Complex Analysis
Second Edition

V.S. Serov

\l/

v

UNIVERSITY
OF OULU



Juvenes Print Oulu 2017
987654321



COMPLEX ANALYSIS

V.S. SERovV, Dr. Sci.

PROFESSOR OF APPLIED MATHEMATICS

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF OULU, FINLAND






Preface to the first edition

These lecture notes are based on the two 4 credit courses given at University of
Oulu during Spring 2015 semester. We follow the general outline of the courses
given by Jorma Arhippainen in 2008-2012 and the courses given by the author
at Moscow State University in the end of 1990s. The major difference in this
text is the discussion of extended complex plane and the concept of complex
infinity. The text contains problems which range from very easy to somewhat
difficult. Exercises are formulated at the end of each course.

After the courses ended this text has been modified as follows. Cauchy
theorem and Cauchy integral formula has been moved to Part I. A new chapter
on principle of the argument and Rouche’s theorem has been added to Part II.
Another new chapter on calculation of series by residue theory has also been
added to Part II. The Casorati-Sokhotski-Weierstrass theorem has been added
to Chapter [5 of Part II.

Oulu, August 2015 Valery Serov

Preface to the second edition

In two years since the first edition of this book appeared some new suggestions
for improving the text was proposed. Completely new part, Part I1I, consisting
of two chapters: Conformal mappings and Laplace transform, has been added.
After this addition this new edition can be considered as a standard university
course in Complex Analysis for mathematics students. In addition to this some
corrections and adjustments throughout the book are done, and the following
important topics have been added: (1) Cauchy integral formula is formulated
now in its most general form using principal value integrals (see Theorem in
Part I), (2) Taylor expansion at infinity, (3) Jordan’s lemma is now formulated
for each half plane of the complex plane: upper, lower, left and right and
this lemma in its new form is applied in the chapter on Laplace transform (4)
Numerous new problems are formulated now in Chapters [I] and [2] of Part III.
Together with the list of exercises in Parts I and II they form an integral part
of the new edition. The total number of problems and exercises is 167. The
readers are asked to investigate and solve most of the problems and exercises.

The last but not the least is: this edition as well as the first one could not
have appeared without participation in content and typing of my colleague Adj.
Prof. Markus Harju.

Oulu, October 2017 Valery Serov
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Chapter 1

Complex numbers and their
properties

Definition 1.1. The ordered pair (z,y) of real numbers x and y is called a
complex number z = (x,y) if the following properties are satisfied:

1. 21 = zy if and only if z; = 29 and y; = yo. In particular, z = (z,y) =0
if and only if x =y = 0.

2. 21+ 22 = (21 £ 22,91 £ 12)
3. 2122 = (2172 — Y1Y2, T1Y2 + T2Y1)
The notation is: x = Rez,y =Im =z

The complex number z = (z,0) is identified with real number z, and com-
plex number z = (0,y) is called purely imaginary.

Definition 1.2. The complex numbers (0,0), (1,0) and (0, 1) are called zero,
unit and imaginary unit and are identified with 0,1 and i, respectively.

It is easy to check that
i? = (=1,0), i(b,0) = (0,b). (1.1)
Indeed,
7 =(0,1)-(0,1) = (~1,0)

and
i(b,0) = (0,1) - (b,0) = (0,b)

by Definition .
Since

z=(z,y) = (2,0) + (0,9)
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using we obtain that
z=(z,0)+(0,1)- (y,0) =z +1iy
such that
21+ 22 = o1 + iy + 22 +iye = (w1 + 22) +i(y1 + y2)

and

21 20 = (z1 +1iy1) (T2 + iy2) = 2122 + iy172 + iz1y2 + Y190
= (z122 — y1y2) +i(y172 + 21Y2)

that is, these operations (addition and multiplication) are performed as in the
usual analysis.

We denote the set of all complex numbers by C.

The division is defined as the operation which is inverse to multiplication.
Namely, if 2o # 0 (i.e. 72 # 0 or y2 # 0, so 3 + y3 > 0) then
- a+ib if and only if 21 = (a +1b)z22.

22
It means that
x1 +iy1 = (a +1ib)(xo + iy2)

or

r1 = azx2 — bys
y1 = bxg + ays.
Solving this for a and b gives
T2 + Y12 12 — T1Y2
= 2.2 = 2 .2
Ty + Y5 3+ Y5

Hence
21 T1T2 tY1y2 | . Y1T2 — T1Y2

2 3 + Y3 x5+ y3

Definition 1.3. For given complex number z = x + iy
1. the number Z := x — iy is called the complex conjugate to z.

2. the nonnegative (real) number |z| := /22 + y? is called the modulus of
z.

The following properties can be checked straightforwardly:

21t 29=7211+72y
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Z1 22 =21"22

AN _ 2
) =
Rez:z; , Imz=

2i

Y,

|zl =0 ifand onlyif z=0

2P =27, |zl =[zl, |21zl =|al |z
! :@, but
Z9 |22|
[121] = [2al| < 21 = 2] < || + |l (1.3)

|[Rez| <|z|, [Imz| < |7
Problem 1.4.
1. Prove that

zo  |zf? 3+ y3 3+ 3

z1 21Z2  T1T2 + Y192 i2/1902 — x1Y2

2. Prove that
|21 £ 29| = |21 + |22|® £ 2|21] - | 22| cos @,

where « is the angle between the two vectors z; = (z1,71) and 2y =
(x2,72) on the plane R

3. Prove the inequalities (|1.3]).

(xla?Jl)

($2, 92)

Definition 1.5. The angle ¢ formed by the vector z = (x,y),z # 0 and
the positive real line Ry is said to be an argument of z and denoted by ¢ =
Arg z,z # 0. The argument of z = 0 is not defined.



1 Complex numbers and their properties 13

Remark. It is clear that Argz is not defined uniquely. More precisely, it is
defined up to 27n,n =0,+1,4+2,... i.e.

Argz = ¢ + 27mn,

where ¢ € (0,27] or ¢ € (—m,x]. This value of ¢ is called the main argument
and it is denoted as

argz = .
Let us assume in the future that
argz =@ with ¢ € (—m, 7).
In this case the Pythagorian theorem says that
Rez = |z|cose and Imz=|z|singp

ie.
z = |z|(cosp +ising), z#0. (1.4)

Problem 1.6. Prove that
1. 21 = zo if and only if |21]| = |22] and p1 = ¥
2.

p € (0,m) ifand only if Imz >0

p € (—m,0) ifand only if Imz<0
p=0 ifandonlyif Imz=0,Rez >0
p=m ifand only if Imz=0,Rez <0.

Problem 1.7. Prove the following statements:

1. argz = —argz
2.
arctan {{2;, Rez >0
arctan ggz + 7, Rez<0,Imz>0
arg z = arctangg;—w, Rez < 0,Imz <0
5 Rez=0,Imz >0
—3, Rez=0,Imz < 0.

Problem 1.8. Prove the following properties:

L. 21 - 20 = |21] - |22|(cos(@1 + p2) +isin(p1 + ¢2))
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2. z1/22 = |21]/| 22l (cos(p1 — p2) +isin(p1 — ¢2))
3. 2" = |z|"(cos(ny) +isin(ny)) (De Moivre formula)
We will use the shorthand notation (which will be proved later)
el := cosp + isin .
Then can be written as .
z = |zle'¥. (1.5)

Definition 1.9. The form (1.5)) is called the trigonometric representation of
the complex numbers.

The equality (1.5)) is called Fuler’s formula. Using (1.5) we may rewrite the

above formulas in shorter way:

2129 = ’21| . ‘Z2|ei(991+902)

21/20 = ]zl|/\z2|ei(“’1*@2)

2" = |z|"el™.

Definition 1.10. The complex number zq is said to be the root of nth degree
of the complex number z if
n
ZO = Z.

We denote this by zp = {/z. There are n solutions of the above equation and
they are given by

(20)i = |2|/melle/m2mk/m) - — 01, n—1. (1.6)
Problem 1.11. Prove (|1.6)) using De Moivre formula.

Let us consider in the Euclidean space R? the sphere S with center (0,0, 1/2)
and radius 1/2 in the coordinate system (&,n,(), i.e.

&+’ +(C-1/2)* =1/4

or

E+n*+-¢=0. (1.7)
Let us draw a ray from the point P = (0,0, 1) which intersects the sphere S at
the point M = (£, 1, () and complex plane C at the point z = = + iy.
The point M is called stereographic projection of the complex number z on
the sphere S. Since the vectors PM and Pz are colinear we have

§ n_ 1-¢

r Yy 1
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Thus, using (|1.7)) we have

_n
1—=¢

so that
|22

T [

€ Y

£:1+|Z’27 77:1_'_’2:'27

¢ (1.8)

Definition 1.12. The formulas (1.8) are called the formulas of the stereo-
graphic projection.

The formulas ((1.8)) allow us to introduce ”ideal” complex number z = 0o as
follows. Since there is one-to-one correspondence between C and S\ P then we
may supplement this correspondence by one more, namely

P(0,0,1) «— oc.

In this case

S ¢ C:=CU{oc}
and, by ,

=0, =00, z2:00=00,2#0, 2+ 00=o00, i:0,27500. (1.9)
00

1
0

Remark. The set C is called the extended complex plane.

Problem 1.13. Prove that the spherical distance between z1,z9 € C can be
calculated as

ps(z1,22) = 21— 2]
7 VIF]z12/1+ [z
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The neighborhood of zy € C is defined as
Us(20) = {z € C: [z — 20| < 6}
and the neighborhood of z = oo is defined as
Ur(oco) ={z € C:|z| > R}.
Definition 1.14.

1. The complex number z € C is called the limiting point of some set M C C
if for any § > 0 it is true that

(Us(20) \ 20) "M # 0
(or for any R > 0 it holds that (Ug(o0) \ 00) N M # ().
2. The set M C C is called closed if it contains all its limiting points.

3. Denoting all limiting points of M C C by M’ we define the closure of M
as
M=MUM.

4. The boundary OM of the set M C C is defined as

dM =3 n (C\ M).

5. The point zg € C is called interior of some set M if there exists Us(zq)
(or Ur(o0)) such that Us(zp) C M (or Ug(co) C M). If all points of M
are interior then M is called an open set.

Problem 1.15. Prove that M C C is open if and only if C \ M is closed.

Definition 1.16. The complex number 2y € C is said to be the limit of sequence
{zn}52, C C, denoted by zp = limy_o0 2p, if for any € > 0 there is ng =
no(e, z0) € N such that

|zn — 20| < €

for all n > ng.
We say that co = lim,,_,~ 2, if for any R > 0 there is ng = ng(R) € N such
that |z,| > R for all n > nyg.

Proposition 1.17.
1. zp = limy, 00 2, 20 # o0 if and only if

Rezp = lim Rez, and Imzy= lim Imz,
n—oo n—oo
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2. 00 = limy, 00 2, if and only if limy, 0 |2n| = 00.

Proof. 1. If zp = limy,—,00 2, then for any & > 0 there exists ng(e) € N such
that
|zn, — zo\z <e%, n>no.

It means that

(Re z, — Re 29)% + (Im 2, — Im 29)? < &2
It follows that

|Rez, —Rezo| <e, |Imz,—Imzy <e, n>ng

or

Rezp = lim Rez,, Imzy= lim Im z,.
n—oo n—oo

Conversely, if ¢ = lim,, ., Re z,, and b = lim,,_,, Im z,, then for any ¢ > 0
there exist ni(e),n2(e) € N such that

|Rez, —al <e/2, n>m
| Imz, — b <e/2, n>na.

Denoting ny = max(nj,ng) we obtain for all n > ng that

|z — (@ +1b)| < |Rezp, —a| + |Imz, —b| <e/24+¢/2 =¢.

2. Follows immediately from Definition [1.16
O

Remark. In part 2) of Proposition we cannot say anything more. Indeed,
let z, be defined as follows:

Zn —

n+i/n, n=2k
1/n+in, n=2k+1.

Then |z,| = /n? 4+ 1/n? = 0o as n — oo but Re z,, /A oo and Im z,, A .

The Bolzano—Weierstrass Principle If the sequence of complex numbers
{#n}22 is bounded i.e. there exists M > 0 such that

lzn| < M, n=12...
then there is a subsequence z;, which converges to some point zy € C i.e.

lim 2z, = 2p.
n—00
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Indeed, since |z,| < M then |Rez,| < M and |Imz,| < M . Using the
Bolzano—-Weierstrass principle to the real sequence Re z, we find Rezj, such
that there exists a € R with

a= lim Rezy,.
n—oo

If we consider now Im z;, then it is also bounded and hence there exists a

(1)

subsequence, say Im 2z which has a limit

b= lim Imz,il).
n—oo n

Thus,

lim (Re z,il) +ilm z,il)) = lim Re z,(gl) +1i lim Im z]il) =a+ib.

n—oo " m n—00 n n—00 n

If the sequence of complex numbers {z,}5° ; is not bounded, i.e. for all M >0
there exists nys € N such that |2,,,| > M, then there is a subsequence zj, such
that

nh_)ngo |2k, | = oo.

The proof of this fact is the same as in real analysis.
There is one more useful property:

Zp — 00

(i.e. |zn| — o0) if and only if

Cauchy criterion The sequence of complex numbers {z,}>°; converges if
and only if it is a Cauchy sequence, i.e. for any € > 0 there exists ng(e) such
that

|zn — 2m| <&, m,m >mny.

The proof follows from the Cauchy criterion of real analysis.

Arithmetic operations with convergent sequences If

lim z, = z9, lim w, = wg
n—oo n—oo

then

lim (z, & wy) = 20 £ wo
n—oo

lim z, - w, = 29 - wo

n—oo
Z 20
lim ™ = == wy # 0.
n—oo ’u}n 'LUO



1 Complex numbers and their properties 19

If

lim z, =co, lim w, = o0
n—00 n—o0

then

lim z, - w, = 0.
n—oo

Problem 1.18.

