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Preface to the first edition

These lecture notes are based on the two 4 credit courses given at University of
Oulu during Spring 2015 semester. We follow the general outline of the courses
given by Jorma Arhippainen in 2008–2012 and the courses given by the author
at Moscow State University in the end of 1990s. The major difference in this
text is the discussion of extended complex plane and the concept of complex
infinity. The text contains problems which range from very easy to somewhat
difficult. Exercises are formulated at the end of each course.

After the courses ended this text has been modified as follows. Cauchy
theorem and Cauchy integral formula has been moved to Part I. A new chapter
on principle of the argument and Rouche’s theorem has been added to Part II.
Another new chapter on calculation of series by residue theory has also been
added to Part II. The Casorati-Sokhotski-Weierstrass theorem has been added
to Chapter 5 of Part II.

Oulu, August 2015 Valery Serov

Preface to the second edition

In two years since the first edition of this book appeared some new suggestions
for improving the text was proposed. Completely new part, Part III, consisting
of two chapters: Conformal mappings and Laplace transform, has been added.
After this addition this new edition can be considered as a standard university
course in Complex Analysis for mathematics students. In addition to this some
corrections and adjustments throughout the book are done, and the following
important topics have been added: (1) Cauchy integral formula is formulated
now in its most general form using principal value integrals (see Theorem 5.7 in
Part I), (2) Taylor expansion at infinity, (3) Jordan’s lemma is now formulated
for each half plane of the complex plane: upper, lower, left and right and
this lemma in its new form is applied in the chapter on Laplace transform (4)
Numerous new problems are formulated now in Chapters 1 and 2 of Part III.
Together with the list of exercises in Parts I and II they form an integral part
of the new edition. The total number of problems and exercises is 167. The
readers are asked to investigate and solve most of the problems and exercises.

The last but not the least is: this edition as well as the first one could not
have appeared without participation in content and typing of my colleague Adj.
Prof. Markus Harju.

Oulu, October 2017 Valery Serov
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Chapter 1

Complex numbers and their
properties

Definition 1.1. The ordered pair (x, y) of real numbers x and y is called a
complex number z = (x, y) if the following properties are satisfied:

1. z1 = z2 if and only if x1 = x2 and y1 = y2. In particular, z = (x, y) = 0
if and only if x = y = 0.

2. z1 ± z2 = (x1 ± x2, y1 ± y2)

3. z1 · z2 = (x1x2 − y1y2, x1y2 + x2y1)

The notation is: x = Re z, y = Im z

The complex number z = (x, 0) is identified with real number x, and com-
plex number z = (0, y) is called purely imaginary .

Definition 1.2. The complex numbers (0, 0), (1, 0) and (0, 1) are called zero,
unit and imaginary unit and are identified with 0, 1 and i, respectively.

It is easy to check that

i2 = (−1, 0), i(b, 0) = (0, b). (1.1)

Indeed,

i2 = (0, 1) · (0, 1) = (−1, 0)

and

i(b, 0) = (0, 1) · (b, 0) = (0, b)

by Definition 1.1 .

Since

z = (x, y) = (x, 0) + (0, y)
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using (1.1) we obtain that

z = (x, 0) + (0, 1) · (y, 0) = x+ iy

such that

z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2)

and

z1 · z2 = (x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + ix1y2 + i2y1y2

= (x1x2 − y1y2) + i(y1x2 + x1y2)

that is, these operations (addition and multiplication) are performed as in the
usual analysis.

We denote the set of all complex numbers by C.

The division is defined as the operation which is inverse to multiplication.
Namely, if z2 6= 0 (i.e. x2 6= 0 or y2 6= 0, so x2

2 + y2
2 > 0) then

z1

z2
= a+ ib if and only if z1 = (a+ ib)z2.

It means that

x1 + iy1 = (a+ ib)(x2 + iy2)

or {
x1 = ax2 − by2

y1 = bx2 + ay2.

Solving this for a and b gives

a =
x1x2 + y1y2

x2
2 + y2

2

, b =
y1x2 − x1y2

x2
2 + y2

2

.

Hence
z1

z2
=
x1x2 + y1y2

x2
2 + y2

2

+ i
y1x2 − x1y2

x2
2 + y2

2

. (1.2)

Definition 1.3. For given complex number z = x+ iy

1. the number z := x− iy is called the complex conjugate to z.

2. the nonnegative (real) number |z| :=
√
x2 + y2 is called the modulus of

z.

The following properties can be checked straightforwardly:

z1 ± z2 = z1 ± z2
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z1 · z2 = z1 · z2(
z1

z2

)
=
z1

z2

Re z =
z + z

2
, Im z =

z − z
2i

|z| = 0 if and only if z = 0

|z|2 = z · z, |z| = |z|, |z1 · z2| = |z1| · |z2|

∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

, but

∣∣∣|z1| − |z2|
∣∣∣ ≤ |z1 ± z2| ≤ |z1|+ |z2| (1.3)

|Re z| ≤ |z|, | Im z| ≤ |z|

Problem 1.4.

1. Prove that
z1

z2
=
z1z2

|z2|2
=
x1x2 + y1y2

x2
2 + y2

2

+ i
y1x2 − x1y2

x2
2 + y2

2

.

2. Prove that

|z1 ± z2|2 = |z1|2 + |z2|2 ± 2|z1| · |z2| cosα,

where α is the angle between the two vectors z1 = (x1, y1) and z2 =
(x2, y2) on the plane R2.

3. Prove the inequalities (1.3).

α

(x1, y1)

(x2, y2)
ϕ

(x, y)

x

y

R+

Definition 1.5. The angle ϕ formed by the vector z = (x, y), z 6= 0 and
the positive real line R+ is said to be an argument of z and denoted by ϕ =
Arg z, z 6= 0. The argument of z = 0 is not defined.
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Remark. It is clear that Arg z is not defined uniquely. More precisely, it is
defined up to 2πn, n = 0,±1,±2, . . . i.e.

Arg z = ϕ+ 2πn,

where ϕ ∈ (0, 2π] or ϕ ∈ (−π, π]. This value of ϕ is called the main argument
and it is denoted as

arg z = ϕ.

Let us assume in the future that

arg z = ϕ with ϕ ∈ (−π, π].

In this case the Pythagorian theorem says that

Re z = |z| cosϕ and Im z = |z| sinϕ

i.e.

z = |z|(cosϕ+ i sinϕ), z 6= 0. (1.4)

Problem 1.6. Prove that

1. z1 = z2 if and only if |z1| = |z2| and ϕ1 = ϕ2

2.

ϕ ∈ (0, π) if and only if Im z > 0

ϕ ∈ (−π, 0) if and only if Im z < 0

ϕ = 0 if and only if Im z = 0,Re z > 0

ϕ = π if and only if Im z = 0,Re z < 0.

Problem 1.7. Prove the following statements:

1. arg z = − arg z

2.

arg z =



arctan Im z
Re z , Re z > 0

arctan Im z
Re z + π, Re z < 0, Im z > 0

arctan Im z
Re z − π, Re z < 0, Im z < 0

π
2 , Re z = 0, Im z > 0

−π
2 , Re z = 0, Im z < 0.

Problem 1.8. Prove the following properties:

1. z1 · z2 = |z1| · |z2|(cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2))
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2. z1/z2 = |z1|/|z2|(cos(ϕ1 − ϕ2) + i sin(ϕ1 − ϕ2))

3. zn = |z|n(cos(nϕ) + i sin(nϕ)) (De Moivre formula)

We will use the shorthand notation (which will be proved later)

eiϕ := cosϕ+ i sinϕ.

Then (1.4) can be written as
z = |z|eiϕ. (1.5)

Definition 1.9. The form (1.5) is called the trigonometric representation of
the complex numbers.

The equality (1.5) is called Euler’s formula. Using (1.5) we may rewrite the
above formulas in shorter way:

z1 · z2 = |z1| · |z2|ei(ϕ1+ϕ2)

z1/z2 = |z1|/|z2|ei(ϕ1−ϕ2)

zn = |z|neinϕ.

Definition 1.10. The complex number z0 is said to be the root of nth degree
of the complex number z if

zn0 = z.

We denote this by z0 = n
√
z. There are n solutions of the above equation and

they are given by

(z0)k = |z|1/nei(ϕ/n+2πk/n), k = 0, 1, . . . , n− 1. (1.6)

Problem 1.11. Prove (1.6) using De Moivre formula.

Let us consider in the Euclidean space R3 the sphere S with center (0, 0, 1/2)
and radius 1/2 in the coordinate system (ξ, η, ζ), i.e.

ξ2 + η2 + (ζ − 1/2)2 = 1/4

or
ξ2 + η2 + ζ2 − ζ = 0. (1.7)

Let us draw a ray from the point P = (0, 0, 1) which intersects the sphere S at
the point M = (ξ, η, ζ) and complex plane C at the point z = x+ iy.

The point M is called stereographic projection of the complex number z on

the sphere S. Since the vectors
−−→
PM and

−→
Pz are colinear we have

ξ

x
=
η

y
=

1− ζ
1

.
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P

(0, 0, 1/2)

O

M

z

y

x

Thus, using (1.7) we have

x =
ξ

1− ζ , y =
η

1− ζ

so that

ξ =
x

1 + |z|2 , η =
y

1 + |z|2 , ζ =
|z|2

1 + |z|2 . (1.8)

Definition 1.12. The formulas (1.8) are called the formulas of the stereo-
graphic projection.

The formulas (1.8) allow us to introduce ”ideal” complex number z =∞ as
follows. Since there is one-to-one correspondence between C and S \P then we
may supplement this correspondence by one more, namely

P (0, 0, 1)←→∞.

In this case

S ←→ C := C ∪ {∞}

and, by (1.8),

1

∞ = 0,
1

0
=∞, z · ∞ =∞, z 6= 0, z +∞ =∞, z

∞ = 0, z 6=∞. (1.9)

Remark. The set C is called the extended complex plane.

Problem 1.13. Prove that the spherical distance between z1, z2 ∈ C can be
calculated as

ρS(z1, z2) =
|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
.
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The neighborhood of z0 ∈ C is defined as

Uδ(z0) = {z ∈ C : |z − z0| < δ}

and the neighborhood of z =∞ is defined as

UR(∞) = {z ∈ C : |z| > R}.

Definition 1.14.

1. The complex number z0 ∈ C is called the limiting point of some set M ⊂ C
if for any δ > 0 it is true that

(Uδ(z0) \ z0) ∩M 6= ∅

(or for any R > 0 it holds that (UR(∞) \∞) ∩M 6= ∅).

2. The set M ⊂ C is called closed if it contains all its limiting points.

3. Denoting all limiting points of M ⊂ C by M ′ we define the closure of M
as

M = M ∪M ′.

4. The boundary ∂M of the set M ⊂ C is defined as

∂M = M ∩ (C \M).

5. The point z0 ∈ C is called interior of some set M if there exists Uδ(z0)
(or UR(∞)) such that Uδ(z0) ⊂ M (or UR(∞) ⊂ M). If all points of M
are interior then M is called an open set .

Problem 1.15. Prove that M ⊂ C is open if and only if C \M is closed.

Definition 1.16. The complex number z0 ∈ C is said to be the limit of sequence
{zn}∞n=1 ⊂ C, denoted by z0 = limn→∞ zn, if for any ε > 0 there is n0 =
n0(ε, z0) ∈ N such that

|zn − z0| < ε

for all n ≥ n0.
We say that ∞ = limn→∞ zn if for any R > 0 there is n0 = n0(R) ∈ N such

that |zn| > R for all n ≥ n0.

Proposition 1.17.

1. z0 = limn→∞ zn, z0 6=∞ if and only if

Re z0 = lim
n→∞

Re zn and Im z0 = lim
n→∞

Im zn



1 Complex numbers and their properties 17

2. ∞ = limn→∞ zn if and only if limn→∞ |zn| =∞.

Proof. 1. If z0 = limn→∞ zn then for any ε > 0 there exists n0(ε) ∈ N such
that

|zn − z0|2 < ε2, n ≥ n0.

It means that

(Re zn − Re z0)2 + (Im zn − Im z0)2 < ε2, n ≥ n0.

It follows that

|Re zn − Re z0| < ε, | Im zn − Im z0| < ε, n ≥ n0

or
Re z0 = lim

n→∞
Re zn, Im z0 = lim

n→∞
Im zn.

Conversely, if a = limn→∞Re zn and b = limn→∞ Im zn then for any ε > 0
there exist n1(ε), n2(ε) ∈ N such that

|Re zn − a| < ε/2, n ≥ n1

| Im zn − b| < ε/2, n ≥ n2.

Denoting n0 = max(n1, n2) we obtain for all n ≥ n0 that

|zn − (a+ ib)| ≤ |Re zn − a|+ | Im zn − b| < ε/2 + ε/2 = ε.

2. Follows immediately from Definition 1.16.

Remark. In part 2) of Proposition 1.17 we cannot say anything more. Indeed,
let zn be defined as follows:

zn =

{
n+ i/n, n = 2k

1/n+ in, n = 2k + 1.

Then |zn| =
√
n2 + 1/n2 →∞ as n→∞ but Re zn 6→ ∞ and Im zn 6→ ∞.

The Bolzano–Weierstrass Principle If the sequence of complex numbers
{zn}∞n=1 is bounded i.e. there exists M > 0 such that

|zn| ≤M, n = 1, 2, . . .

then there is a subsequence zkn which converges to some point z0 ∈ C i.e.

lim
n→∞

zkn = z0.
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Indeed, since |zn| ≤ M then |Re zn| ≤ M and | Im zn| ≤ M . Using the
Bolzano–Weierstrass principle to the real sequence Re zn we find Re zkn such
that there exists a ∈ R with

a = lim
n→∞

Re zkn .

If we consider now Im zkn then it is also bounded and hence there exists a

subsequence, say Im z
(1)
kn

which has a limit

b = lim
n→∞

Im z
(1)
kn
.

Thus,

lim
n→∞

(Re z
(1)
kn

+ i Im z
(1)
kn

) = lim
n→∞

Re z
(1)
kn

+ i lim
n→∞

Im z
(1)
kn

= a+ ib.

If the sequence of complex numbers {zn}∞n=1 is not bounded, i.e. for all M > 0
there exists nM ∈ N such that |znM | > M , then there is a subsequence zkn such
that

lim
n→∞

|zkn | =∞.
The proof of this fact is the same as in real analysis.

There is one more useful property:

zn →∞

(i.e. |zn| → ∞) if and only if

lim
n→∞

1

zn
= 0.

Cauchy criterion The sequence of complex numbers {zn}∞n=1 converges if
and only if it is a Cauchy sequence, i.e. for any ε > 0 there exists n0(ε) such
that

|zn − zm| < ε, n,m ≥ n0.

The proof follows from the Cauchy criterion of real analysis.

Arithmetic operations with convergent sequences If

lim
n→∞

zn = z0, lim
n→∞

wn = w0

then

lim
n→∞

(zn ± wn) = z0 ± w0

lim
n→∞

zn · wn = z0 · w0

lim
n→∞

zn
wn

=
z0

w0
, w0 6= 0.
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If
lim
n→∞

zn =∞, lim
n→∞

wn =∞

then
lim
n→∞

zn · wn =∞.

Problem 1.18.

1. Let limn→∞ zn = z0, z0 6= 0, z0 6=∞ and limn→∞wn =∞. Prove that

lim
n→∞

zn · wn =∞, lim
n→∞

(zn ± wn) =∞, lim
n→∞

zn/wn = 0.

2. Let limn→∞ zn =∞ and limn→∞wn =∞. Prove that the limits

lim
n→∞

(zn ± wn) and lim
n→∞

zn/wn

might not exist.

Series The series of the complex numbers

∞∑
k=1

zk

is said to be convergent if the limit

lim
n→∞

n∑
k=1

zk

exists. Then this limit is denoted by

∞∑
k=1

zk.

It is equivalent to the convergence of the real series

∞∑
k=1

Re zk and
∞∑
k=1

Im zk

and in that case ∞∑
k=1

zk =
∞∑
k=1

Re zk + i
∞∑
k=1

Im zk.

The series
∑∞

k=1 zk is said to be absolutely convergent if

∞∑
k=1

|zk| <∞
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or ∞∑
k=1

|Re zk| <∞ and

∞∑
k=1

| Im zk| <∞.

The latter conditions follow from

|z| ≤ |Re z|+ | Im z| and |Re z|, | Im z| ≤ |z|.

The absolute convergence implies convergence but not vice versa.

Example 1.19 (Geometric series). Since

n∑
k=0

zk =
1− zn+1

1− z , z 6= 1

then the limit

lim
n→∞

n∑
k=0

zk

exists if and only if limn→∞ zn+1 exists and z 6= 1. But the latter limit exists if
and only if |z| < 1 and in that case it equals 0. Thus the series

∞∑
k=0

zk

converges if and only if |z| < 1 and

∞∑
k=0

zk =
1

1− z . (1.10)

Example 1.20 (Exponential function). The exponential function ez, z ∈ C can
be defined as the following series:

ez :=

∞∑
n=0

zn

n!
. (1.11)

From real analysis we know that

∞∑
n=0

|z|n
n!

= e|z|.

Therefore the series (1.11) is well-defined for all z ∈ C. Even more is true. For
z = x ∈ R we know that

ex =

∞∑
n=0

xn

n!
.
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Using (1.11) we obtain for purely imaginary z = iy that

eiy =

∞∑
n=0

(iy)n

n!
=

∞∑
k=0

(iy)2k

(2k)!
+

∞∑
k=0

(iy)2k+1

(2k + 1)!

=

∞∑
k=0

(−1)ky2k

(2k)!
+ i

∞∑
k=0

(−1)ky2k+1

(2k + 1)!
= cos y + i sin y.

This proves formula (1.5).
Now we would like to show that actually the function (1.11) can be repre-

sented (or understood) as

ez = ex(cos y + i sin y),

where ex, cos y and sin y are from real analysis. Indeed, by the binomial formula,

ez = ex+iy =
∞∑
n=0

(x+ iy)n

n!
=

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
xk(iy)n−k

=
∞∑
n=0

1

n!

n∑
k=0

n!

k!(n− k)!
xk(iy)n−k =

∞∑
k=0

∞∑
n=k

xk

k!

(iy)n−k

(n− k)!
=
∞∑
k=0

∞∑
m=0

xk

k!

(iy)m

m!

=
∞∑
k=0

xk

k!

∞∑
m=0

(iy)m

m!
= ex(cos y + i sin y).

Problem 1.21. Show that

1. ez1ez2 = ez1+z2

2. ez+i2πk = ez, k ∈ Z

3. e−z = 1/ez or ez = 1/e−z

4. (ez)n = enz, n ∈ Z

5. |ez| ≤ e|z|.



Chapter 2

Functions of complex variable

The complex-valued function of one real variable is the mapping

f : (a, b)→ C or f : [a, b]→ C

such that
z = f(t) = f1(t) + if2(t),

where t ∈ (a, b) or t ∈ [a, b]. Here, the open interval (a, b) might be infinite but
the closed interval [a, b] is considered only for finite a and b.

The notions of limit, continuity, differentiability and integrability are defined
coordinate-wise. i.e. for two real-valued functions f1(t) and f2(t) of one real
variable t.

Definition 2.1.

1. The continuous mapping f : [a, b] → C, z = f(t) is called the Jordan
curve if z(t1) 6= z(t2) for t1 6= t2. If in addition z(a) = z(b) then this
curve is called closed.

2. The Jordan curve is called piecewise smooth if there are points

a = t0 < t1 < · · · < tn = b

such that z = f(t) is continuously differentiable on the intervals [tj−1, tj ]
for j = 1, 2, . . . , n and f ′(t) 6= 0.

3. If n = 1 above then the Jordan curve is called smooth.

We will use the following statement proved by Jordan (we accept it like
axiom, without proof):

Any closed Jordan curve divides C into two domains (regions): internal (not
containing z =∞) and external (containing z =∞). They are denoted as int γ
and ext γ, respectively, so that

C = int γ ∪ γ ∪ ext γ.
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Definition 2.2.

1. A set D ⊂ C is called connected if for any points z1, z2 ∈ D there is a
Jordan curve connecting these points and lying in D.

2. A set D ⊂ C is called a domain if it is connected and open.

We consider a complex-valued function w of one complex variable z as fol-
lows. Let us have two copies of the complex plane, one in z and one in w. Let
D be a domain in z and G a domain in w. Then a function w = f(z) is the
mapping

f : D → G

such that
w = u+ iv = f(z) = f1(x, y) + if2(x, y).

This is equivalent to the definition of two real-valued functions u and v of two
real variables x and y such that w = f(z) if and only if

u(x, y) = Rew and v(x, y) = Imw.

f

x

y

D

u

v

G

bz bw

In particular, we have that

b = lim
z→z0

f(z), b 6=∞ (2.1)

if and only if

Re b = lim
(x,y)→(x0,y0)

Re f(z) and Im b = lim
(x,y)→(x0,y0)

Im f(z).

Also,
∞ = lim

z→z0
f(z)

if and only if
lim
z→z0

|f(z)| = +∞

i.e. for all R > 0 there exists δ(R) > 0 such that |f(z)| > R whenever |z| > δ.
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Here (2.1) means that for any ε > 0 there is δ = δ(ε, z0) > 0 such that

|f(z)− b|C < ε

whenever |z − z0| < δ i.e. |(x, y) − (x0, y0)|R2 < δ. Therefore, the arithmetic
operations for complex-valued functions of one complex variable are satisfied,
i.e. if

lim
z→z0

f(z) = a and lim
z→z0

g(z) = b

then

1.
lim
z→z0

(f(z)± g(z)) = a± b

i.e.
lim

(x,y)→(x0,y0)
(Re f ± Re g) = Re a± Re b

and
lim

(x,y)→(x0,y0)
(Im f ± Im g) = Im a± Im b

2.
lim
z→z0

f(z) · g(z) = a · b

i.e.
lim

(x,y)→(x0,y0)
Re(f · g) = Re(a · b)

and
lim

(x,y)→(x0,y0)
Im(f · g) = Im(a · b)

3.
lim
z→z0

f(z)/g(z) = a/b, if b 6= 0

i.e.
lim

(x,y)→(x0,y0)
Re(f/g) = Re(a/b)

and
lim

(x,y)→(x0,y0)
Im(f/g) = Im(a/b)

Definition 2.3. A function w = f(z) is called univalent if f : D → G onto (is
surjective) and if for any z1, z2 ∈ D, z1 6= z2

w1 = f(z1) 6= w2 = f(z2) (injectivity).

In this case there is an inverse function f−1 which maps as

f−1 : G→ D
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onto (surjectively) such that f−1(w) = z if w = f(z), i.e.

z = f−1(f(z)), w = f(f−1(w)), z ∈ D,w ∈ G.
This inverse function f−1 is also univalent (bijective).

Summarizing, we have

z = f−1(f(z)) for all z ∈ D
and

w = f(f−1(w)) for allw ∈ G.
Definition 2.4.

1. A function w = f(z) is continuous at z = z0 6= ∞ if f(z) is well-defined
in a neighborhood Uδ(z0) and if for any ε > 0 there exists δ(ε, z0) > 0
such that

|f(z)− f(z0)| < ε

whenever |z − z0| < δ.

2. A function w = f(z) is continuous at z = ∞ if f(z) is well-defined for
|z| > A and there exists b ∈ C such that for any ε > 0 there is R(ε, b) > 0
such that

|f(z)− b| < ε

for any |z| > R. In that case f(∞) = b.

3. A function w = f(z) is continuous on the set A ⊂ C if it is continuous at
any point z0 ∈ A.

4. A function w = f(z) is uniformly continuous on the set A ⊂ C if for any
ε > 0 there exists δ(ε) > 0 such that

|f(z1)− f(z2)| < ε

whenever |z1 − z2| < δ and z1, z2 ∈ A.

Remark. Since
|z − z0|C < δ

if and only if
|(x, y)− (x0, y0)|R2 < δ

and
|f(z)− f(z0)| < ε

if and only if

|u(x, y)− u(x0, y0)| < ε, and |v(x, y)− v(x0, y0)| < ε

then the continuity of f(z) is equivalent to the continuity of Re f(z) and Im f(z)
as functions of two variables (x, y).
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Problem 2.5. Show that ez 6= 0 for any z ∈ C and the limit limz→∞ ez does
not exist (finite or infinite).

Problem 2.6. Investigate the continuity at 0 of the functions
a) z2/|z|2, b) (zRe z)/|z|, c) (Im z)/z d) e−1/z2 .

Example 2.7. A linear-fractional (bilinear) function is defined for z ∈ C as

w =
az + b

cz + d
, ad− bc 6= 0, c 6= 0. (2.2)

It is well-defined if z 6= −d/c. Since

w1 − w2 =
az1 + b

cz1 + d
− az2 + b

cz2 + d
=

(ad− bc)(z1 − z2)

(cz1 + d)(cz2 + d)

then this function is univalent in the domain C \ {−d/c}. The inverse function
z = z(w) is also bilinear and defined by

z =
dw − b
a− cw

and it is well-defined (and univalent) in the domain C \ {a/c}. If we define

w(−d/c) =∞ and w(∞) = a/c

then the bilinear function maps C onto C bijectively. The same is true for the
inverse function.

Let us show that the bilinear function (2.2) is continuous everywhere in
C \ {−d/c}. Indeed, if first z0 6= −d/c, z0 6=∞ then

|w(z)− w(z0)| =
∣∣∣∣(ad− bc)(z − z0)

(cz + d)(cz0 + d)

∣∣∣∣ =
|ad− bc||z − z0|

|cz0 + d+ c(z − z0)||cz0 + d| .

Since |cz0 + d| > 0 then we may choose |z − z0| < δ and |z − z0| ≤ |cz0+d|
2|c| . In

this case

|cz + d| = |cz0 + d+ c(z − z0)| ≥ |cz0 + d| − |c||z − z0| ≥
|cz0 + d|

2

and

|w(z)− w(z0)| < |ad− bc|δ|cz0+d|2
2

≤ ε.

If for arbitrary ε > 0 we will define

δ = min

{ |cz0 + d|
2|c| ,

ε|cz0 + d|2
2|ad− bc|

}
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then the condition |z − z0| < δ implies |w(z) − w(z0)| < ε i.e. the bilinear
function is continuous at any such point z0.

If now we have z0 =∞ then we may choose |z| > 2|d/c| and obtain

|w(z)− w(∞)| =
∣∣∣∣az + b

cz + d
− a

c

∣∣∣∣ =
|ad− bc|
|c||cz + d| =

|ad− bc|
|c|2|z + d/c|

≤ |ad− bc|
|c|2(|z| − |d/c|) ≤

2|ad− bc|
|c|2|z| = ε.

Hence, if for arbitrary ε > 0 we will choose

R =
2|ad− bc|
|c|2ε

then the condition |z| > R implies |w(z)−w(∞)| < ε i.e. the bilinear function
is continuous also at ∞.

Remark. For c = 0 the bilinear function reduces to the linear function

w(z) =
a

d
z +

b

d
, d 6= 0.

It is easy to check that this is continuous on C (but not at ∞) and univalent
on C.

Example 2.8. The squared function is defined for z ∈ C as

w = w(z) = z2, w(∞) =∞. (2.3)

Since
w1 − w2 = z2

1 − z2
2 = (z1 − z2)(z1 + z2)

then we may conclude that z1 6= z2 if and only if w1 6= w2 (because w1 = w2

if and only if z1 = z2 or z1 = −z2). Thus the squared function (2.3) is not
univalent on C.

But if we consider two subdomains

D+ = {z ∈ C : Im z > 0}

and
D− = {z ∈ C : Im z < 0}

then in each of these two subdomains the squared function (2.3) is univalent.
It is very easy to check that in both domains z1 6= −z2. Indeed, z1 = −z2 if and
only if Re z1 = −Re z2 and Im z1 = − Im z2 i.e. these equalities are impossible
in D+ or in D−.

In order to define the inverse of w = z2 in D± we proceed as follows:

w1 + iw2 = z2 = x2 − y2 + 2ixy
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if and only if

w1 = x2 − y2, x =
w2

2y
.

So

w1 =
w2

2

4y2
− y2

or

4y4 + 4y2w1 − w2
2 = 0.

Hence

y2 =
−2w1 +

√
4w2

1 + 4w2
2

4
.

It yields

y =

√√
w2

1 + w2
2 − w1

2
in D+

and

y = −

√√
w2

1 + w2
2 − w1

2
in D−.

Consequently,

x =
w2

2

√√
w2

1+w2
2−w1

2

in D+

and

x = − w2

2

√√
w2

1+w2
2−w1

2

in D−.

Remark. As we can see, in D±, w2 = 0 if and only if x = 0 i.e. Imw = 0 if and
only if Re z = 0 and in this case Rew = −(Im z)2 i.e. w1 = −y2 < 0.

So finally we have

z+ =
w2

√
2
√√

w2
1 + w2

2 − w1

+ i

√√
w2

1 + w2
2 − w1√

2

z− = − w2
√

2
√√

w2
1 + w2

2 − w1

− i

√√
w2

1 + w2
2 − w1√

2
.

We may simplify these formulas to obtain

z+ =

√
w1 + |w|

2
+ i

w2√
w1+|w|

2

, z− = −z+. (2.4)
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In these formulas, z+ is called (
√
w)+ with Im z+ > 0 and z− is called (

√
w)−

with Im z+ < 0 so that we have two branches for inverse function.

For the case x = 0 we obtain easily from Remark above that

z+ = i
√−w1, and z− = −i

√−w1. (2.5)

For the case Im z = 0 we have real-valued (and nonnegative) function of one
real variable x i.e.

w1 = x2.

Its inverse also has two branches

x+ =
√
w1, x− = −√w1, w1 ≥ 0. (2.6)

The formulas (2.4)-(2.6) can be written shortly (compare with (1.6)) as

z± =
√
|w|ei argw/2 and z∓ =

√
|w|ei(argw/2+π) = −

√
|w|ei argw/2, (2.7)

where argw ∈ (−π, π]. Here ± depend on argw. More precisely, if argw ∈
(0, π) then z+ ∈ D+ and z− ∈ D−, but if argw ∈ (−π, 0) then z+ ∈ D− and
z− ∈ D+.

