbs energy of mixing of perfect
gases

Let the amounts of two perfect gases in the two containers
before mixing be n, and n,; both are at a temperature T and
a pressure p (Fig. 5A.6). At this stage, the chemical potentials
of the two gases have their ‘pure’ values, which are obtained
by applying the definition = G, to eqn 3E.15 (G, (p) = G, +
RT In(p/p®)):

p Variation of chemical

uzue +RTIn— potential with pressure
p [perfect gas]

(5A.15a)

where 11 is the standard chemical potential, the chemical po-
tential of the pure gas at 1 bar.

The notation is simplified by replacing p/p° by p itself, for
eqn 5A.15a then becomes

u=u°+RTInp (5A.15b)

Initial

T, Py Ps With p, + p; = p

\

Final

4

Figure 5A.6 The arrangement for calculating the thermodynamic
functions of mixing of two perfect gases.
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WECICUEER L URYY  Measures of concentration

Let A be the solvent and B the solute. The molar concentra-
tion (informally: ‘molarity’), ¢, or [B], is the amount of solute
molecules (in moles) divided by the volume, V, of the solution:

It is commonly reported in moles per cubic decimetre
(moldm™) or, equivalently, in moles per litre (molL™). It is con-
venient to define its ‘standard’ value as ¢® = 1mol dm™.

The molality, by, of a solute is the amount of solute species (in
moles) in a solution divided by the total mass of the solvent (in
kilograms), m,:

n
by=—2

B mA
Both the molality and mole fraction are independent of tempera-
ture; in contrast, the molar concentration is not. It is convenient
to define the ‘standard’ value of the molality as b° = 1 molkg ™.

1. The relation between molality and mole fraction

Consider a solution with one solute and having a total amount
n of molecules. If the mole fraction of the solute is x;, the
amount of solute molecules is n,=x,n. The mole fraction of
solvent molecules is x, = 1 — x;, so the amount of solvent mol-
ecules is n, = x,n = (1 — x;)n. The mass of solvent, of molar
mass M,, present is m, =n, M, =(1—x;)nM,. The molality of
the solute is therefore

g Xgh Xy

m, — (l—x,)nM, ~ (1-x;)M,

b=
The inverse of this relation, the mole fraction in terms of the
molality, is

— bBMA
= 1+b,M,

In practice, the replacement of p/p° by p means using the nu-
merical value of p in bars. The total Gibbs energy of the sepa-
rated gases is then given by eqn 5A.5 as

G, = nyl, + nylty =n, (U, + RTIn p) + ny(uy + RTIn p)
(5A.16a)

After mixing, the partial pressures of the gases are p, and p,,
with p, + p, =p. The total Gibbs energy changes to

G;=n,(us + RTInp,) + ny(Ly + RTInpy) (5A.16b)

The difference G; — G, the Gibbs energy of mixing, A_, G, is

therefore

'mix

2. The relation between molality and molar
concentration

The total mass of a volume V of solution (not solvent) of mass
density p is m = pV. The amount of solute molecules in this
volume is 7, = ¢;V. The mass of solute present is m, = n,M; =
czVM,. The mass of solvent present is therefore m, = m - m;,
=pV — ¢;VM, = (p — ¢;M,)V. The molality is therefore

My sV _ @y
my, (p—cyMy)V — p—cyMy

by =

The inverse of this relation, the molar concentration in terms
of the molality, is

6 byp

“1+b,M,

3. The relation between molar concentration and
mole fraction

By inserting the expression for b, in terms of x; into the expres-
sion for c;, the molar concentration of B in terms of its mole
fraction is

Gl

C —_— e
Bx M, +x,M,

with x, = 1 — x,. For a dilute solution in the sense that
xgMy<x, M,,

If, moreover, x, <1, so x, =1, then

Cp z( ]\Z)A )xB

A G= nARTln% + nBRTln& (5A.16¢)

p
At this point n; can be replaced by x;n, where n is the total
amount of A and B, and the relation between partial pressure
and mole fraction (Topic 1A, p; = x;p) can be used to write
p/p = x, for each component. The result is

Gibbs energy
of mixing

A,..G=nRT(x,Inx, +x;1nx,)
[perfect gas]

(5A.17)
Because mole fractions are never greater than 1, the loga-
rithms in this equation are negative, and A, G < 0 (Fig. 5A.7).
The conclusion that A, G is negative for all compositions con-
firms that perfect gases mix spontaneously in all proportions.
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Mole fraction of A, x,

Figure 5A.7 The Gibbs energy of mixing of two perfect gases
at constant temperature and pressure, and (as discussed later)
of two liquids that form an ideal solution. The Gibbs energy of
mixing is negative for all compositions, so perfect gases mix
spontaneously in all proportions.