1. Let lim, 00 2n = 20, 20 # 0, 29 # 00 and lim,,_, o, wy, = 0o0. Prove that

lim z, -w, =00, lim (z, £w,) =00, lim z,/w, =0.
n—oo n—ro0 n—oo

2. Let lim,,—soo 2, = o0 and lim,,_soo w, = 0co. Prove that the limits
lim (z, + w,) and lim z,/w,
n—oo n—o0

might not exist.

Series The series of the complex numbers
[e.¢]
>
k=1

is said to be convergent if the limit

n
I

exists. Then this limit is denoted by

o

sz.

k=1

It is equivalent to the convergence of the real series

oo o
Z Rez. and Z Im z;,
k=1 k=1

and in that case

(o] o0 o0
sz = ZRezk +iZImzk.
k=1 k=1 k=1

The series > p- ; 2 is said to be absolutely convergent if

o0
Dzl < 00
k=1
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or

oo o
Z|Rezk|<oo and Z|Imzk|<oo.
k=1 k=1

The latter conditions follow from
|z] <|Rez|+|Imz| and |Rez|,|Imz| < |z|.
The absolute convergence implies convergence but not vice versa.
Example 1.19 (Geometric series). Since
1 — zntt

n

sz:7’ z#1
1—-2

k=0

then the limit

n

lim E 2k
n—oo

k=0

exists if and only if lim,,_,o 2" 1! exists and z # 1. But the latter limit exists if

and only if |z| < 1 and in that case it equals 0. Thus the series
o0
D
k=0

converges if and only if |z| < 1 and

> 1
ZZkzl—z'

k=0

(1.10)

Example 1.20 (Exponential function). The exponential function e*,z € C can

be defined as the following series:

From real analysis we know that

(1.11)

Therefore the series ([1.11)) is well-defined for all z € C. Even more is true. For

z =x € R we know that
X n

x
e’ :Z—.
n!

n=0
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Using ([1.11)) we obtain for purely imaginary z = iy that

o= ()" o= () O (i)
=2 _Z(2k)!+kzzo(2k+1)!

00 k, 2k o0 k, 2k+1
—1)%y . —1)%y . .
= E 7( ) +1i E ((2]3+1)' = cosy +1siny.

This proves formula ((1.5)).
Now we would like to show that actually the function (1.11]) can be repre-
sented (or understood) as

e =e"(cosy +1isiny),

where e”, cos y and sin y are from real analysis. Indeed, by the binomial formula,

() c\n 00 n
z _ iy (x+1y) _ i n k(.. \n—k
f =T =3 ! _an r)® W)

n=0 n=0 """ k=0
SN n! R A (1) MR e Tl (17)
:Zazk!(n—k)!x (i) :Zzﬂ(n—k)! =20
n=0 k=0 k=0n=~k k=0 m=0
0 k0 /. \m
= Z % (1y)' = ¢e"(cosy +isiny).
k=0 " m=0 "

Problem 1.21. Show that

1. e*le® = ¢*1 122

R N 1/

@

e*=1/e*ore*=1/e"*?

4. (X" =" neZ

ot

. le?| < el



Chapter 2

Functions of complex variable

The complex-valued function of one real variable is the mapping
f:(a,b) -=C or f:la,b] =>C

such that
z = f(t) = f1(t) +if2(0),
where t € (a,b) or t € [a,b]. Here, the open interval (a,b) might be infinite but
the closed interval [a, b] is considered only for finite a and b.
The notions of limit, continuity, differentiability and integrability are defined
coordinate-wise. i.e. for two real-valued functions fi(t) and fa(t) of one real
variable ¢.

Definition 2.1.

1. The continuous mapping f : [a,b] — C,z = f(t) is called the Jordan
curve if z(ty1) # z(ta2) for t; # to. If in addition z(a) = z(b) then this
curve is called closed.

2. The Jordan curve is called piecewise smooth if there are points
a=ty<ti <---<th,=0>

such that z = f(t) is continuously differentiable on the intervals [t;_1,1;]
for j=1,2,...,nand f'(t) #0.

3. If n =1 above then the Jordan curve is called smooth.

We will use the following statement proved by Jordan (we accept it like
axiom, without proof):

Any closed Jordan curve divides C into two domains (regions): internal (not
containing z = 0o) and external (containing z = o0). They are denoted as int
and ext 7y, respectively, so that

C=intyU~yUext~.
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Definition 2.2.

1. A set D C C is called connected if for any points 21,29 € D there is a
Jordan curve connecting these points and lying in D.

2. A set D C C is called a domain if it is connected and open.

We consider a complex-valued function w of one complex variable z as fol-
lows. Let us have two copies of the complex plane, one in z and one in w. Let
D be a domain in z and G a domain in w. Then a function w = f(z) is the
mapping

f:D—>G
such that
This is equivalent to the definition of two real-valued functions u and v of two
real variables z and y such that w = f(z) if and only if

u(z,y) =Rew and wv(z,y)=Imw.

In particular, we have that

b= lim f(z2), b# (2.1)
Z— 20
if and only if
Reb = lim Ref(z) and Imb= lim  Im f(2).
(2,y)=(z0,90) (,y)—(z0,90)
Also,
oo = lim f(z)
Z—r20

if and only if
lim |f(z)| = 400

Z—20

i.e. for all R > 0 there exists 6(R) > 0 such that |f(z)| > R whenever |z| > 0.
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Here ([2.1)) means that for any ¢ > 0 there is 6 = d(e, 2p9) > 0 such that

[f(2) —blc <e

whenever |z — zp| < 0 i.e. |(z,y) — (x0,y0)|rz < 0. Therefore, the arithmetic
operations for complex-valued functions of one complex variable are satisfied,
ie. if

lim f(z) =a and lim g(z) =5

Z—r20 Z—r20
then
1.
lim (f(z) £ g(2)) =a=£b
Z—rZ20
ie.
lim (Ref+Reg) =Rea=xReb
(z,y)—(z0,y0)
and
lim (Imf+Img)=Ima+Imb
(z,y)—(z0,30)
2.
lim f(2)-g(2) =a-b
ie.
lim  Re(f-g) =Re(a-d)
(z,y)—(z0,y0)
and
lim  Im(f-g)=Im(a-b)
(2,y)—=(20,y0)
3.
lim f(z)/g(z) = a/b, ifb#0
2—20
ie.
lim  Re(f/g) = Re(a/b)
(z,y)—(z0,90)
and

lim  Im(f/g) =Im(a/b)
(@,y)=(0,90)

Definition 2.3. A function w = f(z) is called univalent if f : D — G onto (is
surjective) and if for any z1,29 € D, 21 # 29

wy = f(21) # w2 = f(22) (injectivity).
In this case there is an inverse function f~' which maps as

f1:G-=D
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onto (surjectively) such that f~}(w) = 2z if w = f(2), i.e.
2= fTHf(), w=f(fT(w), zeDwed.

This inverse function f~! is also univalent (bijective).
Summarizing, we have
z=f"Yf(z)) forallze D
and
w= f(fYw)) forallwe G.
Definition 2.4.

1. A function w = f(z) is continuous at z = zp # oo if f(z) is well-defined
in a neighborhood Us(zp) and if for any ¢ > 0 there exists d(e, z9) > 0
such that

1f(2) = f(z0)] <e
whenever |z — zg| < 0.

2. A function w = f(z) is continuous at z = oo if f(z) is well-defined for
|z| > A and there exists b € C such that for any € > 0 there is R(e,b) > 0
such that

[f(z) —bl <e
for any |z| > R. In that case f(o0) = b.

3. A function w = f(z) is continuous on the set A C C if it is continuous at
any point zg € A.

4. A function w = f(z) is uniformly continuous on the set A C C if for any
e > 0 there exists d(g) > 0 such that

|f(z1) — f(z2)] <€
whenever |z1 — 29| < § and 21, 29 € A.

Remark. Since
|z — 20lc <9
if and only if
|(z,y) — (20, y0)[r2 < 0
and
|f(z) = f(z0)| < e
if and only if

lu(x,y) —u(zo,yo)| <&, and |v(z,y) —v(zo,y0)| <€

then the continuity of f(z) is equivalent to the continuity of Re f(z) and Im f(z)
as functions of two variables (z,y).
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Problem 2.5. Show that e* # 0 for any z € C and the limit lim,_,, e does
not exist (finite or infinite).

Problem 2.6. Investigate the continuity at 0 of the functions
a) 22/|2[2, b) (zRe2)/|2|, ¢) (Imz)/z d) e /=",

Example 2.7. A linear-fractional (bilinear) function is defined for z € C as

az +b
— — . 2.2
W= ad —bec #0,¢#0 (2.2)

It is well-defined if z # —d/c. Since

az1+b  az+b  (ad—bc)(z1 — 22)
cz1+d czm+d  (cz+d)(czm+d)

wy — wy =
then this function is univalent in the domain C\ {—d/c}. The inverse function
z = z(w) is also bilinear and defined by

_dw—b

a — cw

z

and it is well-defined (and univalent) in the domain C \ {a/c}. If we define
w(—d/c) =00 and w(o0)=a/c

then the bilinear function maps C onto C bijectively. The same is true for the
inverse function.

Let us show that the bilinear function is continuous everywhere in
C\ {—d/c}. Indeed, if first zg # —d/c, 29 # oo then

(2) — w(z0)| = (ad —bc)(z — 20) | lad — bel|z — 2o
N ez +d)(czo+ )| Jezo+d + c(z — 20)|[cz0 + d|

Since |czp + d| > 0 then we may choose |z — 29| < 0 and |z — 2| < |Cz20|:|d‘_ I
this case
czo+d

lcz 4+ d| = |czo + d+ c(z — 20)| > |cz0 + d| — |||z — 20| > |02‘

and (ad— bel5
ad — be
wz) — o)l < Tprap <<
2

If for arbitrary € > 0 we will define

. [|czo+d| elezo+d|?
6 = min ,
2|¢| 2|ad — be|
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then the condition |z — 29| < § implies |w(z) — w(zp)| < € i.e. the bilinear
function is continuous at any such point z.
If now we have zp = oo then we may choose |z| > 2|d/c| and obtain

az+b a lad — bc| lad — be]

cz+d c| Jelez+d| ez +d/d]
lad — bc| < 2lad — be|

= ezl = ld/el) T fef?lz]

|w(2) —w(oo)| =

Hence, if for arbitrary € > 0 we will choose

_ 2|ad — b
e

R

then the condition |z| > R implies |w(z) — w(o0)| < € i.e. the bilinear function
is continuous also at co.

Remark. For ¢ = 0 the bilinear function reduces to the linear function

b
w(z):gz—f—g, d # 0.

It is easy to check that this is continuous on C (but not at co) and univalent
on C.

Example 2.8. The squared function is defined for z € C as

Since

wy —wy = 22 — 23 = (21 — 2) (21 + 22)

then we may conclude that z; # 2o if and only if w; # wa (because w; = wo
if and only if z; = 29 or z; = —z3). Thus the squared function is not
univalent on C.

But if we consider two subdomains

Dy ={z€C:Imz > 0}
and
D_={2€C:Imz <0}

then in each of these two subdomains the squared function is univalent.
It is very easy to check that in both domains z; # —zo. Indeed, 21 = —z9 if and
only if Rez; = — Rez9 and Im z; = —Im 25 i.e. these equalities are impossible
in Dy orin D_.

In order to define the inverse of w = 22 in D4 we proceed as follows:

wy + iwg = 22 = 22 — y? + 2y
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if and only if

2 w2
wy = -y, r= —.
2y
So )
_ W _ 2
w1 4y2
or
4yt + 4yPw; — w% = 0.
Hence
) 2wy + AR ¥ A}
Yy = 1 .
It yields
2 7 _
Y= \/\/wl + wy; — wi in D,
2
and
/2 7 _
Yy = —\/ witwy W inD_.
2
Consequently,
w2 .
T = in Dy
2 \/wf—&—wg—wl
2
and w
r=— 2 inD_.

/2,2 2
wit+ws;—wi

2

\V)

Remark. As we can see, in D4, wo = 0 if and only if x = 0 i.e. Imw = 0 if and
only if Re 2 = 0 and in this case Rew = —(Im 2)? i.e. w1 = —y? < 0.

So finally we have

2 2
w2 '\/\/w1+w2—w1

24 = +1
ﬁ\/\/w%—l—w%—wl V2

wo W/«/w%%—w%—wl

Z_ = — —1 .

Vay VT - w v

We may simplify these formulas to obtain

Zp =1/ wi ol ti? , 2 = —Z4. (2.4)
2 Jwi+|w]
2
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In these formulas, 2z is called (y/w)4+ with Im z4 > 0 and z_ is called (y/w)_
with Im z; < 0 so that we have two branches for inverse function.
For the case x = 0 we obtain easily from Remark above that

zy =iV/—wi, and z_ = —iV/—wi. (2.5)
For the case Imz = 0 we have real-valued (and nonnegative) function of one

real variable z i.e.
2

w, =T .
Its inverse also has two branches
Ty =/ wy, x_=—yw;, w; >0. (2.6)

The formulas (2.4))-(2.6) can be written shortly (compare with (1.6])) as

iargw/2 i(fargw/2+m) _

zy = y/|wle and  zp = \/Jwlel lwlet®&w/2(2.7)

where argw € (—m,7]. Here + depend on argw. More precisely, if argw €
(0,7) then 2z € Dy and z_ € D_, but if argw € (—x,0) then 2z, € D_ and
Z_ € D+.

Problem 2.9. Show that (2.4)-(2.6) and (2.7) are equivalent.

The squared function is continuous at any point zy € C since
lw(z) —w(zo)| = |22 — 22| = |z — 20|z + 20| < 8]z + 20| < 8(6 +2|20|) = €
so, if for arbitrary € > 0, we choose
§=—|20l + V|22 +e>0
then the condition |z — 2| < § implies |w(z) — w(z20)| < . So w = 22 is
continuous at zy # 0o. At zp = oo this function is not continuous since w(oc) =

Q.