Problem 2.9. Show that (2.4)-(2.6) and (2.7) are equivalent.

The squared function (2.3) is continuous at any point z0 ∈ C since

|w(z)− w(z0)| = |z2 − z2
0 | = |z − z0||z + z0| < δ|z + z0| < δ(δ + 2|z0|) = ε

so, if for arbitrary ε > 0, we choose

δ = −|z0|+
√
|z0|2 + ε > 0

then the condition |z − z0| < δ implies |w(z) − w(z0)| < ε. So w = z2 is
continuous at z0 6=∞. At z0 =∞ this function is not continuous since w(∞) =
∞.

Problem 2.10. Investigate the function w = z3 by the same manner as in
Example 2.8 and Problem 2.6.

Example 2.11. The Zhukovski function is defined for any z 6= 0 and z 6=∞ as

w(z) =
1

2

(
z +

1

z

)
(2.8)

or z2 − 2zw + 1 = 0. We define

w(∞) = w(0) =∞.
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Since

w(z1)− w(z2) =
1

2
(z1 − z2)

(
1− 1

z1z2

)
then w(z1) 6= w(z2) if and only if z1 6= z2 and z1z2 6= 1. Thus, the Zhukovski
function (2.8) is univalent if and only if z1z2 6= 1, for example, if either |z| < 1
or |z| > 1 i.e. in the domains

D1 = {z ∈ C : |z| < 1}, D2 = {z ∈ C : |z| > 1}.

On the unit circle |z| = 1 there are always two different points z1 and z2 such
that z1z2 = 1. Indeed, if z1 = eiϕ1 , ϕ1 ∈ (−π, π) then if we consider z2 = e−iϕ1

we have z1z2 = 1, but z1 6= z2. In this consideration the case z1 = eiπ = −1 is
excluded.

For any z = reiϕ we have that

w(z) =
1

2

(
reiϕ +

1

r
e−iϕ

)
=

1

2

(
r +

1

r

)
cosϕ+

i

2

(
r − 1

r

)
sinϕ.

It implies

|w|2 =
1

4

(
r +

1

r

)2

+
cosϕ− 1

2

and hence

|w|2 ≤ 1

4

(
r +

1

r

)2

, |w|2 ≥ 1

4

(
r +

1

r

)2

− 1.

Using (2.8) we obtain that in the domain D1 the inverse function is given by

z = w −
√
w2 − 1

and by

z = w +
√
w2 − 1

in the domain D2, depending on the choice of
√
w2 − 1.

Zhukovski function is continuous at any point z0 6= 0,∞. Indeed, for such
z0 we have,

|w(z)− w(z0)| = 1

2
|z − z0|

∣∣∣∣1− 1

zz0

∣∣∣∣ =
1

2
|z − z0|

∣∣∣∣1− 1

((z − z0) + z0)z0

∣∣∣∣
≤ |z − z0|

2

(
1 +

1

|(z − z0) + z0||z0|

)
≤ |z − z0|

2

(
1 +

1

|z0|(|z0| − |z − z0|)

)
≤ |z − z0|

2

(
1 +

1

|z0||z0|/2

)
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if |z − z0| ≤ |z0|/2. Thus, for any ε > 0 and |z − z0| < min(δ, |z0|/2) we have

|w(z)− w(z0)| < δ

2

(
1 +

2

|z0|2
)

= ε.

So choosing

δ = min

(
2ε

1 + 2/|z0|2
,
|z0|
2

)
the condition |z − z0| < δ implies |w(z) − w(z0)| < ε. At z = 0 or z = ∞ the
Zhukovski function is not continuous since w(0) = w(∞) =∞.

Problem 2.12. Show that the Zhukovski function maps real numbers into real
numbers and purely imaginary numbers to purely imaginary numbers.

Problem 2.13. Show that the Zhukovski function maps the unit circle |z| = 1
into cos(arg z).

As a consequence of the notion of limit we may formulate and prove (as in
real analysis) the following general statements:

Proposition 2.14. Assume that f and g are continuous at some point z0 (or
on a set A). Then

1. f ± g

2. f · g

3. f
g , if g(z0) 6= 0 (or g(z) 6= 0 for all z ∈ A)

4. |f |

are continuous at z0 (or on the set A).

Proposition 2.15. Let w = f(z) be continuous on a set A and g(w) continuous
on the set f(A). Then the composite function

η = g(f(z)) = (g ◦ f)(z)

is continuous on the set A.

Corollary 2.16. If w = f(z) is univalent and continuous on a domain D, then
the inverse function z = f−1(w) is continuous on the domain G = f(D).

Proof. Since for any z ∈ D we have

z = f−1(f(z))

and f is continuous on D then f−1(w) is continuous on G = f(D) because z is
continuous.
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Weierstrass theorems

1. If D ⊂ C is compact (i.e. closed and bounded) and f is continuous on D
then f is bounded and f is uniformly continuous on D.

2. The previous statement holds also for compact D ⊂ C (see stereographic
projection).

3. If D ⊂ C is compact and f is continuous on D then |f | achieves maximum
and minimum on D.



Chapter 3

Analytic functions
(differentiability)

Definition 3.1. Let w = f(z) be well-defined on a domain D ⊂ C and z0 ∈ D.
If the limit

lim
D3z→z0

f(z)− f(z0)

z − z0

exists then this limit is called the derivative of f(z) at the point z0 and it is
denoted as f ′(z0). In this case f is called differentiable at z0 with

lim
D3z→z0

f(z)− f(z0)

z − z0
= f ′(z0). (3.1)

We say that f ′(∞) exists if f is continuous at z = ∞ and there is g′(0) for
g(z) = f(1/z). This is equivalent to

g′(0) = lim
ζ→∞

ζ [f(ζ)− f(∞)] =: f ′(∞).

This definition is equivalent to the existence of the limit

lim
x→x0
y→y0

u(x, y)− u(x0, y0) + i(v(x, y)− v(x0, y0))

(x− x0) + i(y − y0)
.

In particular, if x = x0 and y → y0, y 6= y0 the latter limit equals

lim
y→y0

u(x0, y)− u(x0, y0) + i(v(x0, y)− v(x0, y0))

i(y − y0)

=
1

i

∂u

∂y
(x0, y0) +

∂v

∂y
(x0, y0) =

∂v

∂y
(x0, y0)− i

∂u

∂y
(x0, y0). (3.2)
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In the case y = y0 and x→ x0, x 6= x0 the limit equals

lim
x→x0

u(x, y0)− u(x0, y0) + i(v(x, y0)− v(x0, y0))

x− x0

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (3.3)

Since the limit (3.1) is unique we obtain from (3.2) and (3.3) that we must
necessarily have

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) and

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (3.4)

The equalities (3.4) are called the Cauchy-Riemann conditions. We have proved
that they are necessary for existence of f ′(z). Actually they are also sufficient.
More precisely, let u(x, y) and v(x, y) be differentiable at the point (x0, y0). If
the conditions (3.4) are satisfied then f ′(z0) exists. Indeed, we have

u(x, y)− u(x0, y0)

=
∂u

∂x
(x0, y0)(x− x0) +

∂u

∂y
(x0, y0)(y − y0) + o(

√
(x− x0)2 + (y − y0)2)

and

v(x, y)− v(x0, y0)

=
∂v

∂x
(x0, y0)(x− x0) +

∂v

∂y
(x0, y0)(y − y0) + o(

√
(x− x0)2 + (y − y0)2),

where o(·) means that o(s)/s→ 0 as s→ 0. Therefore we have, using (3.4)

u(x, y)− u(x0, y0) + i(v(x, y)− v(x0, y0)) =

∂u

∂x
(x0, y0)(x− x0) +

∂u

∂y
(x0, y0)(y − y0)

+ i

(
∂v

∂x
(x0, y0)(x− x0) +

∂v

∂y
(x0, y0)(y − y0)

)
+ o(

√
(x− x0)2 + (y − y0)2)

=

[
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

]
[(x− x0) + i(y − y0)]

+ o(
√

(x− x0)2 + (y − y0)2)

or
f(z)− f(z0)

z − z0
=
∂f

∂x
(x0, y0) +

o(|z − z0|)
z − z0

.
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This representation implies that the limit

lim
z→z0

f(z)− f(z0)

z − z0
=
∂f

∂x
(x0, y0) = f ′(z0) (3.5)

exists. In a similar manner we obtain

lim
z→z0

f(z)− f(z0)

z − z0
= −i

∂f

∂y
(x0, y0) = f ′(z0). (3.6)

Thus we have proved the following fundamental result.

Theorem 3.2. The function w = f(z) is differentiable at the point z0 if and
only if Re f(z) and Im f(z) are differentiable at the point (x0, y0) as real-valued
functions of two real variables x and y and the Cauchy-Riemann conditions
(3.4) are satisfied.

Remark. Formulas (3.5) and (3.6) imply that

f ′(z0) =
1

2

(
∂f

∂x
− i

∂f

∂y

)
=:

∂f

∂z

0 =
1

2

(
∂f

∂x
+ i

∂f

∂y

)
=:

∂f

∂z
.

(3.7)

Hence, the Cauchy-Riemann conditions are equivalent to

∂f

∂z
(z0) = f ′(z0) and

∂f

∂z
(z0) = 0. (3.8)

Example 3.3. Consider the function

f(z) = z.

Then u(x, y) = x and v(x, y) = −y. The partial derivatives in this case are

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= −1

so that

1 =
∂u

∂x
6= ∂v

∂y
= −1, 0 =

∂u

∂y
= −∂v

∂x
= 0.

Thus Cauchy-Riemann conditions are not satisfied and therefore f(z) = z has
no derivative.

Example 3.4. Let us consider

f(z) = |z|2 = zz = x2 + y2.
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Then
∂u

∂x
= 2x,

∂u

∂y
= 2y,

∂v

∂x
= 0,

∂v

∂y
= 0.

Hence the Cauchy-Riemann conditions are

2x =
∂u

∂x
=
∂v

∂y
= 0 and 2y =

∂u

∂y
= −∂v

∂x
= 0

i.e. x = y = 0. Thus (3.4) are satisfied only for z = 0 and they are not satisfied
for z 6= 0 i.e.

lim
z→z0

|z|2 − |z0|2
z − z0

exists (and equals 0) if and only if z0 = 0. So

(|z|2)′(0) = 0.

Problem 3.5. Let

f(z) = R(x, y)eiθ(x,y),

where R and θ are real-valued. Prove that Cauchy-Riemann conditions can be
written in this case as

∂R

∂x
= R

∂θ

∂y
and

∂R

∂y
= −R∂θ

∂x
. (3.9)

Problem 3.6. Let

w =
az + b

cz + d
, ad 6= bc, c 6= 0

be a bilinear function. Show that

w′(z) = − bc− ad
(cz + d)2

for any z 6= −d/c.

Problem 3.7. Let

w =
az + b

cz + d
, ad 6= bc, c 6= 0.

Show that w′(∞) = (bc− ad)/c2.

Problem 3.8. Let

w = ez = ex(cos y + i sin y).

Show that

(ez)′ = ez

at any point z 6=∞.
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Problem 3.9. Let

w =
1

2

(
z +

1

z

)
.

Show that

w′(z) =
1

2

(
1− 1

z2

)
, z 6= 0, z 6=∞.

Show also that w′(∞) does not exist but

lim
z→0

w′(z) =∞, lim
z→∞

w′(z) = 1/2.

Proposition 3.10. If w = f(z) is differentiable at z = z0 then f(z) is also
continuous at z0 but not vice versa.

Proof. Since the limit

lim
z→z0

f(z)− f(z0)

z − z0
= f ′(z0)

exists then

f(z)− f(z0) = f ′(z0)(z − z0) + o(z − z0).

This implies that

lim
z→z0

f(z) = f(z0).

The function f(z) = z provides an example of a function which is continuous
but not differentiable.

Proposition 3.11. Let η(z) = g(f(z)) be the composition of functions w =
f(z) and η = g(w). If f(z) is differentiable at z = z0 and g(w) is differentiable
at w0 = f(z0) then η(z) is differentiable at z = z0 and

η′(z0) = g′(w0)f ′(z0) = g′(f(z0))f ′(z0). (3.10)

Proof. By definition we have

η(z)− η(z0)

z − z0
=
g(f(z))− g(f(z0))

z − z0
=
g(w)− g(w0)

w − w0
· f(z)− f(z0)

z − z0
,

where w = f(z) and w0 = f(z0). If z → z0 then w → w0 by Proposition 3.10.
Then due to conditions of this Proposition we have

lim
z→z0

η(z)− η(z0)

z − z0
= lim

w→w0

g(w)− g(w0)

w − w0
· lim
z→z0

f(z)− f(z0)

z − z0
= g′(w0)f ′(z0)

or η′(z0) = g′(w0)f ′(z0).
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Corollary 3.12. Let w = f(z) be univalent on a domain D. Then f is differ-
entiable on D if and only if the inverse function z = f−1(w) is differentiable
on G = f(D) and

f ′(z) =
1

(f−1)′(w)
, w = f(z). (3.11)

In particular, both derivatives are not equal to zero.

Proof. The claim follows from the representations

z = f−1(f(z)), z ∈ D and w = f(f−1(w)), w ∈ G
and Proposition 3.11. Indeed,

1 = (z)′ = (f−1)′(w)f ′(z),

where w = f(z) and both derivatives are not equal to zero necessarily.

Example 3.13. Consider the Zhukovski function

w =
1

2

(
z +

1

z

)
.

Then (3.11) leads to

(f−1)′(w) =
2

1− 1/z2
=

2

1− 1/(2wz − 1)
=

2wz − 1

wz − 1
= 1 +

w

w − 1/z
,

where z = w ±
√
w2 − 1. So

(f−1)′(w) = 1± w√
w2 − 1

depending on the domains D1 and D2, see Example 2.11. In the domains D1

and D2 we have w 6= ±1 and therefore the latter formula is well-defined.

Example 3.14. Let us introduce some new functions:

sin z :=
eiz − e−iz

2i
, cos z :=

eiz + e−iz

2

sinh z :=
ez − e−z

2
, cosh z :=

ez + e−z

2
.

(3.12)

These functions are compositions of ez and eiz. That’s why we have

(sin z)′ =
(eiz)′ − (e−iz)′

2i
=

ieiz + ie−iz

2i
=

eiz + e−iz

2
= cos z

(cos z)′ =
(eiz)′ + (e−iz)′

2
=

ieiz − ie−iz

2
= −eiz − e−iz

2i
= − sin z

(sinh z)′ =
(ez)′ − (e−z)′

2
=

ez + e−z

2
= cosh z

(cosh z)′ =
(ez)′ + (e−z)′

2
=

ez − e−z

2
= sinh z.
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There are also some useful equalities:

cos2 z + sin2 z =
e2iz + 2 + e−2iz

4
− e2iz − 2 + e−2iz

4
= 1

and

cosh2 z − sinh2 z =
(ez + e−z)2

4
− (ez − e−z)2

4
= 1.

Also we obtain the equalities

cos(−z) = cos z, sin(−z) = − sin(z)

eiz = cos z + i sin z

e−iz = cos z − i sin z.

(3.13)

Remark. Since

ez =

∞∑
n=0

zn

n!
, z ∈ C

then

eiz =
∞∑
n=0

(iz)n

n!
, e−iz =

∞∑
n=0

(−iz)n

n!
.

So we obtain using (3.12) that

cos z =
1

2

∞∑
n=0

in + (−i)n

n!
zn

=
1

2

( ∞∑
k=0

i2k + (−i)2k

(2k)!
z2k +

∞∑
k=0

i2k+1 + (−i)2k+1

(2k + 1)!
z2k+1

)

=

∞∑
k=0

(−1)k

(2k)!
z2k

because
i2k + (−i)2k = (−1)k + (−1)k = 2(−1)k

and
i2k+1 + (−i)2k+1 = i(−1)k − i(−1)k = 0.

So

cos z =
∞∑
k=0

(−1)k

(2k)!
z2k, z ∈ C. (3.14)

In a similar fashion we obtain

sin z =

∞∑
k=0

(−1)k

(2k + 1)!
z2k+1, z ∈ C. (3.15)
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Problem 3.15. Show that

cosh z =
∞∑
k=0

z2k

(2k)!
, sinh z =

∞∑
k=0

z2k+1

(2k + 1)!
, z ∈ C. (3.16)

Problem 3.16. Show that

1. cos z = cosh(iz) and sin z = −i sinh(iz)

2. |ez| = ex and (ez) = ez for z = x+ iy

3. | cos z| =
√

cosh2 y − sin2 x

4. | sin z| =
√

sinh2 y + sin2 x

5. | cos z|2 + | sin z|2 = cosh2 y + sinh2 y = 1 + 2 sinh2 y.

Problem 3.17. Calculate the derivative of the function f(z) = ez
2

using (3.10).

Problem 3.18. Calculate the derivative of the inverse function for w = zn

using (3.11).

Definition 3.19.

1. A function f(z) is said to be analytic in a domain D if for each z ∈ D
the derivative f ′(z) exists and is continuous in D. The set of all analytic
functions in D will be denoted by H(D).

2. A function f(z) is said to be analytic in the point z0 ∈ D if f(z) is analytic
in some neighborhood Uδ(z0) ⊂ D of z0.

3. A function f(z) is said to be analytic at z =∞ if g(z) = f(1/z) is analytic
at the point z = 0.

From this definition and the definition of the derivative it follows that

1. If f1, f2 ∈ H(D) then

f1 ± f2, f1 · f2,
f1

f2
∈ H(D)

too. In the last case we assume f2 6= 0.

2. If f ∈ H(D) and g ∈ H(G), where G = f(D) then g ◦ f ∈ H(D).

Example 3.20. The function

Pn(z) := a0 + a1z + · · ·+ anz
n,

where a0, a1, . . . , an ∈ C, an 6= 0 is called the polynomial of order n. It is clear
that Pn(z) ∈ H(C) but it is not analytic at z =∞ if n ≥ 1.

If Pn(z0) = 0 then z0 is called the root of this polynomial and Pn(z) =
(z − z0)Pn−1(z), where Pn−1 is a polynomial of order n− 1.
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Example 3.21. The function

R(z) =
Pn(z)

Qm(z)
, Qm(z) 6= 0

is called the rational function. It follows that R(z) is analytic everywhere in

C \ {z(1)
0 , . . . , z

(k)
0 },

where

Pn(z
(j)
0 ) 6= 0 and Qm(z

(j)
0 ) = 0.

Example 3.22. The tangent function is defined by

tan z :=
sin z

cos z
, cos z 6= 0.

The zeros of cos z satisfy eiz + e−iz = 0. So e2iz = −1 or

e2ix = −e2y.

Comparing real and imaginary parts we see that

cos 2x = −e2y, sin 2x = 0

or

2x = πk, k ∈ Z, cos(πk) = −e2y.

So

x = πk/2, (−1)k = −e2y, k ∈ Z

or

x = πk/2, 1 = e2y, k = ±1,±3, . . .

Thus

y = 0, x =
π

2
(2m+ 1), m ∈ Z.

We denote

zm = −π
2

+mπ + i0, m ∈ Z.

Since sin zm = ±1 6= 0 then tan z is analytic everywhere in C except at zm. In
this domain

(tan z)′ =
(sin z)′ cos z − sin z(cos z)′

cos2 z
=

cos2 z + sin2

cos2 z
=

1

cos2 z
.

Problem 3.23. Show that sin z = 0 if and only if z = πk + i0, k ∈ Z.
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Example 3.24. The function

tanh z :=
sinh z

cosh z
, cosh z 6= 0

is called hyperbolic tangent function. The zeros of cosh z satisfy

e2x = −e−i2y

or x = 0, y = π/2 + πm,m ∈ Z. Hence tanh z is analytic everywhere in C \
{zm}∞m=−∞, where

zm = 0 + i(π/2 + πm), m ∈ Z
and

(tanh z)′ =
1

cosh2 z
.

Problem 3.25. Show that sinh z = 0 if and only if z = 0 + iπk, k ∈ Z.

Example 3.26. Let us consider the exponential function

w = ez

and let us try to find its inverse. Since

w = |w|ei argw, w 6= 0, argw ∈ (−π, π]

and ez = exeiy then

|w| = ex and argw = y + 2πk, k ∈ Z.

So
x = log |w| and y = argw + 2πk, k ∈ Z.

Thus
z = log |w|+ i argw + i2πk, k ∈ Z.

We see that the inverse of the function w = ez is not single-valued, namely we
have infinitely many branches

zk = log |w|+ i argw + i2πk, k ∈ Z.

The multivalued function is

z = Logw := log |w|+ i argw + i2πk, k ∈ Z.

Its main branch is

z = logw := log |w|+ i argw, argw ∈ (−π, π].

The logarithmic function w = Log z, z 6= 0 is analytic everywhere in C \ R−
since arg z has a jump over negative real axis. Moreover,

(Log z)′ =
1

(ew)′
=

1

ew
=

1

z
.

Therefore it is also continuous in C \ R− (compare with Corollary 3.12).
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Remark. Since
Log z = log z + i2πk, k ∈ Z

then the derivative of Log z is the same ((Log z)′ = 1/z) for all branches of the
multivalued logarithmic function.

Example 3.27. The function

zm/n := e
m
n

Log z, z 6= 0

is called the rational power function. Since

Log z = log |z|+ i arg z + i2πk, k ∈ Z

then
zm/n = e

m
n

(log |z|+i arg z+i2πk) = e
m
n

log |z|eim
n

arg z+i 2πkm
n .

The expression

ei 2πkm
n

has different values only for k = 0, 1, . . . , n − 1 (we have assumed that m/n is
uncancelled fraction). That’s why we have n different branches of

zm/n = |z|mn ei(mn arg z+ 2πkm
n ), k = 0, 1, . . . , n− 1.

Its derivative is

(zm/n)′ = (e
m
n

Log z)′ = e
m
n

Log zm

n
(Log z)′ =

m

n
zm/n−1.

Example 3.28. The function

zα := eαLog z, z 6= 0, α ∈ R \Q

is called the irrational power function. It is actually equal to

zα = eα(log |z|+i arg z+i2πk) = |z|αeiα arg z+iα2πk, k ∈ Z

and we have infinitely many branches since α is not rational number. Its deriva-
tive is

(zα)′ = (eαLog z)′ = αeαLog z(Log z)′ = αzα−1.

The definition of irrational power can be easily generalized for any complex
power α = α1 + iα2. Namely, the function

zα := eαLog z, z 6= 0, α ∈ C

is called the general power function. As before, it is equal to

zα = eαLog z = eα(log |z|+i arg z+i2πk) = e(α1+iα2)(log |z|+i arg z+i2πk)

= eα1 log |z|−α2(arg z+2πk)ei(α2 log |z|+α1(arg z+2πk))

and we have infinitely many branches. The derivative is again (zα)′ = αzα−1.



44 Part I

Example 3.29. Let us find the inverse of w = sin z. From

w =
eiz − e−iz

2i

we obtain

2iw = eiz − 1

eiz

or (eiz)2 − 2iweiz − 1 = 0. It implies

eiz = iw +
√

1− w2.

So

iz = Log(iw +
√

1− w2)

or

z = −i Log(iw +
√

1− w2),

where Log denotes the multivalued function. The inverse of sin z is hence

z = z(w) = −i Log(iw +
√

1− w2) =: arcsinw

and it has infinitely many branches. Its derivative is

d

dw
arcsinw =

d

dw

1

i
Log(iw +

√
1− w2) =

1

i

1

iw +
√
w2 − 1

(
i− w√

1− w2

)
=

1

i

1

iw +
√
w2 − 1

i
√

1− w2 − w√
1− w2

=
1√

1− w2
, w 6= ±1.

Problem 3.30. Show that

1. sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

2. cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

3. sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2

4. cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

Problem 3.31. Show that

Log(z1 · z2) = Log z1 + Log z2

for any z1 6= 0 and z2 6= 0.

We will finish this chapter by the following very useful rule which is called
L’Hôpital’s rule.
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Proposition 3.32. Suppose f and g are analytic at z0. If f(z0) = g(z0) = 0
but g′(z0) 6= 0 then

lim
z→z0

f(z)

g(z)
=
f ′(z0)

g′(z0)
.

Proof. Because g′(z0) 6= 0 then g is not identically equal to zero and there is a
neighborhood Uδ(z0) in which g′(z) 6= 0. Therefore the quotient

f(z)

g(z)
=
f(z)− f(z0)

g(z)− g(z0)

is defined for all z ∈ Uδ(z0) and

lim
z→z0

f(z)

g(z)
= lim

z→z0
f(z)− f(z0)

g(z)− g(z0)
= lim

z→z0

f(z)−f(z0)
z−z0

g(z)−g(z0)
z−z0

=
f ′(z0)

g′(z0)
.

Problem 3.33. Using L’Hôpital’s rule calculate the limits

lim
z→0

log2(1 + z)

z2
and lim

z→0

1− cos z

sin2 z
.



Chapter 4

Integration of functions of
complex variable (curve
integration)

Let γ be a smooth Jordan curve i.e.

γ : z = z(t), t ∈ [a, b].

Assuming that f(z) is a continuous function we may define two types of curve
integrals along γ as∫

γ
f(z)dz :=

∫ b

a
f(z(t))z′(t)dt

=

∫ b

a
(u(z(t)) + iv(z(t)))(x′(t) + iy′(t))dt

=

∫ b

a
[u(x(t), y(t))x′(t)− v(x(t), y(t))y′(t)]dt

+ i

∫ b

a
[v(x(t), y(t))x′(t) + u(x(t), y(t))y′(t)]dt

=

∫
γ
(u(x, y)dx− v(x, y)dy) + i

∫
γ
(v(x, y)dx+ u(x, y)dy) (4.1)

and ∫
γ
f(z)|dz| :=

∫ b

a
f(z(t))

√
(x′(t))2 + (y′(t))2dt =

∫ b

a
f(z(t))|z′(t)|dt

=

∫ b

a
u(x(t), y(t))

√
(x′(t))2 + (y′(t))2dt

+ i

∫ b

a
v(x(t), y(t))

√
(x′(t))2 + (y′(t))2dt. (4.2)
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The first integral (4.1) is called line integral of the second kind , and the second
integral (4.2) is called the line integral of the first kind .

Example 4.1. Let f(z) = z.

1. Let γ : z(t) = t+ it2 for t ∈ [0, 1]. Then∫
γ
f(z)dz =

∫
γ
zdz =

∫ 1

0
(t+ it2)(1 + 2it)dt =

∫ 1

0
(t+ 3it2 − 2t3)dt

=

(
t2

2
+ 3i

t3

3
− 2

t4

4

)∣∣∣∣1
0

=
1

2
+ i− 1

2
= i.

2. Let γ : z(t) = α+ it for t ∈ [0, 1]. Then∫
γ
f(z)dz =

∫
γ
zdz =

∫ 1

0
(α+ it)idt = iα− 1

2
.

3. Let γ : z(t) = t2 + iβ for t ∈ [0, 1]. Then∫
γ
f(z)dz =

∫
γ
zdz =

∫ 1

0
(t2 + iβ)2tdt =

(
2
t4

4
+ iβt2

)∣∣∣∣1
0

=
1

2
+ iβ.

Remark. It can be easily checked that in all integrations in Example 4.1 the
final result depends only on the value of the function z2/2 at the ends of the
curve γ. Namely, the result is

(z(1))2

2
− (z(0))2

2
.

Example 4.2. Let f(z) = z.

1. Let γ : z(t) = α+ it for t ∈ [0, 1]. Then∫
γ
f(z)|dz| =

∫
γ
z|dz| =

∫ 1

0
(α+ it)dt = α+

i

2
.

2. Let γ : z(t) = t2 + iβ for t ∈ [0, 1]. Then∫
γ
f(z)|dz| =

∫
γ
z|dz| =

∫ 1

0
(t2 + iβ)2tdt =

(
2
t4

4
+ iβt2

)∣∣∣∣1
0

=
1

2
+ iβ.

Example 4.3. Let γ : z(t) = a+ reit, t ∈ (−π, π]. Then
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1. ∫
γ
(z − a)ndz =

∫ π

−π
(r cos t+ ri sin t)nr(− sin t+ i cos t)dt

= rn+1

∫ π

−π
(cos(nt) + i sin(nt))(− sin t+ i cos t)dt

= rn+1

∫ π

−π
[− cos(nt) sin t− sin(nt) cos t] dt

+ irn+1

∫ π

−π
[cos(nt) cos t− sin(nt) sin t] dt

= −rn+1

∫ π

−π
sin(n+ 1)tdt+ irn+1

∫ π

−π
cos(n+ 1)tdt

= rn+1

(
cos(n+ 1)t

n+ 1
+ i

sin(n+ 1)t

n+ 1

)∣∣∣∣π
−π

=

{
0, n 6= −1

2πi, n = −1.

2. ∫
γ
(z − a)n|dz| =

∫ π

−π
rneintrdt = rn+1

(∫ π

−π
cos(nt)dt+ i

∫ π

−π
sin(nt)dt

)
=

{
0, n 6= 0

2πr, n = 0.

Problem 4.4. Let f(z) = z. Calculate∫
γ
zdz,

where

1. γ : z(t) = t+ it2, t ∈ [0, 1]

2. γ : z(t) = α+ it, t ∈ [0, 1]

3. γ : z(t) = t2 + iβ, t ∈ [0, 1]

4. γ = γ1 ∪ γ2, where γ1 : z(t) = t+ it2 and γ2 : z(t) = (1− t) + i(1− t) for
t ∈ [0, 1].