Calculating a Gibbs energy of mixing

A container is divided into two equal compartments
(Fig. 5A.8). One contains 3.0mol H,(g) at 25°C; the other
contains 1.0mol N,(g) at 25°C. Calculate the Gibbs energy of
mixing when the partition is removed. Assume that the gases
are perfect.

Initial

Final

25 pIN,) =1p 7

Figure 5A.8 The initial and final states considered in the
calculation of the Gibbs energy of mixing of gases at different
initial pressures.

Collect your thoughts Equation 5A.17 cannot be used directly
because the two gases are initially at different pressures, so
proceed by calculating the initial Gibbs energy from the
chemical potentials. To do so, calculate the pressure of each
gas: write the pressure of nitrogen as p, then the pressure of
hydrogen as a multiple of p can be found from the gas laws.
Next, calculate the Gibbs energy for the system when the par-
tition is removed. The volume occupied by each gas doubles,
so its final partial pressure is half its initial pressure.

The solution Given that the pressure of nitrogen is p, the
pressure of hydrogen is 3p. Therefore, the initial Gibbs
energy is

G,= (3.0mol){u°(H,) + RTIn 3p}
+ (1.0mol){u°(N,) + RT1n p}

When the partition is removed and each gas occupies twice
the original volume, the final total pressure is 2p. The partial
pressure of nitrogen falls to 3p and that of hydrogen falls to
3p. Therefore, the Gibbs energy changes to

G;= (3.0mol){u°(H,) + RTIn3p}
+ (1.0mol){u°(N,) + RTIn1p}

The Gibbs energy of mixing is the difference of these two
quantities:

3 1
A,.G=(3.0 mol)RTln% +(1.0 mol)RTln%

=—(3.0mol)RTIn2—(1.0mol)RTIn2
=—(4.0mol)RTIn2=-6.9k]

Comment. In this example, the value of A_, G is the sum
of two contributions: the mixing itself, and the changes in
pressure of the two gases to their final total pressure, 2p. Do
not be misled into interpreting this negative change in Gibbs
energy as a sign of spontaneity: in this case, the pressure
changes, and AG < 0 is a signpost of spontaneous change only
at constant temperature and pressure. When 3.0 mol H, mixes
with 1.0mol N, at the same pressure, with the volumes of the
vessels adjusted accordingly, the change of Gibbs energy is
—5.6K]. Because this value is for a change at constant pres-
sure and temperature, the fact that it is negative does imply
spontaneity.

Self-test 5A.3 Suppose that 2.0mol H, at 2.0atm and 25°C
and 4.0mol N, at 3.0atm and 25°C are mixed by removing
the partition between them. Calculate A, G.

DL 6— domsuy

(b) Other thermodynamic mixing functions

In Topic 3E it is shown that (E)G/E)T)P = -S. It follows immedi-
ately from eqn 5A.17 that, for a mixture of perfect gases ini-
tially at the same pressure, the entropy of mixing, A_..S, is

A, S= —( E)Aa“%XG ) =—nR(x,Inx, + x;lnx;)
p

Entropy of mixing
[perfect gases, constant T and p]

(5A.18)

Because Inx < 0, it follows that A_, S > 0 for all compositions
(Fig. 5A.9).
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Figure 5A.9 The entropy of mixing of two perfect gases at
constant temperature and pressure, and (as discussed later) of
two liquids that form an ideal solution. The entropy increases
for all compositions, and because there is no transfer of heat to
the surroundings when perfect gases mix, the entropy of the
surroundings is unchanged. Hence, the graph also shows the
total entropy of the system plus the surroundings; because

the total entropy of mixing is positive at all compositions,
perfect gases mix spontaneously in all proportions.

Brief illustration 5A.2

For equal amounts of perfect gas molecules that are mixed at
the same pressure, set x, = x, =3 and obtain

A, S=-nR{+Int+%Int} = nRIn2

with n the total amount of gas molecules. For 1 mol of each
species, so n = 2mol,

A,.S=(@2mol) X RIn2 =+11.5]K"
An increase in entropy is expected when one gas disperses

into the other and the disorder increases.

Under conditions of constant pressure and temperature, the
enthalpy of mixing, A , H, the enthalpy change accompany-
ing mixing, of two perfect gases can be calculated from AG =
AH — TAS. It follows from eqns 5A.17 and 5A.18 that

Enthalpy of mixing

[perfect gases, constant T and p] (5A.19)

A H=0
The enthalpy of mixing is zero, as expected for a system in
which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that, because the entropy
of the surroundings is unchanged, the whole of the driv-
ing force for mixing comes from the increase in entropy of
the system.