Problem 2.10. Investigate the function w = 23 by the same manner as in
Example 2.8 and Problem

Example 2.11. The Zhukovski function is defined for any z # 0 and z # oo as
1 1
== - 2.
w(z) 5 (z + z> (2.8)

or 22 — 22w+ 1 =0. We define

w(oo) = w(0) = co.
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Since

u@ﬂ—m@wﬁ@rwg@—3l)

2122

then w(z1) # w(z2) if and only if 21 # 29 and 2129 # 1. Thus, the Zhukovski
function ({2.8]) is univalent if and only if 2129 # 1, for example, if either |z| < 1
or |z| > 1 i.e. in the domains

Di={z€C:|z| <1}, Dy={2z€C:|z| >1}.

On the unit circle |z| = 1 there are always two different points z; and 23 such
that z129 = 1. Indeed, if z; = ei‘pl,gol € (—m,m) then if we consider zo = e i1
we have z129 = 1, but z1 # 2. In this consideration the case z; = el™ = —1is
excluded.

For any z = rel¥ we have that

1 R 1 1 i 1y .
w(z):§ re +;e =3 7“-1-; COSSO+§ r— o )sing.

It implies
1 1\? cosp — 1
2 _ + L cosp— 1
|lw|* = 1 <r+ r) + 5

1 1\? 1 1\?
2<Z - 2>z -] -1
|w] _4<T‘+T> , |wl _4<r+r> 1

Using ([2.8) we obtain that in the domain D; the inverse function is given by

z=w—Vuw?—-1

and hence

and by
z=w+Vw?—-1

in the domain Dy, depending on the choice of vw? — 1.
Zhukovski function is continuous at any point zy # 0, 00. Indeed, for such
zp we have,

1
1 - —
Z20

Lz —
=—|z—2%
2 0

w(z) — w(z0)] = gz~ | 1-

(2 — 20) + 20)20

1
1+
|(z = 20) +Zo\|20)

(
< |2 —220’ (1 + o]0l _1 |z — 20|))
(

1
1+>
|z0]|20]/2
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if |z — 20| < |20|/2. Thus, for any € > 0 and |z — zp| < min(J, |20|/2) we have

J 2
lw(z) —w(z0)| < 5 (1 + |z0]2> =ec.

So choosing

. 2e |Zo|
d=min| ———,—
1+2/[z]2 2

the condition |z — zp| < ¢ implies |w(z) — w(zp)| < e. At z =0 or z = oo the
Zhukovski function is not continuous since w(0) = w(o0) = 0.

Problem 2.12. Show that the Zhukovski function maps real numbers into real
numbers and purely imaginary numbers to purely imaginary numbers.

Problem 2.13. Show that the Zhukovski function maps the unit circle |z| = 1
into cos(arg z).

As a consequence of the notion of limit we may formulate and prove (as in
real analysis) the following general statements:

Proposition 2.14. Assume that f and g are continuous at some point zy (or
on a set A). Then

1. f+yg

f-g

g’ if g(z0) Z0 (or g(2) #0 for all z € A)
£

are continuous at zy (or on the set A).

e e

Proposition 2.15. Let w = f(z) be continuous on a set A and g(w) continuous
on the set f(A). Then the composite function

n=g(f(z)) = (g0 f)(2)
18 continuous on the set A.

Corollary 2.16. Ifw = f(z) is univalent and continuous on a domain D, then
the inverse function z = f~(w) is continuous on the domain G = f(D).

Proof. Since for any z € D we have

2= 7H(f(2))

and f is continuous on D then f~!(w) is continuous on G' = f(D) because z is
continuous. O



32 Part I

Weierstrass theorems

1. If D C C is compact (i.e. closed and bounded) and f is continuous on D
then f is bounded and f is uniformly continuous on D.

2. The previous statement holds also for compact D C C (see stereographic
projection).

3. If D c C is compact and f is continuous on D then | f| achieves maximum
and minimum on D.



Chapter 3

Analytic functions
(differentiability)

Definition 3.1. Let w = f(z) be well-defined on a domain D C C and zp € D.

If the limit
ORI

D>z—zg Z — 20

exists then this limit is called the derivative of f(z) at the point zp and it is
denoted as f'(zp). In this case f is called differentiable at zy with

lim f(2) = f(20)

D>z—zg zZ— 20

= f'(20). (3.1)

We say that f’(oo) exists if f is continuous at z = oo and there is ¢’(0) for
g(z) = f(1/z). This is equivalent to

g'(0) = lim ¢[f(C) = f(o0)] =: f'(c0).

(—o0
This definition is equivalent to the existence of the limit

lim u(x,y) — u(zo, yo) +i(v(z,y) — v(xo,yo))
2z (z —x0) +1i(y — %o) ‘

Y—Yo

In particular, if x = xg and y — yo, y # yo the latter limit equals

lim u(z0,y) — u(wo, yo) + i(v(z0,y) — v(Z0,Y0))
Y=o i(y — vo)

10u ov ov ou
= Taﬁy(xojyo) + a*y(ilfo,yo) = gy(xo,yo) — 1@(90071/0)- (3.2)
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In the case y = yp and & — xg, x # xo the limit equals

lim u($, yO) - u(:po, yO) + i(U(l’, yO) - U(l’o, yO))

T—TQ r — X0

0 .0
= %(xﬂa Yo) + 187;(‘%0’ Yo). (3.3)

Since the limit (3.1)) is unique we obtain from (3.2)) and (3.3 that we must
necessarily have

ou ov ou ov
%(fﬂo,yo) = Fy($0’y0) and a*y(l‘o,yo) = —%(fvo’yo) (3.4)

The equalities are called the Cauchy-Riemann conditions. We have proved
that they are necessary for existence of f’(z). Actually they are also sufficient.
More precisely, let u(x,y) and v(x,y) be differentiable at the point (xo, o). If
the conditions are satisfied then f’(zp) exists. Indeed, we have

u(z,y) — u(xo, yo)

_ Ou

— .o} = o) + 5 0,300y~ o) + oGz~ 202 F (5~ 30))

and

v(z,y) — v(z0,Yo)

5] 5]
= l(xovyo)(ﬂc —x0) + 87;

o (z0,50)(y — o) + o(\/(x — z0)% + (y — %0)?),

where o(-) means that o(s)/s — 0 as s — 0. Therefore we have, using (3.4)

u(z,y) — u(xo, yo) +i(v(z,y) — v(xo,y0)) =

0 0
871;(%0’ Yo)(r — wo) + 87;(%0’ Y0)(¥ — vo)

+1 <gZ(m0,yO)(x —x9) + gZ(on,yo)(y — y0)>

+o(v/(z = 20)2 + (y — y0)?)

_ [Z?u(xo’ o) + i@(xo, o) | [(z — x0) +i(y — yo)]

ox ox
+o(v/(z —20)2+ (y — 10)?)

or

f) =S _0F () ol
Z — 20 X Z— 20



3 Analytic functions (differentiability) 35

This representation implies that the limit

z) — f(z 0
ZILIEO f(z):—ﬁ(fo) - 87];;('%.0’ yO) = f/(ZO) (35)

exists. In a similar manner we obtain

Jim 1) = F(z0) _ —ia—f(xg,yo) = f'(20). (3.6)

z=z20  Z— 2 oy
Thus we have proved the following fundamental result.

Theorem 3.2. The function w = f(z) is differentiable at the point zy if and
only if Re f(z) and Im f(z) are differentiable at the point (zo,yo) as real-valued
functions of two real variables © and y and the Cauchy-Riemann conditions

(3.4) are satisfied.
Remark. Formulas (3.5 and (3.6) imply that

0 0 0
e =L (2 2) 2

0 0
v - (3.7)
- 2\0x  oy) o0z
Hence, the Cauchy-Riemann conditions are equivalent to
Of ( \ _ w of \ _
a(zo) = f'(20) and 5(20) = 0. (3.8)
Example 3.3. Consider the function
f(z) ==
Then u(x,y) = x and v(x,y) = —y. The partial derivatives in this case are
Qu_y, oo, Xoo Ty
Ox oy oz oy

so that

a b it = oy = -
Thus Cauchy-Riemann conditions are not satisfied and therefore f(z) = Z has
no derivative.

1_8u v 1 0_8u ov

Example 3.4. Let us consider

2 2

f(z):]z\zzzézx + y~.
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Then 5 9 5 9
U U v v
— =2 — =2 — =0, — =0.
or " oy Y oz T Oy
Hence the Cauchy-Riemann conditions are
ou  Ov ou v
v or Oy o 4 oy oz

i.e. x =y =0. Thus (3.4)) are satisfied only for z = 0 and they are not satisfied
for z # 0 i.e.

2 2
N e £
Z—20 zZ — 20

exists (and equals 0) if and only if 29 = 0. So

(I2*)'(0) = 0.

Problem 3.5. Let .
f(z) = R(z,y)e?™v),

where R and 6 are real-valued. Prove that Cauchy-Riemann conditions can be
written in this case as

OR 06 OR 00

= Ra—y and FT —R%. (3.9)
Problem 3.6. Let wrt b
w:m, ad # be,c # 0
be a bilinear function. Show that
bc — ad
YO erae
for any z # —d/ec.
Problem 3.7. Let ez 4 b
w = o d ad # be,c # 0.

Show that w'(c0) = (be — ad)/c?.

Problem 3.8. Let

w =¢e* =e*(cosy + isiny).

Show that
(ez)l — eZ

at any point z # oco.
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Problem 3.9. Let
Show that

Show also that w’(co) does not exist but

limw'(2) =00, lim w'(2) =1/2.
z—0 z—00

Proposition 3.10. If w = f(z) is differentiable at z = zy then f(z) is also
continuous at zg but not vice versa.

Proof. Since the limit

o £2) = £0)

Z—20 zZ— 20

= f'(20)

exists then
f(2) = f(20) = f'(20)(2 = 20) + 0(z — 20).
This implies that
lim f(z) = f(z0)-

Z—r20

The function f(z) = Z provides an example of a function which is continuous
but not differentiable. O

Proposition 3.11. Let n(z) = g(f(z)) be the composition of functions w =
f(2) and n = g(w). If f(z) is differentiable at z = zy and g(w) is differentiable
at wo = f(zo) then n(z) is differentiable at z = zy and

1'(20) = ¢'(wo) f'(20) = ¢'(f(20)) f'(20)- (3.10)
Proof. By definition we have
n(z) = n(z0) _ g(f(2) = g(f(z0)) _ glw) - g(wo) f(z) — f(z0)

Z— 20 Z— 20 w — W Z— 20

where w = f(z) and wo = f(20). If 2 = zp then w — wy by Proposition
Then due to conditions of this Proposition we have

o 1) =) L gw) = glwg) ()~ £(0)

Z—20 zZ— 20 w—rwo w — Wy Z—20 zZ— 20

or 7/(z0) = g'(wo) f' (20)- O

= ¢'(wo) f'(20)
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Corollary 3.12. Let w = f(z) be univalent on a domain D. Then f is differ-
entiable on D if and only if the inverse function z = f~1(w) is differentiable
on G = f(D) and
1
fl(z2)= ——, w=f(2). 3.11
() = =y %) (3.11)
In particular, both derivatives are not equal to zero.
Proof. The claim follows from the representations
c= @) 2 €D and w=f(f (w),weG

and Proposition Indeed,

L=(2)= (D (w)/f(2),

where w = f(z) and both derivatives are not equal to zero necessarily. O

Example 3.13. Consider the Zhukovski function

1,1

Then (3.11)) leads to

2 2 2wz —1 w
—1y/ _ — = = —_—
(f )(w)_1—1/22_1—1/(2wz—1)_wz—l_1+w—1/«27
Wherez:wim. SO
711w :].j:L
(1Y (w) ——

depending on the domains D; and D9, see Example In the domains Dy
and Dy we have w # +1 and therefore the latter formula is well-defined.

Example 3.14. Let us introduce some new functions:

) eiz _ efiz eiz + efiz
sing := ————, cosz:i= ——
2i ’ 2
L L c (3.12)
sinhz = &= " ogha.= & TC
o2 T2
These functions are compositions of e* and e!*. That’s why we have
) , (eiz)/ o (e—iz)/ ieiz 4 ie—iz eiz 4 e—iz
sin z)’ = = = = cosz
( ) 2i 2i 2
eiz / e—iz / ieiz _ ie—iz eiz _ e—iz
(cosz) = (%) —1_2( Y _ 5 i = —sinz
i
e?) — (e—7Y e? e %
(sinh 2)" = () = () _ e+ = cosh z

2
Z\/ —2z\/ Z_ Az
(cosh 2)/ = G +2(e ) _ef-e
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There are also some useful equalities:
5 9 e2iz 194 e—2iz e2iz —24 e—2iz
cos™ z +sIn” z = — =1
4 4
and
z —2z\2 zZ _ a—2)\2
COShQZ—SiHhQZ:(e +e ) _(e °”) =1.
4 4
Also we obtain the equalities
cos(—z) =cosz, sin(—z)= —sin(z)
' = cos z +isin z (3.13)
e ¥ = cosz —isinz.
Remark. Since
X _n
Ca— -
ef = Z 2 eC
n=0
then - -
~ G2 (—iz)"
1z __ 1z __
e_zn!’ ¢ _Z n!
n=0 n=0
So we obtain using (3.12]) that
1 S i"+ (_1>n n
COS Z2 = 5 Z Tz
n=0
_ 1 (i 2k 4 (_1)2k22k+§: 2k+1 4 (_i)2k+1z2k+1>
| |
2 — (2k)! — (2k + 1)!
_ i (_1)kz2k
|
k=0 (2k)
because
PP () = (D)F + (—)F =2(-1)"
and
i2k+1 + ( l)2k+1 l( 1>k’ _ 1(_1)k‘ — 0
So
o~ (=1)*
cosz:Z (25)] 2k zeC (3.14)
k=0
In a similar fashion we obtain
— (=1)*
s — 2k+1
SNz = Z mz 5 S (C (315)

k=0
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Problem 3.15. Show that
© ok 0 L 2k+1

z .
coshzzzm, smhz:zm, z e C. (3.16)
k=0 k=0

Problem 3.16. Show that
1. cosz = cosh(iz) and sin z = —isinh(iz)

2. |e*| =% and (e?) = €” for 2 =z + iy

3. |cos z| = v/cosh? y — sin® x

4. |sinz| = y/sinh?y + sin’ z
5. | cos 2| + | sin 2|2 = cosh? y + sinh? y = 1 + 2sinh?y.
Problem 3.17. Calculate the derivative of the function f(z) = e* using (3.10).