If γ is a piecewise smooth Jordan curve then the integrals along this curve
are defined as ∫

γ
f(z)dz :=

n−1∑
j=0

∫ tj+1

tj

f(z(t))z′(t)dt

∫
γ
f(z)|dz| :=

n−1∑
j=0

∫ tj+1

tj

f(z(t))|z′(t)|dt.
(4.3)

Using the properties of Riemann integral we obtain that
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1. ∫
γ
(c1f1(z) + c2f2(z))dz = c1

∫
γ
f1(z)dz + c2

∫
γ
f2(z)dz

2. ∫
γ1∪γ2

f(z)dz =

∫
γ1

f(z)dz +

∫
γ2

f(z)dz

3. ∫
γ
(c1f1(z) + c2f2(z))|dz| = c1

∫
γ
f1(z)|dz|+ c2

∫
γ
f2(z)|dz|

4. ∫
γ1∪γ2

f(z)|dz| =
∫
γ1

f(z)|dz|+
∫
γ2

f(z)|dz|

If γ : z(t), t ∈ [a, b] is a piecewise smooth Jordan curve we can run the curve
backwards as follows. Let us consider the curve

γ1 : z̃ = z̃(s) = z(a+ b− s), s ∈ [a, b].

The curve γ1 is denoted by −γ i.e. γ1 = −γ and∫
γ1

f(z̃)dz̃ =

∫ b

a
f(z̃(s))z̃′(s)ds = −

∫ b

a
f(z(a+ b− s))z′(a+ b− s)ds

=

∫ a

b
f(z(t))z′(t)dt = −

∫ b

a
f(z(t))z′(t)dt = −

∫
γ
f(z)dz

i.e. ∫
−γ
f(z)dz = −

∫
γ
f(z)dz.

Definition 4.5. A function f(z) is said to have a primitive F (z) on D ⊂ C if
F (z) is differentiable on D and F ′(z) = f(z) everywhere on D.

Theorem 4.6. If a continuous function f(z) has a primitive F (z) on D ⊂ C
then for any smooth Jordan curve γ : z(t), t ∈ [a, b] in D it holds that∫

γ
f(z)dz = F (z(b))− F (z(a)). (4.4)

Thus, this integral does not depend on γ, but on the endpoints of γ. In partic-
ular, if γ is closed and f has a primitive then∫

γ
f(z)dz = 0. (4.5)
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Proof. Let γ : z(t), t ∈ [a, b] be a smooth Jordan curve. Then for any con-
tinuous function f(z) the composition f(z(t)) and the product f(z(t))z′(t) are
continuous and ∫

γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt.

But f(z(t))z′(t) = (F (z(t)))′, where F is a primitive of f . Hence,∫ b

a
f(z(t))z′(t)dt =

∫ b

a
(F (z(t)))′dt = F (z(t))|ba = F (z(b))− F (z(a)).

This proves the theorem.

Corollary 4.7. If γ : z(t), t ∈ [a, b] is a piecewise smooth Jordan curve then∫
γ
f(z)dz = F (z(b))− F (z(a))

too, where F is a primitive of f in the domain D.

Proof. By (4.3) we have∫
γ
f(z)dz =

n−1∑
j=0

∫ tj+1

tj

f(z(t))z′(t)dt =
n−1∑
j=0

(F (z(tj+1))− F (z(tj)))

= F (z(tn))− F (z(t0)) = F (z(b))− F (z(a))

and this proves the claim.

Theorem 4.8. Let γ : z(t), t ∈ [a, b] be a piecewise smooth Jordan curve and
let f be a continuous function. Then∣∣∣∣∫

γ
f(z)dz

∣∣∣∣ ≤ ∫
γ
|f(z)||dz| ≤ max

z∈γ
|f(z)|L(γ), (4.6)

where L(γ) =
∫
γ |dz| denotes the length of γ.

Proof. We have ∫
γ
f(z)dz =

∫ b

a
f(z(t))z′(t)dt.

Since this Riemann integral can be understood as limit of integral sums then
we obtain∣∣∣∣∫ b

a
f(z(t))z′(t)dt

∣∣∣∣ =

∣∣∣∣∣∣ lim
∆t→0

n∑
j=1

f(z(t∗j ))z
′(t∗j )∆tj

∣∣∣∣∣∣
≤ lim

∆t→0

n∑
j=1

|f(z(t∗j ))||z′(t∗j )|∆tj =

∫ b

a
|f(z(t))||z′(t)|dt =

∫
γ
|f(z)||dz|

≤ max
z∈γ
|f(z)|

∫
γ

1|dz| = max
z∈γ
|f(z)|L(γ).



4 Integration of functions of complex variable (curve integration) 51

Theorem 4.9 (Change of variable). Let g(z) be analytic in the domain D ⊂ C
and R(f) ⊂ D′. Suppose γ : z(t), t ∈ [a, b] is a piecewise smooth Jordan curve
in D and γ′ = g(γ), z̃(t) = g(z(t)), t ∈ [a, b] is the transformed curve in D′.
Then for all continuous functions f on D we have∫

γ
f(g(z))g′(z)dz =

∫
γ′
f(w)dw. (4.7)

Proof. We know that∫
γ
f(g(z))g′(z)dz =

∫ b

a
f(g(z(t)))g′(z(t))z′(t)dt

=

∫ b

a
f(g(z(t)))(g(z(t)))′dt =

∫ b

a
f(z̃(t))z̃′(t)dt =

∫
γ′
f(w)dw.

Example 4.10. Let γ : z(t) = t+ it2, t ∈ [0, 1]. Using g(z) = z2 we get∫
γ

sin(z2)zdz =
1

2

∫
γ′

sinwdw = −1

2
cosw

∣∣∣∣w(1)

w(0)

= −1

2
cosw

∣∣∣∣2i

0

=
1

2
(1− cos(2i)) =

1

2
(1− cosh 2).

Here we have used the notation w(t) = g(z(t)).

Problem 4.11. Let γ : z(t) = α+ it2, t ∈ [0, 1]. Calculate∫
γ

esin z cos zdz.

Problem 4.12. Let γ : z(t) = 1 + it, t ∈ [0, 1]. Calculate∫
γ

log z
1

z
dz.



Chapter 5

Cauchy theorem and Cauchy
integral formulae

Definition 5.1. A bounded domain D ⊂ C is called simply connected if for
any closed Jordan curve γ ⊂ D the internal domain (int γ) belongs to D too.
OtherwiseD is called multiply connected . The number of connected components
of the boundary is said to be the connected order of D.

Theorem 5.2 (Cauchy theorem). Let D be a bounded simply connected domain
with the boundary ∂D which is a piecewise smooth closed Jordan curve γ. Then
for any function f ∈ H(D) which is continuous in D we have∫

γ
f(z)dz = 0.

Proof. Since f ∈ C(D) then
∫
γ f(z)dz is well-defined and it is equal to∫

γ
f(z)dz =

∫
γ
(u+ iv)(dx+ idy) =

∫
γ
udx− vdy + i

∫
γ
vdx+ udy.

Using now Green’s theorem (or Stoke’s theorem) we obtain that the integrals
in the right hand side are equal to∫∫

D

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

because of Cauchy-Riemann equations. Thus theorem is proved.

Remark. If the domain D is simply connected then the Cauchy theorem holds
not only for the boundary ∂D but also for any closed piecewise smooth Jordan
curve γ such that γ ⊂ D.
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Corollary 5.3. Let D be a bounded (n+ 1)-connected domain such that ∂D =
∪nj=0γj, where γj are closed piecewise smooth Jordan curves, int γj ∩ int γk =

∅, k 6= j and γ1, . . . , γn ⊂ int γ0. If f ∈ H(D) ∩ C(D) then∫
∂D

f(z)dz =

∫
γ0

f(z)dz −
n∑
j=1

∫
γj

f(z)dz = 0.

Proof. By the conditions of this Corollary, the domain D has the form depicted
below.

γ0

γ1γ2

γn

Γ+
nΓ−

n

Γ+
1Γ−

1

Γ+
2

Γ−
2

Let us join γj , j = 1, 2, . . . , n with γ0 by the smooth Jordan curves Γj such
that any Γj , j = 1, 2, . . . , n is passed twice in opposite directions. In this case
we obtain simply connected domain D1 with the boundary

∂D1 = (∪nj=0γj) ∪ (∪nj=1Γ±j ).

Thus, applying Cauchy theorem to the domain D1 we obtain

0 =

∫
∂D1

f(z)dz =

∫
∂D

f(z)dz +

n∑
j=1

∫
Γ+
j

f(z)dz +

n∑
j=1

∫
Γ−j

f(z)dz

=

∫
γ
f(z)dz −

n∑
j=1

∫
γj

f(z)dz.

Here we have used the fact that∫
Γ+
j

f(z)dz +

∫
Γ−j

f(z)dz = 0

and that the positive direction of integration is the direction in which the in-
ternal domain is on the left.

If the domain D is multiply connected then the Cauchy theorem does not
hold for arbitrary closed piecewise smooth Jordan curve. In this case it is
necessary to integrate over the whole boundary of D. Indeed, let

D = {z : 1 < |z| < 3}
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and γ = {z : |z| = 2}. Then γ ⊂ D but∫
γ

1

z
dz = 2πi.

Corollary 5.4. Let D be a domain which satisfies either the conditions of
Theorem 5.2 or Corollary 5.3. If f is analytic in D and continuous in D except
the points z1, . . . , zm ∈ D with

lim
z→zk

(z − zk)f(z) = 0, k = 1, 2, . . . ,m

then ∫
∂D

f(z)dz = 0.

Proof. For simplicity and without loss of generality we assume that m = 1.
Then for any ε > 0 there is δ(z1, ε) > 0 such that for all z with 0 < |z− z1| < δ
it follows that

|z − z1||f(z)| < ε.

Let D1 := D\{z : |z−z1| ≤ δ} assuming that δ > 0 is so small that {z : |z−z1| ≤
δ} ⊂ D. Then for the domain D1 Cauchy theorem holds and therefore

0 =

∫
∂D1

f(z)dz =

∫
∂D

f(z)dz −
∫
|z−z1|=δ

f(z)dz.

But∣∣∣∣∣
∫
|z−z1|=δ

f(z)dz

∣∣∣∣∣ ≤
∫
|z−z1|=δ

|f(z)||dz|

=

∫
|z−z1|=δ

|z − z1||f(z)| |dz||z − z1|
< ε

1

δ

∫
|z−z1|=δ

|dz| = 2πε.

Since ε > 0 is arbitrary then we may let ε→ 0 and obtain

0 = lim
ε→0

∫
∂D1

f(z)dz = lim
ε→0

(∫
∂D

f(z)dz −
∫
|z−z1|=δ

f(z)dz

)

=

∫
∂D

f(z)dz − lim
ε→0

∫
|z−z1|=δ

f(z)dz =

∫
∂D

f(z)dz.
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Example 5.5. If we calculate
∫
|z|=1 log zdz then using the parametrization

z = eiθ, θ ∈ [−π, π] and integration by parts we obtain

∫
|z|=1

log zdz =

∫ π

−π
(log |z|+ iθ)ieiθdθ = i2

∫ π

−π
θeiθdθ

= −
∫ π

−π
θ cos θdθ − i

∫ π

−π
θ sin θdθ = −2i

∫ π

0
θ sin θdθ

= 2i

(
θ cos θ|π0 −

∫ π

0
cos θdθ

)
= −2πi.

It shows that Cauchy theorem does not hold in this case. But we know that
log z is analytic and has a removable singularity at z = 0. This phenomenon
can be explained as follows: log z has a jump 2πi over the negative real line i.e.
it is not continuous in the unit disk and therefore it is not analytic. Even more
is true, it is not univalent there. In order to eliminate this problem we proceed
as follows. Let us consider the following domain Dε for ε > 0 small enough.

b

1

1−1

ε

Dε

In this domain Dε the function log z is not only analytic but also univalent.
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Applying the Cauchy theorem (see Theorem 5.2) we obtain

0 =

∫
∂Dε

log zdz =

∫ π

−π
(log 1 + iθ)ieiθdθ +

∫ −ε
−1

(log |x|+ iπ)dx

−
∫ π

−π
(log ε+ iθ)iεeiθdθ +

∫ −1

−ε
(log |x| − iπ)dx

= −2πi +

∫ −ε
−1

log |x|dx+ iπ(1− ε) + 2πiε+

∫ −1

−ε
log |x|dx− iπ(−1 + ε) = 0

for any ε > 0. Taking ε→ +0 we obtain that∫
∂D

log zdz := lim
ε→+0

∫
∂Dε

log zdz = 0,

where ∂D is the unit circle with a cut along the negative real line.

Example 5.6. Let γ be a piecewise smooth closed Jordan curve and z0 ∈ int γ.
Then ∫

γ

1

z − z0
dz = 2πi.

Indeed, if we consider the domain

D1 := int γ \ {z : |z − z0| ≤ δ}

b

D1

γ

δ
z0

then by Corollary 5.3 we have

0 =

∫
γ

dz

z − z0
−
∫
|z−z0|=δ

dz

z − z0
.

But ∫
|z−z0|=δ

dz

z − z0
=

∫ π

−π

iδeiθdθ

δeiθ
= 2πi.

This example can be generalized to the multiply connected domain D also, i.e.
if z0 ∈ D then ∫

∂D

1

z − z0
dz = 2πi.
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Theorem 5.7 (Cauchy integral formula). Let D ⊂ C be a bounded domain
with the boundary ∂D which satisfies all conditions of Corollary 5.3. Then for
any function f ∈ H(D) ∩ C(D) and any z0 ∈ C we have

1

2πi

∫
∂D

f(z)

z − z0
dz =


0, z0 /∈ D
f(z0), z0 ∈ D
1
2f(z0), z0 ∈ ∂D.

Proof. If z0 /∈ D then the function

h(z) :=
f(z)

z − z0

is analytic in D and continuous in D. Then Corollary 5.3 leads to

0 =

∫
∂D

h(z)dz =

∫
∂D

f(z)

z − z0
dz.

If z0 ∈ D then we consider the function

h(z) :=
f(z)− f(z0)

z − z0
.

It is clear that h ∈ H(D \ z0) ∩ C(D \ z0) and limz→z0(z − z0)h(z) = 0. Thus,
using Corollary 5.4 we obtain

0 =
1

2πi

∫
∂D

h(z)dz =
1

2πi

∫
∂D

f(z)

z − z0
dz − 1

2πi

∫
∂D

f(z0)

z − z0
dz

or
1

2πi

∫
∂D

f(z)

z − z0
dz =

1

2πi
f(z0)

∫
∂D

1

z − z0
dz.

But Example 5.6 implies that

1

2πi

∫
∂D

f(z)

z − z0
dz = f(z0).

If z0 ∈ ∂D then the integral in the left-hand side must be understood as the
principal value integral

p. v.

∫
∂D

f(z)

z − z0
dz := lim

ε→+0

∫
∂D\{z:|z−z0|<ε}

f(z)

z − z0
dz

if this limit exists. For z0 ∈ ∂D we consider the domain

Dε = D \ (D ∩ {z : |z − z0| < ε})



58 Part I

∂D

z0
ε

It is clear that the function

h(z) =
f(z)− f(z0)

z − z0

is analytic in Dε and continuous up to the boundary of Dε. Thus, using again
Corollary 5.4 we obtain

0 =
1

2πi

∫
∂Dε

h(z)dz =
1

2πi

∫
∂Dε

f(z)

z − z0
dz − 1

2πi

∫
∂Dε

f(z0)

z − z0
dz.

So

1

2πi

∫
∂Dε

f(z)

z − z0
dz =

f(z0)

2πi

∫
∂Dε

1

z − z0
dz ≈ f(z0)

2πi
πi =

f(z0)

2

as ε→ +0 since only half of the circle is presented.

Example 5.8. Let us calculate the integral∫
γ

ez
2

z(z2 + 4)
dz,

where γ = {z : |z| = 3}. We parametrize this smooth closed Jordan curve as
γ : z(t) = 3eit, t ∈ [−π, π]. Next,

1

z(z2 + 4)
=

1

z(z − 2i)(z + 2i)
=

1

4
· 1

z
− 1

8
· 1

z − 2i
− 1

8
· 1

z + 2i
.

Hence, applying Cauchy integral formula,∫
γ

ez
2

z(z2 + 4)
dz =

1

4

∫
γ

ez
2

z
dz − 1

8

∫
γ

ez
2

z − 2i
dz − 1

8

∫
γ

ez
2

z + 2i
dz

= 2πi
1

4
e0 − 2πi

1

8
e(−2i)2 − 2πi

1

8
e(2i)2 = 2πi

1− e−4

4
= πi

1− e−4

2
.



5 Cauchy theorem and Cauchy integral formulae 59

Example 5.9. Let us calculate the integral∫ π

0
ea cos t cos(a sin t)dt.

Since the integrand is even and sine is odd we have∫ π

0
ea cos t cos(a sin t)dt =

1

2

∫ π

−π
ea cos t cos(a sin t)dt

=
1

2

∫ π

−π
ea cos t(cos(a sin t) + i sin(a sin t))dt

=
1

2

∫ π

−π
ea cos teia sin tdt.

For z(t) = eit, t ∈ [−π, π] we have dt = dz
iz . Then the latter integral can be

interpreted as the curve integral over the closed Jordan curve γ : z(t) = eit, t ∈
[−π, π]. That’s why it is equal to

1

2

∫ π

−π
ea(eit+e−it)/2eia(eit−e−it)/2idt =

1

2

∫
γ

e
a
2

(z+1/z)e
a
2

(z−1/z) dz

iz

=
1

2i

∫
γ

eaz

z
dz =

1

2i
2πie0 = π

by Cauchy integral formula.

Example 5.10. Let us calculate the integral∫
γ

2z

z2 + 2
dz,

where γ = {z : |z − i| = 1}. First we have

2z

z2 + 2
=

1

z − i
√

2
+

1

z + i
√

2

and therefore ∫
γ

2z

z2 + 2
dz =

∫
γ

1

z − i
√

2
dz +

∫
γ

1

z + i
√

2
dz = 2πi

since i
√

2 ∈ int γ but −i
√

2 /∈ int γ.

Let us consider now a piecewise smooth Jordan curve (not necessarily closed)
γ and continuous function f(z) on this curve. If z /∈ γ then the function

F (z) :=
1

2πi

∫
γ

f(ζ)

ζ − zdζ (5.1)

is well-defined on C \ γ. This function F (z) is called a Cauchy type integral .
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Theorem 5.11. The Cauchy type integral (5.1) is analytic function in C \ γ,
it has derivatives of any order n ∈ N and the formula

F (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ (5.2)

holds.

Proof. Let z /∈ γ and z + ∆z /∈ γ too. Then

F (z + ∆z)− F (z)

∆z
=

1

2πi

∫
γ

f(ζ)

(ζ − z)(ζ − z −∆z)
dζ.

Since z /∈ γ and z + ∆z /∈ γ then there is δ > 0 and d > 0 such that z + ∆z ∈
Uδ(z), Uδ(z) ∩ γ = ∅ and |ζ − z| ≥ d > 0, |ζ − z −∆z| ≥ d > 0 for any ζ ∈ γ.
(Actually d = dist(γ, |ζ − z| = δ)).

b

b

γ

z

z +∆z

δ d

In that case we have∣∣∣∣F (z + ∆z)− F (z)

∆z
− 1

2πi

∫
γ

f(ζ)

(ζ − z)2
dζ

∣∣∣∣ =
1

2π

∣∣∣∣∫
γ

∆zf(ζ)

(ζ − z)2(ζ − z −∆z)
dζ

∣∣∣∣
≤ 1

2π
|∆z|

∫
γ

|f(ζ)||dζ|
|ζ − z|2|ζ − z −∆z|

≤ 1

2π
|∆z|M 1

d3

∫
γ
|dζ| = |∆z|ML

2πd3
,

where L is the length of γ and M = maxγ |f(ζ)| < ∞. Letting ∆z → 0 this
estimate shows that

lim
∆z→0

F (z + ∆z)− F (z)

∆z
=

1

2πi

∫
γ

f(ζ)

(ζ − z)2
dζ

or

F ′(z) =
1

2πi

∫
γ

f(ζ)

(ζ − z)2
dζ.
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After this (5.2) can be proved by induction. Indeed,

F (n−1)(z + ∆z)− F (n−1)(z)

∆z
− n!

2πi

∫
γ

f(ζ)dζ

(ζ − z)n+1

=
1

2πi

∫
γ
f(ζ)

[
(n− 1)!

∆z

(
1

(ζ − z −∆z)n
− 1

(ζ − z)n
)
− n!

(ζ − z)n+1

]
dζ

=
(n− 1)!

2πi

∫
γ
f(ζ)

[
(ζ − z)n − (ζ − z −∆z)n

∆z(ζ − z −∆z)n(ζ − z)n −
n

(ζ − z)n+1

]
dζ

=
(n− 1)!

2πi

∫
γ
f(ζ)

[∑n
k=1(−1)k+1

(
n
k

)
(∆z)k(ζ − z)n−k

∆z(ζ − z −∆z)n(ζ − z)n − n

(ζ − z)n+1

]
dζ

=
(n− 1)!

2πi

∫
γ
f(ζ)

×
[∑n−1

j=0 (−1)j
(
n
j+1

)
(∆z)j(ζ − z)n−j − n∑n

j=0(−1)j
(
n
j

)
(∆z)j(ζ − z)n−j

(ζ − z −∆z)n(ζ − z)n+1

]
dζ

=
(n− 1)!

2πi

∫
γ
f(ζ)

×

∑n−1
j=1 (−1)j(∆z)j(ζ − z)n−j

((
n
j+1

)
− n

(
n
j

))
+ n(−1)n+1(∆z)n

(ζ − z −∆z)n(ζ − z)n+1

dζ.

This representation implies that∣∣∣∣∣F (n−1)(z + ∆z)− F (n−1)(z)

∆z
− n!

2πi

∫
γ

f(ζ)dζ

(ζ − z)n+1

∣∣∣∣∣
≤ (n− 1)!

2π
O(|∆z|)

∫
γ

|f(ζ)||dζ|
|(ζ − z −∆z)n||(ζ − z)n+1|

≤ (n− 1)!

2π
O(|∆z|) ML

d2n+1
.

This estimate completes the proof of (5.2) by induction.

Corollary 5.12. Let D ⊂ C be a domain (not necessarily simply connected)
and f ∈ H(D). Then f is infinitely many times differentiable in D and

f (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ (5.3)

for any n = 1, 2, . . ., where γ is an arbitrary piecewise smooth closed Jordan
curve such that int γ ⊂ D and z ∈ int γ.
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Proof. Let z ∈ D. Let also γ be an arbitrary piecewise smooth closed Jordan
curve such that int γ ⊂ D and z ∈ int γ. Then by the Cauchy integral formula
(see Theorem 5.7) we have

f(z) =
1

2πi

∫
γ

f(ζ)dζ

ζ − z .

But the right hand side is Cauchy type integral since f is continuous on γ.
Applying Theorem 5.11 we obtain that for any n = 1, 2, . . . we have

f (n)(z) =
n!

2πi

∫
γ

f(ζ)dζ

(ζ − z)n+1

and f is infinitely many times differentiable in D.

Remark. Formula (5.3) holds also for the boundary ∂D of a domain that satisfies
all conditions of Corollary 5.3 if we assume that f ∈ H(D) ∩ C(D). Moreover,
as the simplest case, formula (5.3) holds and is very applicable for γ = {ζ :
|ζ − z| = δ} with δ > 0 small enough i.e.

f (n)(z) =
n!

2πi

∫
|ζ−z|=δ

f(ζ)dζ

(ζ − z)n+1
=

n!

2πi

∫ π

−π

f(z + δeiθ)δieiθ

δn+1eiθ(n+1)
dθ

=
n!

2π
δ−n

∫ π

−π
f(z + δeiθ)e−iθndθ.

Problem 5.13. Evaluate the derivative of F (z) from (5.1) at z = ∞. Show
first that F (z) is continuous at z =∞ and F (∞) = 0. Show also that

F ′(∞) = − 1

2πi

∫
γ
f(ζ)dζ.

Example 5.14. Let us calculate the integral∫
γ

sin z

(z − π/6)3
dz,

where γ = {z : |z| = 1}. Since |π/6| < 1 then applying (5.3) we obtain∫
γ

sin zdz

(z − π/6)3
=

2πi

2!
(sin z)′′

∣∣
z=π/6

= πi (− sin z)|z=π/6 = −πi sin(π/6) = −πi

2
.

Example 5.15. Let us calculate the integral∫
γ

dz

(z − a)4(z − b) ,

where γ = {z : |z| = r} and |a| < r < |b|. Since z 6= b for all |z| ≤ r then this
integral is equal to∫

γ

1
z−bdz

(z − a)4
=

2πi

3!

(
1

z − b

)′′′∣∣∣∣
z=a

=
2πi

6

(
− 6

(z − b)4

)∣∣∣∣
z=a

= − 2πi

(a− b)4
.
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Example 5.16. Let f be analytic in a simply connected domain D and z1, z2 ∈
D, z1 6= z2. Then for any piecewise smooth closed Jordan curve γ such that
z1, z2 ∈ int γ we have

f(z2)− f(z1)

z2 − z1
=

1

2πi

∫
γ

f(ζ)dζ

(ζ − z1)(ζ − z2)
.

Since

f(zj) =
1

2πi

∫
γ

f(ζ)dζ

ζ − zj
, j = 1, 2

then

f(z2)−f(z1) =
1

2πi

∫
γ
f(ζ)

(
1

ζ − z2
− 1

ζ − z1

)
dζ =

z2 − z1

2πi

∫
γ

f(ζ)dζ

(ζ − z1)(ζ − z2)
.

Example 5.17. Let us show that∫
|z|=1

ezdz = −2πi

or ∫
|z|=1

ezdz = 2πi.

We have∫
|z|=1

ezdz =

∫
|z|=1

e1/zdz

= −
∫
|ζ|=1

eζd

(
1

ζ

)
=

∫
|ζ|=1

eζ

ζ2
dζ = 2πi(eζ)′|ζ=0 = 2πi,

where we have also changed the direction of integration when changing vari-
ables.



Appendix A

Exercises

1. Calculate
a) ik, b) i−k

for k = 0, 1, 2, . . ..

2. Find Re z and Im z, when

a) z = (2 + 3i)(−3 + 2i), b) z =
4 + 2i

3− 4i
, c) z = (1 + i) · 1

2− i
.

3. Solve z from the equation

a) (3 + 4i)z = 1− 2i,

b) iz + 2z = 3− i,

c) z2 = −5 + 12i.

4. Prove that
|Re z| ≤ |z|, | Im z| ≤ |z|.

Show also that the equalities hold if and only if z is real or pure imaginary,
respectively.

5. Prove that |z1− z2| = |1− z1z2|, where z1, z2 ∈ C and |z1| = 1 or |z2| = 1.

6. Express z ∈ C in trigonometric form when
a) z = −3i, b) z =

√
3− i, c) z = 2− i

√
12.

7. Calculate (1− i
√

3)15, (1 + i)11 and
(1 + i)5

(1− i
√

3)7
.

8. Let z ∈ C, |z| = 1, z 6= −1. Prove that z can be written in the form

z =
1 + it

1− it
for some t ∈ R.

9. Solve the equations
a) z4 = −1, b) z6 = 1, c) z3 = −i.
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10. Prove that the set {z ∈ C | |z− z0| > r} is open (z0 ∈ C, r > 0 are given).

11. Let A = {i, i
2 ,

i
3 , . . .} ⊂ C. Determine if A is bounded, closed or open.

Find A′ and A.

12. Find the following limits (if they exist)

a) lim
n→∞

in

n
, b) lim

n→∞
in, c) lim

n→∞
(1 + i)n

n
, d) lim

n→∞
2n− in2

(1 + i)n− 1
.

13. Let the sequence (zn) ⊂ C be defined as z0 = 3 and zn+1 = 1
3zn + 2i.

Show that (zn) converges and find its limit.

14. Determine which of the following functions are bijective D → G and find
f−1 : G→ D whenever it is possible.
a) f(z) = z + i, z ∈ C, b) f(z) = 1

z , z ∈ C \ {0},
c) f(z) = z2 + i, z ∈ C, d) f(z) = z2 + i, 0 ≤ arg z < π.

15. Let f : D → C be a function such that f(z) = z3 + i, 0 ≤ arg z < 2π/3.
Determine if f is bijective D → C. Find f−1(1).

16. Express the function f(z) = f(x + iy) in the form f(z) = u(x, y) +
iv(x, y), z ∈ D, when
a) f(z) = z3, z ∈ C, b) f(z) = 1

z , z 6= 0, c) f(z) = eiz, z ∈ C.

17. Investigate the existence of the limit of f(z) at the point z = 0, when

a) f(z) =
Re z

z
, b) f(z) =

z

|z| , c) f(z) =
zRe z

|z| .

18. Find the limit lim
z→z0

z3 + z2 + z + 1

z − z0
, when

a) z0 = −1, b) z0 = i, c) z0 = −i. d) Find the limit lim
z→i

z3 + i

z − i
.

19. Prove using the definition of continuity that the function f(z) = z2 +
2z, z ∈ C is continuous for all z0 ∈ C but it is not continuous at z0 =∞.

20. Show that the function f(z) = z2 is uniformly continuous on the set
|z − i| < 2. Is f uniformly continuous on C?

21. Study the uniform continuity of f(z) = 1
z , z 6= 0 on the set |z| < 1, z 6= 0.

22. Investigate if the function f(z) = z|z|, z ∈ C has a derivative at any
z0 ∈ C.

23. Find the derivatives of the following functions (if they exist)

a) f(z) =
z2 + 1

(z2 − 1)2
, z 6= ±1, b) f(z) = ez, z ∈ C,

c) f(z) = Im z, z ∈ C d) f(z) = z Im z, z ∈ C.
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24. Let f(z) = zn, 0 ≤ arg z < 2π/n, n ≥ 2. Find f ′(z), z ∈ C and (f−1)(z), z ∈
D \ {0}.