5A.3 The chemical potentials of liquids

To discuss the equilibrium properties of liquid mixtures it
is necessary to know how the Gibbs energy of a liquid varies
with composition. The calculation of this dependence uses the
fact that, as established in Topic 4A, at equilibrium the chemi-
cal potential of a substance present as a vapour must be equal
to its chemical potential in the liquid.

@) ldeal solutions

Quantities relating to pure substances are denoted by a super-
script %, so the chemical potential of pure A is written y} and
as (¥(1) when it is necessary to emphasize that A is a liquid.
Because the vapour pressure of the pure liquid is p¥ it fol-
lows from eqn 5A.15b that the chemical potential of A in the
vapour (treated as a perfect gas) is y, + RTInp, (with p, to be
interpreted as p,/p°). These two chemical potentials are equal
at equilibrium (Fig. 5A.10), so

liquid vapour
—— —_——

Us(D=u,(g)+RTInpy; (5A.20a)

If another substance, a solute, is also present in the liquid, the
chemical potential of A in the liquid is changed to u, and its
vapour pressure is changed to p,. The vapour and solvent are
still in equilibrium, so

U, ()=u,"(g)+RTInp, (5A.20b)

A(g) + B(g)

A(l) + B(l)

Figure 5A.10 At equilibrium, the chemical potential of the
gaseous form of a substance A is equal to the chemical potential
of its condensed phase. The equality is preserved if a solute is
also present. Because the chemical potential of A in the vapour
depends on its partial vapour pressure, it follows that the
chemical potential of liquid A can be related to its partial vapour
pressure.
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The next step is the combination of these two equations to
eliminate the standard chemical potential of the gas, u}(g). To
do so, write eqn 5A.20a as (;(g) = wX(1) — RTn p} and substi-
tute this expression into eqn 5A.20b to obtain

—_—
11, ()=t (1)~RTInp* +RTInp* = w*(1)+RT1n % (5A.21)
A

The final step draws on additional experimental informa-
tion about the relation between the ratio of vapour pressures
and the composition of the liquid. In a series of experiments
on mixtures of closely related liquids (such as benzene and
methylbenzene), Frangois Raoult found that the ratio of the
partial vapour pressure of each component to its vapour pres-
sure when present as the pure liquid, p,/p}, is approximately
equal to the mole fraction of A in the liquid mixture. That is,

he established what is now called Raoult’s law:

Raoult’s law
[ideal solution]

Pa=X\Px (5A.22)

This law is illustrated in Fig. 5A.11. Some mixtures obey
Raoult’s law very well, especially when the components are
structurally similar (Fig. 5A.12). Mixtures that obey the law
throughout the composition range from pure A to pure B are
called ideal solutions.

Brief illustration 5A.3

The vapour pressure of pure benzene at 20°C is 75 Torr and
that of pure methylbenzene is 25Torr at the same tempera-
ture. In an equimolar mixXture Xy,,ene = Xpethyibenzene = 3 SO the
partial vapour pressure of each one in the mixture is

pbenzene = % % 80 Torr = 40 Torr

Pmethylbenzene = 3 X 25Torr = 12.5Torr

The total vapour pressure of the mixture is 48 Torr. Given the
two partial vapour pressures, it follows from the definition
of partial pressure (Topic 1A) that the mole fractions in the
vapour are

Xyappenzene = (40 Torr)/(48 Torr) = 0.83
and
Xyap.methylbenzene = (125 Torr)/(48 Torr) = 0.26

The vapour is richer in the more volatile component
(benzene).

[o Total pressure

< Partial

@ pressure of B %
o Pa
2

o

Partial pressure
of A

Mole fraction of A, x,

Figure 5A.11 The partial vapour pressures of the two
components of an ideal binary mixture are proportional to the
mole fractions of the components, in accord with Raoult’s law.
The total pressure is also linear in the mole fraction of either
component.
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Figure 5A.12 Two similar liquids, in this case benzene and
methylbenzene (toluene), behave almost ideally, and the variation
of their vapour pressures with composition resembles that for an
ideal solution.