Problem 3.18. Calculate the derivative of the inverse function for w = 2"
using (3.11]).

Definition 3.19.

1. A function f(z) is said to be analytic in a domain D if for each z € D
the derivative f’(z) exists and is continuous in D. The set of all analytic
functions in D will be denoted by H (D).

2. A function f(z) is said to be analytic in the point zg € D if f(z) is analytic
in some neighborhood Us(zp) C D of 2.

3. A function f(z) is said to be analytic at z = 0o if g(2) = f(1/2) is analytic
at the point z = 0.
From this definition and the definition of the derivative it follows that

1. If fl,fg S H(D) then

flif%fl'f%ﬁ € H(D)
fa

too. In the last case we assume fy # 0.
2. If fe H(D) and g € H(G), where G = f(D) then go f € H(D).
Example 3.20. The function
Po(z) :=ap+arz+ -+ apz",

where ag, a1, ...,a, € C,a, # 0 is called the polynomial of order n. It is clear
that P,(z) € H(C) but it is not analytic at z = co if n > 1.

If P,(z0) = 0 then zy is called the root of this polynomial and P,(z) =
(z — 20)Pp—1(z), where P,,_; is a polynomial of order n — 1.
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Example 3.21. The function

P,(2)
Qm(2)’

is called the rational function. It follows that R(z) is analytic everywhere in

R(z) = Q@m(2) # 0

1 k
c\{z",..., 2P,

where

Po(z9) #£0 and Q=) =o.

Example 3.22. The tangent function is defined by

sin z
tan z := , cosz# 0.
cos z

The zeros of cos z satisfy e* e = (. So e%* = —1 or

tez _ _e2y.

Comparing real and imaginary parts we see that

cos2x = —e?, sin2zx =0

or

2x =k, k € Z, cos(mk) = —e®.
So

r=7k/2, (-1)F=—-e¥ kel
or

r=nk/2, 1=¢% k==41+3,...
Thus
T

y=0, x:§(2m+1), m € Z.

We denote

zm:—g+m7r+i0, m € Z.

Since sin 2z, = +1 # 0 then tan z is analytic everywhere in C except at z,,. In
this domain
(sin z)’ cos z — sin z(cos z)’  cos? z + sin? 1

tanz) = = = .
( ) cos? z cos? z cos? z

Problem 3.23. Show that sinz = 0 if and only if z = 7k + 10,k € Z.
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Example 3.24. The function

inh
tanh z := s Z, coshz #0
cosh z

is called hyperbolic tangent function. The zeros of cosh z satisfy

e2x _ _efi2y
or z =0,y = /2 + mm,m € Z. Hence tanh z is analytic everywhere in C \
{zm}o__ o, where
2m =0+i(r/24+7mm), mecZ

and
1

cosh? 2’
Problem 3.25. Show that sinh z = 0 if and only if z = 0 + ik, k € Z.

(tanh 2)" =

Example 3.26. Let us consider the exponential function
w = e’
and let us try to find its inverse. Since

iarg w
)

w = |wle w# 0,argw € (—m, 7]
and e* = e%e'¥ then
|lw| =€* and argw =y+ 27k, k € Z.

So
x =log|lw| and y=argw+ 27k, k € Z.

Thus
z =log |w| +iargw + 127k, k € Z.

We see that the inverse of the function w = e? is not single-valued, namely we
have infinitely many branches

2z, = log|w| +iargw + 27k, k€ Z.
The multivalued function is
z =Logw :=log |w| +iargw + 27k, k € Z.
Its main branch is
z =logw :=log|w| +iargw, argw € (—m,7|.

The logarithmic function w = Logz,z # 0 is analytic everywhere in C \ R_
since arg z has a jump over negative real axis. Moreover,

1 1 1
r_ _ _
(Lng) - (ew)l T ew
Therefore it is also continuous in C \ R_ (compare with Corollary [3.12)).
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Remark. Since
Logz =logz +i2nk, kcZ

then the derivative of Log z is the same ((Logz)’ = 1/z) for all branches of the
multivalued logarithmic function.

Example 3.27. The function

m
m/n -

z =en OBZ 5 £ ()
is called the rational power function. Since

Logz =log|z| +iargz +i2nk, k€Z

then ,
2
Zm/n _ %(log|z|+1argz+127rk) %10g| | i arg zHi=T I
The expression
iQTrkm
e n
has different values only for £ = 0,1,...,n — 1 (we have assumed that m/n is

uncancelled fraction). That’s why we have n different branches of

m/n _ ‘z‘— 1(—argz+2”km)

z k=0,1,...,n—1.

Its derivative is

(Zm/n)/ _ (e% LogZ)/ _ %Logz (LOg Z) mzm/nfll
n

Example 3.28. The function
2% =082 2 £0,aeR\Q

is called the irrational power function. It is actually equal to

2¥ = ea(log|z|+1arg z+i2mk) _ ‘Z‘aela arg z+1o¢27rk, LeZ

and we have infinitely many branches since « is not rational number. Its deriva-
tive is
(%) = (eO‘Lng)’ = an‘Logz(Log 2) = az® L,
The definition of irrational power can be easily generalized for any complex
power o = a1 + ias. Namely, the function

2% =082 L0 aeC

is called the general power function. As before, it is equal to

a _ alogz

S — _ ea(log|z\+iarg z4i2mk) _ e(a1+ia2)(log|z|+i arg z+i27k)

— o™ log |z|—az(arg z+27rk)ei(a2 log |z|+a1 (arg z+27k))

and we have infinitely many branches. The derivative is again (2%) = az®~ 1.
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Example 3.29. Let us find the inverse of w = sin z. From

elz _ e—iz
w = -
21
we obtain .
2w = e — —
elZ

or (e%)? — 2iwe’® — 1 = 0. It implies
¢ =iw + 1 —w?.

So
iz = Log(iw + V1 — w?)

or
z = —iLog(iw + V1 — w?),

where Log denotes the multivalued function. The inverse of sin z is hence
z = z(w) = —iLog(iw + V1 — w?) =: arcsinw

and it has infinitely many branches. Its derivative is

d d L etiw v/ w?) = L 1 ( w >
— arcsinw = —— Logl1w —w = - 1—
dw dwi 8 Liw + vVw? — 1 V1—w?
1 1 iv1—w?2— 1
_! ! wow . w# +l.
Tiw+vuwz—1 V1—w? 1 —w?

Problem 3.30. Show that

1. sin(z1 + 22) = sin 21 cos 23 + €os 21 sin 29

2. cos(z1 + 2z2) = cos z1 €Os 2o — sin 21 sin 29

3. sinh(z; + z2) = sinh 21 cosh 29 + cosh z; sinh 2,

4. cosh(z1 + z2) = cosh z; cosh z9 + sinh z; sinh 2.
Problem 3.31. Show that

Log(z1 - z2) = Log z1 + Log 22

for any 21 # 0 and z # 0.

We will finish this chapter by the following very useful rule which is called
L’Hopital’s rule.
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Proposition 3.32. Suppose f and g are analytic at zo. If f(z0) = g(z0) =0
but ¢'(z0) # 0 then
1) _ L)

=20 9(2)  g'(20)

Proof. Because ¢'(z9) # 0 then g is not identically equal to zero and there is a
neighborhood Us(29) in which ¢'(z) # 0. Therefore the quotient

f(2) _ 1)~ f(0)

9(z)  9(2) = g(20)
is defined for all z € Us(zp) and

f(z)=f(z0)

lim f(Z) — lim f(Z) - f(ZO) — lim Z—20 _ f/(ZO)

Z— 20 g(z) 2920 g(z) — Q(ZO) 220 9(2)—9g(20) g’(zo)'
2—20

Problem 3.33. Using L’Hopital’s rule calculate the limits

log?(1 1—
T U ) B T el
2z—0 2’2 z—0 51n2 z



Chapter 4

Integration of functions of
complex variable (curve
integration)

Let v be a smooth Jordan curve i.e.
viz=2z(), tela,b].

Assuming that f(z) is a continuous function we may define two types of curve
integrals along v as

/ f()dz = / 1z
/a (u(=()) + (=) (1) + 1y (1)t
-/ Rl (e), 5 ()2 (2) — (e (0) y () (D)
+if "0, 902 (1) + (e (e), y(0) (D)
— [ (ute,p)ds — vl p)dy) + [ (o p)ds +ulz)dy) (@)

v v
and

[ sz = [ WO @R = [ Eo o

b
_ / u(a(t), y(0) V@ OR + (o (1)t

b
i / o(@(t), y() /@) + (y ()%t (4.2)
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The first integral (4.1)) is called line integral of the second kind, and the second
integral (4.2)) is called the line integral of the first kind.

Example 4.1. Let f(2) = z.

1. Let v: z(t) =t +it? for t € [0,1]. Then
1 1
/f(z)dz: /zdz:/ (t+it2)(1+2it)dt:/ (t + 3it? — 2t3)dt
v v 0 0
2 B3 i\
= =+3— -2
< 5 +3i 3 1 >

2. Let v: 2(t) = a+it for t € [0,1]. Then

[yf(z)dZZ/vzdz:/01(a+it)idt:ia—;.

3. Let v:2(t) =t?>+iB for t € [0,1]. Then

Lf(z)dz: [yzdz:/ol(t2+i/3)2tdt= <2ti—i—iﬁt2>

Remark. It can be easily checked that in all integrations in Example the
final result depends only on the value of the function 22/2 at the ends of the
curve . Namely, the result is

1+. L.
=—-4i-=-=1
0 2 2

1

1

0

Example 4.2. Let f(z) = z.

1. Let v : 2(t) = a+1it for ¢t € [0,1]. Then

JECLEEN e /01(04+it)dt —atl

2. Let v : 2(t) =2 +iB for t € [0,1]. Then

1
/f(z)|dz|:/z|dz| :/O (£ +i8)2tdt — <2ti+iﬁt2>
v Y

Example 4.3. Let v : 2(t) = a +re'’, t € (—,7]. Then

1

1
- - 1iB.
. 2
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/(z —a)"dz = / (rcost + risint)"r(—sint 4 icost)dt
g

™
_ / (cos(nt) + isin(nt))(—sint + icos t)dt
—m
™
_ gl / [— cos(nt) sint — sin(nt) cost] dt
—T
+ it / [cos(nt) cost — sin(nt) sint] dt

= —pntl / sin(n 4 1)tdt + ir" / cos(n + 1)tdt
—T
0, n ;é -1
2mi, .
/(z —a)"dz| = / neintydt = (/ cos(nt) dt+1/ sin(nt) dt)
v -7 -
_J0, n#0
B 2rr, n=0.

Problem 4.4. Let f(z) = z. Calculate

/zdz,
¥

na1 [cos(n+ 1)t sin(n+ 1)t
=r i
n+1 n+1

where
Loy:z(t)=t+it’te|0,1]
2. y:2(t) =a+it,t €0,1]
3. y:2(t) =2 +iB,t €[0,1]

4. =1 U~g, where vy : 2(t) =t +it? and o : 2(t) = (1 —t) +i(1 — t) for
t €[0,1].

If ~ is a piecewise smooth Jordan curve then the integrals along this curve

are defined as
j+1
/ Z / f(z(t)) )

/f |dz|—2/” ‘(t)at.

Using the properties of Riemann integral we obtain that

(4.3)
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1.
c z c z))dz =¢ z)dz + ¢ z)dz
[y(1f1()+2f2()) 1[yf1() +2Lf2()
2.
z)dz = z)dz z)dz
/Mf( ) /%ﬂ ) +/J( )
3.
[@hG) +eafs@ldd = o [ il +a [ R
4.

/mm f(2)ldz| = L f(2)dz] + A F(2)]dz]

If v : 2(t),t € [a,b] is a piecewise smooth Jordan curve we can run the curve
backwards as follows. Let us consider the curve

m:zZ=2(s)=z(a+b—s), sé€]la,bl.

The curve ; is denoted by —v i.e. 3 = —vy and

71f dz-/f /f (a+b—3s))(a+b—s)ds

_ /b F(:(1)2'( / 7z / e
/_ FOIES /7 F(2)dz.

Definition 4.5. A function f(z) is said to have a primitive F(z) on D C C if
F(z) is differentiable on D and F'(z) = f(z) everywhere on D.

l.e.

Theorem 4.6. If a continuous function f(z) has a primitive F(z) on D C C
then for any smooth Jordan curve v : z(t),t € [a,b] in D it holds that

[ £z = FG0) - Fe(@). (4.4)

Thus, this integral does not depend on 7y, but on the endpoints of v. In partic-
ular, if v is closed and f has a primitive then

/ f(z)dz = 0. (4.5)
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Proof. Let v : z(t),t € [a,b] be a smooth Jordan curve. Then for any con-
tinuous function f(z) the composition f(z(t)) and the product f(z(t))z'(t) are

continuous and
/ s = [ st

But f(z(t))2'(t) = (t)))', where F is a primitive of f. Hence,

b
/ f(z t)dt = / (F(=(t)))dt = F(z(t)|s = F(2(b) — F(2(a)).
This proves the theorem. ]

Corollary 4.7. If v : z(t),t € [a,b] is a piecewise smooth Jordan curve then

t
/ 1z (2(b)) - F(2(a))

too, where F' is a primitive of f in the domain D.

Proof. By (4.3)) we have

tj+1
/ iz dz_z / )it = 3 (P(eltyn)) = Pla(t)
 Ple(t) - Fle(6) = Fe0) - Fie(o)

and this proves the claim. O

Theorem 4.8. Let v : z(t),t € [a,b] be a piecewise smooth Jordan curve and
let f be a continuous function. Then

[ #6)ae] < [ 1@l < max )12, (16)
Y v

where L(vy) = f7 |dz| denotes the length of .