25. Let f(z) = z3, 2π/3 ≤ arg z < 4π/3. Then f−1 : C → D exists. Find
(f−1)′(i) and (f−1)′(−1).

26. Let us assume that g is analytic in all of C. Define the function f : C→ C
by setting
a) f(z) = g(z), z ∈ C, b) f(z) = g(z), z ∈ C.
Investigate if f is analytic on C.

27. Let f(z) = f(x + iy) = x3 − 3xy2 + i(3x2y − y3), z = x + iy ∈ C. Show
that f satisfies the Cauchy–Riemann conditions. Find f ′(z).

28. Solve
ez = 2 + i.

29. Show that the function f(z) = 1
z+i , z ∈ C \ {−i} satisfies the Cauchy–

Riemann conditions.

30. Show that the function
f(z) = sin z

satisfies the Cauchy–Riemann conditions.

31. Prove that
a) ez = ez, b) sin z = sin z, c) |ez| = ex, d) | cos z|2+| sin z|2 = 1+2 sinh2 y
whenever z ∈ C.

32. Find
a) log(−4), b) log 3i, c) log(

√
3− i).

33. Find
a) i2i, b) (−i)i, c) i−i.

34. Express the function f(z) = Log z, z 6= 0, in the form f = u+ iv. Deter-
mine if it satisfies the Cauchy–Riemann conditions.

35. Find the limits

a) lim
z→0

ez
2 − 1

z2 + 2z
, b) lim

z→π
2

cos z

z − π
2

, c) lim
z→0

cos 2z − 1

sin2 z
, d) lim

z→0

log2(1 + z)

z2
.

36. Let f be analytic in a domain A ⊂ C .

a) Let us assume that f ′(z) = 0 for all z ∈ A. Show that f is a constant
function on A.

b) Let us assume that f = u + iv and u is a constant function on A.
Show that f is constant on A.
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37. Find

∫
γ
zdz, where

a) γ : z(t) = t+ it2, t ∈ [0, 1], b) γ : z(t) = t2 + it4, t ∈ [0, 1].

38. Find

∫
γ
z2dz, where γ is the line segment from i to 1 + 2i.

39. Evaluate the integral ∫
γ

dz

(z − z0)n
, n = 2, 3, . . . ,

where γ is closed Jordan curve and a) z0 is in the interior of γ b) z0 is
in the exterior of γ.

40. Prove that∫ 2π

0
ecos t cos(t+ sin t)dt =

∫ 2π

0
ecos t sin(t+ sin t)dt = 0.

41. Evaluate the integral

∫
γ

sin2 zdz, where γ is the line segment from 0 to i.

42. Evaluate the integrals

a)

∫
γ

sin z

z − i
dz, where γ : z(t) = 2eit, t ∈ [0, 2π]

b)

∫
γ

sinh z

z − iπ
dz, where γ : z(t) = iπ + 2eit, t ∈ [0, 2π].

43. Evaluate ∫
γ

ez

z(z − 2i)
dz,

where a) γ : z(t) = eit, t ∈ [0, 2π] b) γ : z(t) = 3eit, t ∈ [0, 2π].

44. Evaluate
1

2πi

∫
γ

eaz

z2 + 1
dz,

where γ : z(t) = 3eit, t ∈ R and a > 0.

45. Evaluate
1

2πi

∫
γ

eaz

(z2 + 1)2
dz,

where γ and a are as in Exercise 44.

46. Evaluate
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a)

∫
γ

eiz

z3
dz, where γ : z(t) = 2eit, t ∈ [0, 2π]

b)

∫
γ

cos z

(z − π/4)3
dz, where γ : z(t) = eit, t ∈ [0, 2π]

47. Evaluate ∫
γ

ekz

zn+1
dz and

∫
γ

sin z

zn+1
dz,

where γ : z(t) = eit, t ∈ [0, 2π] and k ∈ N.
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Chapter 1

Fundamental theorem of
integration

The Cauchy theorem (as well as the Cauchy integral formula) allows us to
prove the fundamental theorem of integration. Let f be analytic in the simply
connected domain D. Then the integral∫

γ
f(ζ)dζ,

where γ is a piecewise smooth Jordan curve connecting two points z0, z ∈ D, γ ⊂
D, is independent on this curve. The reason is: if we consider two different such
curves γ1 and γ2 (both from z0 to z) then the curve γ := γ1 ∪ γ2 will be closed

bb
γ1

γ2

z0 z

and due to Cauchy theorem (Theorem 5.2) we have

0 =

∫
γ
f(ζ)dζ =

∫
γ1

f(ζ)dζ −
∫
γ2

f(ζ)dζ

or ∫
γ1

f(ζ)dζ =

∫
γ2

f(ζ)dζ.

That’s why the function

F (z) :=

∫ z

z0

f(ζ)dζ (1.1)
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is well-defined since its value is independent on the curve connecting z0 and
z. Even more is true. The function (1.1) is analytic in D and F ′(z) = f(z)
everywhere in D. Indeed,

F (z + ∆z)− F (z)

∆z
− f(z) =

1

∆z

(∫ z+∆z

z0

f(ζ)dζ −
∫ z

z0

f(ζ)dζ

)
− f(z)

=
1

∆z

∫ z+∆z

z
f(ζ)dζ − f(z)

=
1

∆z

∫ z+∆z

z
(f(ζ)− f(z))dζ.

Using the line segment from z to z + ∆z we obtain∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ ≤ 1

|∆z|

∣∣∣∣∫ z+∆z

z
|f(ζ)− f(z)||dζ|

∣∣∣∣
≤ sup

ζ∈[z,z+∆z]
|f(ζ)− f(z)| → 0

as ∆z → 0. Hence F (z) is analytic in D and F ′(z) = f(z) everywhere in D.
This fact justifies the following definition.

Definition 1.1. The function Φ(z) is called the primitive for f(z) in D if
Φ(z) ∈ H(D) and Φ′(z) = f(z).

So, if f is analytic in D then

F (z) =

∫ z

z0

f(ζ)dζ

is a primitive for f in D.

Problem 1.2. Show that if Φ1 and Φ2 are primitives for f in simply connected
D then Φ1(z)− Φ2(z) ≡ constant in D.

As a consequence we have the fundamental fact: if D is simply connected
then ∫ z2

z1

f(ζ)dζ = F (z2)− F (z1),

where F is any primitive for f . This fact is called the fundamental theorem of
complex integration analogously to the Newton’s formula for real integration.

Example 1.3. Let D ⊂ C be a simply connected domain such that 0 /∈ D and
1 ∈ D. Then f(z) = 1

z is analytic in D and

F (z) =

∫ z

1

1

ζ
dζ
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is a primitive for f in D, where D is such that any curve connecting 1 and
z ∈ D does not pass across 0. For example, D can be chosen as

D = C \ {Im z = 0,Re z ≤ 0}.
In this domain we can take the line segment connecting 1 and z. This function
F (z) is said to be logarithmic function (or logarithm) i.e.

log z =

∫ z

1

1

ζ
dζ. (1.2)

Problem 1.4. Show that

log z = log |z|+ i arg z, z ∈ D, (1.3)

where D is as above i.e. −π < arg z < π.

Problem 1.5. Let

f(z) =
1

1 + z2

and let D be simply connected such that ±i /∈ D. Show that

arctan z :=

∫ z

0

dζ

1 + ζ2

and D is chosen such that any curve connecting 0 and z does not pass across
±i satisfies

arctan z =
1

2i
log

1 + iz

1− iz
.

The converse statement to Cauchy theorem is also true.

Theorem 1.6 (Morera’s theorem). Let f be a continuous function in a simply
connected domain D ⊂ C. If

∫
γ f(ζ)dζ = 0 for every piecewise smooth closed

Jordan curve in D, then f is analytic in D.

Proof. We select a point z0 ∈ D and define F (z) by

F (z) :=

∫ z

z0

f(ζ)dζ

which is well-defined and univalent in D since the result of integration is inde-
pendent on curve connecting z0 and z in D. Since f is continuous in D we have
(choosing line segment to connect z and z + ∆z)∣∣∣∣F (z + ∆z)− F (z)

∆z
− f(z)

∣∣∣∣ ≤ 1

|∆z|

∣∣∣∣∫ z+∆z

z
|f(ζ)− f(z)||dζ|

∣∣∣∣
≤ max

ζ∈[z,z+∆z]
|f(ζ)− f(z)| → 0

as ∆z → 0. Thus F ′(z) = f(z) i.e. F is analytic. But since any analytic
function is infinitely many times differentiable then so is f .
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Harmonic functions and mean
value formulae

Let u(x, y) be a real-valued function of two real variables x and y defined on a
domain D.

Definition 2.1. If function u(x, y) is twice continuously differentiable in D and
satisfies the Laplace equation

∆u = ∂2
xu(x, y) + ∂2

yu(x, y) = 0

in D, then u is said to be harmonic in D.

There is a close connection between harmonic and analytic functions. In-
deed, if f = u + iv is analytic in D then (as we proved) f is infinitely many
times differentiable in D. So are the functions u and v and the Cauchy-Riemann
conditions are satisfied. Then we have ∂xu = ∂yv, ∂yu = −∂xv. It follows that

∂2
xu = ∂2

xyv, ∂2
yu = −∂2

xyv

and hence
∂2
xu+ ∂2

yu = ∂2
xyv − ∂2

xyv = 0

i.e. u is harmonic. Similarly

∂2
xv + ∂2

yv = −∂2
xyu+ ∂2

xyu = 0.

Thus, if f ∈ H(D) then Re f and Im f are harmonic in D.
It turns out that the converse is also true. Namely, any harmonic function

is the real (or imaginary) part of some analytic function and this connection is
unique up to an arbitrary constant. Let u be harmonic in a simply connected
domain D. Then we may consider the differential form

l := −∂yudx+ ∂xudy.
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This form is complete differential of some function v since ∂y(−∂yu) = ∂x(∂xu)
or ∆u = 0 that is

dv = −∂yudx+ ∂xudy. (2.1)

This fact allows us to introduce function v(x, y) as

v(x, y) =

∫ (x,y)

(x0,y0)
−∂yudx+ ∂xudy + constant (2.2)

and this definition is correct since the latter integral does not depend on the
curve in D connecting the points (x0, y0) and (x, y). Even more is true, due to
(2.1) and (2.2) we have

∂xv = −∂yu ∂yv = ∂xu

i.e. the Cauchy-Riemann conditions are satisfied for function f = u + iv. But
u and v are twice continuously differentiable in D with Cauchy-Riemann con-
ditions fullfilled. Thus, f ∈ H(D) and u = Re f . Similarly we may construct
uniquely (up to an arbitrary constant) analytic function f such that given har-
monic function u is equal to Im f .

Simultaneously we obtained the following important result. By Corollary
5.12 of Part I we know that any analytic function is infinitely many times
differentiable. Since any harmonic function is the real (or imaginary) part of
some analytic function then any harmonic function is infinitely many times
differentiable.

Problem 2.2. Let f ∈ H(D) and f 6= 0 everywhere in D. Prove that log |f(z)|
is harmonic in D.

Let f be analytic in D containing the disk {z : |z − z0| ≤ R}. Then the
Cauchy integral formula yields

f(z0) =
1

2πi

∫
|ζ−z0|=R

f(ζ)dζ

ζ − z0
.

If we parametrize the circle by ζ(t) = z0 + Reit, t ∈ [−π, π] then dζ = Rieitdt
and the latter integral transforms to

f(z0) =
1

2πi

∫ π

−π

f(z0 +Reit)Rieitdt

Reit
=

1

2π

∫ π

−π
f(z0 +Reit)dt. (2.3)

This formula is called the mean-value formula for analytic functions. Since
any harmonic function is the real (or imaginary) part of some analytic function
then we obtain the mean-value formula also for harmonic function u as

u(x0, y0) = Re f(z0) = Re
1

2π

∫ π

−π
f(z0 +Reit)dt

=
1

2π

∫ π

−π
Re f(z0 +Reit)dt =

1

2π

∫ π

−π
u(x0 +R cos t, y0 +R sin t)dt. (2.4)
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Remark. Due to periodicity we may replace the integration from −π to π by
integration from 0 to 2π.

We now prove an important result concerning the modulus of an analytic
function.

Theorem 2.3 (Maximum modulus principle). Let f be analytic and non-
constant in a domain D (not necessarily bounded). If M := supD |f(z)| then
for any z ∈ D we have |f(z)| < M i.e. |f(z)| does not attain its supremum at
any point z0 ∈ D.

Proof. The value M cannot be equal to zero since in this case f ≡ 0. It con-
tradicts with the conditions of this theorem. If M =∞ then due to analyticity
of f in D we have |f(z)| <∞ for every z ∈ D i.e. |f(z)| < M . That’s why we
assume now that 0 < M <∞.

We will assume on the contrary that there is z0 ∈ D such that M = |f(z0)|.
The mean-value formula (2.3) leads to

M = |f(z0)| = 1

2π

∣∣∣∣∫ π

−π
f(z0 +Reit)dt

∣∣∣∣ ≤ 1

2π

∫ π

−π
|f(z0 +Reit)|dt

for any 0 ≤ R ≤ R0 such that {z : |z − z0| ≤ R} ⊂ D. Using this we will prove
that |f(z)| = M for all z ∈ {z : |z − z0| ≤ R}, 0 ≤ R ≤ R0. Assume again
on the contrary that there is R > 0 with 0 ≤ R ≤ R0 and t0 ∈ [−π, π] such
that |f(z0 + Reit0)| < M . Since |f(z)| is continuous there is δ > 0 such that
|f(z0 +Reit)| < M for any t ∈ (t0 − δ, t0 + δ). If t0 = ±π then we will consider
only either (t0, t0 + δ) or (t0 − δ, t0). These assumptions lead to the following
inequalities

M ≤ 1

2π

∫ π

−π
|f(z0 +Reit)|dt =

1

2π

∫ t0−δ

−π
|f(z0 +Reit)|dt

+
1

2π

∫ t0+δ

t0−δ
|f(z0 +Reit)|dt+

1

2π

∫ π

t0+δ
|f(z0 +Reit)|dt

<
1

2π
[M(t0 − δ + π) + 2Mδ +M(π − t0 − δ)] = M.

This contradiction shows that |f(z)| ≡ M in every disk {z : |z − z0| ≤ R}, 0 ≤
R ≤ R0. Let us show that this equality |f(z)| = M holds in any point ζ ∈ D.
In order to prove it we join z0 and z by a piecewise smooth Jordan curve γ ⊂ D
and denote by d > 0 the minimum distance from γ to ∂D. Next, we find
consecutive points z0, z1, . . . , zn = ζ along γ with |zk+1 − zk| ≤ d/2 such that
the disks Dk = {z : |z − zk| ≤ d/2}, k = 0, 1, . . . , n− 1 are contained in D and
cover γ. Each disk Dk contains the center zk+1 of the next disk Dk+1.
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b b

b
b b· · · z

z0

That’s why it follows |f(z)| = M for all z ∈ D1, and inductively, |f(z)| = M
for all z ∈ Dn i.e. |f(ζ)| = M too. Thus |f(z)| ≡M everywhere in D.

The last step is to show that f(z) ≡ constant. Indeed, since u2 + v2 ≡ M2

then {
uux + vvx = 0

uuy + vvy = 0.

By the Cauchy-Riemann conditions we get{
uux − vuy = 0

uuy + vux = 0.

Hence uxM
2 ≡ 0 and uyM

2 ≡ 0. Since 0 < M <∞ it follows that ux ≡ uy ≡ 0
in D. These two facts imply immediately that u ≡ constant. Similarly we
may obtain that v ≡ constant i.e. f ≡ constant. This contradiction proves the
theorem completely.

Corollary 2.4. Let D be a bounded domain and let f be analytic in D and
continuous in D. Then either f ≡ constant or maxD |f(z)| achieves at the
boundary ∂D.

Proof. Since f ∈ C(D) and D is compact set in C then |f(z)| is continuous
there too and by Weierstrass theorems there is maxz∈D |f(z)| which is achieved

at some point z0 ∈ D i.e.

max
z∈D
|f(z)| = |f(z0)|.

If f 6≡ constant then Theorem 2.3 implies that for every z ∈ D we have

max
z∈D
|f(z)| > |f(z)|.

Thus z0 ∈ ∂D i.e. |f | achieves its maximum at the boundary.

Corollary 2.5. Let f1 and f2 be analytic in D and continuous in D, where D
is bounded. If f1(z) = f2(z) for all z ∈ ∂D then f1(z) = f2(z) everywhere in
D.
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Proof. Let us consider f(z) := f1(z) − f2(z). Then Corollary 2.4 implies that
maxz∈D |f(z)| is achieved at the boundary or f ≡ constant. But f(z) = 0 at
the boundary. That’s why in both cases f(z) ≡ 0.

Corollary 2.6. Let f be analytic in D. Let us assume in addition that f(z) 6= 0
everywhere in D. Then either f ≡ constant in D or infD |f(z)| < |f(z)| for all
z ∈ D.

Proof. Since f(z) 6= 0 and analytic in D then g(z) := 1/f(z) is well-defined
and analytic in D. Theorem 2.3 implies that either g ≡ constant (so is f) or
for every z ∈ D it follows that

|g(z)| < sup
D
|g(z)| = 1

infD |f(z)| .

This means that infD |f(z)| < |f(z)|.

Since the mean value formula holds also for harmonic functions (see (2.4))
we obtain maximum principle for harmonic functions.

Theorem 2.7. Let u(x, y) be real-valued, harmonic and non-constant in the
domain D (not necessarily bounded). If M = supD u(x, y) and m = infD u(x, y)
then

m < u(x, y) < M (2.5)

for any (x, y) ∈ D.

Proof. The proof literally repeats the proof of Theorem 2.3.

Remark. In (2.5) it might be that m = −∞ or M =∞.

Corollary 2.8. Let u(x, y) be real-valued and harmonic in D and continuous
in D, where D is a bounded domain. Then either u ≡ constant or for any
(x, y) ∈ D we have

min
D

u(x, y) < u(x, y) < max
D

u(x, y)

i.e. minu(x, y) and maxu(x, y) are achieved at the boundary ∂D.

Problem 2.9. Let f(z) = az + b and D = {z : |z| < 1}. Prove that

max
|z|≤1

|f(z)| = |a|+ |b|

and max|z|≤1 |f(z)| = |f(eiθ0)| for some real θ0. Show also that θ0 = arg b−arg a.

Problem 2.10. Let f(z) = az + b with |b| > |a| and D = {z : |z| < 1}.
Prove that min|z|≤1 |f(z)| = |b| − |a| and min|z|≤1 |f(z)| = |f(eiθ0)| with θ0 =
arg b− arg a+ π.
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Liouville’s theorem and the
fundamental theorem of
algebra

Theorem 3.1 (Cauchy’s inequality). Let f be analytic in a bounded domain D
(not necessarily simply connected) and continuous in D. Then for any z0 ∈ D
and for any n = 0, 1, . . . we have

|f (n)(z0)| ≤ n!M

Rn
, (3.1)

where M = maxD |f(z)| and R = dist(z0, ∂D).

Proof. Let z0 ∈ D be arbitrary and let R > 0 be chosen such that we have
{z : |z − z0| < R} ⊂ D. Then using Cauchy integral formula we obtain

f (n)(z0) =
n!

2πi

∫
|ζ−z0|=R

f(ζ)

(ζ − z0)n+1
dζ

for n = 0, 1, . . .. If we parametrize |ζ − z0| = R as ζ = z0 + Reit, t ∈ [−π, π]
then

f (n)(z0) =
n!

2πi

∫ π

−π

f(z0 +Reit)iReit

Rn+1ei(n+1)t
dt =

n!

2πRn

∫ π

−π

f(z0 +Reit)

eint
dt.

This representation implies the inequality

|f (n)(z0)| ≤ n!

2πRn

∫ π

−π

|f(z0 +Reit)|
|eint| dt ≤ n!M

2πRn
2π =

n!

MRn

and concludes the proof.
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Theorem 3.2 (Liouville’s theorem). Let f be analytic in the whole complex
plane C and let α ≥ 0 be such that

|f(z)| ≤M |z|α, z ∈ C

with some positive constant M . Then f is a polynomial of order at most n :=
[α].

Proof. Let n = [α], where [α] denotes the entire part of α. Since f is analytic
in C then for every R > 0 and every z ∈ C we have by the Cauchy integral
formula that

f (n+1)(z) =
(n+ 1)!

2πi

∫
|ζ−z|=R

f(ζ)

(ζ − z)n+2
dζ.

That’s why we have the following inequality

|f (n+1)(z)| ≤ (n+ 1)!

2π

∫ π

−π

|f(z +Reit)|Rdt

Rn+2
≤ (n+ 1)!

2π

M(|z|+R)α

Rn+1
2π

= M(n+ 1)!Rα−(n+1)(1 + |z|/R)α → 0

as R → ∞ since n + 1 > α. It means that f (n+1)(z) ≡ 0 in C. Thus, f is a
polynomial of order not bigger than n.

Problem 3.3. Let f be analytic in C and f (k)(z) ≡ 0 in C for some k = 1, 2, . . ..
Prove that f is a polynomial of order not bigger than k − 1.

Corollary 3.4. Let f be analytic in C ( entire function) and bounded in C.
Then f ≡ constant.

Proof. Proof follows from the proof of Theorem 3.2 with α = 0.

Problem 3.5. Show that the function f(z) = cos z is not bounded.

Problem 3.6. Let f be an entire function with the property |f(z)| ≥ 1 for all
z ∈ C. Show that f ≡ constant.

Theorem 3.7 (The fundamental theorem of algebra). If P is a polynomial of
order n ≥ 1 then P has at least one zero.

Proof. Let us assume on the contrary that this polynomial has no roots i.e.
P (z) 6= 0 for all z ∈ C. This implies that the function

f(z) :=
1

P (z)

is an entire function i.e. it is analytic in the whole space C. Let us write

P (z) = anz
n + an−1z

n−1 + · · ·+ a0, an 6= 0
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and consider the equation

|f(z)| = 1

|P (z)| =
1

|z|n ·
1

|an + an−1/z + · · ·+ a0/zn|
. (3.2)

For k = 1, 2, . . . , n we have |an−k|/|z|k → 0 as |z| → ∞. Hence an + an−1/z +
· · · + a0/z

n → an as |z| → ∞. Thus (3.2) implies |f(z)| → 0 as |z| → ∞. In
particular, there is R > 0 such that for all |z| ≥ R we have

|f(z)| ≤ 1. (3.3)

The next step is: since f is analytic everywhere in C then f(z) is continuous
for all z ∈ C. In particular, it is continuous in the closed ball {z : |z| ≤ R}
with R as in (3.3). By Weierstrass theorem for continuous functions, |f(z)| is
bounded in this closed ball i.e. there is a positive number M > 0 such that

|f(z)| ≤M, |z| ≤ R. (3.4)

Combining (3.3) and (3.4) we obtain that

|f(z)| ≤ max(1,M)

for all z ∈ C. By Liouville’s theorem f ≡ constant and so is P . This contradic-
tion proves the theorem.

Corollary 3.8. Let P be a polynomial of order n ≥ 1. Then P can be repre-
sented as

P (z) = an(z − z1)(z − z2) · · · (z − zn),

where an 6= 0 and z1, z2, . . . , zn are the zeros of P counted according to multi-
plicity.

Problem 3.9. Prove Corollary 3.8.
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Representation of analytic
functions via the power series

Recall that the sequence of functions Sn(z), in particular the partial sums

n∑
j=0

fj(z)

of some series ∞∑
j=0

fj(z),

converges to f(z) uniformly on a set D ⊂ C if for every ε > 0 there exists an
integer N0(ε) > 0 such that for all n ≥ N0 and for all z ∈ D we have

|Sn(z)− f(z)| < ε

(in particular |∑∞j=n+1 fj(z)| < ε).
A useful procedure called the Weierstrass M-test can help determine whether

an infinite series is uniformly convergent.

Theorem 4.1 (Weierstrass’ M-test). Suppose that the series

∞∑
j=0

fj(z)

has the property that for each j = 0, 1, . . . it holds that |fj(z)| ≤ Mj for all
z ∈ D. If

∑∞
j=0Mj converges then

∑∞
j=0 fj(z) converges uniformly on D.

Proof. Let

Sn(z) =

n∑
j=0

fj(z)
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be the nth partial sum of the series. If n > m then for all z ∈ D we have

|Sn(z)− Sm(z)| =

∣∣∣∣∣∣
n∑

j=m+1

fj(z)

∣∣∣∣∣∣ ≤
n∑

j=m+1

Mj < ε

for all n > m ≥ N0(ε). This means that for all z ∈ D the sequence {Sn(z)} is
a Cauchy sequence. Therefore there is a function f(z) such that

f(z) = lim
n→∞

Sn(z) =

∞∑
j=0

fj(z).

Moreover, this convergence is uniform on D.

Theorem 4.2. Suppose that the power series

∞∑
j=0

cj(z − z0)j

has radius of convergence ρ > 0. Then, for each r, 0 < r < ρ this series
converges uniformly on the closed disk {z : |z − z0| ≤ r} and defines there a
continuous function.

Proof. Given 0 < r < ρ choose ζ ∈ {z : |z − z0| < ρ} such that |ζ − z0| = r.
Due to the properties of the power series we have that

∞∑
j=0

cj(z − z0)j

converges absolutely for any z ∈ {z : |z − z0| < ρ}. It follows that

∞∑
j=0

|cj(ζ − z0)j | =
∞∑
j=0

|cj |rj

converges. Moreover, for all z ∈ {z : |z − z0| ≤ r} we have

|cj(z − z0)j | = |cj ||z − z0|j ≤ |cj |rj .

The conclusion now follows from the Weierstrass’ M-test with Mj = |cj |rj .

Remark. The radius of convergence ρ of the power series can be calculated as

1

ρ
= lim

j→∞
j

√
|cj |

or
1

ρ
= lim

j→∞

∣∣∣∣cj+1

cj

∣∣∣∣
if the limit exists.
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Problem 4.3. Show that the geometric series

∞∑
j=0

zj

converges uniformly on the closed disk {z : |z| ≤ r} with any 0 < r < 1.

Theorem 4.4. Suppose that the power series

∞∑
j=0

cj(z − z0)j

has radius of convergence ρ > 0. Then in the disk Dρ = {z : |z − z0| < ρ} this
series defines the function

f(z) :=
∞∑
j=0

cj(z − z0)j (4.1)

which is analytic in Dρ and for each k = 1, 2, . . . it holds that

f (k)(z) =

∞∑
j=k

cjj(j − 1) · · · (j − k + 1)(z − z0)j−k. (4.2)

Proof. Let 0 < r < ρ. Then due to Theorem 4.2 in the closed disk Dr = {z :
|z − z0| ≤ r} the series (4.1) converges uniformly (and absolutely) and defines
a continuous function f(z). That’s why we may integrate this series term by
term. If γ ⊂ Dr is a piecewise smooth closed Jordan curve then∫

γ
f(z)dz =

∞∑
j=0

cj

∫
γ
(z − z0)jdz = 0

since (z−z0)j is analytic for each j = 0, 1, . . . . Applying now Morera’s theorem
we conclude that f is analytic in Dρ. Formula (4.2) follows directly by induction
and it is based on the properties of power series.

Problem 4.5. Show that

log(1− z) = −
∞∑
j=1

zj

j

for all z ∈ D1 = {z : |z| < 1} or

log ζ = −
∞∑
j=1

(1− ζ)j

j
, 0 < |ζ| < 2,

where log is the main branch.
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Problem 4.6. Let f and g have the power series representations

f(z) =
∞∑
j=0

cj(z − z0)j , g(z) =
∞∑
j=0

dj(z − z0)j (4.3)

for z ∈ Dρ = {z : |z − z0| < ρ}. Show that

f(z)g(z) =

∞∑
j=0

aj(z − z0)j , z ∈ Dρ,

where aj =
∑j

k=0 ckdj−k.

Problem 4.7. Let f and g have the power series representations (4.3) with
d0 6= 0. Show that in some neighborhood of z0 the function f(z)/g(z) can be
represented as the power series

f(z)

g(z)
=
∞∑
j=0

aj(z − z0)j ,

where aj are uniquely determined from the equations cj =
∑j

k=0 akdj−k, j =
0, 1, . . ..

Theorem 4.8 (Taylor’s expansion). Suppose that f is analytic in a domain
D and that DR(z0) = {z : |z − z0| < R} is a disk contained in D. Then f is
uniquely represented in DR(z0) as a power series

f(z) =
∞∑
j=0

cj(z − z0)j , z ∈ DR(z0), (4.4)

where

cj =
f (j)(z0)

j!
.

Furthermore, for any r, 0 < r < R the convergence is uniform on Dr(z0) = {z :
|z− z0| ≤ r}. The power series with such coefficients is called the Taylor series
for f centered at z0.

Proof. Let z0 ∈ D and let R = dist(z0, ∂D) so that DR(z0) = {z : |z − z0| <
R} ⊂ D. Let z ∈ Dr(z0) = {z : |z − z0| < r} with 0 < r < R. The Cauchy
integral formula gives that

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − zdζ =
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)
(

1− z−z0
ζ−z0

)dζ.
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Since z ∈ Dr(z0) and |ζ − z0| = r we have that∣∣∣∣z − z0

ζ − z0

∣∣∣∣ =
|z − z0|

r
< 1.

Therefore we have (by geometric series)

1

1− z−z0
ζ−z0

=

∞∑
j=0

(
z − z0

ζ − z0

)j
.

Moreover, for such fixed z the convergence of this series is uniform on the circle
{ζ : |ζ − z0| = r}. Hence we may integrate this series term by term and obtain

f(z) =
1

2πi

∫
|ζ−z0|=r

f(ζ)dζ

(ζ − z0)
(

1− z−z0
ζ−z0

)
=

1

2πi

∫
|ζ−z0|=r

f(ζ)

ζ − z0

∞∑
j=0

(
z − z0

ζ − z0

)j
dζ

=

∞∑
j=0

(
1

2πi

∫
|ζ−z0|=r

f(ζ)

(ζ − z0)j+1
dζ

)
(z − z0)j =

∞∑
j=0

f (j)(z0)

j!
(z − z0)j .