For an ideal solution, it follows from eqns 5A.21 and 5A.22
that

Chemical potential
[ideal solution]

u,()=uy(1)+RTInx, (5A.23)
This important equation can be used as the definition of an
ideal solution (so that it implies Raoult’s law rather than stem-
ming from it). It is in fact a better definition than eqn 5A.22
because it does not assume that the vapour is a perfect gas.
The molecular origin of Raoult’s law is the effect of the sol-
ute on the entropy of the solution. In the pure solvent, the mol-
ecules have a certain disorder and a corresponding entropy;
the vapour pressure then represents the tendency of the sys-
tem and its surroundings to reach a higher entropy. When a
solute is present, the solution has a greater disorder than the
pure solvent because a molecule chosen at random might or
might not be a solvent molecule. Because the entropy of the
solution is higher than that of the pure solvent, the solution
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0 Mole fraction of carbon disulfide, x(CS,) 1

Figure 5A.13 Strong deviations from ideality are shown by
dissimilar liquids (in this case carbon disulfide and acetone
(propanone)). The dotted lines show the values expected from
Raoult’s law.

has a lower tendency to acquire an even higher entropy by the
solvent vaporizing. In other words, the vapour pressure of the
solvent in the solution is lower than that of the pure solvent.

Some solutions depart significantly from Raoult’s law
(Fig. 5A.13). Nevertheless, even in these cases the law is obeyed
increasingly closely for the component in excess (the solvent)
as it approaches purity. The law is another example of a lim-
iting law (in this case, achieving reliability as x, — 1) and is
a good approximation for the properties of the solvent if the
solution is dilute.

(b) Ideal-dilute solutions

In ideal solutions the solute, as well as the solvent, obeys
Raoult’s law. However, William Henry found experimentally
that, for real solutions at low concentrations, although the va-
pour pressure of the solute is proportional to its mole fraction,
the constant of proportionality is not the vapour pressure of
the pure substance (Fig. 5A.14). Henry’s law is:

Henry's law

[ideal-dilute solution] (5A.24)

Pr=%Ky

In this expression x; is the mole fraction of the solute and K
is an empirical constant (with the dimensions of pressure)
chosen so that the plot of the vapour pressure of B against its
mole fraction is tangent to the experimental curve at x; = 0.
Henry’s law is therefore also a limiting law, achieving reliabil-
ityasx, — 0.

Mixtures for which the solute B obeys Henry’s law and the
solvent A obeys Raoult’s law are called ideal-dilute solutions.
The difference in behaviour of the solute and solvent at low
concentrations (as expressed by Henry’s and Raoult’s laws,
respectively) arises from the fact that in a dilute solution the
solvent molecules are in an environment very much like
the one they have in the pure liquid (Fig. 5A.15). In contrast,
the solute molecules are surrounded by solvent molecules,

KB
Ideal-dilute
a solution
S (Henry) "
= o
3
§ Real .
£ solution
Ideal solution
(Raoult)
0 Mole fraction of B, x, 1

Figure 5A.14 When a component (the solvent) is nearly pure, it
has a vapour pressure that is proportional to the mole fraction
with a slope p} (Raoult’s law). When it is the minor component (the
solute) its vapour pressure is still proportional to the mole fraction,
but the constant of proportionality is now Kj; (Henry's law).

Figure 5A.15 In a dilute solution, the solvent molecules (the blue
spheres) are in an environment that differs only slightly from
that of the pure solvent. The solute particles (the red spheres),
however, are in an environment totally unlike that of the pure
solute.

which is entirely different from their environment when it is in
its pure form. Thus, the solvent behaves like a slightly modified
pure liquid, but the solute behaves entirely differently from its
pure state unless the solvent and solute molecules happen to be
very similar. In the latter case, the solute also obeys Raoult’s law.

asallaldied Investigating the validity of Raoult’s and

Henry’s laws

The vapour pressures of each component in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C)
were measured at 35 °C with the following results:

Xc 0 0.20 0.40 0.60 0.80 1
pc/kPa 0 4.7 11 18.9 26.7 36.4
pu/kPa 46.3 33.3 23.3 12.3 4.9 0
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Confirm that the mixture conforms to Raoult’s law for the
component in large excess and to Henry’s law for the minor
component. Find the Henry’s law constants.

Collect your thoughts Both Raoult’s and Henry’s laws are
statements about the form of the graph of partial vapour
pressure against mole fraction. Therefore, plot the partial
vapour pressures against mole fraction. Raoult’s law is tested
by comparing the data with the straight line p, = x,p} for each
component in the region in which it is in excess (and acting
as the solvent). Henry’s law is tested by finding a straight line
P, = x)K| that is tangent to each partial vapour pressure curve
at low x, where the component can be treated as the solute.

The solution The data are plotted in Fig. 5A.16 together with
the Raoult’s law lines. Henry’s law requires K, = 24.5kPa for
acetone and K, = 23.5kPa for chloroform.