Proof. We have ,
/f(z)dz :/ f(z(t)2 (t)dt
Yy a

Since this Riemann integral can be understood as limit of integral sums then
we obtain

t‘ = | lim > f(2(t)))2(t]) At;

At—0 4
7j=1

gAlimOZIf N80 = [ OOl = [ @

< max|7(2) / 11dz] = max | f (L)
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O]

Theorem 4.9 (Change of variable). Let g(z) be analytic in the domain D C C
and R(f) C D'. Suppose v : z(t),t € [a,b] is a piecewise smooth Jordan curve
in D and v = g(v),2(t) = g(2(t)),t € [a,b] is the transformed curve in D’.
Then for all continuous functions f on D we have

[ #ateng etz = [ rwiaw. (47)

Proof. We know that

b
/f(g(Z))g’(Z)dZZ/ Flg(z(0)))g (2(1))'(t)dt

b b
= [ fato)aGm i = [ remFnd= [ fwaw.

O

Example 4.10. Let v: 2(t) = t +it?, ¢t € [0,1]. Using g(z) = 22 we get
1 1 w(l)
/sin(zQ)zdz = / sinwdw = —= cosw

; 2 2

,Y/

w(0)
2i

1 : 1
= 5(1 —cos(2i)) = 5(1 — cosh 2).

Here we have used the notation w(t) = g(z(t)).

Problem 4.11. Let v : 2(t) = a +it%,t € [0, 1]. Calculate

/ "% cos zdz.
¥

Problem 4.12. Let v : z(t) = 1 +it,t € [0,1]. Calculate

1
/log z—dz.
~ z



Chapter 5

Cauchy theorem and Cauchy
integral formulae

Definition 5.1. A bounded domain D C C is called simply connected if for
any closed Jordan curve v C D the internal domain (int~) belongs to D too.
Otherwise D is called multiply connected. The number of connected components
of the boundary is said to be the connected order of D.

Theorem 5.2 (Cauchy theorem). Let D be a bounded simply connected domain
with the boundary 0D which is a piecewise smooth closed Jordan curve . Then
for any function f € H(D) which is continuous in D we have

/7 f(z)dz =

Proof. Since f € C(D) then f f(2)dz is well-defined and it is equal to

/f(z /u+w (dx +idy) = /udx—vdy—i—i/vd:v—l—udy.
¥ ¥ v

Using now Green’s theorem (or Stoke’s theorem) we obtain that the integrals
in the right hand side are equal to

// <_av_au)da:dy—|—1// (gZ—ay>dxdy—o

because of Cauchy-Riemann equations. Thus theorem is proved. O

Remark. If the domain D is simply connected then the Cauchy theorem holds
not only for the boundary 0D but also for any closed piecewise smooth Jordan
curve v such that v C D.
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Corollary 5.3. Let D be a bounded (n+ 1)-connected domain such that 0D =
Ui_o7j, where y; are closed piecewise smooth Jordan curves, inty; Ninty, =

0,k #j and y1,...,v Cinty. If f € H(D)NC(D) then
- f(z)dz = /70 f(z)dz _; g f(z)dz =0.

Proof. By the conditions of this Corollary, the domain D has the form depicted
below.

Let us join v;,7 = 1,2,...,n with 79 by the smooth Jordan curves I'; such
that any I';,7 = 1,2,...,n is passed twice in opposite directions. In this case
we obtain simply connected domain D with the boundary

OD1 = (Ul_gyy) U (Ul T5).
Thus, applying Cauchy theorem to the domain D; we obtain

0= (2)dz = f(z)dz + f(z)dz + f(z)dz

Dy oD
n
:/f(z)dz - Z f(2)dz.
Y j=1""7i
Here we have used the fact that
/ f(z)dz + f(z)dz=0
rt r:
J J
and that the positive direction of integration is the direction in which the in-
ternal domain is on the left. O

If the domain D is multiply connected then the Cauchy theorem does not
hold for arbitrary closed piecewise smooth Jordan curve. In this case it is
necessary to integrate over the whole boundary of D. Indeed, let

D={z:1<|z| <3}
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and v = {z : |z2| = 2}. Then v C D but

1
/ —dz = 27i.
N Z

Corollary 5.4. Let D be a domain which satisfies either the conditions of
Theorem or Corollary . If f is analytic in D and continuous in D except
the points z1,...,2m € D with

lim (z — 2;)f(2) =0, k=1,2,....,m

Z—r2

then

/a (s =0,

Proof. For simplicity and without loss of generality we assume that m = 1.
Then for any € > 0 there is §(21,€) > 0 such that for all z with 0 < |z — 21| < §
it follows that

|z = allf(2) <e.
Let Dy := D\{z : |z—21| < ¢} assuming that 6 > 0is so small that {z : |z—21| <
0} € D. Then for the domain D; Cauchy theorem holds and therefore

0= (z)dz = (z)dz — /|— - f(z)d=.

0Dq oD

But

‘/z_z_é f(2)dz

<[ e
|dz| 1

= z—z1||f(z <e= dz| = 27e.
Al <o |

|z—z1|=0

Since € > 0 is arbitrary then we may let € — 0 and obtain

0 = lim f(z)dz = lim ( - (z)dz — /|Z_Zl|6f(z)dz>

e—0 oD, e—0

= (z)dz — lim f(z)dz = f(z)dz.
oD =0 J)z—z1|=6 oD
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Example 5.5. If we calculate f\z|:1 log zdz then using the parametrization

2z =¢l% 9 € [-7, 7] and integration by parts we obtain

/ log zdz = / (log |2| + i0)ie!?df = i2 0e'?d6
|z|=1

—T —T

:—/ 9c0s9d«9—i/ 981n0d9:—2i/ 0 sin 6d6

—T —TT 0
=2i (9005 o1 / cos 9d«9> = —2ri.
0

It shows that Cauchy theorem does not hold in this case. But we know that
log z is analytic and has a removable singularity at z = 0. This phenomenon
can be explained as follows: log z has a jump 27i over the negative real line i.e.
it is not continuous in the unit disk and therefore it is not analytic. Even more
is true, it is not univalent there. In order to eliminate this problem we proceed
as follows. Let us consider the following domain D, for £ > 0 small enough.

|
(D

In this domain D, the function log z is not only analytic but also univalent.
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Applying the Cauchy theorem (see Theorem we obtain

™ A —E&
0= / log zdz = / (log 1 + i6)ie'df + / (log |z| + im)dz
0D, -1

—Tr

™ —1
—/ (10g5+i€)iseied0—|—/ (log |x| — im)dx

_r —€

e -1
= —27ri+/ log |z|dx +im(1 —¢€) +27ri£+/ log |z|dx —inr(—=14¢) =0
-1

—&

for any € > 0. Taking € — 40 we obtain that

/ log zdz := lim log zdz = 0,
oD e—+0 aDS

where 0D is the unit circle with a cut along the negative real line.

Example 5.6. Let v be a piecewise smooth closed Jordan curve and zg € int 7.

Then )
/ dz = 27i.
y 2= 20

Indeed, if we consider the domain

Dy :=inty\{z:|z — 20| <6}

then by Corollary [5.3] we have

0_/ dz _/ dz
0 2 =20 |z—z0|=0 z = ZO'

/ dz /” i6el?de ,
= — = 271,
|z—z0|=6 % — %0 —m de

This example can be generalized to the multiply connected domain D also, i.e.

if zp € D then
1
/ dz = 27i.
8D % — 20

But
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Theorem 5.7 (Cauchy integral formula). Let D C C be a bounded domain
with the boundary 0D which satisfies all conditions of Corollary [5.3. Then for
any function f € H(D)NC(D) and any zp € C we have

0, 20 ¢ D
Y (O
5 P dz =4 f(z0), 20€D
oD # — 20
%f(zo), zp € 0D.

Proof. If 29 ¢ D then the function

f(z)

zZ— 2

h(z) =

is analytic in D and continuous in D. Then Corollary leads to

= zZ)az = MZ
O_/8Dh( )a aDZ—Zod'

If zp € D then we consider the function

h(z) == M.
Z— 20
It is clear that h € H(D \ 29) N C(D \ 29) and lim,_,,,(z — 29)h(z) = 0. Thus,
using Corollary [5.4] we obtain

1 1 1
0= — h(z)dz = — (2) dz — — f(z0) dz
211 Jop 2mi Jop 2 — 20 21 Jop 2 — 20
o 1 (2) 1 1
z
dz = — dz.
21 Jop 2 — 20 : 27rif(z0) /aDZ—Zo :

But Example [5.6] implies that

L IE ),

211 Jop 2 — 20

If 29 € 0D then the integral in the left-hand side must be understood as the
principal value integral

7f(z) dz := lim 7f(z) dz

p.v.
oD Z — 20 =40 JaD\{z:|z—20|<e} Z — 20

if this limit exists. For zg € 0D we consider the domain

D.=D\(DN{z:|z— 2| <e})
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It is clear that the function

f(z) = f(20)

Z— 20

h(z) =

is analytic in D, and continuous up to the boundary of D.. Thus, using again
Corollary [5.4] we obtain

0= 1 h(z)dz = i/ Mdz b @dz.
0

27 Jop, 27 Jop, 2 — 20 27 Jop. 2 — 20
So
i o S ], e = Y
as € — +0 since only half of the circle is presented. O

Example 5.8. Let us calculate the integral
2
eZ
- dz,
[y z(22 +4) :
where v = {z : |z| = 3}. We parametrize this smooth closed Jordan curve as
v 2(t) = 3el,t € [—m,7]. Next,

1 1 11 1 1

1
2(22+4)  2(z—20)(z+2) 4 z 8 z—2 8 z+2

Hence, applying Cauchy integral formula,

22 2'2 22 Z2
1 1 1
Y Y Y
5 2(2% +4) 4/, =z 8/, z—2i 8/, z+2

1 )
= o7i=e® — 2mi=e("2)? _9niZe(@)? — oy =7
4 8 8 4 2
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Example 5.9. Let us calculate the integral
s
/ et cos(asint)dt.
0
Since the integrand is even and sine is odd we have

T 1 ™
/ €5 cos(asint)dt = 2/ et cos(asint)dt
0

—T

1 ™
= 2/ e®“**(cos(asint) + isin(asint))dt
—T

1 (7 -
— 2/ eacostelasmtdt.

—T

For z(t) = el,t € [—m, 7] we have dt = 92. Then the latter integral can be
interpreted as the curve integral over the closed Jordan curve v : z(t) = e',t €
[—7, m]. That’s why it is equal to

% / " aleiteit)/2 a(elt—e i) /2i g, _ 1 / 8 (a4+1/2) o 3 (=1/2) 92
o iz

/dz = —27r1e =7

by Cauchy integral formula.

Example 5.10. Let us calculate the integral

2
/;dz’
N 25+ 2

where v = {z: |z —i| = 1}. First we have
R S
242 212 2 +iV2

and therefore

dz = 27i

/ 2z q / 1 ds + 1
———dz = z

5 2242 vz —iV2 v 2 +1V2
since iv/2 € inty but —iyv/2 ¢ int .

Let us consider now a piecewise smooth Jordan curve (not necessarily closed)
~ and continuous function f(z) on this curve. If z ¢ v then the function

2771 C - z (5.1)

is well-defined on C \ . This function F'(z) is called a Cauchy type integral.
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Theorem 5.11. The Cauchy type integral (5.1)) is analytic function in C\ ~,
it has derivatives of any order n € N and the formula

FO) () = / (Cfgmdg (5.2)
v

2mi
holds.
Proof. Let z ¢ v and z + Az ¢ 7 too. Then

Pt =o)L [ 1O
Az 2mi )y (€= 2)(C — 2z —Az)

dc.

Since z ¢ v and z + Az ¢ «y then there is § > 0 and d > 0 such that z + Az €
Us(2),Us(z)Ny=0and | — 2| >d >0,/ —2z—Az| > d > 0 for any ¢ € 7.
(Actually d = dist(v, | — z| = 9)).

v
P < d
. Z+AZ
In that case we have
Fz+Az)—F(z) 1 1 Azf(C)
A ‘m/m—zﬂdg“zﬂ A% —z)?«—z—Az)dC‘

Olld¢)
< olAz /

4] = z|2|<—z—Az|

|Az|ML

< = - _ 1azML

< grlde g [ 1ai= S

where L is the length of v and M = max, |f(()| < oco. Letting Az — 0 this
estimate shows that

li = —
AEEO Az 2

, 1
PO ) <<f—(cz)>2d<'

F(z+ Az) — F(z) 1/ f

or
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After this (5.2) can be proved by induction. Indeed,

F<“*1><z+Az) FO=D(z)  nl / £(Q)d¢
) (

2mi )., (¢ — z)n L
27r1/f [n_l (c—zl—Azo ¢ 1))_@—3%1}“
- [0 s e <c—n>n+l]d<
= n_l /f Zk 1 —ICZIS)A(Z) )(kg(c z)) G —Z)"“]dc

3 Fj e TN (C_”‘)nj‘”Z?=o<—1>f<?)mz>j<<—z>"j]dc

€~z An(C o)t
_ 1) /f<<>
Y

2mi

ST 1IAZ (¢ - 2 () = n()) + (=) A
- 2= A - i«
This representation implies that
FOD(z 4+ Az) — FOD(2)  nl f(¢)d¢
Az a 27”/7 (¢ — z)”+1
IIdC |
024D | 1= —o

< (n - 1! ML

Hogaz ik
This estimate completes the proof of (5.2) by induction. O

Corollary 5.12. Let D C C be a domain (not necessarily simply connected)
and f € H(D). Then f is infinitely many times differentiable in D and

n! f(Q)
FM(z) = — / ¢ 5.3
(2) 2mi J, (¢ —2z)ntt (5:3)
for any n = 1,2,..., where v is an arbitrary piecewise smooth closed Jordan

curve such that inty C D and z € inty.
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Proof. Let z € D. Let also v be an arbitrary piecewise smooth closed Jordan
curve such that inty C D and z € int~. Then by the Cauchy integral formula
(see Theorem we have

(—z
But the right hand side is Cauchy type integral since f is continuous on 7.
Applying Theorem [5.11] we obtain that for any n = 1,2,... we have

! d¢

(= M [ S

@ =55 [Y (C—2)n it

and f is infinitely many times differentiable in D. O

Remark. Formula holds also for the boundary 0D of a domain that satisfies
all conditions of Corollary [5.3|if we assume that f € H(D) N C(D). Moreover,
as the simplest case, formula holds and is very applicable for v = {( :
|¢ — z| =} with 6 > 0 small enough i.e.