Since r with 0 < r < R and z with |z − z0| < r are arbitrary we may conclude
that the representation (4.4) with the coefficient cj = f (j)(z0)/j! holds every-
where in DR(z0). Even more is true: the radius of convergence of (4.4) is R
and the convergence of (4.4) is uniform in Dr(z0) = {z : |z − z0| ≤ r} with any
r, 0 < r < R. The latter fact follows from the properties of the power series.
The uniqueness of representation (4.4) follows from the fact that necessarily
cj = f (j)(z0)/j!.

Corollary 4.9 (Taylor’s expansion at ∞). Let f(z) be analytic for |z| > R
(including z = ∞). Then f(z) is uniquely represented in {z : |z| > R} as the
series

f(z) =

∞∑
j=0

cjz
−j , |z| > R,

where cj = g(j)(0)
j! for g(z) := f(1/z). Moreover, these coefficients are equal to

cj =
f (j)(∞)

j!
, (4.5)

where f (j)(∞) := (f (j−1))′(∞).
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Proof. Let us consider g(z) := f(1/z). Then g is analytic in the domain {z :
|z| < 1/R}. Thus, Taylor’s expansion (4.4) at 0 gives

g(z) =

∞∑
j=0

cjz
j ,

where

cj =
1

2πi

∫
|z|=δ

g(z)dz

zj+1
=
g(j)(0)

j!
.

Since f(z) = g(1/z) we obtain for |z| > R that

f(z) =

∞∑
j=0

cjz
−j ,

where

cj =
g(j)(0)

j!
=
f (j)(∞)

j!

and

cj =
1

2πi

∫
|z|=δ

f(1/z)dz

zj+1
=

1

2πi

∫
|z|=1/δ

f(z)zj−1dz.

It can be mentioned here that the definition of the derivative at ∞ leads to the
fact

f (j)(∞) = g(j)(0) = j!cj .

Problem 4.10. Using Corollary 4.9 show that

1. f(∞) = limz→∞ f(z) = c0

2. f ′(∞) = limz→∞ z[f(z)− f(∞)]

3. f ′′(∞) = − limz→∞[z3f ′(z) + zf ′(∞)]

4. f ′′′(∞) = limz→∞[z5f ′′(z) + 2z4f ′(z)− zf ′′(∞)].

Problem 4.11. Show that

1.

ez = 1 + z + · · ·+ zn

n!
+ · · ·

2.

sin z = z − z3

3!
+ · · ·+ (−1)n

z2n−1

(2n− 1)!
+ · · ·
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3.

cos z = 1− z2

2!
+ · · ·+ (−1)n

z2n

(2n)!
+ · · ·

4.

sinh z = z +
z3

3!
+ · · ·+ z2n−1

(2n− 1)!
+ · · ·

5.

cosh z = 1 +
z2

2!
+ · · ·+ z2n

(2n)!
+ · · ·

and all these Taylor series converge for any |z| <∞.

Problem 4.12. Let f and g be analytic in a domain D and f(z) = g(z) on
the set E ⊂ D which has a limiting point in D. Show that f(z) = g(z) for all
z ∈ D.

Definition 4.13. Let f be analytic in a domain D. If

f(z0) = 0, f ′(z0) = 0, . . . , f (k0−1)(z0) = 0

but f (k0)(z0) 6= 0 for some z0 ∈ D and k0 ≥ 1, then z0 is called the zero of f of
order k0.

Problem 4.14. Let f be analytic in a domain D and let f 6≡ 0. Show that
all zeros of f in D are isolated i.e. for any bounded domain D1 with D1 ⊂ D
there are only at most finitely many zeros of f in D1.

Problem 4.15. Let

f(z) =

{
sin z
z , z 6= 0

1, z = 0.

Show that f is analytic everywhere in C and find its Taylor expansion centered
at 0.

Problem 4.16. Suppose that

f(z) =

∞∑
j=0

cjz
j

is an entire function. Show that f(z) is entire too. When f(z) = f(z)?

Problem 4.17. Let

f(z) =

{
e−1/z2 , z 6= 0

0, z = 0.

Show that f is not continuous at 0 and that it has no Taylor expansion at 0.

Problem 4.18. Let f be as in Problem 4.17. Define the Taylor expansion for
f at any point z0 6= 0.
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Laurent expansions

If f is analytic in the disk {z : |z − z0| < R} then we have only the Taylor’s
representation for this function. But if f is analytic in the deleted neighborhood
i.e. the punctured disk {z : 0 < |z − z0| < R} then what kind of representation
we may have for this function?

Let us consider the series (formally for the moment)

∞∑
j=−∞

cj(z − z0)j =
−1∑

j=−∞
cj(z − z0)j +

∞∑
j=0

cj(z − z0)j =: s2(z) + s1(z). (5.1)

The first term s2(z) is called the power series with negative degrees. The second
series in (5.1) defines the analytic function s1(z) in the disk {z : |z − z0| < R},
where

R−1 = lim
j→∞

j

√
|cj | = sup

j

j

√
|cj |. (5.2)

It makes sense to consider the first series for |z − z0| > 0. Thus, if we change
the variables as

ζ =
1

z − z0
, z = z0 +

1

ζ

we obtain for s2(z) the representation

s2(z) = s2(z0 + 1/ζ) =

∞∑
j=1

c−jζj =: s∗2(ζ), (5.3)

where ζ = 0 corresponds to z = ∞. So, we have the power series with respect
to positive degrees of ζ with radius of convergence 1/r which satisfies (see (5.2))

r = lim
j→∞

j

√
|c−j |

such that s∗2(ζ) is analytic function (this series converges) for any |ζ| < 1/r.
Equivalently, s2(z) is analytic in {z : |z − z0| > r}.
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If it turns out that r < R then s(z) = s2(z)+s1(z) is analytic in the annulus
{z : r < |z − z0| < R} centered at z0 with radii r and R. In this case the series
(5.1) is said to be a Laurent expansion for s(z) in the annulus. The opposite
statement also holds.

Example 5.1. Let us find three different Laurent expansions involving powers
of z for the function

f(z) =
3

2 + z − z2
.

This function has singularities at z = −1 and z = 2 and is analytic in the disk
{z : |z| < 1}, in the annulus {z : 1 < |z| < 2} and in the region {z : |z| > 2}.
We start by writing

f(z) =
3

(1 + z)(2− z) =
1

1 + z
+

1

2− z =
1

1 + z
+

1

2
· 1

1− z/2 .

We have three cases:

1. for |z| < 1 we have

1

1 + z
=

1

1− (−z) =
∞∑
j=0

(−z)j =
∞∑
j=0

(−1)jzj

and
1

2

1

1− z/2 =
1

2

∞∑
j=0

(z
2

)j
=

∞∑
j=0

1

2j+1
zj .

Hence we have the Taylor expansion

f(z) =
∞∑
j=0

(
(−1)j +

1

2j+1

)
zj

2. for 1 < |z| < 2 we have

1

1 + z
=

1

z
· 1

1 + 1/z
=

1

z

∞∑
j=0

(−1)j
1

zj
=

∞∑
j=1

(−1)j+1

zj

and
1

2

1

1− z/2 =
1

2

∞∑
j=0

(z
2

)j
=

∞∑
j=0

1

2j+1
zj .

So

f(z) =

∞∑
j=1

(−1)j+1

zj
+

∞∑
j=0

1

2j+1
zj

This is a Laurent expansion in the annulus 1 < |z| < 2.
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3. for |z| > 2 we have

1

1 + z
=
∞∑
j=1

(−1)j+1

zj

and

1

2
· 1

1− z/2 = −1

z
· 1

1− 2/z
= −1

z

∞∑
j=0

(
2

z

)j
= −

∞∑
j=1

2j−1

zj
.

Therefore

f(z) =
∞∑
j=1

((−1)j+1 − 2j−1)z−j .

This is a Laurent expansion at ∞ (or Taylor expansion).

Problem 5.2. Find the Laurent expansion for e−1/z2 centered at z0 = 0.

Theorem 5.3. Suppose that f is analytic in the annulus {z : r < |z−z0| < R}
with 0 ≤ r < R. Then for every z ∈ {z : r < |z − z0| < R} we have

f(z) =
∞∑

j=−∞
cj(z − z0)j , (5.4)

where the coefficients cj are uniquely determined by

cj =
1

2πi

∫
γ

f(ζ)dζ

(ζ − z0)j+1
, j = 0,±1,±2, . . . (5.5)

with a piecewise smooth closed Jordan curve γ ⊂ {z : r < |z − z0| < R}
and z0 ∈ int γ. Moreover, the convergence in (5.4) is uniform on any closed
subannulus {z : r < r1 ≤ |z − z0| ≤ R1 < R}.

Proof. Let z ∈ {z : r < |z − z0| < R}. Then we can find r1 > r and R1 < R
such that z ∈ {z : r1 < |z − z0| < R1}. Using the Cauchy integral formula for
multiply connected domain we obtain

f(z) =
1

2πi

∫
|ζ−z0|=R1

f(ζ)dζ

ζ − z −
1

2πi

∫
|ζ−z0|=r1

f(ζ)dζ

ζ − z

=
1

2πi

∫
|ζ−z0|=R1

f(ζ)

ζ − z0

dζ

1− z−z0
ζ−z0

+
1

2πi

∫
|ζ−z0|=r1

f(ζ)

z − z0

dζ

1− ζ−z0
z−z0

.

Since
1

1− z−z0
ζ−z0

=

∞∑
j=0

(z − z0)j

(ζ − z0)j
, |z − z0| < R1
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and
1

1− ζ−z0
z−z0

=

∞∑
j=0

(ζ − z0)j

(z − z0)j
, |z − z0| > r1

we may integrate term by term in these series (since these series converge uni-
formly on the circles |ζ − z0| = R1 and |ζ − z0| = r1, respectively) and obtain

f(z) =
∞∑
j=0

(z − z0)j
1

2πi

∫
|ζ−z0|=R1

f(ζ)dζ

(ζ − z0)j+1

+

∞∑
j=0

1

(z − z0)j+1

1

2πi

∫
|ζ−z0|=r1

f(ζ)dζ

(ζ − z0)−j

=
−1∑

j=−∞
(z − z0)j

1

2πi

∫
|ζ−z0|=r1

f(ζ)dζ

(ζ − z0)j+1

+
∞∑
j=0

(z − z0)j
1

2πi

∫
|ζ−z0|=R1

f(ζ)dζ

(ζ − z0)j+1

=
∞∑

j=−∞
(z − z0)j

1

2πi

∫
γ

f(ζ)dζ

(ζ − z0)j+1
,

where the integrals are considered for an arbitrary piecewise smooth closed
Jordan curve γ ⊂ {z : r < |z − z0| < R} and z0 ∈ int γ. We have used the fact
that these integrals are independent on such curves due to Cauchy theorem for
multiply connected domains.

Thus, we proved the Laurent expansions (5.4)-(5.5). It is evident that this
representation is unique since we may obtain necessarily (5.5). Uniform con-
vergence of (5.4) for z ∈ {z : r < r1 ≤ |z − z0| ≤ R1 < R} follows from the
arbitrariness of r1 and R1 in the preceding considerations.

Definition 5.4. The series (5.4) with the coefficients (5.5) is called the Laurent
expansion (representation) of the analytic function f in the annulus {z : r <
|z − z0| < R} and

f1(z) =
∞∑
j=0

cj(z − z0)j , f2(z) =
∞∑
j=1

c−j(z − z0)−j

are called the regular and main parts of this expansion, respectively.

If f is analytic in the annulus {z : 0 < |z−z0| < r} with some r > 0 then z0

is said to be an isolated singular point of f . Then Theorem 5.3 says that f(z)
in this annulus can be represented via the Laurent series

f(z) =

∞∑
j=−∞

cj(z − z0)j ,
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where cj are calculated by (5.5).

Example 5.5. Let us find the Laurent expansion for

f(z) =
cos z − 1

z4

that involves powers of z. Since

cos z − 1 = −z
2

2!
+
z4

4!
− z6

6!
+ · · ·

and this representation is valid for all |z| <∞ then

f(z) =
cos z − 1

z4
= − 1

z22!
+

1

4!
− z2

6!
+ · · · = −1

2
· 1

z2
+
∞∑
j=0

(−1)jz2j

(2j + 4)!
.

This is the Laurent expansion in the neighborhood of z = 0 and z =∞ both.

Problem 5.6. Find the Laurent expansion for

f(z) =
sin 2z

z4

that involves powers of z.

Problem 5.7. Find three Laurent expansion for

f(z) =
1

z2 − 5z + 6

centered at z0 = 0.

Problem 5.8. Find two Laurent expansions for

1

z(4− z)2

that involves powers of z.

Definition 5.9. If the number of nonzero coefficients (5.5) for j < 0 is

1. empty

2. finite

3. infinite

then z0 is called a removable point , a pole and an essentially singular point for
f , respectively.
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Let z0 be removable for f . Then its Laurent expansion has the form

f(z) =
∞∑
j=0

cj(z − z0)j ,

where z ∈ {z : 0 < |z − z0| < r}. But this series, as a power series, converges
in the whole disk {z : |z − z0| < r} and it is equal to f(z) for all z 6= z0. If we
define f at the point z0 as

f(z0) := c0 = lim
z→z0

∞∑
j=0

cj(z − z0)j

then we obtain a new function in the whole disk {z : |z − z0| < r} which is
analytic there. In particular, f is bounded in the closed disk {z : |z− z0| ≤ r1}
with r1 < r. The opposite property is also true. The following theorem holds.

Theorem 5.10. Let f be analytic in the annulus {z : 0 < |z − z0| < r} for
some r > 0. Then z0 is a removable singular point of f if and only if f is
bounded in the deleted neighborhood of z0.

Proof. It remains to prove this theorem only in the opposite direction. Let
us assume that f is bounded in some deleted neighborhood of z0 i.e. there is
M > 0 such that

|f(z)| ≤M, 0 < |z − z0| < δ.

Due to Theorem 5.3 we have that for all z ∈ {z : 0 < |z− z0| < r} it holds that

f(z) =

∞∑
j=−∞

cj(z − z0)j ,

where

cj =
1

2πi

∫
|ζ−z0|=δ

f(ζ)

(ζ − z0)j+1
dζ, 0 < δ < r.

Thus

|cj | ≤
1

2π
max
|ζ−z0|=δ

|f(ζ)|δ−j2π ≤Mδ−j , j = 0,±1,±2, . . . (5.6)

But for j < 0 it follows that cj = 0 because we may let δ → 0 in these estimates.
Hence, z0 is a removable singular point.

Remark. The estimate (5.6) has an independent interest.

If f is analytic in some domain D ⊂ C then z0 ∈ D is a root of order m of
f if in some neighborhood Uδ(z0) ⊂ D f admits the representation

f(z) = (z − z0)mϕ(z), (5.7)
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where ϕ(z) is analytic in Uδ(z0) and ϕ(z0) 6= 0. It is equivalent to

f(z0) = 0, f ′(z0) = 0, . . . , f (m−1)(z0) = 0, f (m)(z0) 6= 0.

Another thing is: if f 6≡ 0 is analytic in D ⊂ C and f(z0) = 0, z0 ∈ D then the
order of the root is always finite i.e. there is m ∈ N such that (5.7) holds. If
we assume on the contrary that f (k)(z0) = 0, k = 0, 1, . . . then by the Taylor
expansion we have

f(z) =
∞∑
j=0

f (j)(z0)

j!
(z − z0)j ≡ 0

for all z ∈ Uδ(z0). Further, using the procedure of continuation (see proof of
Theorem 2.3) for any z1 ∈ D we may obtain f(z1) = 0 i.e. f(z) ≡ 0 in D. This
contradiction proves the fact.

Another consequence is: if f(zn) = 0 and zn → z0, zn 6= z0 with z0, zn ∈ D
then f ≡ 0 in D.

Let us assume that z0 is a pole of f . Then f has the Laurent expansion of
the form

f(z) =
∞∑
j=0

cj(z − z0)j +
m∑
j=1

c−j(z − z0)−j , (5.8)

where c−m 6= 0. Then we say that z0 is a pole of order m.

Theorem 5.11. Let f be analytic in the annulus {z : 0 < |z − z0| < r}. Then
f has a pole of some order m at z0 if and only if limz→z0 |f(z)| =∞.

Proof. Let us assume first that z0 is a pole of order m ∈ N. Then the following
representation holds

f(z) =
∞∑
j=0

cj(z − z0)j +
m∑
j=1

c−j(z − z0)−j ,

where c−m 6= 0. Then for the function

F (z) := (z − z0)mf(z)

we have

F (z) = c−m + c−m+1(z − z0) + · · ·+ c−1(z − z0)m−1 + c0(z − z0)m + · · ·

i.e. F (z) has a removable singularity at z0. Moreover, there exists

lim
z→z0

F (z) = c−m 6= 0.

This fact implies that there is 0 < δ < r such that

|F (z)| > |c−m|
2

> 0
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for all 0 < |z − z0| < δ and therefore

|f(z)| > |c−m|
2
|z − z0|−m

i.e.

lim
z→z0

|f(z)| =∞. (5.9)

Conversely, if (5.9) holds then

lim
z→z0

1

|f(z)| = lim
z→z0

1

f(z)
= 0.

This fact can be interpreted as follows: a new function

g(z) :=
1

f(z)

is analytic in {z : 0 < |z − z0| < δ} and the function g can be extended as an
analytic function everywhere in {z : |z − z0| < δ} and z0 is a root of analytic
function g. But the root of a analytic function (if it is not identically zero) is
of finite order, say m. That’s why

g(z) = (z − z0)mϕ(z),

where ϕ(z) is analytic and ϕ(z0) 6= 0. Hence

f(z) =
1

(z − z0)m
1

ϕ(z)
,

where 1/ϕ(z) is analytic in the neighborhood of z0 and 1/ϕ(z0) 6= 0. This
condition allows us to represent 1/ϕ(z) via its Taylor expansion for |z− z0| < δ
as

1

ϕ(z)
=

∞∑
j=0

aj(z − z0)j ,

where a0 = 1/ϕ(z0) 6= 0. This implies that Laurent expansion for f is

f(z) =
a0

(z − z0)m
+ · · ·+ am−1

(z − z0)
+

∞∑
j=0

am+j(z − z0)j .

This means that z0 is a pole of order m for f .

Corollary 5.12. z0 is a pole of order m for function f which is analytic in the
annulus {z : 0 < |z − z0| < δ} if and only if z0 is a root of 1/f of order m and
this function is analytic in {z : |z − z0| < δ}.
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Theorem 5.13. Let f be analytic in the annulus {z : 0 < |z − z0| < r}. Then
f has an essentially singular point at z0 if and only if there is no limz→z0 f(z)
(finite or infinite).

Proof. If we assume on the contrary that there is limz→z0 f(z) finite or infinite
then in the first case z0 is a removable singularity and in the second case it is
a pole of some order. This contradiction proves the theorem.

As the consequence of this fact we can obtain that there exist two dif-
ferent sequences z′n and z′′n converging to z0 such that f(z′n) is bounded and
limn→∞ f(z′′n) =∞. Even more is true.

Theorem 5.14 (Casorati-Sokhotski-Weierstrass). Let z0 6= ∞ be an essential
singularity of f(z). Let E be the set of all values of f(z) in the deleted neigh-
bourhood of z0. Then E is dense in C i.e. for any ε > 0, δ > 0 and complex
number w there exists a complex number z with 0 <| z − z0 |< δ such that
| f(z)− w |< ε.

Proof. Let α be an arbitrary point of C. Let us assume that for any

z ∈ {z ∈ C : 0 <| z − z0 |< δ}

we have f(z) 6= α. Otherwise there is

z′ ∈ {z ∈ C : 0 <| z − z0 |< δ}

such that f(z′) = α and everything is proved.
Then in the deleted neighbourhood of z0 the function

g(z) :=
1

f(z)− α
is well-defined. For this function g(z) the point z0 will be also essential sin-
gularity. Indeed, if z0 is a pole or removable singularity for g(z) then z0 is a
zero or removable singularity for f(z)− α, respectively. In both cases we have
a contradiction with essential singularity at z0 for f(z). Thus g(z) cannot be
bounded in this neighbourhood and therefore there is a sequence zn converging
to z0 such that limn→∞ g(zn) =∞ or limn→∞ f(zn) = α. It means that α ∈ E
and the theorem is proved.

Remark. If z0 =∞ is an essential singularity for f(z) then (by definition) zero
is the essential singularity for ϕ(z) = f(1/z). Then, Theorem 5.14 holds for
ϕ(z) in the deleted neighbourhood of zero which is equivalent to the fact that
Theorem 5.14 holds for f(z) in the neighbourhood of ∞.

There is a substantial strengthening of Theorem 5.14 which only guarantees
that the range of f(z) is dense in C. Namely, the following Great Picard’s
Theorem holds. We give it without proof.
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Theorem 5.15 (Picard). If analytic function f(z) has an essential singularity
at z0 then on any deleted neighbourhood of z0 the function f(z) takes on all
possible complex values, with at most a single exception, infinitely often.

Example 5.16. 1. The function f(z) = e1/z has an essential singularity at
z = 0 but still never attains the value 0.

2. The function

f(z) =
1

1− e1/z

has an essential singularity at z = 0 and attains the value ∞ infinitely
often in any neighbourhood of 0 (zn = i/2πn, n = ±1,±2, . . .). However,
it does not attain the values 0 or 1, since e1/z 6= 0.

Example 5.17. 1. Consider the function

f(z) =
sin z

z
.

Since
sin z

z
=

1

z

(
z − z3

3!
+
z5

5!
− · · ·

)
= 1− z2

3!
+
z4

5!
− · · ·

for |z| > 0 then we can remove the singularity at z = 0 if we define
f(0) = 1 since then f will be analytic at z = 0.

2. Consider the function

g(z) =
cos z − 1

z2
.

Since again for all |z| > 0 we have

cos z − 1

z2
=

1

z2

(
−z

2

2!
+
z4

4!
− · · ·

)
= −1

2
+
z2

4!
− z4

6!
+ · · ·

then defining g(0) = −1/2 we obtain function that is analytic for all z.

Example 5.18. Consider the function

f(z) =
sin z

z3
.

Since for all |z| > 0 we have

sin z

z3
=

1

z3

(
z − z3

3!
+
z5

5!
− · · ·

)
=

1

z2
− 1

3!
+
z2

5!
− · · ·

then c−2 = 1 6= 0. Therefore f(z) has a pole of order 2 at 0.
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Example 5.19. Consider the function

f(z) = z2 sin
1

z
.

Since for all |z| > 0 we have

z2 sin
1

z
= z2

(
1

z
− 1

z33!
+

1

z55!
− · · ·

)
= z − 1

z3!
+

1

z35!
− · · ·

then the Laurent expansion has infinitely many negative powers of z. Hence
z = 0 is essentially singular point for f .

Problem 5.20. Suppose that f has a removable singularity at z0. Show that
the function 1/f has either a removable singularity or a pole at z0.

Problem 5.21. 1. Let f be analytic and have a zero of order k at z0. Show
that f ′ has a zero of order k − 1 at z0.

2. Let f be analytic and have a zero of order k at z0. Show that f ′/f has a
simple pole (pole of order 1) at z0.

3. Let f have a pole of order k at z0. Show that f ′ has a pole of order k+ 1
at z0.

Problem 5.22. Find the singularities of

f(z) =
1

sin 1
z

.

Let f be analytic in the region {z : |z| > R}. Then the function

ϕ(z) := f(1/z)

is analytic in the annulus {z : 0 < |z| < 1/R}. Hence z = 0 might be an isolated
singular point for ϕ. The Laurent expansion for ϕ gives

ϕ(z) =
∞∑

j=−∞
cjz

j , 0 < |z| < 1

R
.

Thus we have the following expansion for f

f(z) = ϕ(1/z) =

∞∑
j=−∞

cjz
−j =

∞∑
j=−∞

c−jzj , |z| > R. (5.10)

Definition 5.23. If z = 0 is a removable singularity, a pole or an essential
singularity for ϕ(z) then z = ∞ is called a removable singularity, a pole or an
essential singularity for f(z), respectively.
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Remark. This definition implies that if the number of coefficients (5.10) for
j > 0 is empty, finite or infinite then z = ∞ is a removable singularity, a pole
or an essential singularity, respectively.

Example 5.24. 1. Let f be a polynomial of order n i.e.

f(z) = a0z
n + a1z

n−1 + · · ·+ an, a0 6= 0.

Then z =∞ is a pole of order n.

2. Let f be analytic in the whole space C. If z =∞ is a removable singularity
then f ≡ constant and if z =∞ is a pole of order n then f is a polynomial
of order n.

Problem 5.25. Consider the function

f(z) = z2 sin
1

z
.

Show that f has a pole of order 1 at z =∞. Compare this result with second
part of Example 5.24.



Chapter 6

Residues and their calculus

Recall that if a piecewise smooth closed Jordan curve γ : z(t), a ≤ t ≤ b is
parametrized so that int γ is kept on the left as z(t) moves around γ then we
say that γ is oriented positively. Otherwise, γ is said to be oriented negatively .

(a) positive (b) negative

Figure 6.1: Orientation illustrated with circles

Let z0 be an isolated singular point for a function f i.e. f(z) is analytic in
the annulus {z : 0 < |z − z0| < r} if z0 6= ∞ and in the region {z : |z| > R} if
z0 =∞.

Definition 6.1. The residue of f at the point z0 is defined by

Res
z=z0

f :=
1

2πi

∫
γ
f(ζ)dζ, (6.1)

where z0 ∈ int γ, γ ⊂ {z : 0 < |z − z0| < δ} and γ is positively oriented if
z0 6=∞ and 0 ∈ int γ, γ ⊂ {z : |z| > R} and γ is negatively oriented if z0 =∞.

Remark. Due to Cauchy theorem for multiply connected domains the integral
in (6.1) is independent on the corresponding curve and thus, the residue can be
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rewritten as

Res
z=z0 6=∞

f =
1

2πi

∫
|ζ−z0|=δ

f(ζ)dζ

Res
z=∞

f = − 1

2πi

∫
|ζ|=R

f(ζ)dζ

(6.2)

If z0 6=∞ then the formulas (5.5) show us that

Res
z=z0

f =
1

2πi

∫
|ζ−z0|=δ

f(ζ)dζ = c−1, (6.3)

where c−1 is the coefficient in front of (z − z0)−1 of the Laurent expansion for
f . If z0 =∞ then

Res
z=∞

f = − 1

2πi

∫
|ζ|=R

f(ζ)dζ = −c1, (6.4)

where c1 is the coefficient in front of z−1 of the Laurent expansion for f .

Example 6.2. Let us find Resz=0 g of

g(z) =
3

2z + z2 − z3
.

Since
3

2z + z2 − z3
=

1

z
· 3/2

1 + z/2− z2/2

and

g1(z) =
3/2

1 + z/2− z2/2

is analytic in the neighborhood of z = 0 and such that g1(0) = 3/2 then the
Laurent expansion for g has the form

g(z) =
3/2

z
+

∞∑
j=0

cjz
j .

Thus

Res
z=0

g = 3/2.

Example 6.3. If f(z) = e2/z then the Laurent expansion of f about the point
0 has the form

e2/z = 1 +
2

z
+

22

z22!
+ · · ·

and Resz=0 f = 2. At the same time (by definition) Resz=∞ f = −2.
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Theorem 6.4 (Residues at poles). If f has a pole of order k at z0 6=∞ then

Res
z=z0

f =
1

(k − 1)!
lim
z→z0

dk−1

dzk−1

(
(z − z0)kf(z)

)
. (6.5)

Proof. Suppose that f has a pole of order k at z0 6=∞. Then f can be written
as

f(z) =
c−k

(z − z0)k
+

c−k+1

(z − z0)k−1
+ · · ·+ c−1

(z − z0)
+

∞∑
j=0

cj(z − z0)j , c−k 6= 0.

Multiplying both sides by (z − z0)k gives

(z − z0)kf(z) = c−k + · · ·+ c−1(z − z0)k−1 +
∞∑
j=0

cj(z − z0)j+k.

If we differentiate both sides k − 1 times we get

dk−1

dzk−1
((z − z0)kf(z)) = (k − 1)!c−1 +

∞∑
j=0

cj(j + k) · · · (j + 2)(z − z0)j+1.

Letting z → z0 the result is

lim
z→z0

dk−1

dzk−1
((z − z0)kf(z)) = (k − 1)!c−1.

By (6.3) this leads to (6.5).

Corollary 6.5. Let f = ϕ/ψ be such that

ϕ(z0) 6= 0, ψ(z0) = 0, ψ′(z0) 6= 0.

Then f has a pole of order 1 at z0 and

Res
z=z0

f =
ϕ(z0)

ψ′(z0)
. (6.6)

Proof. The conditions for ϕ and ψ show that z0 is a pole of order 1 for f = ϕ/ψ.
Hence

Res
z=z0

f = lim
z→z0

(
(z − z0)

ϕ(z)

ψ(z)

)
= lim

z→z0
ϕ(z)

ψ(z)−ψ(z0)
z−z0

=
ϕ(z0)

ψ′(z0)

by Theorem 6.4.

Corollary 6.6. Let f = ϕ/ψ be such that

ϕ(z0) 6= 0, ψ(z0) = ψ′(z0) = 0, ψ′′(z0) 6= 0.

Then

Res
z=z0

f =
2ϕ′(z0)

ψ′′(z0)
− 2ϕ(z0)ψ′′′(z0)

3(ψ′′(z0))2
.
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Corollary 6.7. If f has a pole of order k at z0 =∞ then

Res
z=∞

f = − 1

(k + 1)!
lim
z→0

dk+1

dzk+1
(zkf(1/z)). (6.7)

Problem 6.8. Prove Corollaries 6.6 and 6.7.

Problem 6.9. Find the residue of

f(z) =
π cot(πz)

z2

at z0 = 0.