50
A\p*( acetone)
ne) \(

p*(chlorofo;nﬂ
Raoult’s law

Pressure, p/kPa

Henry’'s la

0 Mole fraction of chloroform, x(CHCI,) 1

Figure 5A.16 The experimental partial vapour pressures

of a mixture of chloroform (trichloromethane) and acetone
(propanone) based on the data in Example 5A.4. The values
of K are obtained by extrapolating the dilute solution vapour
pressures, as explained in the Example.

Comment. Notice how the system deviates from both Raoult’s
and Henry’s laws even for quite small departures from
x =1 and x = 0, respectively. These deviations are discussed
in Topic 5E.

Self-test 5A.4 The vapour pressure of chloromethane at
various mole fractions in a mixture at 25°C was found to be
as follows:

X 0.005 0.009 0.019 0.024
p/kPa 27.3 484 101 126

Estimate the Henry’s law constant for chloromethane.
BJIN G oMSUY

For practical applications, Henry’s law is expressed in terms
of the molality, b, of the solute, p, = b,K;. Some Henry’s law
data for this convention are listed in Table 5A.1. As well as
providing a link between the mole fraction of the solute and
its partial pressure, the data in the table may also be used to
calculate gas solubilities. Knowledge of Henry’s law constants
for gases in blood and fats is important for the discussion of
respiration, especially when the partial pressure of oxygen is
abnormal, as in diving and mountaineering, and for the dis-
cussion of the action of gaseous anaesthetics.

Table 5A.1 Henry’s law constants for gases in water at 298 K*

K/(kPa kgmol ")

CO, 3.01 x 10°
H, 1.28 x 10°
N, 1.56 X 10°
0, 7.92 x 10*

* More values are given in the Resource section.

Brief illustration 5A.4

To estimate the molar solubility of oxygen in water at 25°C
and a partial pressure of 21kPa, its partial pressure in the
atmosphere at sea level, write

_ Po, 21kPa

b, = = =2.9%10" molkg™
% Ko, 7.9x10* kPakgmol ke

The molality of the saturated solution is therefore 0.29 mmol
kg™. To convert this quantity to a molar concentration, as-
sume that the mass density of this dilute solution is essentially
that of pure water at 25°C, or p=0.997 kg dm". It follows that
the molar concentration of oxygen is

[0,]=b,p=(2.9x10" molkg™")x(0.997kgdm™)

=0.29mmoldm™

Checklist of concepts

[J 1. The partial molar volume of a substance is the contri-
bution to the volume that a substance makes when it is
part of a mixture.

[J 2. The chemical potential is the partial molar Gibbs
energy and is the contribution to the total Gibbs energy
that a substance makes when it is part of a mixture.
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. The chemical potential also expresses how, under a
variety of different conditions, the thermodynamic

functions vary with composition.

related.

. The Gibbs-Duhem equation shows how the changes in
chemical potentials (and, by extension, of other partial
molar quantities) of the components of a mixture are

. The Gibbs energy of mixing is negative for perfect

gases at the same pressure and temperature.

Zero.

. The entropy of mixing of perfect gases initially at the
same pressure is positive and the enthalpy of mixing is

0 10.

. Raoult’s law provides a relation between the vapour pres-

sure of a substance and its mole fraction in a mixture.

. An ideal solution is a solution that obeys Raoult’s law

over its entire range of compositions; for real solutions
it is a limiting law valid as the mole fraction of the spe-
cies approaches 1.

. Henry’s law provides a relation between the vapour

pressure of a solute and its mole fraction in a mixture; it
is the basis of the definition of an ideal-dilute solution.

An ideal-dilute solution is a solution that obeys
Henry’s law at low concentrations of the solute, and for
which the solvent obeys Raoult’s law.

Checklist of equations

Property Equation Comment Equation number
Partial molar volume V,=(9Vion), . Definition 5A.1
Chemical potential W =(0G/on), . Definition 5A.4
Total Gibbs energy G =n, U, + nglty Binary mixture 5A.5
Fundamental equation of chemical ~ dG= Vdp — SdT + u,dn, + p,dn, + -+ 5A.6
thermodynamics
Gibbs-Duhem equation Znd=0 5A.12b
Chemical potential of a gas u=u" +RTIn(p/p°) Perfect gas 5A.15a
Gibbs energy of mixing A,,G = nRT(x,Inx, + x;Inx;) Perfect gases and ideal solutions 5A.17
Entropy of mixing A,..S =-nR(x,Inx, + x;Inx,) Perfect gases and ideal solutions 5A.18
Enthalpy of mixing A H=0 Perfect gases and ideal solutions 5A.19
Raoult’s law RSENN True for ideal solutions; limiting law as x, — 1 5A.22
Chemical potential of component 1, ()=py1)+RTInx, Ideal solution 5A.23
Henry’s law Ps = %K, True for ideal-dilute solutions; limiting lawas x, >0  5A.24




TOPIC 5B The properties of solutions

» Why do you need to know this material?