! i0 0
f(n)(z):n.'/ f(Q)d S B / f(z + 0e%)die fz+0e")die” .
2mi Ji¢—zi=s (€ = 2) "+ 2ri gn+1leif(n+1)
| ™ . .
_ n'(s—n/ f(z + (5619)6_19nd9.
27 o

Problem 5.13. Evaluate the derivative of F(z) from (5.1) at z = co. Show
first that F'(z) is continuous at z = oo and F'(co0) = 0. Show also that

N 2m/f

Example 5.14. Let us calculate the integral

/ sin 2 &
L G-n/6p

where v = {z : |z| = 1}. Since |7/6| < 1 then applying ([5.3) we obtain

. ori .
L(;l_njr(/ig)g = g (Sinz)”L:ﬂm =i (=sinz)|,_ s = —7isin(r/6) = f%.

Example 5.15. Let us calculate the integral

where v = {2 : |z| = r} and |a| < r < |b|. Since z # b for all |z| < r then this

integral is equal to
(o)
z=a 6 (Z B b)4 2=

/ ﬁdz _@ 1 "
L (z—a)* 31 \z-b

2mi

(a— o)

a
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Example 5.16. Let f be analytic in a simply connected domain D and 21, 22 €
D,z # zo. Then for any piecewise smooth closed Jordan curve  such that
21, 22 € int v we have

f(z2) = f(z1) _ 1/ f()d¢
¥ (€

z9 — 21 T 2mi *Zl)(C*ZZ)'
Since ) HO)d¢

f<zj>—2m/7 C L, i1
then

1 11 -z f(€)d¢
et =g [ 10 (- 2o a2 [ e

Example 5.17. Let us show that

/ e*dz = —27i

|z|=1

/ e?dz = 27i.
|z]=1

or

We have

/ e’dz = / et/2dz
|z|=1 |z|=1

¢
o /|<—1 “d <2> - /|<—1 %dC = 27i(e)'|c=0 = 2,

where we have also changed the direction of integration when changing vari-
ables.



Appendix A

Exercises

1. Calculate

a)i%, b)i Tk
for k=0,1,2,....
2. Find Re z and Im z, when
. . 4+ 2i 1
a) z = (2 + 3i)(—3 + 2i), b)z—3_4i, c)z—(l—|—1)-2_i

3. Solve z from the equation

a) (3+4i)z=1-2i,
b) iz +2z =3 —1i,
c) 22 =—5+12i
4. Prove that
|Rez| < |z|, |Imz| <]|z].
Show also that the equalities hold if and only if z is real or pure imaginary,
respectively.

5. Prove that |z1 — 22| = |1 —Z122]|, where 21,29 € C and |z1] = 1 or |22] = 1.

6. Express z € C in trigonometric form when

a) z=-3i, b)z=v3—1, ¢)z=2—-iV12.

7. Caleutate (1~ iv3)'%, (14 ana (L5
| (1-1v3)"

8. Let z € C,|2| = 1,z # —1. Prove that z can be written in the form
1+it
z =

— for some t € R.
1—it

9. Solve the equations
a) 2zt =—1, b)8=1 ¢)2*=-i
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10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Prove that the set {z € C | |z — 29| > r} is open (29 € C,r > 0 are given).

Let A = {i, %, %, ...} € C. Determine if A is bounded, closed or open.
Find A’ and A.

Find the following limits (if they exist)
n 141\ M — in2
a) lim 1—, b) lim i", c¢) lim (1+1) , d) lim &
n—oo N n— oo n— oo n n— 00 (1 + 1)77, —1

Let the sequence (z,) C C be defined as zp = 3 and 2,41 = %zn + 2i.
Show that (z,) converges and find its limit.

Determine which of the following functions are bijective D — G and find
f~': G — D whenever it is possible.

a) f(z) =z+1,2€C, b) f(z) =1,2€C\{0},

c) f(z) =22 +1,2€C, d) f(z) =22 +i,0<argz < .

Let f : D — C be a function such that f(z) = 23 +1,0 < argz < 27/3.
Determine if f is bijective D — C. Find f~1(1).

Express the function f(z) = f(z + iy) in the form f(z) = u(x,y) +
iv(z,y),z € D, when
a) f(z) =2%,2€C, b) f(z) =1,2#0, ¢) f(z) =e*,2€C.

Investigate the existence of the limit of f(z) at the point z = 0, when
_ Rez z zRez

a) f(z) = . b) f(z) = o) fz) = —
z ] ]
3 2
Find the limit lim w, when
Z—20 zZ— 20

. . . L A
a) zo=—1, b) zp=1, c¢)z =—i. d) Find the limit lim —.

z—=i 2 —1

Prove using the definition of continuity that the function f(z) = 22 +
2z, z € C is continuous for all zg € C but it is not continuous at zg = oo.

Show that the function f(z) = 22 is uniformly continuous on the set
|z —i|] < 2. Is f uniformly continuous on C?

Study the uniform continuity of f(z) = %, z # 0 on the set |z] < 1,z # 0.

Investigate if the function f(z) = z|z|,z € C has a derivative at any
zg € C.

Find the derivatives of the following functions (if they exist)
2
1 _
W f(:) = g s # £ b) [ =zeC
¢) f(z)=Imz,z€C d) f(z) =zImz,z € C.
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24. Let f(z) = 2",0 < argz < 27/n,n > 2. Find f'(z),z € Cand (f1)(2),z €
D\ {0}.
25. Let f(z) = 23,2n/3 < argz < 4n/3. Then f~!: C — D exists. Find
(f71)(@) and (f71)'(=1).
26. Let us assume that g is analytic in all of C. Define the function f : C — C
by setting
a) f(z) =¢(z),z€C, b) f(z) =¢(z),z€C.
Investigate if f is analytic on C.
27. Let f(2) = f(z +iy) = 2% — 32y* +i(32%y — y3),2 = z + iy € C. Show
that f satisfies the Cauchy—Riemann conditions. Find f/(z).
28. Solve
e =2+1.
29. Show that the function f(z) = Z%H,z € C\ {—i} satisfies the Cauchy—
Riemann conditions.
30. Show that the function
f(z) =sinz
satisfies the Cauchy—Riemann conditions.
31. Prove that
a)e? = e, b)sinZ =sinz, ¢) [e*| = e%, d) |cos z|?+]|sin z|> = 14+2sinh? y
whenever z € C.
32. Find
a) log(—4), b)log3i, c) log(v/3 —i).
33. Find
a) i%, b) (=)}, c)i
34. Express the function f(z) = Logz,z # 0, in the form f = u 4+ iv. Deter-
mine if it satisfies the Cauchy—Riemann conditions.
35. Find the 2limits )
-1 2z —1 1 1
) lim & L)t S5 ) g BT gy o812
z2—0 22 + 2z —ITz—Z =0 sin® z 2—0 22
36. Let f be analytic in a domain A C C .

a) Let us assume that f'(z) = 0 for all z € A. Show that f is a constant
function on A.

b) Let us assume that f = u + iv and v is a constant function on A.
Show that f is constant on A.
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37. Find / zdz, where
2l

a)y:z(t)=t+it?,t€[0,1], b)y:z(t) =t>+itttec]o,1].
38. Find /szz, where 7 is the line segment from i to 1 + 2i.
gl

39. Evaluate the integral

dz
— =23, ...
/Y(Z—Zo)n’ n 737 ’

where ~ is closed Jordan curve and a) zp is in the interior of v b) zg is
in the exterior of ~.

40. Prove that

o2 27
/ et cos(t + sint)dt = / ¢ sin(t +sint)dt = 0.
0 0

41. Evaluate the integral / sin? zdz, where ~ is the line segment from 0 to i.
¥

42. Evaluate the integrals

a) / erizldz, where v : z(t) = 2¢, ¢ € [0, 27]
v

. h 1
b) / SN2 42, where 7 ¢ 2(t) = i + 26¥, ¢ € [0, 27].
Y

eZ
—d
/7 z(z — 2i) =

z —im
where a) 7 : 2(t) = e, t € [0,27] b) v: z(t) = 3e ¢ € [0, 27].

1 eaz
— [ 5—d
27i /7 21

where v : z(t) = 3¢, ¢ € R and a > 0.

43. Evaluate
44. Evaluate

45. Evaluate
1 e(lZ d
2mi /7 (22+1)2 =
where v and a are as in Exercise

46. Evaluate
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3 dz where 7 : 2(t) = 2e',t € [0, 27]

4\

/ con e —————dz, where 7 : 2(t) = ", 1 € [0, 27]
.

(z —m/4)3
kz :
e sin z
/anz and /anz,
y 2 v 2

where 7 : 2(t) = e!, ¢ € [0,27] and k € N.

47. Evaluate
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Chapter 1

Fundamental theorem of
integration

The Cauchy theorem (as well as the Cauchy integral formula) allows us to
prove the fundamental theorem of integration. Let f be analytic in the simply
connected domain D. Then the integral

L £(Q)dc,

where 7 is a piecewise smooth Jordan curve connecting two points zg,z € D,y C
D, is independent on this curve. The reason is: if we consider two different such
curves 1 and 2 (both from zy to z) then the curve v := v U2 will be closed

and due to Cauchy theorem (Theorem we have

0= / fdc = [ fodc— | po)dc
Y

7 72

or

/Y o= L O

F(z) = / T HQ)AC (L1)

That’s why the function
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is well-defined since its value is independent on the curve connecting zy and
z. Even more is true. The function (1.1]) is analytic in D and F'(z) = f(2)
everywhere in D. Indeed,

Pletfa) =Pl gy 1 ( / :W o [ f<c>d<) - f2)

z+Az
el O

z+Az
—+ [ U@ - s@uc

Using the line segment from z to z + Az we obtain

z+Az
2l o= reld

< sup  [f(Q) = f(2)] =0

C€lz,2+AZ]

F(z+ Az)— F(z)
2D FE) _ g

<

as Az — 0. Hence F(z) is analytic in D and F'(z) = f(z) everywhere in D.
This fact justifies the following definition.

Definition 1.1. The function ®(z) is called the primitive for f(z) in D if
®(z) € H(D) and ®'(z) = f(2).

So, if f is analytic in D then

P = [ WS

is a primitive for f in D.

Problem 1.2. Show that if ®; and ®5 are primitives for f in simply connected
D then ®1(z) — ®2(z) = constant in D.

As a consequence we have the fundamental fact: if D is simply connected
then

/ 7 H(O)dC = F(z) — Fa),

where F' is any primitive for f. This fact is called the fundamental theorem of
complez integration analogously to the Newton’s formula for real integration.

Example 1.3. Let D C C be a simply connected domain such that 0 ¢ D and
1 € D. Then f(z) = 1 is analytic in D and

F(z) = /1 ’ 2d§
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is a primitive for f in D, where D is such that any curve connecting 1 and
z € D does not pass across 0. For example, D can be chosen as

D =C\{Imz=0,Rez < 0}.

In this domain we can take the line segment connecting 1 and z. This function
F(z) is said to be logarithmic function (or logarithm) i.e.

1
log z = / —dc¢. (1.2)
1 ¢
Problem 1.4. Show that
logz =log|z| +iargz, z€ D, (1.3)
where D is as above i.e. —w < argz < 7.

Problem 1.5. Let 1

1@ =1z
and let D be simply connected such that +i ¢ D. Show that

arctan z := /ch
o 1+

and D is chosen such that any curve connecting 0 and z does not pass across

41 satisfies
1 1+iz
arctan z = — log —,
21 1-—-iz

The converse statement to Cauchy theorem is also true.

Theorem 1.6 (Morera’s theorem). Let f be a continuous function in a simply
connected domain D C C. If fﬂ/ f(€)d¢ = 0 for every piecewise smooth closed
Jordan curve in D, then f is analytic in D.

Proof. We select a point zp € D and define F(z) by

P = | T F(0)d¢

which is well-defined and univalent in D since the result of integration is inde-
pendent on curve connecting zg and z in D. Since f is continuous in D we have
(choosing line segment to connect z and z + Az)

z zZ) — z z+Az
R LT g <z | [ 1@ - s@lad

< _max [f(¢) = f(2)] =0

T (€[z,2+Az]

as Az — 0. Thus F'(z) = f(z) i.e. F is analytic. But since any analytic
function is infinitely many times differentiable then so is f. O



Chapter 2

Harmonic functions and mean
value formulae

Let u(x,y) be a real-valued function of two real variables x and y defined on a
domain D.

Definition 2.1. If function u(z, y) is twice continuously differentiable in D and
satisfies the Laplace equation

Au = 0u(zx,y) + aju(z:, y) =0
in D, then u is said to be harmonic in D.

There is a close connection between harmonic and analytic functions. In-
deed, if f = w + iv is analytic in D then (as we proved) f is infinitely many
times differentiable in D. So are the functions u and v and the Cauchy-Riemann
conditions are satisfied. Then we have d,u = Oyv, dyu = —9,v. It follows that

2. _ 92 2, _ 52
Opu = 0z v, Oyu=—0;v
and hence
Pou+ Oou= 03,0 — 05,0 =0
i.e. w is harmonic. Similarly

v+ Ojv = =0, u + 0z,u=0.

Thus, if f € H(D) then Re f and Im f are harmonic in D.