Theorem 6.10 (Cauchy’s residue theorem). Let D ⊂ C be a simply connected
domain and let γ be a piecewise smooth closed Jordan curve which is positively
oriented and lies in D. If f is analytic in D except the points z1, z2, . . . , zn ∈
int γ then ∫

γ
f(ζ)dζ = 2πi

n∑
j=1

Res
z=zj

f. (6.8)

Proof. Since there are finitely many singular points in int γ there exists r > 0
such that the positively oriented circles γj := {z : |z − zj | = r}, j = 1, 2, . . . , n
are mutually disjoint and all lie in int γ. Applying the Cauchy theorem for
multiply connected domain we obtain∫

γ
f(ζ)dζ +

n∑
j=1

∫
−γj

f(ζ)dζ = 0

or ∫
γ
f(ζ)dζ =

n∑
j=1

∫
γj

f(ζ)dζ = 2πi
n∑
j=1

Res
z=zj

f.

Corollary 6.11. Let D ⊂ C be a multiply connected bounded domain with the
boundary ∂D which is a combination of finitely many disjoint piecewise smooth
closed Jordan curves. If f is analytic in D and continuous in D except the
points z1, z2, . . . , zn ∈ D then∫

∂D
f(ζ)dζ = 2πi

n∑
j=1

Res
z=zj

f,

where the integration holds over positively oriented curves.

Corollary 6.12. Let f be analytic in C except z1, z2, . . . , zn, z0 =∞. Then

n∑
j=0

Res
z=zj

f = 0. (6.9)
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Proof. Let R > 0 be chosen so that z1, z2, . . . , zn ∈ {z : |z| < R}. Theorem
6.10 gives that

1

2πi

∫
|ζ|=R

f(ζ)dζ =
n∑
j=1

Res
z=zj

f,

where the circle {ζ : |ζ| = R} is positively oriented. But

1

2πi

∫
|ζ|=R

f(ζ)dζ = − Res
z=∞

f

by (6.2).

Example 6.13. Let us find the isolated singular points and the residues at
these points for

f(z) =
ez

1− cos z
.

Since ez 6= 0 for all z ∈ C then the singular points of f may appear only when
1− cos z = 0 or eiz = 1. So the singular points are

zn = 2πn, n = 0,±1,±2, . . . .

At the same time we have

(1− cos z)′|z=zn = sin z|z=zn = 0, (1− cos z)′′|z=zn = cos z|z=zn = 1.

It means that all these points zn are roots of order 2 of the denominator. There-
fore all these points zn are poles of order 2 for f(z). From these considerations
it follows also that z =∞ is not an isolated singular point (it is not classified).
By Theorem 6.4 we have that

Res
z=zn

f = lim
z→zn

d

dz

(
(z − zn)2 ez

1− cos z

)
= lim

ζ→0

d

dζ

(
ζ2 eζ+2πn

1− cos ζ

)
= lim

ζ→0

d

dζ

(
ζ2 eζ+2πn

ζ2/2!− ζ4/4! + · · ·

)
= e2πn lim

ζ→0

d

dζ

(
eζ

1/2− ζ2/4!− · · ·

)
= e2πn lim

ζ→0

(
eζ

1/2− ζ2/4! + · · · −
eζ(−2ζ/4! + 4ζ3/6!− · · · )
1/2− ζ2/4! + ζ4/6!− · · ·

)
= 2e2πn

for n = 0,±1,±2, . . .. This can be proved also using Corollary 6.6.

Example 6.14. Let P be a polynomial of degree at most 2. Let us show that
if a, b and c are distinct complex numbers then

f(z) =
P (z)

(z − a)(z − b)(z − c) =
A

z − a +
B

z − b +
C

z − c ,
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where

A =
P (a)

(a− b)(a− c) = Res
z=a

f,

B =
P (b)

(b− a)(b− c) = Res
z=b

f

and

C =
P (c)

(c− a)(c− b) = Res
z=c

f.

Indeed, since

P (z)

(z − a)(z − b)(z − c) =
A

z − a +
B

z − b +
C

z − c

then z = a, z = b and z = c are singular points of f (if, of course, a, b and c are
not roots of P ). That’s why the terms

A

z − a,
B

z − b ,
C

z − c
are the main parts of the Laurent expansion for f around a, b and c, respectively.
Thus,

A = Res
z=a

f, B = Res
z=b

f, C = Res
z=c

f

and

A = lim
z→a

P (z)(z − a)

(z − a)(z − b)(z − c) =
P (a)

(a− b)(a− c)

B = lim
z→b

P (z)(z − b)
(z − a)(z − b)(z − c) =

P (b)

(b− a)(b− c)

C = lim
z→c

P (z)(z − c)
(z − a)(z − b)(z − c) =

P (c)

(c− a)(c− b) .

Problem 6.15. Show that if P has degree of at most 3 then

f(z) =
P (z)

(z − a)2(z − b) =
A

(z − a)2
+

B

z − a +
C

z − b ,

where
A = Res

z=a
((z − a)f), B = Res

z=a
f, C = Res

z=b
f.

Problem 6.16. Let γ be a piecewise smooth closed Jordan curve and let f be
analytic in int γ. Let z0 ∈ int γ be the only zero of f and of order k. Show that

1

2πi

∫
γ

f ′(ζ)

f(ζ)
dζ = k = Res

z=z0

f ′

f
.



Chapter 7

The principle of the argument
and Rouche’s theorem

Let G be a domain on the complex plane and D be a bounded subdomain
of G such that D ⊂ G. The domain D needs not be simply connected but
the boundary ∂D of this domain is a combination of finitely many disjoint
piecewise smooth closed Jordan curves. Let f be an analytic function on G.
Consequently, f is analytic on the closed domain D.

Proposition 7.1. Let the domains D and G be as above and let f be analytic
on G, except finite number of poles zk ∈ D of order µk for k = 1, 2, . . . , n. Let
us assume in addition that f(z) 6= 0 on D except finite number of zeros wk ∈ D
of order λk, k = 1, 2, . . . ,m. Then the function

f ′(z)
f(z)

is analytic on D except the points {zk}nk=1 and {wk}mk=1 (which are poles of
order 1 for f ′/f) and

1

2πi

∫
∂D

f ′(ζ)dζ

f(ζ)
= N − P, (7.1)

where N =
∑m

k=1 λk and P =
∑n

k=1 µk.

Proof. Consider the function f ′/f in the neighbourhood of the pole zk. Then
f(z) can be represented there as

f(z) = (z − zk)−µkf1(z),

where f1(z) is analytic in this neighbourhood and f1(zk) 6= 0.This implies that

f ′(z)
f(z)

=
−µk(z − zk)−µk−1f1(z) + (z − zk)−µkf ′1(z)

(z − zk)−µkf1(z)
= − µk

z − zk
+
f ′1(z)

f1(z)
, (7.2)
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where the second term f ′1(z)/f1(z) in the latter sum is analytic in this neigh-
bourhood of zk since f1(zk) 6= 0. The representation (7.2) shows that zk is a
pole of order 1 for f ′/f and

Res
z=zk

f ′(z)
f(z)

= −µk. (7.3)

Consider now the function f ′/f in the neighbourhood of a zero wk. Then we
have that

f(z) = (z − wk)λkf2(z),

where f2(z) is analytic in this neighbourhood and f2(wk) 6= 0. Thus, we have

f ′(z)
f(z)

=
λk(z − wk)λk−1f2(z) + (z − wk)λkf ′2(z)

(z − wk)λkf2(z)
=

λk
z − wk

+
f ′2(z)

f2(z)
, (7.4)

where the second term in the latter sum is analytic in this neighbourhood since
f2(wk) 6= 0. The representation (7.4) shows also that wk is a pole of order 1 for
f ′/f and

Res
z=wk

f ′(z)
f(z)

= λk. (7.5)

Since the function f ′/f is analytic on D except the points {zk}nk=1, {wk}mk=1

(where it has the simple poles) then applying the Cauchy’s residue theorem
(see Theorem 6.10) we obtain (see (7.3) and (7.5))

1

2πi

∫
∂D

f ′(ζ)dζ

f(ζ)
=

n∑
k=1

Res
z=zk

f ′(z)
f(z)

+

m∑
k=1

Res
z=wk

f ′(z)
f(z)

= −
n∑
k=1

µk+

m∑
k=1

λk = N−P.

This finishes the proof.

Corollary 7.2. Suppose that f(z) is analytic on D and f(z) 6= 0 on D except
the zeros wk ∈ D of order λk, k = 1, 2, . . . ,m. Then

1

2πi

∫
∂D

f ′(ζ)dζ

f(ζ)
= N. (7.6)

Let γ be a piecewise smooth closed Jordan curve and let f(z) be analytic
on int γ

Definition 7.3. Let ζ0 be a point of γ and ϕ0 = Arg f(z) at ζ0. Let also
ϕ1 = Arg f(z) at ζ0 after going around once along this curve from ζ0 to ζ0 in
positive direction. Then the value ϕ1 − ϕ0 is called the variation of Arg f(z)
along curve γ and it is denoted by

ϕ1 − ϕ0 = Var
γ

Arg f.
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Theorem 7.4 (The principle of argument). Let f be analytic on int γ, where
γ is a piecewise smooth closed Jordan curve, except the poles {zk}nk=1 ⊂ int γ
of order µk. Assume that f(z) 6= 0 on int γ except the zeros {wk}mk=1 ⊂ int γ of
order λk. Then

1

2π
Var
γ

Arg f(z) = N − P, (7.7)

where N =
∑m

k=1 λk and P =
∑n

k=1 µk.

Proof. Since f(z) 6= 0 on γ we may consider the multivalued function

Log f(z) = log |f(z)|+ i Arg f(z).

Moreover, this function is analytic in the neighbourhood of γ and

(Log f(z))′ =
f ′(z)
f(z)

.

Proposition 7.1 says that

1

2πi

∫
γ
(Log f(ζ))′dζ = N − P.

It is equivalent to the changes of log f(ζ) after going around once along γ from
ζ0 to ζ0 i.e.

N − P =
1

2πi
[Log f(ζ)]ζ=ζ0ζ=ζ0

=
1

2πi
[log |f(ζ)|+ i Arg f(ζ)]ζ=ζ0ζ=ζ0

=
Arg f(ζ)

2π

∣∣∣∣ζ=ζ0
ζ=ζ0

=
Varγ Arg f(ζ)

2π
.

Theorem 7.5 (Rouche). Let G be a simply connected domain, γ be a piecewise
smooth closed Jordan curve in G and f and g be analytic functions on G except
finitely many poles which are located in int γ. If |f(ζ)| > |g(ζ)| on γ then

Nf+g − Pf+g = Nf − Pf , (7.8)

where Nf , Nf+g, Pf and Pf+g denote the number of zeros or poles (taking into
account their multiplicity) for functions f and f + g, respectively.

Proof. The conditions for f and g on γ show that |f(ζ)| > 0 and |f + g| ≥
|f | − |g| > 0 on γ i.e. f and f + g are not equal to zero on γ. That’s why we
may apply Theorem 7.4 and obtain

1

2π
Var
γ

Arg(f + g)− 1

2π
Var
γ

Arg(f) = (Nf+g − Pf+g)− (Nf − Pf ).
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But the left hand side of the latter equality is equal to (see the proof of Theorem
7.4)

1

2π
Var
γ

Arg
f + g

f
=

1

2π
Var
γ

Arg(1 + g/f).

We will show now that this value is equal to zero. Indeed, since on γ we have

|g/f + 1− 1| = |g/f | < 1

then the value g/f + 1 on γ changes inside the circle {w : |w − 1| < 1} such
that w = 0 does not belong to this set.

b

1

1

Since it does not go around zero along γ then Varγ Arg(1+g/f) = 0. Hence
the equality (7.8) holds and Theorem is proved.

Corollary 7.6. Suppose that f and g are analytic. Then under the conditions
of Theorem 7.5 we have that

Nf+g = Nf . (7.9)

Example 7.7. Let P (z) = z10− 5z7 + 2. The fundamental theorem of algebra
says that this polynomial has exactly 10 roots (taking into account their mul-
tiplicities). The question now is: how many of these roots are located in the
unit disk {z : |z| < 1}. Indeed, if we denote g(z) = z10 + 2 and f(z) = −5z7

then P (z) = f(z) + g(z). The function f has 7 roots in this disc and for |z| = 1
we have that

|g(z)| = |z10 + 2| ≤ |z|10 + 2 = 3 < 5 = |f(z)| = 5|z|7.

By Rouche’s theorem we obtain Nf+g = Nf = 7.

Problem 7.8. Prove fundamental theorem of algebra using Corollary 7.6.
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Problem 7.9. Show that the equation

a0 + a1 cosϕ+ a2 cos 2ϕ+ · · ·+ an cosnϕ = 0,

where 0 ≤ a0 < a1 < · · · < an has 2n simple roots on the interval (0, 2π).

Problem 7.10. Show that if f(z) is analytic and univalent in the domain D
then f ′(z) 6= 0 for all z ∈ D.



Chapter 8

Calculation of integrals by
residue theory

8.1 Trigonometric integrals

Suppose that we want to calculate an integral of the form∫ 2π

0
R(cos t, sin t)dt, (8.1)

where R(u, v) is a rational function of two variables u and v i.e.

R(u, v) =

∑
k,l aklu

kvl∑
m,n bmnu

nvm

and the summation in both sums is finite. Due to periodicity (8.1) is equal to∫ π

−π
R(cos t, sin t)dt. (8.2)

Consider the unit circle {z : |z| = 1} which is parametrized as (positive orien-
tation) γ : z(t) = eit, t ∈ [−π, π]. Then

cos t =
eit + e−it

2
=
z + 1/z

2
=
z2 + 1

2z
,

sin t =
eit − e−it

2i
=
z − 1/z

2i
=
z2 − 1

2iz

and
dz = d(eit) = eitidt

or

dt =
dz

ieit
=

dz

iz
.
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The integral (8.1) transforms to the curve integral∫ π

−π
R(cos t, sin t)dt =

∫
γ
R

(
z2 + 1

2z
,
z2 − 1

2iz

)
dz

iz
=

∫
γ
R̃(z)dz, (8.3)

where

R̃(z) =
1

iz
R

(
z2 + 1

2z
,
z2 − 1

2iz

)
is a rational function of only one variable z. This rational function R̃ may have
only singular points which are poles (roots of the denominator of R̃).

Let us consider the poles of R̃ which are located inside the unit disk {z :
|z| < 1} and denote them as z1, z2, . . . , zm. The residue theorem gives∫ π

−π
R(cos t, sin t)dt =

∫
γ
R̃(z)dz = 2πi

m∑
j=1

Res
z=zj

R̃. (8.4)

Example 8.1. Let us evaluate the integral∫ 2π

0

1

3 + 2 sin t
dt.

Due to (8.3) we have∫ 2π

0

1

3 + 2 sin t
dt =

∫
γ

1

iz

1

3 + 2 z
2−1
2iz

dz =

∫
γ

dz

z2 + 3iz − 1
,

where γ is the unit circle. The roots of the denominator are

z1,2 =
−3i∓ i

√
5

2
.

It is easy to see that |z1| > 1 and |z2| < 1. By (8.4) we get∫ 2π

0

1

3 + 2 sin t
dt = 2πi Res

z=z2

1

z2 + 3iz − 1
= 2πi

1

2z2 + 3i
=

2π√
5

after using also (6.6).

Example 8.2. Let us evaluate the integral

I :=

∫ 2π

0

1

1 + 3 cos2 t
dt.

Repeating the same procedure as above we obtain

I =

∫
γ

1

iz

1

1 + 3
(
z2+1

2z

)2 dz =
1

i

∫
γ

4zdz

3z4 + 10z2 + 3
.
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The roots of the denominator are

z1 = i
√

3, z2 = −i
√

3, z3 = i/
√

3, z4 = −i/
√

3.

It is clear that |z1|, |z2| > 1 and |z3|, |z4| < 1. That’s why

I = 2π

(
Res
z=z3

4z

3z4 + 10z2 + 3
+ Res
z=z4

4z

3z4 + 10z2 + 3

)
= 2π

(
4z3

12z3
3 + 20z3

+
4z4

12z3
4 + 20z4

)
= 2π

(
i/
√

3

3(i/
√

3)3 + 5i/
√

3
− i/

√
3

3(−i/
√

3)3 − 5i/
√

3

)
= π.

Problem 8.3. Evaluate ∫ 2π

0

cos(2t)

5− 4 cos t
dt.

Problem 8.4. Evaluate ∫ 2π

0

sin2 t

5 + 4 cos t
dt.

8.2 Improper integrals of the form
∫∞
−∞ f(x)dx

Let f(x) be a continuous real-valued function of x ∈ R. The Cauchy principal
value of the integral ∫ ∞

−∞
f(x)dx

is defined by

p. v.

∫ ∞
−∞

f(x)dx = lim
R→∞

∫ R

−R
f(x)dx

provided the limit exists. By this definition we obtain

p. v.

∫ ∞
−∞

f(x)dx = 0

if f is odd and

p. v.

∫ ∞
−∞

f(x)dx = 2

∫ ∞
0

f(x)dx

if f is even.

Theorem 8.5. Let f be analytic for Im z > 0 and continuous for Im z ≥ 0
except for the singular points z1, z2, . . . , zn with Im zj > 0 for all j = 1, 2, . . . , n.
If f(z) = o(1/|z|) for z →∞, Im z > 0 then

p. v.

∫ ∞
−∞

f(x)dx = 2πi

n∑
j=1

Res
z=zj

f. (8.5)
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Proof. Let R > 0 be chosen such that all points z1, z2, . . . , zn belong to the
region {z : |z| < R, Im z > 0}. Let γR be the union of the line segment [−R,R]
and the upper semicircle Γ+

R.

b

b

z1zn

−R R

Γ+
R

The residue theorem gives that

∫ R

−R
f(x)dx+

∫
Γ+
R

f(z)dz = 2πi

n∑
j=1

Res
z=zj

f.

But ∣∣∣∣∣
∫

Γ+
R

f(z)dz

∣∣∣∣∣ =

∣∣∣∣∫ π

0
f(Reit)Reitidt

∣∣∣∣ ≤ ∫ π

0
|f(Reit)|Rdt

=

∫ π

0
o(1/R)Rdt = oR(1)π → 0

as R→∞. That’s why

lim
R→∞

∫ R

−R
f(x)dx = 2πi

n∑
j=1

Res
z=zj

f.

Example 8.6. Let us evaluate the integral∫ ∞
0

1

x4 + 1
dx =

1

2

∫ ∞
−∞

1

x4 + 1
dx.

The singular points of
1

z4 + 1

are

z0 = eiπ/4, z1 = ei3π/4, z2 = ei5π/4, z3 = ei7π/4.
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It is clear also that Im z0, Im z1 > 0 and Im z2, Im z3 < 0. Hence∫ ∞
0

1

x4 + 1
dx = πi

(
Res
z=z0

1

z4 + 1
+ Res
z=z1

1

z4 + 1

)
= πi

(
1

4z3
0

+
1

4z3
1

)
=
πi

4

(
e−3iπ/4 + e−9iπ/4

)
=
πi

4

(
cos

3π

4
− i sin

3π

4
+ cos

9π

4
− i sin

9π

4

)
=
πi

4

(
−2i sin

π

4

)
=
π
√

2

4
.

Example 8.7. Let us evaluate the integral∫ ∞
0

x4

x6 + 1
dx.

The singular points of
z4

z6 + 1
are

zk = ei(π/6+2πk/6), k = 0, 1, . . . , 5.

It is clear that only z0, z1 and z2 belong to the upper half plane. Thus∫ ∞
0

x4

x6 + 1
dx = πi

2∑
j=0

Res
z=zj

z4

z6 + 1
= π i

(
z4

0

6z5
0

+
z4

1

6z5
1

+
z4

2

6z5
2

)

=
πi

6

(
1

z0
+

1

z1
+

1

z2

)
=
πi

6

(
e−iπ/6 + e−iπ/2 + e−i5π/6

)
=
πi

6

(
cos

π

6
− i sin

π

6
− i + cos

5π

6
− i sin

5π

6

)
=
πi

6

(
−2i sin

π

6
− i
)

=
π

3
.

Problem 8.8. Evaluate the integral∫ ∞
−∞

x2

(x2 + 4)2
dx.

Problem 8.9. Evaluate the integral∫ ∞
−∞

1

(x4 + 1)2
dx.

Problem 8.10. Evaluate the integral

p. v.

∫ ∞
−∞

1

x(x2 + 1)
dx.
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8.3 Improper integrals of the form
∫∞
−∞ eiaxf(x)dx

Theorem 8.11 (Jordan’s lemma). Let us assume that f is continuous in the
region {z : |z| > R, Im z > 0} for some R > 0. If

lim
z→∞

f(z) = 0, Im z > 0

then

lim
R→∞

∫
|ζ|=R,Im ζ>0

eiaζf(ζ)dζ = 0 (8.6)

for any a > 0.

Proof. Under the conditions for f we have that for any ε > 0 there exists R > 0
such that

|f(z)| < ε, |z| > R, Im z > 0.

We parametrize the semicircle as γ : ζ(t) = Reit, t ∈ (0, π). In that case we
obtain ∣∣∣∣∫

γ
eiaζf(ζ)dζ

∣∣∣∣ ≤ ∫
γ
|eiaζ ||f(ζ)||dζ| < ε

∫ π

0

∣∣∣eiaR(cos t+i sin t)
∣∣∣Rdt

= εR

∫ π

0
e−aR sin tdt = 2εR

∫ π/2

0
e−aR sin tdt

< 2εR

∫ π/2

0
e−aR2t/πdt

since sin t > 2t/π for 0 < t < π/2 and a > 0. The latter integral can be
calculated precisely and therefore∣∣∣∣∫

γ
eiaζf(ζ)dζ

∣∣∣∣ < πε

a

(
1− e−aR

)
<
πε

a
.

Since ε > 0 was arbitrary we obtain (8.6).

Corollary 8.12. Let us assume that f is continuous in the region {z : |z| >
R, Im z < 0} for some R > 0. If

lim
z→∞

f(z) = 0, Im z < 0

then

lim
R→∞

∫
|ζ|=R,Im ζ<0

eiaζf(ζ)dζ = 0 (8.7)

for any a < 0.
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Corollary 8.13. Let us assume that f is continuous in the regions {z : |z| >
R,Re z < 0} or {z : |z| > R,Re z > 0} for some R > 0. If

lim
z→∞Re z<0

f(z) = 0 or lim
z→∞Re z>0

f(z) = 0,

then

lim
R→∞

∫
|ζ|=R,Re ζ<0

eaζf(ζ)dζ = 0 (8.8)

or

lim
R→∞

∫
|ζ|=R,Re ζ>0

eaζf(ζ)dζ = 0 (8.9)

for any a > 0 or a < 0, respectively.

Theorem 8.14. Let f be analytic for Im z > 0 and continuous for Im z ≥ 0
except at the singular points z1, z2, . . . , zn with Im zj > 0 for all j = 1, 2, . . . , n.
If f(z) = o(1) for z →∞, Im z > 0 then

p. v.

∫ ∞
−∞

eiaxf(x)dx = 2πi

n∑
j=1

Res
z=zj

(eiazf) (8.10)

for a > 0.

Proof. Let R > 0 be chosen such that all singular points z1, z2, . . . , zn belong
to the region {z : |z| < R, Im z > 0}. Let γR be the union of the line segment
[−R,R] with the upper semicircle Γ+

R. The residue theorem gives that∫ R

−R
eiaxf(x)dx+

∫
Γ+
R

eiazf(z)dz = 2πi
n∑
j=1

Res
z=zj

(eiazf).

Jordan’s lemma (see (8.6)) implies that for a > 0 the integral over Γ+
R tends to

zero as R→∞. Hence, letting R→∞ we obtain (8.10).

Example 8.15. Let us evaluate the integral∫ ∞
0

x sinx

x2 + 4
dx.

Indeed, we have∫ ∞
0

x sinx

x2 + 4
dx =

1

2
p. v.

∫ ∞
−∞

x sinx

x2 + 4
dx =

1

2
Im

(
p. v.

∫ ∞
−∞

xeix

x2 + 4
dx

)
=

1

2
Im

(
2πi Res

z=2i

eizz

z2 + 4

)
=

1

2
Im

(
2πi

ei2i2i

2 · 2i

)
=

1

2
Im

(
e−2

2
2πi

)
=
π

2
e−2.
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Example 8.16. Let us evaluate the integral∫ ∞
0

cos(ax)

x2 + 1
dx.

Indeed, we have∫ ∞
0

cos(ax)

x2 + 1
dx =

1

2
p. v.

∫ ∞
−∞

cos(ax)

x2 + 1
dx =

1

2
Re

(
p. v.

∫ ∞
−∞

eiax

x2 + 1
dx

)
=

1

2
Re

(
2πi Res

z=i

eiaz

z2 + 1

)
=

1

2
Re

(
2πi

eiai

2i

)
=
π

2
e−a.

Definition 8.17. Let f be a continuous real-valued function of x ∈ [a, b] except
possibly the point c ∈ (a, b). The principal value of the integral∫ b

a
f(x)dx

is defined as

p. v.

∫ b

a
f(x)dx := lim

ε→+0

[∫ c−ε

a
f(x)dx+

∫ b

c+ε
f(x)dx

]
if the limit exits.

Example 8.18. Let us evaluate the principal value integral

p. v.

∫ b

a

1

x− cdx, a < c < b.

By the definition we have

p. v.

∫ b

a

dx

x− c = lim
ε→+0

[∫ c−ε

a

dx

x− c +

∫ b

c+ε

dx

x− c

]
= lim

ε→+0
[log | − ε| − log |a− c|+ log |b− c| − log |ε|] = log

b− c
c− a.

Example 8.19. Let us evaluate the integral∫ ∞
0

sinx

x
dx.

We have ∫ ∞
0

sinx

x
dx =

1

2
p. v.

∫ ∞
−∞

sinx

x
dx,

where principal value integral is considered with respect to ∞ and 0. We have

p. v.

∫ ∞
−∞

sinx

x
dx =

1

i
p. v.

∫ ∞
−∞

eix

x
dx =

1

i
lim

R→∞,ε→0

(∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx

)
.
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Here we have used the fact that

p. v.

∫ ∞
−∞

cosx

x
dx = 0.

Consider the function

f(z) =
eiz

z
.

It has only one singular point z = 0. That’s why we consider the closed curve

γ = [−R,−ε] ∪ Γ−ε ∪ [ε,R] ∪ Γ+
R,

see Figure below.

−R R−ε ε

Γ+
R

Γ−
ε

Inside of γ the function f is analytic and continuous up to the curve γ.
Using the Cauchy theorem we have

0 =

∫
γ

eiz

z
dz =

∫ −ε
−R

eix

x
dx+

∫
Γ−ε

eiz

z
dz +

∫ R

ε

eix

x
dx+

∫
Γ+
R

eiz

z
dz. (8.11)

The integral over Γ+
R tends to 0 as R→∞ due to Jordan’s lemma. The integral

over Γ−ε can be calculated as∫
Γ−ε

eiz

z
dz = −

∫
Γ+
ε

eiz

z
dz = −

∫ π

0

eiεeit iεeit

εeit
dt = −i

∫ π

0
eiε cos te−ε sin tdt.

But the last integral tends to −iπ as ε → 0 due to continuity of the functions
eiε cos t and e−ε sin t with respect to ε and t ∈ [0, π].

Letting now ε→ 0 and R→∞ in (8.11) we obtain

0 = lim
R→∞,ε→0

(∫ −ε
−R

eix

x
dx+

∫ R

ε

eix

x
dx

)
− iπ

or

p. v.

∫ ∞
−∞

eix

x
dx = iπ.

Therefore ∫ ∞
0

sinx

x
dx =

1

2i
p. v.

∫ ∞
−∞

eix

x
dx =

π

2
.

This integral is called the Dirichlet integral .
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Problem 8.20. Evaluate the Fresnel integrals∫ ∞
0

cos(x2)dx and

∫ ∞
0

sin(x2)dx.

Problem 8.21. Prove that∫ ∞
0

log x

x2 + a2
dx =

π log a

2a

for any a > 0. In particular, ∫ ∞
0

log x

1 + x2
dx = 0.

Problem 8.22. Show that∫ ∞
0

xα−1

x+ λ
dx = λα−1 π

sin(απ)

for 0 < α < 1 and λ > 0.



Chapter 9

Calculation of series by
residue theory

There are two results which may work in applications to the calculation of
number series by residue theory.

Theorem 9.1. Let f(z) be analytic in C except the finite number of points
{zj}mj=1 with Im zj 6= 0. Let us assume in addition that f(z) → 0 as |z| → ∞.
Then

∞∑
k=−∞

(−1)kf(k) = −
m∑
j=1

Res
z=zj

πf(z)

sinπz
. (9.1)

Proof. For any n ∈ Z large enough and for R > 0 let us consider the curve
(rectangle)

Γn,R = {z ∈ C :x+ iR, x ∈ [−n− 1/2, n+ 1/2],

x− iR, x ∈ [−n− 1/2, n+ 1/2],−n− 1/2 + iy, y ∈ [−R,R],

n+ 1/2 + iy, y ∈ [−R,R]}

such that all singular points of f(z) belong to int Γn,R. Then the function

πf(z)

sinπz

has the singular points

{zj}mj=1, zk = k, k = 0,±1,±2, . . . ,±n

inside int Γn,R. Using now the Cauchy residue theorem for this special domain
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int Γn,R we obtain

∫
Γn,R

πf(z)

sinπz
dz = 2πi

n∑
k=−n

Res
z=k

πf(z)

sinπz
+ 2πi

m∑
j=1

Res
z=zj

πf(z)

sinπz

= 2πi

 n∑
k=−n

πf(k)

π cosπk
+

m∑
j=1

Res
z=zj

πf(z)

sinπz


= 2πi

 n∑
k=−n

(−1)kf(k) +

m∑
j=1

Res
z=zj

πf(z)

sinπz

 . (9.2)

Now, in order to get (9.1) we need to investigate the curve integral in the left
hand side of (9.2). This integral can be represented as the sum of the following
four integrals:

I1 =

∫ n+1/2

−n−1/2

πf(x− iR)dx

sinπ(x− iR)

I2 =

∫ −n−1/2

n+1/2

πf(x+ iR)dx

sinπ(x+ iR)

I3 = i

∫ R

−R

πf(n+ 1/2 + iy)dy

sinπ(n+ 1/2 + iy)

I4 = i

∫ −R
R

πf(−n− 1/2 + iy)dy

sinπ(−n− 1/2 + iy)
.