Mixtures and solutions play a central role in chemistry,
and so it is important to understand how their composi-
tions affect their thermodynamic properties, such as their
boiling and freezing points. One very important physi-
cal property of a solution is its osmotic pressure, which
is used, for example, to determine the molar masses of
macromolecules.

» What is the key idea?

The chemical potential of a substance in a mixture is the
same in every phase in which it occurs.

» What do you need to know already?

This Topic is based on the expression derived from Raoult’s
law (Topic 5A) in which chemical potential is related to
mole fraction. The derivations make use of the Gibbs-
Helmholtz equation (Topic 3E) and the effect of pressure
on chemical potential (Topic 5A). Some of the derivations
are the same as those used in the discussion of the mixing
of perfect gases (Topic 5A).

Thermodynamics can provide insight into the properties of
liquid mixtures, and a few simple ideas can unify the whole
field of study.

581 Liquid mixtures

The development here is based on the relation derived in Topic
5A between the chemical potential of a component (which
here is called J, with ] = A or B in a binary mixture) in an ideal
mixture or solution, (i, its value when pure, u}, and its mole
fraction in the mixture, x;:

Chemical potential

lideal solution] (5B.1)

‘u]:,u;'+RT1nx]

@) ldeal solutions

The Gibbs energy of mixing of two liquids to form an ideal
solution is calculated in exactly the same way as for two

gases (Topic 5A). The total Gibbs energy before the liquids are
mixed is

G,=n, U5 +nylly (5B.2a)
where the * denotes the pure liquid. When they are mixed, the
individual chemical potentials are given by eqn 5B.1 and the
total Gibbs energy is

G.=n,(Uf+RTInx,) + n,(uf + RTInx,) (5B.2b)

Consequently, the Gibbs energy of mixing, the difference of
these two quantities, is

A,..G=nRT(x,Inx, +x;1nx;)
Gibbs energy of mixing

lideal solution] (5B.3)

where n=mn, + n,. As for gases, it follows that the ideal entropy
of mixing of two liquids is

Entropy of mixing

lideal solution] (5B.4)

A,..S=-nR(x,Inx, +x,1nx;)

Then from A, G = A, H — TA,,S it follows that the ideal
enthalpy of mixing is zero, A ;, H = 0. The ideal volume of
mixing, the change in volume on mixing, is also zero. To see
why, consider that, because (dG/dp),= V (eqn 3E.8), AV =
(0A,,,,G/dp);. But A .G in eqn 5B.3 is independent of pressure,
so the derivative with respect to pressure is zero, and therefore
A V=0.

Equations 5B.3 and 5B.4 are the same as those for the
mixing of two perfect gases and all the conclusions drawn
there are valid here: because the enthalpy of mixing is zero
there is no change in the entropy of the surroundings so the
driving force for mixing is the increasing entropy of the sys-
tem as the molecules mingle. It should be noted, however,
that solution ideality means something different from gas
perfection. In a perfect gas there are no interactions between
the molecules. In ideal solutions there are interactions, but
the average energy of A-B interactions in the mixture is the
same as the average energy of A-A and B-B interactions
in the pure liquids. The variation of the Gibbs energy and
entropy of mixing with composition is the same as that for
gases (Figs. 5A.7 and 5A.9); both graphs are repeated here

(as Figs. 5B.1 and 5B.2).
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0.5
Mole fraction of A, x,

Figure 5B.1 The Gibbs energy of mixing of two liquids that form
an ideal solution.

0.8
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Figure 5B.2 The entropy of mixing of two liquids that form an
ideal solution.

A note on good practice Tt is on the basis of this distinction that
the term ‘perfect gas’ is preferable to the more common ‘ideal
gas’. In an ideal solution there are interactions, but they are effec-
tively the same between the various species. In a perfect gas, not
only are the interactions the same, but they are also zero. Few
people, however, trouble to make this valuable distinction.

Brief illustration 5B.1

Consider a mixture of benzene and methylbenzene, which
form an approximately ideal solution, and suppose 1.0 mol
CH,(1) is mixed with 2.0mol C,H,CH,(I). For the mixture,
= 0.33 and X, pypensene = 0-67. The Gibbs energy and
entropy of mixing at 25°C, when RT = 2.48kJ mol ™, are

xbenzene

A

'mix

G/n=(2.48k] molfl) X (0.331n0.33 + 0.671n 0.67)
=-1.6k] mol™

A, S/n=—(8.3145] K mol™) x (0.331n0.33 + 0.671n0.67)
=+5.3] K" mol™

The enthalpy of mixing is zero (presuming that the solution

is ideal).