It turns out that the converse is also true. Namely, any harmonic function
is the real (or imaginary) part of some analytic function and this connection is
unique up to an arbitrary constant. Let u be harmonic in a simply connected
domain D. Then we may consider the differential form

l :== —0yudx + d,udy.
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This form is complete differential of some function v since 9, (—0yu) = 0,(0,u)
or Au = 0 that is

dv = —0yudx + d,udy. (2.1)
This fact allows us to introduce function v(z,y) as
(z,y)
v(z,y) = / —0yudx + 0,udy + constant (2.2)
(z0,90)

and this definition is correct since the latter integral does not depend on the
curve in D connecting the points (x,yo) and (z,y). Even more is true, due to

(2.1) and (2.2]) we have
0,0 = —0yu  Oyv = Ozu

i.e. the Cauchy-Riemann conditions are satisfied for function f = u + iv. But
u and v are twice continuously differentiable in D with Cauchy-Riemann con-
ditions fullfilled. Thus, f € H(D) and v = Re f. Similarly we may construct
uniquely (up to an arbitrary constant) analytic function f such that given har-
monic function u is equal to Im f.

Simultaneously we obtained the following important result. By Corollary
of Part I we know that any analytic function is infinitely many times
differentiable. Since any harmonic function is the real (or imaginary) part of
some analytic function then any harmonic function is infinitely many times
differentiable.

Problem 2.2. Let f € H(D) and f # 0 everywhere in D. Prove that log|f(z)]

is harmonic in D.

Let f be analytic in D containing the disk {z : |z — 29| < R}. Then the
Cauchy integral formula yields
1 f(€)d¢
f(20) = 5= ©

271 Jiezg)=r C — 20

If we parametrize the circle by ((t) = zo + Re'’,t € [—m, 7] then d{ = Riel’dt
and the latter integral transforms to

1 ™ it s Al 1 ™ .
1 f(z0 + Re')Rie'dt _ 1 f(z0 + Reydt. (2.3)

f(z0) = Relt 2

2mi

—T

This formula is called the mean-value formula for analytic functions. Since
any harmonic function is the real (or imaginary) part of some analytic function
then we obtain the mean-value formula also for harmonic function u as

1 (7 .
u(@o,90) = Re f(z0) =Re— [ fla0+ Relt)dt
1 [7 . 1 ™
— Re f(20 + Re'')dt = — u(zg + Rcost,yo + Rsint)dt. (2.4)

27 — T J-n
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Remark. Due to periodicity we may replace the integration from —7 to 7 by
integration from 0 to 2.

We now prove an important result concerning the modulus of an analytic
function.

Theorem 2.3 (Maximum modulus principle). Let f be analytic and non-
constant in a domain D (not necessarily bounded). If M := supp |f(2)| then
for any z € D we have |f(2)| < M i.e. |f(2)| does not attain its supremum at
any point zg € D.

Proof. The value M cannot be equal to zero since in this case f = 0. It con-
tradicts with the conditions of this theorem. If M = oo then due to analyticity
of fin D we have |f(z)| < oo for every z € D i.e. |f(z)| < M. That’s why we
assume now that 0 < M < oo.

We will assume on the contrary that there is zp € D such that M = |f(zo)].
The mean-value formula leads to

™

. 1 .
0 +Relt)dt’ < 2/ (20 + Reit)|dt
s

—T

1 s
M = |f(z0)| = 2’

m —T
for any 0 < R < Rp such that {z : |z — 20| < R} C D. Using this we will prove
that |f(z)] = M for all z € {z : |z — 2| < R},0 < R < Ry. Assume again
on the contrary that there is R > 0 with 0 < R < Ry and ty € [—m, x| such
that |f(z9 + Re®)| < M. Since |f(2)| is continuous there is § > 0 such that
|f(z0 + Re'')| < M for any t € (tg — 6,to + ). If tg = &7 then we will consider
only either (tg,tg+ d) or (top — d,tg). These assumptions lead to the following
inequalities

1 IS ) 1 to—0 )
M < 27T/ | f(20 + Re)|dt = o | |f(20 + Re'")|dt

—T

1 to+0 " 1 T y
+ — |f(zo—|—Rel)\dt+/ |f(z0 + Re™)|dt
2 to—4 27 to+0

< o= [M(to — 54+ 7) + 2M5 + M(r — to — 6)] = M.

This contradiction shows that |f(z)] = M in every disk {z : |z — 29| < R},0 <
R < Ry. Let us show that this equality |f(z)| = M holds in any point ¢ € D.
In order to prove it we join 2y and z by a piecewise smooth Jordan curve v C D
and denote by d > 0 the minimum distance from ~ to dD. Next, we find
consecutive points zp, 21, ..., 2, = ¢ along v with |zx41 — 21| < d/2 such that
the disks Dy, = {2z : |z — z;| < d/2},k=0,1,...,n — 1 are contained in D and
cover . Each disk Dy contains the center zx1q of the next disk Dy1.
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That’s why it follows | f(z)| = M for all z € Dy, and inductively, |f(z)| = M
for all z € Dy, i.e. |f(¢)| = M too. Thus |f(z)| = M everywhere in D.
The last step is to show that f(z) = constant. Indeed, since u? + v? = M?
then
{uum +ovv, =0

uty + vvy, = 0.

By the Cauchy-Riemann conditions we get

Uy — VUy =0

Uty + vy = 0.
Hence u, M? = 0 and uyM2 = 0. Since 0 < M < oo it follows that u, = u, =0
in D. These two facts imply immediately that u = constant. Similarly we

may obtain that v = constant i.e. f = constant. This contradiction proves the
theorem completely. d

Corollary 2.4. Let D be a bounded domain and let f be analytic in D and
continuous in D. Then either f = constant or maxg |f(2)| achieves at the
boundary 0D.

Proof. Since f € C(D) and D is compact set in C then |f(z)| is continuous
there too and by Weierstrass theorems there is max_ 7 | f(2)| which is achieved
at some point 2o € D i.e.

max | f(z)[ = | f(z0)]

zeD

If f # constant then Theorem implies that for every z € D we have

max [f(z)| > [f(2)]

zeD
Thus zp € 0D i.e. |f| achieves its maximum at the boundary. O

Corollary 2.5. Let fi and fs be analytic in D and continuous in D, where D
is bounded. If fi(z) = fao(z) for all z € OD then fi(z) = fa(2) everywhere in
D.
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Proof. Let us consider f(z) := fi(z) — fa(z). Then Corollary implies that
max, 5 |f(2)| is achieved at the boundary or f = constant. But f(z) = 0 at
the boundary. That’s why in both cases f(z) = 0. O

Corollary 2.6. Let f be analytic in D. Let us assume in addition that f(z) # 0
everywhere in D. Then either f = constant in D orinfp |f(2)| < |f(z)] for all
z€D.

Proof. Since f(z) # 0 and analytic in D then g(z) := 1/f(2) is well-defined
and analytic in D. Theorem implies that either g = constant (so is f) or
for every z € D it follows that

1
infp [f(2)]
This means that infp |f(2)] < |f(2)]. O

lg(2)| < suplg(z)| =
D

Since the mean value formula holds also for harmonic functions (see ([2.4)))
we obtain mazimum principle for harmonic functions.

Theorem 2.7. Let u(x,y) be real-valued, harmonic and non-constant in the
domain D (not necessarily bounded). If M = supp u(x,y) and m = infp u(zx, y)
then

m < u(x,y) < M (2.5)

for any (z,y) € D.
Proof. The proof literally repeats the proof of Theorem O

Remark. In (2.5)) it might be that m = —oco or M = .

Corollary 2.8. Let u(x,y) be real-valued and harmonic in D and continuous
in D, where D is a bounded domain. Then either w = constant or for any
(xz,y) € D we have

minu(z,y) < u(z,y) < maxu(z,y)
D D

i.e. minu(x,y) and maxu(x,y) are achieved at the boundary 0D.

Problem 2.9. Let f(z) =az+band D = {z: |z| < 1}. Prove that

= b
gllfg!f(Z)! la] + 0]

and max|; <1 [f(2)| = | £(e1%)| for some real fy. Show also that §y = arg b—arg a.

Problem 2.10. Let f(z) = az + b with [b|] > |a] and D = {z : |z| < 1}.
Prove that min|,|<; [f(2)| = [b| — |a| and min,<; [f(2)| = |f(el%)| with 6y =
argb — arga + 7.
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Liouville’s theorem and the
fundamental theorem of
algebra

Theorem 3.1 (Cauchy’s inequality). Let f be analytic in a bounded domain D
(not necessarily simply connected) and continuous in D. Then for any zy € D
and for anyn =0,1,... we have

n!M
£ (z0)| < R (3.1)
where M = max | f(2)| and R = dist(z9, 0D).

Proof. Let zg € D be arbitrary and let R > 0 be chosen such that we have
{z 1|z — 20| < R} C D. Then using Cauchy integral formula we obtain

£ () = Q)
27 Jjc—zoj=r (€ — 20)"H!
for n = 0,1,.... If we parametrize | — 20| = R as ( = 29 + Re'',t € [-7,7]
then
™ f(z0 + Re)iRelt dt — n! T f(zo0 + Reit)dt
27-” Rn+1lei(n+1)t T 291 R" eint )
This representation implies the inequality
£ (20)] < n! / |f(z0 + Relt)|dt n'M _onl
= onRn eint] S 2mn YT T MR

and concludes the proof. O
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Theorem 3.2 (Liouville’s theorem). Let f be analytic in the whole complex
plane C and let a > 0 be such that

[f(2) < M|z, zeC

with some positive constant M. Then f is a polynomial of order at most n :=

[o]-

Proof. Let n = [a], where [a] denotes the entire part of . Since f is analytic
in C then for every R > 0 and every z € C we have by the Cauchy integral

formula that (n+1)! f(Q)
FE) 2i /|<—Z|R (¢ —z)m*? i

That’s why we have the following inequality

2

(nt1) (n+1)! [T |f(z+ Re)|RAt _ (n+1)! M(|z| + R)®
‘f (Z)’ S o Rn+2 = o1 Rn+1

= M(n+ )R (1 4+ |2|/R)* = 0

—T

as R — oo since n 4+ 1 > a. It means that f("*t1)(z) = 0 in C. Thus, f is a
polynomial of order not bigger than n. O

Problem 3.3. Let f be analytic in C and f*)(z) = 0in C for some k = 1,2, .. ..
Prove that f is a polynomial of order not bigger than k — 1.

Corollary 3.4. Let f be analytic in C (entire function) and bounded in C.
Then f = constant.

Proof. Proof follows from the proof of Theorem [3.2] with a = 0. O
Problem 3.5. Show that the function f(z) = cos z is not bounded.

Problem 3.6. Let f be an entire function with the property |f(z)| > 1 for all
z € C. Show that f = constant.

Theorem 3.7 (The fundamental theorem of algebra). If P is a polynomial of
order n > 1 then P has at least one zero.

Proof. Let us assume on the contrary that this polynomial has no roots i.e.
P(z) # 0 for all z € C. This implies that the function

is an entire function i.e. it is analytic in the whole space C. Let us write

P(z) = apz" + an_12"1 4+ 4ag, an#0
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and consider the equation

1 1 1
FEI=1BO = B Jan +anca/z - F a0z (3:2)

For k = 1,2,...,n we have |a,_x|/|2|* — 0 as |z| — oo. Hence a,, + an_1/2 +
<o+ ag/z2" — an as |z| = oco. Thus (3.2)) implies |f(z)| — 0 as |z|] — co. In
particular, there is R > 0 such that for all |z| > R we have

[f(2)] < 1. (3-3)

The next step is: since f is analytic everywhere in C then f(z) is continuous
for all z € C. In particular, it is continuous in the closed ball {z : |z| < R}
with R as in (3.3). By Weierstrass theorem for continuous functions, |f(z)| is
bounded in this closed ball i.e. there is a positive number M > 0 such that

FEI<M, <R (3.4)

Combining (3.3)) and (3.4) we obtain that
|f(2)] < max(1, M)

for all z € C. By Liouville’s theorem f = constant and so is P. This contradic-
tion proves the theorem. ]

Corollary 3.8. Let P be a polynomial of order n > 1. Then P can be repre-
sented as

P(z)=an(z—21)(z — 22) -+ (2 — zn),

where a, # 0 and z1, 29, ..., 2, are the zeros of P counted according to multi-
plicity.

Problem 3.9. Prove Corollary [3.8



Chapter 4

Representation of analytic
functions via the power series

Recall that the sequence of functions S, (z), in particular the partial sums

> 1)
=0

of some series
oo
Z i (2),
=0

converges to f(z) uniformly on a set D C C if for every £ > 0 there exists an
integer Ny(g) > 0 such that for all n > Ny and for all z € D we have

1Sn(2) = f(2)] <e

(in particular [ 3272 fi(2)] < e).
A useful procedure called the Weierstrass M-test can help determine whether
an infinite series is uniformly convergent.

Theorem 4.1 (Weierstrass’ M-test). Suppose that the series

> fiz)
j=0
has the property that for each j = 0,1,... it holds that |f;(z)| < M; for all
zeD. If Z;’;O M; converges then Z;io fj(z) converges uniformly on D.
Proof. Let
Su(2) =Y fi(2)
j=0
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be the nth partial sum of the series. If n > m then for all z € D we have

1Sa(2) = Sm()| = | D filx)| < D Mj<e

for all n > m > Ny(e). This means that for all z € D the sequence {S,(z)} is
a Cauchy sequence. Therefore there is a function f(z) such that

n—oo

f(z) = lim Sp(z) =) fi(2).
j=0

Moreover, this convergence is uniform on D. O

Theorem 4.2. Suppose that the power series
o0

cj(z — 20)
j=0

has radius of convergence p > 0. Then, for each r,0 < r < p this series
converges uniformly on the closed disk {z : |z — z0| < r} and defines there a
continuous function.