Since

| sinπ(x± iR)| =
∣∣∣∣eiπxe∓πR − e−iπxe±πR

2i

∣∣∣∣ ≥ eπR − e−πR

2
≥ 1

4
eπR, R > 0

then for I1 and I2 we have the following estimate

|I1|, |I2| ≤
4π

eπR

∫ n+1/2

−n−1/2
|f(x∓ iR)|dx ≤ 4π

eπR
max

x∈[−n−1/2,n+1/2]
|f(x∓ iR)|(2n+1).

If we choose R ≥ n and take into account that f(z)→ 0 as |z| → +∞ (actually
we need here only boundedness of f) then when R ≥ n → ∞ the right hand
side of the latter inequality tends to zero. Next, since

sin(±π(n+ 1/2 + iy)) = ± sin(π(n+ 1/2)∓ iπy)

= ±(−1)n cos(iπy) = ±(−1)n cosh(πy)
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then we have the following estimates for I3 and I4

|I3|, |I4| ≤ π
∫ R

−R

|f(n+ 1/2± iy)|dy
cosh(πy)

≤ π max
y∈[−R,R]

|f(n+ 1/2± iy)|
∫ R

−R

dy

cosh(πy)

≤ π max
y∈[−R,R]

|f(n+ 1/2 + iy)|
∫ ∞
−∞

dy

cosh(πy)
→ 0, n→∞

due to the fact that f(z)→ 0 as |z| → +∞ and∫ ∞
−∞

dy

cosh(πy)
= 1.

If we let now R ≥ n→∞ in (9.2) we obtain that

0 = 2πi

 ∞∑
k=−∞

(−1)kf(k) +
m∑
j=1

Res
z=zj

πf(z)

sinπz

 .

It implies (9.1) and therefore Theorem is completely proved.

Remark. Actually some of the singular points {zj}mj=1 of f(z) may locate on
the real line but such that they are not equal to n ∈ Z.

Theorem 9.2. Let f(z) be analytic in C except the finite number of points
{zj}mj=1 with Im zj 6= 0. Let us assume in addition that zf(z)→ 0 as |z| → ∞.
Then ∞∑

k=−∞
f(k) = −

m∑
j=1

Res
z=zj

(π cot(πz)f(z)) . (9.3)

Proof. Literally the same as for Theorem 9.1. The only difference is

Res
z=k

π cot(πz)f(z) =
π cos(πk)f(k)

(sinπz)′ |z=k
= f(k).

Remark. Again (as in Theorem 9.1) actually some singular points {zj}mj=1 of
f(z) may locate on the real line such that they are not equal to n ∈ Z.

Example 9.3. Show that for real a 6= 0 we have

∞∑
k=−∞

1

k2 + a2
=
π

a
coth(πa).
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Indeed, let

f(z) =
1

z2 + a2
, z ∈ C.

This function has two singular points z1 = ia and z2 = −ia. Then Theorem 9.2
gives that

∞∑
k=−∞

1

k2 + a2
= −

(
Res
z=ia

π cot(πz)

z2 + a2
+ Res
z=−ia

π cot(πz)

z2 + a2

)
= −

(
π cot(πia)

2ia
+
π cot(−πia)

−2ia

)
= −π cot(πia)

ia
=
π

a
coth(πa).

Example 9.4. Show that
∞∑
k=1

1

k2
=
π2

6
.

Indeed, let a = ε > 0 and small. Then Example 9.3 implies that

∞∑
k=−∞

1

k2 + ε2
=

1

ε2
+ 2

∞∑
k=1

1

k2 + ε2
=
π

ε
coth(πε).

So

2
∞∑
k=1

1

k2 + ε2
=
π

ε
coth(πε)− 1

ε2
=
επ(e2επ + 1)− e2επ + 1

ε2(e2επ − 1)
.

Using Taylor expansion for eξ near zero we can easily obtain that the limit of
the right hand side of the latter equality is equal to π2/3. Thus

2

∞∑
k=1

1

k2
=
π2

3
.

Problem 9.5. Show that

∞∑
k=1

(−1)k+1

k2
=
π2

12
.

Problem 9.6. Show that

∞∑
k=0

1

(2k + 1)4
=
π4

96
.

Problem 9.7. Show that ∞∑
k=1

1

k4
=
π4

90
.



Appendix A

Exercises

1. Find the primitives of the following functions
a) f(z) = sin z cos z b) f(z) = cos2 z c) f(z) = ze2z

d) f(z) = z2 sin z e) f(z) = z sin z2 f) f(z) = ez sin z

2. Let f be analytic in the whole C such that

|f(z)| ≤
∣∣∣∣z + 1

z − 1

∣∣∣∣
for all z ∈ C. Prove that f is constant function.

3. Let f be analytic in the disk {z : |z| < R}. Assume that f is non-constant.
Let us define the function

g(r) := max
|z|≤r
|f(z)|, 0 < r < R.

Prove that g(r1) < g(r2) whenever 0 < r1 < r2 < R.

4. Let f(z) = cos z, z ∈ C. Find max|z|≤1 |f(z)|.

5. Investigate the convergence of the function sequence fn, n = 1, 2, . . . in
the set E ⊂ C when
a) fn(z) =

nz

z + n
,E = {z : |z| < 1} b) fn(z) =

nz

nz + 1
, E = {z : |z| > 1}.

Is the convergence uniform in E?

6. Find the radius of convergence and disk of convergence for the following
series

a)

∞∑
k=0

1

2k + 1
zk b)

∞∑
k=1

1

k2
(z − 1)k c)

∞∑
k=0

k2zk d)

∞∑
k=0

k3

3k
zk.

7. Find the radius of convergence for the series

∞∑
k=0

(
1

1− i/2

)k+1

(z − i/2)k.
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Find also the sum of the series.

8. Find the function f(z) =

∞∑
k=0

kzk for |z| < 1.

9. Find the Taylor series for f(z) = sin z around the point z = π/4.

10. Find the Taylor series for f(z) = (z − 1)−2 around the point z = 2.

11. Find the order of the root z = 0 of f(z) = ez − 1− sin z.

12. Problem 4.12. Apply this problem to prove that if f is an analytic function
in the unit disk such that

f

(
n

2n+ 1

)
= f

(
n

2n+ 1
i

)
, n = 2, 3, . . .

then f (10)(0) = 0.

13. Find the Laurent series for f at z0 = 0 and investigate the type of singular
point 0 and evaluate the residue, when

a) f(z) =
1− cos z

z
b) f(z) =

ez
2

z3

14. Find the Laurent series for f(z) =
1

z(z + 1)(z + 2)
at z0 = 0.

15. Evaluate the integral

∫ 2π

0

1

a+ cos t
dt, a > 1.

16. Evaluate the integral

∫ ∞
0

1

x6 + 1
dx.

17. Evaluate the integral ∫ ∞
−∞

x sin bx

x2 + a2
dx, a, b > 0

18. Evaluate the integral ∫ ∞
−∞

x sinx

x2 − π2
dx.

19. Evaluate the integrals∫ ∞
−∞

sinx

x− ωdx,

∫ ∞
−∞

cosx

x− ωdx,

where Imω 6= 0.
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20. Evaluate the series ∞∑
k=1

(−1)k

k4
.

21. Evaluate the series

∞∑
k=−∞

1

k + ia
, a ∈ R \ {0}.
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Chapter 1

Conformal mappings

We return now to the geometrical properties of non-zero derivative. Let f be
analytic in the domain D and let z0 ∈ D be an arbitrary point. If f ′(z0) 6= 0
then this is equivalent to (see Cauchy-Riemann conditions)

|f ′(z0)|2 =

(
∂u

∂x

)2

+

(
∂v

∂x

)2

=
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
> 0.

It means that the Jacobian of the transformation from (x, y) to (u, v) is non-
zero at (x0, y0) and thus in the neighborhood of (u0, v0) = (u(x0, y0), v(x0, y0))
there exists an inverse function z = x + iy = f−1(w), w = u + iv such that
z = f−1(w) is analytic at w0 = u0 + iv0 and

(f−1(w))′(w0) =
1

f ′(z0)
.

This fact can be interpreted as follows: in the neighborhood of z0 the function
w = f(z) is univalent and analytic. But this property is local (as we can see).

Another geometric property of analytic function with non-zero derivative is
the following. Let f be analytic in the domain D and f ′(z0) 6= 0 for z0 ∈ D.
Consider two arbitrary curves γ1 and γ2 on the z-plane which intersect at the
point z0. Assume that the angle between γ1 and γ2 at z0 is ϕ2 − ϕ1, and the
angle between Γ1 and Γ2 at w0 = f(z0) in the w-plane is equal to φ2−φ1, where
Γj is the image of γj under the mapping f for j = 1, 2, see Figure below. If
z1 = z0 + ∆z1 ∈ γ1 and z2 = z0 + ∆z2 ∈ γ2 then f(z1) = f(z0 + ∆z1) = f(z0) +
∆f1 = w0+∆w1 ∈ Γ1 and f(z2) = f(z0+∆z2) = f(z0)+∆f2 = w0+∆w2 ∈ Γ2.

Moreover,

lim
∆z1→0

arg
∆w1

∆z1
= lim

∆z1→0
[arg ∆w1 − arg ∆z1] = φ1 − ϕ1

and

lim
∆z2→0

arg
∆w2

∆z2
= lim

∆z2→0
[arg ∆w2 − arg ∆z2] = φ2 − ϕ2.
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ϕ2

ϕ1 φ2 φ1w = f(z)
z0 z1

z2 γ2

γ1 w0

w1

w2 Γ2

Γ1

x

y

u

v

By the existence of f ′(z0) 6= 0 and due to the independence of this derivative
with respect to direction we obtain

φ1 − ϕ1 = φ2 − ϕ2 = arg f ′(z0). (1.1)

So, we may conclude that the transformation w = f(z) preserves the angles
with respect to orientation and magnitude. In addition, since f ′(z0) 6= 0 then

|∆w| = k|∆z|+ o(|∆z|), k = |f ′(z0)|, (1.2)

i.e. there is the factor of stretching in all directions.

It is also proved earlier (see Problem 7.10 of Part II) that if f is analytic in
the domain D and univalent there then f ′(z) 6= 0 for all z ∈ D.

These properties justify the following definition.

Definition 1.1. The mapping f : D → C is called conformal at z0 ∈ D if it
preserves the angles and the factor of stretching at this point. If f is conformal
at each point in D then f is called conformal in D.

There is a very deep connection between analytic functions and conformal
mappings.

Theorem 1.2. The mapping f : D → C is conformal in D if and only if f is
analytic and univalent in D.

Proof. Let f be analytic and univalent in the domain D. Then applying Prob-
lem 7.10 of Part II we conclude that f ′(z) 6= 0 everywhere in D. Hence, see
(1.1) and (1.2), f is conformal at each point z ∈ D and therefore it is conformal
in D.

Conversely, let z0 be an arbitrary point in D and let w0 = f(z0). By the
conditions of this theorem we have

arg(w2 − w0)− arg(w1 − w0) = α+ o(max(|w1 − w0|, |w2 − w0|))

and

arg(z2 − z0)− arg(z1 − z0) = α+ o(max(|z1 − z0|, |z2 − z0|)),
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where α = ϕ2 − ϕ1 = φ2 − φ2, see Figure above. Moreover,

|w2 − w0|
|z2 − z0|

= k + o(1),
|w1 − w0|
|z1 − z0|

= k + o(1)

as |z2 − z0|, |z1 − z0| → 0. These equalities imply that

w2 − w0

z2 − z0
= keiϕ + o(1),

w1 − w0

z1 − z0
= keiϕ + o(1),

where (since α is the same in both equalities)

arg
w2 − w0

z2 − z0
= ϕ+ o(1), arg

w1 − w0

z1 − z0
= ϕ+ o(1)

as |z2 − z0|, |z1 − z0| → 0. Since γ1 and γ2 are arbitrary then z2 and z1 are
arbitrary too. Hence we may conclude that there exists

lim
z→z0

f(z)− f(z0)

z − z0
= keiϕ = f ′(z0),

and f ′(z0) 6= 0 (or k 6= 0) i.e. f is analytic and univalent in D.

Remark. Theorem 1.2 says that univalent functions and only they realize con-
formal mappings.

The next important property of conformal mappings is contained in the
following theorem.

Theorem 1.3 (Boundary correspondence principle). Let D be simply connected
domain with the boundary ∂D which is a closed curve γ. Let also f ∈ H(D) ∩
C(D). Assume that f maps γ to the closed curve Γ := f(γ) bijectively with the
same direction of the circuit as for γ. Then f : D → int Γ is surjective and
conformal.

Proof. Due to Theorem 1.2 it suffices to show that f is univalent in D and
f maps D onto int γ. Let us consider two different points w1 ∈ int Γ and
w2 ∈ C \ int Γ and two different functions

F1(z) = f(z)− w1, F2(z) = f(z)− w2, z ∈ D.
If z goes over γ then w = f(z) goes over Γ and the direction of the circuit over
these curves are the same. Thus, using the principle of argument (see Theorem
7.4 of Part II) we obtain that

1

2π
Var
γ

ArgF1(z) = N(F1) = 1,
1

2π
Var
γ

ArgF2(z) = N(F2) = 0,

where N(F1) and N(F2) denote the number of zeros of F1 and F2, respectively.
It means that for any w1 ∈ int Γ there is only one point z1 ∈ D such that
w1 = f(z1) and for any w2 ∈ C \ int Γ there are no points z ∈ D such that
w2 = f(z) i.e. f maps D onto int Γ and it is univalent in D.



1 Conformal mappings 135

There is one more important property of conformal mappings: Schwarz
reflection principle (or Schwarz symmetry principle).

Definition 1.4. Let D ⊂ C be a domain. The set

J(D) = {ζ ∈ C : ζ = z, z ∈ D} (1.3)

is called the conjugate domain.

This definition implies that J(D) is a domain and that if f(z) is analytic
in D then g(z) := f(z) is analytic in J(D). Indeed, since f(z) is analytic in D
then for each z0 ∈ D the Taylor expansion holds i.e.

f(z) =
∞∑
j=0

aj(z − z0)j , aj =
f (j)(z0)

j!

for |z − z0| < R with R = dist(z0, ∂D). Thus, if ζ, ζ0 ∈ J(D) then ζ, ζ0 ∈ D
and

f(ζ) =

∞∑
j=0

aj(ζ − ζ0)j

or

g(ζ) = f(ζ) =
∞∑
j=0

aj(ζ − ζ0)j

i.e. g(ζ) is analytic too.

Theorem 1.5 (Schwarz reflection principle). Let D be a domain in the upper
half of the complex plane whose boundary includes an interval I := (a, b) of the
real axis. Let f ∈ H(D) ∩ C(D). Suppose that f(x + i0) is real for all x ∈ I
and define the function

F (z) =

{
f(z), z ∈ D ∪ I
f(z), z ∈ J(D).

(1.4)

Then F is analytic on D ∪ I ∪ J(D).

Proof. Since f(z) ∈ H(D) and f(z) ∈ H(J(D)) then it remains to show that
F (z) is analytic at each point x0 ∈ I. First we check that F (z) is continuous
everywhere in D∪I∪J(D). Continuity of F in D∪I follows from the conditions
of the theorem. The definition (1.4) of F and the real-valuedness of f(x + i0)
imply that

F (x− i0) = f(x− i0) = f(x+ i0) = F (x+ i0).

This proves that F is continuous. Next, we introduce the closed curves

Γ+ := {ζ : |ζ − z0| = δ, Im ζ > 0} ∪ [x1, x2]

and
Γ− := {ζ : |ζ − z0| = δ, Im ζ < 0} ∪ [x1, x2].
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x0x1 x2 ba

δ

J(D)

Γ+

D

Γ−

x

y

By Theorem 5.7 in Part I we obtain

1

2πi

∫
|ζ−z0|=δ

F (ζ)dζ

ζ − z0
=

1

2πi
p. v.

∫
Γ+

F (ζ)dζ

ζ − z0
+

1

2πi
p. v.

∫
Γ−

F (ζ)dζ

ζ − x0

=
1

2
F (x+ i0) +

1

2
F (x− i0) = f(x).

Hence, the Cauchy integral formula yields that F is analytic also at x0.

Problem 1.6. Suppose that f(z) =
∑∞

j=0 ajz
j and this series converges for

|z| < r and f is real for x ∈ (−r, r). Show that all aj are real and f(z) = f(z)
for all |z| < r.

There is a key question at this point: Is there, in fact, a conformal mapping
from a given domain D to some other domain, for example, unit disc? The
theoretical answer is the celebrated Riemann Mapping Theorem which we give
without a proof.

Theorem 1.7 (Riemann). If D is any simply-connected domain, not equal to
the whole complex plane C, then there exists a conformal mapping of D onto
{w : |w| < 1}. This mapping is uniquely determined by the value f(z0) and
arg f ′(z0) at one arbitrary point z0 ∈ D, for example, by the values f(z0) = 0
and f ′(z0) > 0.

Remark. The assumption that the domain D is not equal to the entire complex
plane C is essential. Indeed, if we assume that there exists a conformal mapping
f(z) of the complex plane C onto the unit disc {w : |w| < 1} then f(z) is
bounded entire function. Hence, due to Liouville theorem f ≡ constant and
f ′(z) ≡ 0. The same is true if D = C \ {z0} with some fixed point z0 ∈ C
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since z0 is a removable singularity for f(z), therefore again f(z) ≡ constant
and f ′(z) ≡ 0. That’s why the equivalent formulation of the Riemann Mapping
Theorem includes the assumption that the boundary of D ⊂ C has more than
two points.

Example 1.8. Let f(z) = eiπ
a
z, a > 0. Then f maps {z : 0 < Re z < a} onto

{w : |w| < 1} conformally. Indeed, if z = x+ iy, 0 < x < a then

eiπ
a

(x+iy) = e−
π
a
yeiπ

a
x = e−

π
a
y
(

cos
π

a
x+ i sin

π

a
x
)

so that |f(z)| = e−
π
a
y ∈ (0,+∞) if y ∈ R and arg f(z) = π

ax ∈ (0, π) if

0 < x < π. Since in addition f ′(z) = iπa eiπ
a
z 6= 0 for all z and f is one-to-one

transformation, then f is conformal.

Example 1.9. Consider a linear-fractional transformation

w = f(z) =
az + b

cz + d
, ad− bc 6= 0, c 6= 0.

We call it a non-degenerate (or regular) linear-fractional transformation. This
transformation is well-defined and analytic everywhere on C \ {−d/c}. Its
derivative is equal to

f ′(z) =
ad− bc

(cz + d)2
, z 6= −d/c, f ′(∞) =

bc− ad
c2

and it is not equal to zero everywhere on C \ {−d/c}. We know that f maps
C onto C bijectively (see Example 2.7 of Part I). So f is conformal. Let us
represent it in the form

f(z) =

{
λα+z
β+z , a 6= 0

λ 1
β+z , a = 0,

(1.5)

where λ = a/c, α = b/a and β = d/c if a 6= 0 and λ = b, β = d/c if a = 0. The
following theorem holds.

Theorem 1.10. If z1 6= z2, z2 6= z3, z1 6= z3 and w1 6= w2, w2 6= w3, w1 6= w3

then the correspondence
zj → wj , j = 1, 2, 3

defines uniquely a non-degenerate linear-fractional transformation (a 6= 0).
Moreover,

λ =
Aw2 −Bw1

A−B , α =
Bw1z2 −Aw2z1

Aw2 −Bw1
, β =

Bz2 −Az1

A−B , (1.6)

where

A =
w1 − w3

w2 − w3
, B =

z1 − z3

z2 − z3
.
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Proof. Using (1.5) for a 6= 0 we have

w1 − w3 = λ
(z1 − z3)(α− β)

(β + z1)(β + z3)
, w2 − w3 = λ

(z2 − z3)(β − α)

(β + z2)(β + z3)
.

Here β 6= α since ad 6= bc. These equalities imply that

w1 − w3

w2 − w3
=
z1 − z3

z2 − z3

β + z2

β + z1

or

β =
z2 − z1

w1−w3
w2−w3

z2−z3
z1−z3

w1−w3
w2−w3

z2−z3
z1−z3 − 1

=
z2 − A

B z1

A
B − 1

=
Bz2 −Az1

A−B .

It proves (1.6) for β. Next,

w1 = λ
α+ z1

β + z1
, w2 = λ

α+ z2

β + z2

imply that
w1

w2
=
α+ z1

β + z1

β + z2

α+ z2

or

α =
w2z1(β + z2)− w1z2(β + z1)

w1(β + z1)− w2(β + z2)
=
Bw1z2 −Aw2z1

Aw2 −Bw1
=
Aw2z1 −Bw1z2

Bw1 −Aw2
.

This proves (1.6) for α. Finally,

λ =
w1(β + z1)

α+ z1
=
w1

(
Bz2−Az1
A−B + z1

)
Aw2z1−Bw1z2
Bw1−Aw2

+ z1

=
w1

B(z2−z1)
A−B

Bw1z1−Bw1z2
Bw1−Aw2

=
Aw2 −Bw1

A−B

proving the claim for λ. The formulae (1.6) show that α, β and λ are uniquely
determined by the correspondence zj → wj , j = 1, 2, 3 if zj and wj are mutually
distinct points.

Corollary 1.11. If we denote

w := f(z) = λ
α+ z

β + z
, a 6= 0

then Theorem 1.10 says that

w1 − w3

w2 − w3
:
w1 − w
w2 − w

=
z1 − z3

z2 − z3
:
z1 − z
z2 − z

. (1.7)
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Proof. As it is proved in Theorem 1.10

w1 − w3

w2 − w3
=
z1 − z3

z2 − z3

β + z2

β + z1
.

Similarly, if w 6= w1, w 6= w2 and z 6= z1, z 6= z2, we obtain

w1 − w
w2 − w

=
z1 − z
z2 − z

β + z2

β + z1
.

Hence, (1.7) follows straightforwardly from the latter equalities.

Corollary 1.12. For the case a = 0 (b 6= 0 necessarily) instead of three corre-
spondences it is enough to have only two different points z1 6= z2 and w1 6= w2,
respectively with w1 6= 0 and w2 6= 0. In that case, see (1.5),

β =
w1z1 − w2z2

w2 − w1
, λ =

w1w2(z1 − z2)

w2 − w1
. (1.8)

Problem 1.13. Show (1.8) for the case a = 0, b 6= 0, c 6= 0 in the non-
degenerate linear-fractional transformation.

Example 1.14. Let us find w = f(z) which is a conformal mapping of the unit
disk {z : |z| < 1} onto the domain {w : Imw > 0}. Let zj and wj be as in the
Figure below.

1

z1

−1

z3

i z2

x

y

f
u

v

w2

1
w1

0
w3 =∞

By Theorem 1.10 and Theorem 1.3 we have

0−∞
1−∞ :

0− w
1− w =

1 + 1

i + 1
:

1− z
i− z .

So
1− w
w

=
2

i + 1

z − i

z − 1
or

w = e−iπ
2
z − 1

z + 1
.
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Problem 1.15. Using Example 1.14 show that

w =
z + e−iπ/2

e−iπ/2 − z
maps conformally the domain {z : Im z > 0} onto the unit disc {w : |w| < 1}.

Problem 1.16. Show that

w = f(z) = eiα z − z0

zz0 − 1

maps conformally the unit disc {z : |z| < 1} onto the unit disc {w : |w| < 1}
such that an arbitrary point z0, |z0| < 1 is transferred to w0 = 0 and α is an
arbitrary real parameter. Show that if arg f ′(z0) is prescribed then α is uniquely
determined.

Problem 1.17. Show that a non-degenerate linear-fractional transformation
maps lines and circles on the extended complex plane onto lines or circles.

Problem 1.18. Find the conditions on 0 < r1 < r2 and 0 < R1 < R2 which
guarantee the existence of the conformal mapping of the annulus {z : r1 < |z| <
r2} onto the annulus {w : R1 < |w| < R2}.

Example 1.19. Consider a non-concentric ring (annulus), i.e. the set which
is formed by two circles {z : |z − a1| = R1} and {z : |z − a2| = R2} such that
0 < R2 < R1 and the first circle is located inside of the second one. We assume
without loss of generality that a1 and a2 are real, see Figure below.

a1 a2 a b
x

y

R1

R2

The task is to map conformally this annulus onto the domain {w : Imw >
0}. Let now a and b be two real numbers such that they are symmetric with
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respect to the first and second circle at the same time, i.e. they satisfy the
equations

(a− a1)(b− a1) = R2
1, (a− a2)(b− a2) = R2

2. (1.9)

Solving these equations we can easily obtain a and b uniquely (a < b). Then
the map

w1 =
z − a
z − b

transfers conformally given non-concentric ring to the concentric one centered
at 0. Indeed, if z − a1 = R1eiϕ then

w1 =
z − a
z − b =

(z − a1)− (a− a1)

(z − a1)− (b− a1)
=
R1eiϕ − (a− a1)

R1eiϕ − R2
1

a−a1

=
a− a1

R1

R1eiϕ − (a− a1)

(a− a1)−R1e−iϕ
e−iϕ.

This equality implies that

|w1|
∣∣∣
|z−a1|=R1

=

∣∣∣∣a− a1

R1

∣∣∣∣ =
a− a1

R1
=: r1

Similarly we obtain that

|w1|
∣∣∣
|z−a2|=R2

=

∣∣∣∣a− a2

R2

∣∣∣∣ =
a− a2

R2
=: r2.

Let us note that for 0 < R2 < R1 it follows that r2 < r1 since b > a. The next
step is: we consider

w2 = logw1

with the main branch of logarithm. Under this transformation this symmetric
(or concentric) annulus is transferred conformally to the set

{w2 : log r2 < Rew2 < log r1}.

Using now Example 1.8 we may conclude that the required conformal mapping
is given by

w = e
i π
log(r1/r2)

(
log

z − a
z − b − log r2

)
,

where a and b are from (1.9).

Example 1.20. Let us find the conformal mapping of the crescent shape (lune)
formed by two arcs of two different circles.
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α

a

b

x

y

x

y

b

a

α

We consider first

w1 =
z − a
z − b ,

where a and b are the two intersecting points of these circles. Then this confor-
mal mapping transfers this lune to the angle of span α (this angle is the same
as for lune due to conformality), with the vertex in the origin.

u1

v1

β

α

Indeed, if z = ρ0eiϕ, ϕ0 ≤ ϕ ≤ ϕ′0 for the part of the first circle in the
boundary of the lune and z = ρ1eiϕ, ϕ1 ≤ ϕ ≤ ϕ′1 for the second circle then

z − a
z − b

∣∣∣∣
z=ρ0eiϕ

=
ρ0eiϕ − ρ0eiϕ0

ρ0eiϕ − ρ0eiϕ′0
=

eiϕ − eiϕ0

eiϕ − eiϕ′0

= ei(ϕ0−ϕ′0) ei(ϕ−ϕ0)/2 − e−i(ϕ−ϕ0)/2

ei(ϕ−ϕ′0)/2 − e−i(ϕ−ϕ′0)/2
= ei(ϕ0−ϕ′0) sin(ϕ− ϕ0)/2

sin(ϕ− ϕ′0)/2
.

Similarly

z − a
z − b

∣∣∣∣
z=ρ1eiϕ

= ei(ϕ1−ϕ′1) sin(ϕ− ϕ1)/2

sin(ϕ− ϕ′1)/2
.
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These formulae show that the arcs are mapped to the rays starting from the
origin because

v1

u1
= tan(ϕ0 − ϕ′0),

v1

u1
= tan(ϕ1 − ϕ′1),

respectively for these two arcs. Next,

w2 = e−iβw1

maps conformally the sector {w1 : β < argw1 < α+ β} to the sector {w2 : 0 <
argw2 < α}.

u2

v2

α

Finally,

w = w
π/α
2 =

(
e−iβ z − a

z − b

)π/α
maps conformally the latter sector onto the domain {w : Imw > 0}. Indeed,

w = w
π/α
2 = e

π
α

(log |w2|+i argw2) = ei π
α

argw2e
π
α

log |w2|.

This is equivalent that argw = π
α argw2 ∈ (0, π), and Rew ∈ (−∞,∞), Imw >

0. Here we have used the boundary correspondence principle.

Problem 1.21. Show that the Zhukovski function

w =
1

2

(
z +

1

z

)
maps conformally

1. {z : |z| < 1} onto C \ [−1, 1],

2. {z : |z| < 1, Im z < 0} onto {w : Imw > 0} and

3. {z : |z| > 1} onto C \ [−1, 1].

There is an application of conformal mappings also in the theory of partial
differential equations.

Let D be a simply-connected and bounded domain on the complex plane C.

Definition 1.22. A function G(z, ζ) is said to be Green’s function for the
Laplace operator ∆ in the domain D if the following conditions are satisfied:
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1. G(z, ζ) = 1
2π log |z − ζ|+ g(z, ζ) for z, ζ ∈ D

2. ∆zg(z, ζ) = 0 for z, ζ ∈ D

3. g(z, ζ) = − 1
2π log |z − ζ| for z ∈ ∂D, ζ ∈ D.

Remark. This definition implies (in particular) that G(z, ζ) = 0 for z ∈ ∂D and
ζ ∈ D.