Real solutions are composed of molecules for which the
A-A, A-B, and B-B interactions are all different. Not only
may there be enthalpy and volume changes when such lig-
uids mix, but there may also be an additional contribution to
the entropy arising from the way in which the molecules of
one type might cluster together instead of mingling freely
with the others. If the enthalpy change is large and positive, or
if the entropy change is negative (because of a reorganization
of the molecules that results in an orderly mixture), the Gibbs
energy of mixing might be positive. In that case, separation
is spontaneous and the liquids are immiscible. Alternatively,
the liquids might be partially miscible, which means that they
are miscible only over a certain range of compositions.

(b) Excess functions and regular solutions

The thermodynamic properties of real solutions are expressed
in terms of the excess functions, X", the difference between
the observed thermodynamic function of mixing and the
function for an ideal solution:

Excess function
[definition] (5B.5)

XP=A, X—A_ X
The excess entropy, S, for example, is calculated by using the
value of A, $*" given by eqn 5B.4. The excess enthalpy and
volume are both equal to the observed enthalpy and volume of
mixing, because the ideal values are zero in each case.

Figure 5B.3 shows two examples of the composition de-
pendence of excess functions. Figure 5B.3(a) shows data for
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Figure 5B.3 Experimental excess functions at 25 °C. (a) H® for
benzene/cyclohexane; this graph shows that the mixing is
endothermic (because A, H = 0 for an ideal solution). (b) The
excess volume, V¥, for tetrachloroethene/cyclopentane; this graph
shows that there is a contraction at low tetrachloroethene mole
fractions, but an expansion at high mole fractions (because
A,...V = 0 for an ideal mixture).
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a benzene/cyclohexane mixture: the positive values of H",
which implies that A , H > 0, indicate that the A-B interac-
tions in the mixture are less attractive than the A-A and B-B
interactions in the pure liquids. The symmetrical shape of the
curve reflects the similar strengths of the A-A and B-B inter-
actions. Figure 5B.3(b) shows the composition dependence of
the excess volume, V*, of a mixture of tetrachloroethene and
cyclopentane. At high mole fractions of cyclopentane, the so-
lution contracts as tetrachloroethene is added because the ring
structure of cyclopentane results in inefficient packing of the
molecules, but as tetrachloroethene is added, the molecules in
the mixture pack together more tightly. Similarly, at high mole
fractions of tetrachloroethene, the solution expands as cy-
clopentane is added because tetrachloroethene molecules are
nearly flat and pack efficiently in the pure liquid, but become
disrupted as the bulky ring cyclopentane is added.

Deviations of the excess enthalpy from zero indicate the
extent to which the solutions are non-ideal. In this connec-
tion a useful model system is the regular solution, a solution
for which H"# 0 but S = 0. A regular solution can be thought
of as one in which the two kinds of molecules are distributed
randomly (as in an ideal solution) but have different energies
of interaction with each other. To express this concept more
quantitatively, suppose that the excess enthalpy depends on
composition as

H* =néRTx,x, (5B.6)
where &£ (xi) is a dimensionless parameter that is a measure
of the energy of A-B interactions relative to that of the A-A
and B-B interactions. (For H" expressed as a molar quantity,
discard the n.) The function given by eqn 5B.6 is plotted in
Fig. 5B.4; it resembles the experimental curve in Fig. 5B.3a. If
£ <0, then mixing is exothermic and the A-B interactions are
more favourable than the A-A and B-B interactions. If £ > 0,

+0.5
2
1
& 0
)
T
-1
-2
-0.5
0 0.5 1

Figure 5B.4 The excess enthalpy according to a model in which it
is proportional to &x,x,, for different values of the parameter &.
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Figure 5B.5 The Gibbs energy of mixing for different values of
the parameter &.

then the mixing is endothermic. Because the entropy of mix-
ing has its ideal value for a regular solution, the Gibbs energy
of mixing is

AnH AmsS

A, G=nERTx, x,—T[-nR(x, Inx, + x;Inx;)]

=nRT(x,Inx,+x,Inx,+&x,x;,)

(5B.7)

Figure 5B.5 shows how A_, G varies with composition for
different values of £. The important feature is that for £ > 2 the
graph shows two minima separated by a maximum. The im-
plication of this observation is that, provided £ > 2, the system
will separate spontaneously into two phases with composi-
tions corresponding to the two minima, because such a sepa-
ration corresponds to a reduction in Gibbs energy. This point
is developed in Topic 5C.