With the Green’s function in hand, the solution of the inhomogeneous bound-
ary value problem {

∆u(z) = F (z), z ∈ D
u(z) = u0(z), z ∈ ∂D

is given by the superposition principle as

u(z) =

∫
D
G(z, ζ)F (ζ)dξdη +

∫
∂D

∂νζG(z, ζ)dσ(ξ, η),

where z = x + iy, ζ = ξ + iη and ∂ν is the outward normal derivative with
respect to ζ on the boundary ∂D.

Using the principles of conformal mappings we may construct the Green’s
function for arbitrary simply-connected bounded domain D. Indeed, let ζ be an
arbitrary fixed point from D. Let h(z, ζ) be a function which maps conformally
D onto the unit disc {w : |w| < 1} such that h(ζ, ζ) = 0. This function exists
due to Riemann Mapping Theorem (see Theorem 1.7). Moreover, h′z(z, ζ) 6= 0
for all z ∈ D (see Theorem 1.2 of this Part and Problem 7.10 of Part II). Hence,
h(z, ζ) has a zero of order 1 at z = ζ. This fact allows us to represent h(z, ζ)
in the form

h(z, ζ) = (z − ζ)ψ(z, ζ), ψ(ζ, ζ) 6= 0.

It implies that
1

2π
log |h(z, ζ)| = 1

2π
log |z − ζ|+ g(z, ζ),

where g(z, ζ) = 1
2π log |ψ(z, ζ)|. We prove that

G(z, ζ) :=
1

2π
log |h(z, ζ)|

is the Green’s function for ∆ in D. Indeed, since h(z, ζ) ∈ H(D) (ζ is a
parameter) and h′z(z, ζ) 6= 0 for all z ∈ D then ψ(z, ζ) 6= 0 for all z ∈ D and
analytic there. Thus g(z, ζ) = 1

2π log |ψ(z, ζ)| is harmonic in D (see Problem
2.2 of Part II). Next, since |h(z, ζ)| = 1 for all z ∈ ∂D and for all ζ ∈ D (see
Theorem 1.7) then

g(z, ζ) = − 1

2π
log |z − ζ|, z ∈ ∂D, ζ ∈ D.

This proves that G(z, ζ) is the needed Green’s function.
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Problem 1.23. Show that the Green’s function for the unit disc is given by

G(z, ζ) =
1

2π
log

∣∣∣∣ z − ζzζ − 1

∣∣∣∣
Hint: Use the fact that a non-degenerate linear-fractional transformation

w =
z − ζ
zζ − 1

, |ζ|, |z| < 1

maps conformally unit disc onto itself such that w = 0 for z = ζ.

Problem 1.24. Using Problem 1.23 show that the Green’s function for simply-
connected bounded domain D can be written as

G(z, ζ) =
1

2π
log

∣∣∣∣∣ g(ζ)− g(z)

g(z)g(ζ)− 1

∣∣∣∣∣ ,
where g maps conformally D onto the unit disc.



Chapter 2

Laplace transform

Let f be a function (possibly complex-valued) of one real variable t. We denote
by F+ the class of functions (and write f ∈ F+) which satisfy the conditions

1. f(t) ≡ 0, t < 0

2. f(t) is continuous for t ≥ 0

3. there exists M > 0 and a > 0 such that |f(t)| ≤Meat for any t ≥ 0.

The value s := inf a is called the growth index of f .

Problem 2.1. Show that if the growth index of f ∈ F+ is equal to s ≥ 0 then
the growth index of tµf(t) for any µ ≥ 0 is also equal to s. In particular, the
growth index of tµ for any µ > 0 is equal to zero.

Definition 2.2. Let f be a function from the class F+. The Laplace transform
of f , denoted by L(f)(p) is defined by

L(f)(p) :=

∫ ∞
0

e−ptf(t)dt, p ∈ C. (2.1)

Theorem 2.3 (Existence). Suppose f ∈ F+ with growth index s ≥ 0. Then
the Laplace tranform L(f)(p) is well-defined analytic function in the domain
{p ∈ C : Re p > s}. Moreover,

lim
Re p→+∞

L(f)(p) = 0 (2.2)

uniformly with respect to Im p ∈ R.

Proof. Let p = x+iy and f ∈ F+ with growth index s ≥ 0. Then for any ε > 0
there is Mε > 0 such that |f(t)| ≤ Mεe

(s+ε)t, t ≥ 0. It implies for any fixed
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x = Re p > s that

|L(f)(p)| ≤
∣∣∣∣∫ ∞

0
e−(x+iy)tf(t)dt

∣∣∣∣ ≤ ∫ ∞
0

e−xt|f(t)|dt

≤Mε

∫ ∞
0

e−(x−s−ε)t|f(t)|dt =
Mε

x− s− ε (2.3)

if ε is chosen such that 0 < ε < x − s. This proves well-posedness of (2.1) for
Re p > s. In addition, (2.3) shows that the integral in (2.1) converges uniformly
for all x = Re p ≥ s0 > s. Let us prove now that L(f)(p) is analytic in the
domain {p ∈ C : Re p > s}. If p0 and ∆p are chosen so that Re p0,Re(p0+∆p) >
s then

L(f)(p0 + ∆p)− L(f)(p0)

∆p
=

∫ ∞
0

e−p0tf(t)
e−∆pt − 1

∆p
dt.

But it is known that

lim
∆p→0

e−∆pt − 1

∆p
= −t.

Due to this fact, Problem 2.1 and the fact that the integral in (2.1) converges
uniformly for Re p ≥ s0 > s we may consider the limit ∆p → 0 under the
integral sign. Hence we obtain the existence of the limit

lim
∆p→0

L(f)(p0 + ∆p)− L(f)(p0)

∆p
=

∫ ∞
0

e−p0tf(t) lim
∆p→0

e−∆pt − 1

∆p
dt

= −
∫ ∞

0
e−p0ttf(t)dt = −L(tf)(p0).

The latter formula proves the analyticity of L(f)(p) for all Re p > s and also
the equality

L(tf)(p) = −(L(f))′(p). (2.4)

Finally, (2.2) follows from (2.3) straightforwardly.

Corollary 2.4. Formula (2.4) can be generalized as

L(tnf)(p) = (−1)n(L(f))(n)(p), n = 1, 2, . . . . (2.5)

Proof. Follows from (2.4) by induction using the fact that any analytic function
is infinitely many times differentiable.

Example 2.5. Let us show that

L(tn)(p) =
n!

pn+1
, Re p > 0 (2.6)
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for any n = 0, 1, 2, . . . . Indeed, Problem 2.1 gives that for each n = 0, 1, 2, . . .
the growth index of tn ∈ F+ is equal to zero. Formula (2.5) yields

L(tn)(p) = (−1)n(L(1))(n)(p) = (−1)n
dn

dpn

∫ ∞
0

e−ptdt = (−1)n
dn

dpn
1

p

= (−1)n
(−1)nn!

pn+1
=

n!

pn+1

for Re p > 0 and n = 0, 1, 2, . . ..

Problem 2.6. Generalize (2.6) and show that, for ν ≥ 0,

L(tν)(p) =
Γ(ν + 1)

pν+1
, Re p > 0,

where Γ is Euler’s gamma function and pν+1 is the multi-valued analytic func-
tion given by

pν+1 = ppν = peν log p = peν[log |p|+i Arg p] = p|p|νeiν Arg p.

Example 2.7. Let f ∈ F+ and f(t) = eαt, t ≥ 0 with Reα ≥ 0. Then, by
definition,

L(eαt)(p) =

∫ ∞
0

e−(p−α)tdt =
1

p− α, Re p > Reα (2.7)

is well-defined in the domain {p : Re p > Reα}. In particular, for real ω we
have

L(eiωt) =
1

p− iω
, L(sinωt) =

ω

p2 + ω2
, L(cosωt) =

p

p2 + ω2
(2.8)

for Re p > 0.

Remark. For Reα < 0 we have |eαt| ≤ 1 for t ≥ 0 and therefore the growth
index is s = 0. In that case (2.7) holds for Re p > 0 (even for Re p ≥ 0).

Problem 2.8. 1. Show that if f ∈ F+ is periodic with period T > 0 then

L(f)(p) =
1

1− e−pT

∫ T

0
e−ptf(t)dt, Re p > 0.

2. Show that if a > 0 then

L(sinh(at)) =
a

p2 − a2
, L(cosh(at)) =

p

p2 − a2

for Re p > a.
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3. Show that if a > 0 then

L
(

sinh(at)

t

)
=

1

2
log

p+ a

p− a

for Re p > a.

4. Show that if f, g ∈ F+ and tf(t) = g′(t) then

L(f)(p) =

∫ ∞
p

zL(g)(z)dz,

where the integral on the right hand side is a primitive (with minus sign)
for the analytic function zL(g)(z). In particular,

L(tf)(p) = L(g′)(p) = −(L(f))′(p) = pL(g)(p).

5. Show that if f, g ∈ F+ and f(t) =
∫∞
t g(τ)dτ then

L(f)(p) = −1

p
L(g)(p), Re p > 0.

Definition 2.9. Let f1, f2 ∈ F+. The convolution g := f1 ∗ f2 = f2 ∗ f1 of f1

and f2 is defined by

g(t) =

∫ t

0
f1(τ)f2(t− τ)dτ =

∫ t

0
f2(τ)f1(t− τ)dτ. (2.9)

Remark. The growth index of g = f1 ∗ f2 is max(s1, s2), where s1 and s2 are
the growth indices of f1 and f2, respectively.

We collect some properties of the Laplace transform in class F+ in the
following theorem.

Theorem 2.10. 1. Let fk ∈ F+ with growth indices sk ≥ 0 for k = 1, 2, . . . ,m.
Then f(t) :=

∑m
k=1 ckfk(t), ck ∈ C belongs to the class F+ with the growth

index s = max(s1, . . . , sm) and

L(f)(p) =

m∑
k=1

ckL(fk)(p), Re p > s.

2. Let f1 and f2 have growth indices s1 and s2, respectively. Then g =
f1 ∗ f2 ∈ F+ with the growth index s = max(s1, s2) and

L(g)(p) = L(f1 ∗ f2)(p) = L(f1)(p)L(f2)(p), Re p > s. (2.10)
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3. Let f ∈ F+ with the growth index s and let f ∈ C(n)[0,∞). Then
L(f (n))(p) exists for Re p > s and

L(f (n))(p) = pn

[
L(f)(p)− f(0)

p
− · · · − f (n−1)(0)

pn

]
. (2.11)

4. If f ∈ F+ with the growth index s ≥ 0 and λ ∈ C then

L(e−λtf)(p) = L(f)(p+ λ), Re p > max(0, s− Reλ). (2.12)

Proof. 1. Follows from the linearity of integral and from the fact that for
two functions f1 and f2 with growth indices s1 and s2 the growth index
of the sum f1 + f2 is max(s1, s2).

2. By the definition of convolution we have for ε > 0 small enough that

|g(t)| ≤M (1)
ε M (2)

ε

∫ t

0
e(s1+ε)τe(s1+ε)(t−τ)dτ

= M (1)
ε M (2)

ε e(s2+ε)t

∫ t

0
e(s1−s2)τdτ

= M (1)
ε M (2)

ε e(s2+ε)t e
(s1−s2)t − 1

s1 − s2

= M (1)
ε M (2)

ε (e(s1+ε)t − e(s2+ε)t)
1

s1 − s2
≤M (1)

ε M (2)
ε

e(s1+ε)t + e(s2+ε)t

|s1 − s2|

for s1 6= s2. This shows that the growth index s for g is equal to
max(s1, s2). Next, for Re p > s we have that

L(g)(p) =

∫ ∞
0

e−pt
(∫ t

0
f1(τ)f2(t− τ)dτ

)
dt

=

∫ ∞
0

f1(τ)

∫ ∞
τ

e−ptf2(t− τ)dtdτ

=

∫ ∞
0

f1(τ)

∫ ∞
0

e−p(ξ+τ)f2(ξ)dξdτ

=

∫ ∞
0

e−pτf1(τ)

∫ ∞
0

e−pξf2(ξ)dξdτ = L(f1)(p)L(f2)(p).

We have used here Fubini’s theorem and the fact that Re p > s =
max(s1, s2). For the case s1 = s2 the proof is similar.

3. We proceed by induction with respect to n. For n = 1 we assume that
f ∈ F+ with growth index s and f ′ ∈ C[0,∞). Then for Re p > s we
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obtain formally by integration by parts that

L(f ′)(p) =

∫ ∞
0

e−ptf ′(t)dt

= e−ptf(t)
∣∣∣∞
0

+ p

∫ ∞
0

e−ptf(t)dt = −f(0) + pL(f)(p).

The right hand side exists and is finite due to the fact that f ∈ F+ with
growth index s ≥ 0 and Re p > s. This proves (2.11) for n = 1. Let us
assume that (2.11) holds for any n ≥ 1. Then by induction hypothesis we
may write

L(f (n+1))(p) = L((f (n))′)(p) = −f (n)(0) + pL(f (n))(p)

= −f (n)(0) + p

(
pn

[
L(f)(p)− f(0)

p
− · · · − f (n−1)(0)

pn

])

= pn+1

[
L(f)(p)− f(0)

p
− · · · − f (n)(0)

pn+1

]
.

This proves (2.11) by induction.

4. If f ∈ F+ with growth index s then for any ε > 0 there is Mε > 0 such
that

|e−λtf(t)| = e−tReλ|f(t)|

≤Mεe
(s+ε)t−tReλ ≤Mε

{
e(s+ε−Reλ)t, s > Reλ

eεt, s ≤ Reλ.

This means that the growth index for e−λtf(t) is equal to sλ := max(0, s−
Reλ). Next,

L(e−λtf(t))(p) =

∫ ∞
0

e−(p+λ)tf(t)dt = L(f(t))(p+ λ)

for Re p > sλ.

The next result shows how we can recover the original function f ∈ F+ if
its Laplace transform is known.

Theorem 2.11 (Mellin’s formula). Let L(f)(p) be the Laplace transform of
f ∈ F+ with growth index s ≥ 0. Then

f(t) = lim
A→+∞

1

2πi

∫ Re p+iA

Re p−iA
eptL(f)(p)dp

=
1

2πi

∫ Re p+i∞

Re p−i∞
eptL(f)(p)dp =: L−1(L(f))(t), (2.13)
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where the integration is carried out over the line for fixed Re p such that Re p > s
and where L−1 denotes the inverse Laplace transform.

Proof. Let us define

ϕ(t) = e−xtf(t), x > s.

Since x > s then for any 0 < ε < x− s we have

|ϕ(t)| ≤Mεe
−(x−s−ε)t.

It means that ϕ tends to zero as t→ +∞ exponentially and ϕ(t) ≡ 0 for t < 0.
Using now the Fourier inversion formula

ϕ(t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ϕ(η)eiξ(t−η)dηdξ

we obtain

e−xtf(t) =
1

2π

∫ ∞
−∞

∫ ∞
0

e−xηf(η)eiξ(t−η)dηdξ

=
1

2π

∫ ∞
−∞

∫ ∞
0

e−(x+iξ)ηf(η)eiξtdηdξ =
1

2π

∫ ∞
−∞
L(f)(x+ iξ)eiξtdξ.

So

f(t) =
1

2π

∫ ∞
−∞
L(f)(x+ iξ)e(x+iξ)tdξ =

1

2πi

∫ x+i∞

x−i∞
L(f)(x+ iξ)e(x+iξ)td(iξ),

where the integral is understood in the sense of principal value at infinity (as
in Fourier inversion formula). This proves (2.13).

Remark. Formula (2.13) shows that the result of inversion is actually indepen-
dent on Re p if Re p > s.

Example 2.12. Let us evaluate the inverse Laplace transform of the function

1

p3(p2 + 1)
, Re p > 0.

Using (2.10) and Examples 2.5 and 2.7 we have

1

p3(p2 + 1)
=

1

p3

1

p2 + 1
= L

(
t2

2

)
L(sin t) = L

(
t2

2
∗ sin t

)
.

Therefore

L−1

(
1

p3(p2 + 1)

)
=

∫ t

0

τ2

2
sin(t− τ)dτ =

t2

2
+ cos t− 1.
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Example 2.13. Let us evaluate the inverse Laplace transform of the function

p

(p+ a)(p+ b)
, a, b ∈ C.

Let us first assume that a 6= b. Then the Mellin’s formula reads as

f(t) =
1

2πi

∫ Re p+i∞

Re p−i∞
ept

p

(p+ a)(p+ b)
dp.

Using now Jordan’s lemma in the left half plane (see Corollary 8.13 in Part II),
where Re p > −Re a,Re p > −Re b and Re p > 0 we obtain

f(t) = Res
p=−a

pept

(p+ a)(p+ b)
+ Res
p=−b

pept

(p+ a)(p+ b)
=
be−bt − ae−at

b− a .

a

b

Re p

Im p

Re p

For the second case a = b we may proceed by the same manner or use
limiting process b→ a in the latter formula to obtain that

f(t) = e−at − ate−at.

Problem 2.14. Using Mellin’s formula find the inverse Laplace transforms of
the following functions:

1. F (p) = 1
p4−1

,Re p > 1

2. F (p) = p
(p−1)2

,Re p > 1

3. F (p) = e−ap−e−bp

p , 0 ≤ a < b,Re p > 0

4. F (p) = e−ap−e−bp

1+p2
, 0 ≤ a < b,Re p > 0
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5. F (p) = log p+b
p+a , a 6= b,Re p > max(0,−Re a,−Re b)

6. F (p) = p log p2−a2
p2

, a > 0,Re p > 0.

Problem 2.15. Show that

L−1(FG) = L−1(F ) ∗ L−1(G),

where F and G satisfy all conditions of Theorem 2.11.

The next theorem (given here without proof) characterizes the set of an-
alytic functions that are Laplace transforms of some function from the class
F+.

Theorem 2.16. Let F (p) be a function of complex variable p which satisfies
the conditions:

1. F (p) is analytic for Re p > s ≥ 0

2. lim|p|→+∞ F (p) = 0 uniformly in arg p with Re p > s

3. for any x > s we have ∫ ∞
−∞
|F (x+ iy)|dy <∞.

Then for any fixed Re p > s there exists the limit

lim
A→+∞

1

2πi

∫ Re p+iA

Re p−iA
eptF (p)dp =: f(t)

such that F (p) = L(f)(p).

We consider now applications of Laplace transform to differential equations
with constant coefficients and to some class of integral equations. Let us con-
sider the initial value problem (or Cauchy problem) of the form

a0y
(n)(t) + a1y

(n−1)(t) + · · ·+ any(t) = f(t), t > 0

y(0) = y0, y
′(0) = y1, . . . , y

(n−1)(0) = yn−1,
(2.14)

where aj , yj are given complex constants (a0 6= 0) and f is a given function.
The task is to determine y(t). Due to linearity of (2.14) this problem can
be represented as the sum of two separate problems: (a) with homogeneous
equation (f = 0) and (b) with homogeneous initial conditions (yj = 0). Next,
in order to solve problem (a) it suffices to find the fundamental system of
solutions i.e. the system {ϕj(t)}n−1

j=0 such that

a0ϕ
(n)
j (t) + a1ϕ

(n−1)
j (t) + · · ·+ anϕj(t) = 0, j = 0, 1, . . . , n− 1
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with

ϕ
(k)
j (0) =

{
1, k = j

0, k 6= j
(2.15)

for k = 1, 2, . . . , n− 1. In that case the solution of (a) is given by

u(t) =
n−1∑
j=0

yjϕj(t), (2.16)

where the constants yj are from (2.14). Since we know that, see (2.11),

L(ϕ
(k)
j )(p) = pk

[
Fj(p)−

ϕj(0)

p
− · · · −

ϕ
(k−1)
j (0)

pk

]
, Fj = L(ϕj)

then (2.16) implies

L(ϕ
(k)
j )(p) =

{
pkFj(p), k ≤ j
pk[Fj(p)− 1

pj+1 ], k > j.
(2.17)

Using (2.17) and applying the Laplace transform to the homogeneous equation
from (2.14) we obtain

a0p
n

[
Fj(p)−

1

pj+1

]
+ a1p

n−1

[
Fj(p)−

1

pj+1

]
+ · · ·

+ an−j−1p
j+1

[
Fj(p)−

1

pj+1

]
+ an−jpjFj(p) + · · ·+ anFj(p) = 0.

This equation can be rewritten as

Fj(p) =
Qj(p)

Pn(p)
, j = 0, 1, 2, . . . , n− 1, (2.18)

where Pn(p) = a0p
n + a1p

n−1 + · · ·+ an is the characteristic polynomial of the
differential operator from (2.14) and

Qj(p) = a0p
n−j−1 + a1p

n−j−2 + · · ·+ an−j−1, j = 0, 1, . . . , n− 1. (2.19)

To solve (2.18) with respect to L−1(Fj(p))(t) we apply Mellin’s formula for fixed
Re p > s, where s ≥ 0 is to the right of all singular points of Qj(p)/Pn(p). We
obtain

ϕj(t) = L−1(Fj)(t) =
1

2πi

∫ Re p+i∞

Re p−i∞
ept
Qj(p)

Pn(p)
dp.

Jordan’s lemma in the left half plane gives

ϕj(t) =

m∑
l=1

Res
p=pl

(
ept
Qj(p)

Pn(p)

)
, (2.20)
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where pl, l = 1, 2, . . . ,m are the singular points of Qj(p)/Pn(p). Now the prob-
lem (a) is solved by (2.16) and (2.20).

For solving the problem (b), i.e. the problem (2.14) with non-homogeneous
equation (f 6= 0) and with homogeneous initial conditions (yj = 0) we use
(2.11) and easily obtain

Pn(p)L(v)(p) = L(f)(p),

where Pn is a characteristic polynomial and v is the solution of the problem.
Applying Mellin’s formula gives

v(t) =
1

2πi

∫ Re p+i∞

Re p−i∞
ept
L(f)(p)

Pn(p)
dp, (2.21)

where fixed Re p > s ≥ 0 is to the right of all singular points of L(f)(p)/Pn(p).
Formula (2.21) can be simplified as follows. Since a0 6= 0 then by (2.19) we
have

L(v)(p) =
1

a0

a0

Pn(p)
L(f)(p) =

1

a0

Qn−1(p)

Pn(p)
L(f)(p)

=
1

a0
L(ϕn−1)L(f)(p) =

1

a0
L(ϕn−1 ∗ f)(p),

where ϕn−1 is defined in (2.20). The inverse Laplace transform yields

v(t) =
1

a0

∫ t

0
ϕn−1(τ)f(t− τ)dτ. (2.22)

Combining (2.16) and (2.22) we see that the of solution (2.14) is given by

y(t) = u(t) + v(t) =

n−1∑
j=0

yjϕj(t) +
1

a0

∫ t

0
ϕn−1(τ)f(t− τ)dτ. (2.23)

Example 2.17. Let us solve the initial value problem

y(4)(t) + 2y′′(t) + y(t) = 0, y(0) = y′(0) = y′′(0) = 0, y′′′(0) = 1.
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Formula (2.23) leads in this case to the solution y(t) = ϕ3(t). But ϕ3(t) equals

ϕ3(t) = Res
p=i

ept

p4 + 2p2 + 1
+ Res
p=−i

ept

p4 + 2p2 + 1

=

(
ept

1

(p+ i)2

)′ ∣∣∣∣∣
p=i

+

(
ept

1

(p− i)2

)′ ∣∣∣∣∣
p=−i

= tept
1

(p+ i)2

∣∣∣∣∣
p=i

− ept
2

(p+ i)3

∣∣∣∣∣
p=i

+ tept
1

(p− i)2

∣∣∣∣∣
p=−i

− ept
2

(p− i)3

∣∣∣∣∣
p=−i

=
teit

(2i)2
− 2eit

(2i)3
+

te−it

(−2i)2
− 2e−it

(−2i)3

= − te
it

4
+

eit

4i
− te−it

4
− e−it

4i
= − t

2
cos t+

1

2
sin t.

Example 2.18. Let us solve the initial value problem

y′′(t) + y(t) = sin t, y(0) = y′(0) = 0.

Formula (2.23) leads to the solution

y(t) =

∫ t

0
ϕ1(τ) sin(t− τ)dτ,

where

ϕ1(t) = Res
p=i

ept

p2 + 1
+ Res
p=−i

ept

p2 + 1
=

eit

2i
− e−it

2i
= sin t.

Thus,

y(t) =

∫ t

0
sin τ sin(t− τ)dτ = −1

2

∫ t

0
(cos t− cos(2τ − t))dτ

= − t
2

cos t+
1

2

sin(2τ − t)
2

∣∣∣∣∣
t

0

=
1

2
sin t− t

2
cos t.

Example 2.19. Let us solve the initial value problem

y′′(t) + ω2y(t) = cos(νt), y(0) = 0, y′(0) = 1, ν, ω ∈ C.

Let first ν 6= ±ω. Then (2.23) gives the solution as

y(t) = ϕ1(t) +

∫ t

0
ϕ1(τ) cos(ν(t− τ))dτ,

where ϕ1(t) is defined as

ϕ1(t) = Res
p=iω

ept

p2 + ω2
+ Res
p=−iω

ept

p2 + ω2
=

eiωt

2iω
+

e−iωt

−2iω
=

sin(ωt)

ω
.
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For ω = 0 we have ϕ1(t) = t. So for ω 6= 0 we get

y(t) =
sin(ωt)

ω
+

1

ω

∫ t

0
sin(ωτ) cos(ν(t− τ))dτ.

Since ν 6= ±ω then the latter integral equals

1

2ω

∫ t

0

[(
cos((ω − ν)τ + νt)

ν − ω

)′
−
(

cos((ω + ν)τ − νt)
ν + ω

)′]
dτ

=
1

2

[
cos(ωt)

ν − ω −
cos(νt)

ν − ω −
cos(ωt)

ν + ω
+

cos(νt)

ν + ω

]
=

cos(ωt)− cos(νt)

ν2 − ω2
.

Therefore the solution is (ν 6= ±ω 6= 0)

y(t) =
sin(ωt)

ω
+

cos(ωt)− cos(νt)

ν2 − ω2
.

If ω = 0 and ν 6= ±ω then

y(t) = t+
1− cos(νt)

ν2
.

In the case ν = ±ω we may use the limiting process to obtain

y(t) =
sin(ωt)

ω
+
t

2

sin(ωt)

ω
.

Problem 2.20. Solve the problems

1. y′(t) + by(t) = et, y(0) = y0

2. y′′′(t) + y(t) = 1, y(0) = y′(0) = y′′(0) = 0

3. y′′(t) + y(t) = sin(ωt), y(0) = 0, y′(0) = 1

4. y(4)(t) + 4y(t) = sin t, y(0) = y′(0) = y′′(0) = y′′′(0) = 0

5. y′′(t) + 4y′(t) + 8y = 1, y(0) = y′(0) = 0

6. y′′(t)− y(t) = −2t(e−t + 1), y(0) = 0, y′(0) = y0.

Example 2.21. Let us solve the integral equation

g(t) = f(t) + λ

∫ t

0
K(t− τ)g(τ)dτ,

where g, f,K ∈ F+ with the corresponding growth indices. Applying the
Laplace transform we obtain

L(g)(p) = L(f)(p) + λL(K)(p)L(g)(p).
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So we have (formally)

g(t) = L−1

( L(f)

1− λL(K)

)
(t).

This formula can be simplified as follows (see Problem 2.15). We have

g(t) = L−1

(
L(f) + λ

L(K)

1− λL(K)
L(f)

)
(t)

= f(t) + λL−1

( L(K)

1− λL(K)
L(f)

)
(t)

= f(t) + λ

∫ t

0
f(t− τ)L−1

( L(K)

1− λL(K)

)
(τ)dτ.

This formula gives the solution with any kernel K(t) of the integral equation.
For example, if K(t) = et then for Re p > 1 we have

L(K) =
1

p− 1

and so we may conclude that

L−1

( L(K)

1− λL(K)

)
(t) = L−1

(
1

p− λ− 1

)
(t) = e(λ+1)t.

Therefore, for this particular case the solution of the integral equation

g(t) = f(t) + λ

∫ t

0
et−τg(τ)dτ

is equal to

g(t) = f(t) + λ

∫ t

0
f(t− τ)e(λ+1)τdτ = f(t) + λ

∫ t

0
f(τ)e(λ+1)(t−τ)dτ.

Problem 2.22. Solve the equations

1. f(t) =
∫ t

0 e−(t−τ)g(τ)dτ

2. g(t) = 1−
∫ t

0 (t− τ)g(τ)dτ

3. f(t) =
∫ t

0 sin2(t− τ)g(τ)dτ

Problem 2.23. 1. Generalize Problem 2.6 for the case ν > −1. Namely,
show that

L(tν)(p) =
Γ(ν + 1)

pν+1
, ν > −1,

where L(tν)(p) is understood as the limit

L(tν)(p) := lim
δ→+0

∫ ∞
δ

tνe−ptdt

which exists.
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2. Using part 1. solve the integral equation

g(t) = f(t) + λ

∫ t

0

g(τ)

(t− τ)α
dτ, 0 < α < 1.

Problem 2.24 (Abel’s equation). Let 0 < α < 1 and

f(t) =

∫ t

0

g(τ)

(t− τ)α
dτ.

Show that

g(t) =
sin(απ)

π

(
f(0)

t1−α
+

∫ t

0

f ′(τ)dτ

(t− τ)1−α

)
is a solution of this equation. Hint: Use the first part of Problem 2.23 and the
formula

Γ(α)Γ(1− α) =
π

sin(απ)
, 0 < α < 1.
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regular part of Laurent expansion, 93
removable point, 94
residue, 102
Riemann Mapping Theorem, 136

Schwarz reflection principle, 135
simply connected domain, 52
smooth Jordan curve, 22
stereographic projection, 14

Taylor series, 86
Taylor’s expansion, 86
Taylor’s expansion at ∞, 87
trigonometric representation, 14

uniformly continuous function, 25
univalent, 24

variation of argument, 109

Weierstrass’ M-test, 83

zero of function, 89
Zhukovski function, 29
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