SRl (dentifying the parameter for a

regular solution

Identify the value of the parameter £ that would be appropriate
to model a mixture of benzene and cyclohexane at 25°C, and
estimate the Gibbs energy of mixing for an equimolar mixture.

Collect your thoughts Refer to Fig. 5B.3a and identify the
value of the maximum in the curve; then relate it to eqn 5B.6
written as a molar quantity (H" = ERTx,x,;). For the second
part, assume that the solution is regular and that the Gibbs
energy of mixing is given by eqn 5B.7.

The solution In the experimental data the maximum occurs
close to x, = x, = + and its value is close to 701 Jmol™. It fol-
lows that

£e H* 701] mol™
T RTx,x,  (8.3145]JK 'mol ™ )x(298K)xtxt
=1.13
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The total Gibbs energy of mixing to achieve the stated compo-
sition (provided the solution is regular) is therefore

A, G/n=+RTInt + LRTIn? + 701 Jmol™
=—RTIn2 + 701 Jmol™
=-1.72kJmol™ + 0.701 k] mol™ = —1.02kJ mol™

Self-test 5B.1 The graph in Fig. 5B.3a suggests the following
values:

x 01 02 03 04 05 06 07 0.8 09
HY/(Jmol™) 150 350 550 680 700 690 600 500 280

Use a curve-fitting procedure to fit these data to an expression
of the form in eqn 5B.6 written as H'/n = Ax(1 — x).
LIOW (069 = ¥ YIIM ST 15 1539 YT, 4amsuy

58.2 Colligative properties

A colligative property is a physical property that depends on
the relative number of solute particles present but not their
chemical identity (‘colligative’ denotes ‘depending on the col-
lection’). They include the lowering of vapour pressure, the el-
evation of boiling point, the depression of freezing point, and
the osmotic pressure arising from the presence of a solute. In
dilute solutions these properties depend only on the number
of solute particles present, not their identity.

In this development, the solvent is denoted by A and the sol-
ute by B. There are two assumptions. First, the solute is not
volatile, so it does not contribute to the vapour. Second, the
solute does not dissolve in the solid solvent: that is, the pure
solid solvent separates when the solution is frozen. The latter
assumption is quite drastic, although it is true of many mix-
tures; it can be avoided at the expense of more algebra, but that
introduces no new principles.

@) The common features of colligative
properties

All the colligative properties stem from the reduction of
the chemical potential of the liquid solvent as a result of
the presence of solute. For an ideal solution (one that obeys
Raoult’s law, Topic 5A; p, = x,p¥), the reduction is from u¥
for the pure solvent to p, = u¥ + RTInx, when a solute is
present (Inx, is negative because x, < 1). There is no direct
influence of the solute on the chemical potential of the sol-
vent vapour and the solid solvent because the solute appears
in neither the vapour nor the solid. As can be seen from
Fig. 5B.6, the reduction in chemical potential of the solvent
implies that the liquid—-vapour equilibrium occurs at a higher
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Figure 5B.6 The chemical potential of the liquid solventin a
solution is lower than that of the pure liquid. As a result, the
temperature at which the chemical potential of the solvent is
equal to that of the solid solvent (the freezing point) is lowered,
and the temperature at which it is equal to the vapour (the
boiling point) is raised. The lowering of the liquid’'s chemical
potential has a greater effect on the freezing point than on the
boiling point because of the angles at which the lines intersect.

temperature (the boiling point is raised) and the solid-liquid
equilibrium occurs at a lower temperature (the freezing
point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is not the energy of interaction of the solute and solvent
particles, because the lowering occurs even in an ideal solu-
tion (for which the enthalpy of mixing is zero). If it is not an
enthalpy effect, it must be an entropy effect.! When a solute
is present, there is an additional contribution to the entropy
of the solvent which results is a weaker tendency to form the
vapour (Fig. 5B.7). This weakening of the tendency to form a
vapour lowers the vapour pressure and hence raises the boil-
ing point. Similarly, the enhanced molecular randomness of
the solution opposes the tendency to freeze. Consequently, a
lower temperature must be reached before equilibrium be-
tween solid and solution is achieved. Hence, the freezing point
is lowered.

The strategy for the quantitative discussion of the elevation
of boiling point and the depression of freezing point is to look
for the temperature at which, at 1atm, one phase (the pure sol-
vent vapour or the pure solid solvent) has the same chemical
potential as the solvent in the solution. This is the new equilib-
rium temperature for the phase transition at 1 atm, and hence
corresponds to the new boiling point or the new freezing point
of the solvent.

' More precisely, if it is not an enthalpy effect (that is, an effect arising
from changes in the entropy of the surroundings due to the transfer of energy
as heat into or from them), then it must be an effect arising from the entropy
of the system.