Proof. Given 0 < r < p choose ( € {z : |z — 29| < p} such that |( — 2| = 7.
Due to the properties of the power series we have that

m .
cj(z — zo)’
=0

converges absolutely for any z € {z : |z — 29| < p}. It follows that

e . s .
D lei(C = 20) ] =" lejlr?
=0 =0

converges. Moreover, for all z € {z: |z — z9| < r} we have
lej (2 = 20)| = lejllz — 20 < el
The conclusion now follows from the Weierstrass’ M-test with M; = |¢;|r/. O

Remark. The radius of convergence p of the power series can be calculated as

1 —
— = lim ’Cj|

p j—00

or
1: lim |HL
P j—o0 Cj

if the limit exists.
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Problem 4.3. Show that the geometric series

o

2.7

=0
converges uniformly on the closed disk {z : |z] <r} with any 0 <7 < 1.

Theorem 4.4. Suppose that the power series

o0
cj(z — 2z9)’
=0

has radius of convergence p > 0. Then in the disk D, = {z : |z — 29| < p} this
series defines the function

F(2) =) ¢ilz = z) (4.1)
j=0
which is analytic in D, and for each k =1,2,... it holds that

FRE) =Y i -1 (G —k+1)(z—20) " (4.2)
=k

Proof. Let 0 < r < p. Then due to Theorem in the closed disk D, = {z :
|z — 20| < r} the series converges uniformly (and absolutely) and defines
a continuous function f(z). That’s why we may integrate this series term by
term. If v C D, is a piecewise smooth closed Jordan curve then

[yf(z)dzzjgoch(z_ZO)dezO

since (2 — zp)’ is analytic for each j = 0,1,.... Applying now Morera’s theorem
we conclude that f is analytic in D,. Formula (4.2]) follows directly by induction
and it is based on the properties of power series. ]

Problem 4.5. Show that

log(l—2)=-) —

=17

forall z€ Dy ={z:|2| <1} or
IOgC:_Z(JC)a 0<|C|<27
j=1

where log is the main branch.
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Problem 4.6. Let f and g have the power series representations

o0 [o.¢]
ch z— z0)’ Zdﬂ z—zp) (4.3)
7=0 7=0

for z € D, = {2 : |z — 20| < p}. Show that
z) = Zaj(z —2), z€D,,

R eV .
where a; = ) 7 cxdj—p.

Problem 4.7. Let f and g have the power series representations (4.3) with
do # 0. Show that in some neighborhood of zy the function f(z)/g(z) can be
represented as the power series

o
z Z
a; Z—ZO
Z J
]:[]

where a; are uniquely determined from the equations ¢; = Zi:o apdj_p,J =
0,1,....

Theorem 4.8 (Taylor’s expansion). Suppose that f is analytic in a domain
D and that Dr(z0) = {z : |z — 20| < R} is a disk contained in D. Then f is
uniquely represented in Dg(z0) as a power series

oo
Z cj(z — 20, 2z € Dg(%), (4.4)
7=0

where

f(j)(z
¢j = "7 o)
J:

Furthermore, for any r,0 < r < R the convergence is uniform on D,(z) = {z :
|z — 20| < r}. The power series with such coefficients is called the Taylor series
for f centered at zg.

Proof. Let zyp € D and let R = dist(z9,0D) so that Dr(zp) = {z : |z — 20| <
R} € D. Let z € Dy(20) = {2z : |z — 20| < r} with 0 < r < R. The Cauchy

integral formula gives that

_ b SO g L f(©)
f(z)= 2mi /|C—Zo|7“ ¢ — de T omi /C—Zolr (¢ — 20) (1 B 27j> dc¢.
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Since z € D, (zp) and | — z9| = r we have that

_ |z =2 <1

r

Z— 20

¢— 2o

Therefore we have (by geometric series)

=en(En)

Moreover, for such fixed z the convergence of this series is uniform on the circle
{C:|¢ — 20| = r}. Hence we may integrate this series term by term and obtain

1 f(Q)d¢
fz) =5~ /|Cz0|:r (€ — zo) (1 - HO)

1 Q) & (zz())j
‘2wi/|<zo|:r<—zo,z ) &

Jj=0

(L 1©) Byt j
=0 (27“ /|C—20|=7” (C)j—’—ld() _Z Z—Zo) .

Jj=

Since r with 0 < r < R and z with |z — z9| < r are arbitrary we may conclude
that the representation with the coefficient ¢; = £\)(29)/4! holds every-
where in Dg(zp). Even more is true: the radius of convergence of is R
and the convergence of is uniform in D, (20) = {2 : |2 — 20| < r} with any
r,0 < r < R. The latter fact follows from the properties of the power series.
The uniqueness of representation ) follows from the fact that necessarily

= V) (20)/3. D

Corollary 4.9 (Taylor’s expansion at co). Let f(z) be analytic for |z| > R
(including z = 00). Then f(z) is uniquely represented in {z : |z| > R} as the

series
o0

f(2) =Y ¢z, |zl >R,
j=0
where ¢; = (z) := f(1/z). Moreover, these coefficients are equal to
) (c0)

where fU)(00) := (U1 (00).
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Proof. Let us consider g(z) := f(1/z). Then g is analytic in the domain {z :
|z| < 1/R}. Thus, Taylor’s expansion (4.4]) at 0 gives

o .
9(z2) =) e,
j=0

where

cj =

1/ g(z)dz _ g¥(0)

2mi Ji=s #TL !

Since f(z) = g(1/z) we obtain for |z| > R that

f(2)=> ¢z,
7=0

where '
B g(J)(o) B f(J)(oo)
AT I
J J
and 1 f(1/z)d 1
z)dz ,
ci = — —_— = — f z Z‘]_ldz.
T omi /Z|:5 Zitl 271 S|z 1=1/6 (2)

It can be mentioned here that the definition of the derivative at oo leads to the
fact

FP(o0) = gV(0) = jle;.

Problem 4.10. Using Corollary [I.9] show that

1. f(00) = lims o f(2) = 0

2. f(00) = lim o 2[f(2) — f(o0)]

3. 17(00) = — lims oo [ f/(2) + 2£'(00)]

4. J7(00) = s so 23" (2) + 2247/ (2) — 2§ (o0)].
Problem 4.11. Show that

1.

n

eZ:1+Z+...+i'+...
n!

2’3 2n—1

z
1 P _ — LR —_ ni .« ..
sinz =2 — +--+(-1) (2n—1)!+
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3.
2 2n
T G .
cosz-1—2!+ +(-1) (2n)!+
4.
s — 23 »2n—1
Sin Z_Z+§++m+
d. ) )
z z°"
coshz:1+§+~-—l— @n)! + -
and all these Taylor series converge for any |z| < co.
Problem 4.12. Let f and g be analytic in a domain D and f(z) = g(z) on
the set £ C D which has a limiting point in D. Show that f(z) = g(z) for all

zeD.
Definition 4.13. Let f be analytic in a domain D. If
f(20) =0, f'(20) = 0,..., f*7V(z) =0

but f(ko)(zo) # 0 for some zg € D and kg > 1, then z is called the zero of f of
order k.

Problem 4.14. Let f be analytic in a domain D and let f # 0. Show that
all zeros of f in D are isolated i.e. for any bounded domain Dy with Dy C D
there are only at most finitely many zeros of f in D;.

Problem 4.15. Let

1, z=0.

Show that f is analytic everywhere in C and find its Taylor expansion centered
at 0.

Problem 4.16. Suppose that

f(2)=> ¢
j=0

is an entire function. Show that f(Z) is entire too. When f(z) = f(2)?

Problem 4.17. Let ,
—-1/z 7& 0
e , 2
-
0, z=0.
Show that f is not continuous at 0 and that it has no Taylor expansion at 0.

Problem 4.18. Let f be as in Problem Define the Taylor expansion for
f at any point zg # 0.
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Laurent expansions

If f is analytic in the disk {z : |z — 29| < R} then we have only the Taylor’s
representation for this function. But if f is analytic in the deleted neighborhood
i.e. the punctured disk {z : 0 < |z — 29| < R} then what kind of representation
we may have for this function?

Let us consider the series (formally for the moment)

00 —1

Z cj(z —20) = Z cj(z—zo)j—i—ch(z—zo)j =:59(2) +s1(2). (5.1)

j=—00 j=—00 =0

The first term so(z) is called the power series with negative degrees. The second
series in defines the analytic function si(z) in the disk {z : |z — 20| < R},
where
R =T {/le| = sup {/le; . (5.2)
J—00 j
It makes sense to consider the first series for |z — zg| > 0. Thus, if we change

the variables as
1 1
C = P Z =20 + =
Z — 2o ¢

we obtain for sg(z) the representation

s3(2) = sa(z0 + 1/¢) = Zc_jc (©). (5.3)

where ¢ = 0 corresponds to z = co. So, we have the power series with respect
to positive degrees of ¢ with radius of convergence 1/r which satisfies (see ((5.2]))

r = Tm §/|cy|
J—00

such that s3(¢) is analytic function (this series converges) for any [(| < 1/r.
Equivalently, sa(2) is analytic in {z : |z — 29| > r}.
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If it turns out that r < R then s(z) = sa(z)+s1(2) is analytic in the annulus
{z :7 < |z — 20| < R} centered at zy with radii » and R. In this case the series
is said to be a Laurent expansion for s(z) in the annulus. The opposite
statement also holds.

Example 5.1. Let us find three different Laurent expansions involving powers
of z for the function

3
f(z) = 2+ 2— 22
This function has singularities at z = —1 and z = 2 and is analytic in the disk

{#z : |z| < 1}, in the annulus {z : 1 < |z| < 2} and in the region {z : |z| > 2}.
We start by writing

3 S SN SN SIS 1
(1+2)(2-2) 14+z 2—2 1+z 2 1-z/2

f(z) =

We have three cases:

1. for |z| < 1 we have

1 00 00 o
112 1—— Z Z (=1)%

and - -
1 1 1 Z\J 1
- _Z ol R R
21— 2/2 22(2) Zzﬁlz
J=0 J=0
Hence we have the Taylor expansion

7=0
2. for 1 < |2| < 2 we have
1 11 1 — N )
T TV =
1+z 2z 141/z z4 P2 27
7=0 7j=1
and - -
1 1 1 Z\J 1
- = Y N i
21— 2/2 22(2) Zwlz
7=0 7=0
So

o .
Z Z 9j+1 7

j=1 7=0

This is a Laurent expansion in the annulus 1 < |z| < 2.
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3. for |z| > 2 we have

j=1
and
Lo 1 __1“(3j__“w*
2 1—2/2 z 1-2/2 e \# = 20
Therefore

This is a Laurent expansion at oo (or Taylor expansion).
Problem 5.2. Find the Laurent expansion for e~/ 2 centered at zo = 0.

Theorem 5.3. Suppose that f is analytic in the annulus {z : r < |z — 29| < R}
with 0 <7 < R. Then for every z € {z:r < |z — 29| < R} we have

o0

f2) =Y ei(z— =), (5.4)

j=—00

where the coefficients c; are uniquely determined by

— )it

cj—l,/v(gf(g)dg j=0,4+1,42,... (5.5)

with a piecewise smooth closed Jordan curve v C {z : r < |z — 2| < R}

and zy € inty. Moreover, the convergence in (5.4) is uniform on any closed
subannulus {z :r <ry < |z — 2| < R < R}.

Proof. Let z € {z : 7 < |z — 29| < R}. Then we can find r; > r and Ry < R
such that z € {z: 7 < |z — 20| < R1}. Using the Cauchy integral formula for
multiply connected domain we obtain

foy— (GL R
I<

—z0|=r1 C -z

2ri C—zol=R1 €~ % 2mi
:1/ f(OdCJrl/ HO _d¢
21 Jiesglmry C— 201 — 222 7 2mi Jie_gmy, 2 — 201 — S0

z—20

Since

1 (z — 20)
Ly G R
[ D A

o0
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and

1 — (¢ —20)
1_4—2’0 _Z(z_zo)jv |Z—ZO|>TI
Z—20 7=0

we may integrate term by term in these series (since these series converge uni-
formly on the circles | — 20| = Ry and |( — 29| = 71, respectively) and obtain

=30V o flee

2777‘1 |§—z0|:R1 (g - ZO)j+1
1 1 ()¢
" Z (Z - ZO)jJrl 2771 /|C20:r1 (C - ZO)ij

= Z (Z_ZO)J'L M

j=—o00 2mi [¢—zo0|=r1 (C - ZO)JJrl

S 1 fF(Qd¢
—i—jz::O(Z—zO)sz ol (€ — 29)i L

o0
= Z (z—Zo)jl./f(odg-j
i 271 v (C — Zo)J'H
where the integrals are considered for an arbitrary piecewise smooth closed
Jordan curve v C {z : r < |z — 29| < R} and 2 € inty. We have used the fact
that these integrals are independent on such curves due to Cauchy theorem for
multiply connected domains.

Thus, we proved the Laurent expansions —. It is evident that this
representation is unique since we may obtain necessarily . Uniform con-
vergence of for z € {z : r <r; <|z— 2| < Ri < R} follows from the
arbitrariness of r; and R; in the preceding considerations. O

Definition 5.4. The series ([5.4]) with the coefficients (5.5|) is called the Laurent
expansion (representation) of the analytic function f in the annulus {z : r <
|z — 20| < R} and

[o.¢] [o.¢]
g c]z—zo g c—j(z—20)7
Jj=0 7j=1

are called the regular and main parts of this expansion, respectively.

If f is analytic in the annulus {z : 0 < |z — zg| < r} with some r > 0 then 2
is said to be an isolated singular point of f. Then Theorem says that f(z)
in this annulus can be represented via the Laurent series

o0

f)= ) eilz— =),

j=—o0
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where ¢; are calculated by (5.5)).
Example 5.5. Let us find the Laurent expansion for
cosz — 1

f(z) = A
that involves powers of z. Since

1— 22 24 8

CoSz — ——5—1—1 a%—
and this representation is valid for all |z| < co then
£(2) cosz —1 1+1 22+ 1 14_C>o
Z) = = — _— —_— . —
24 222! 4! 6! 2 22 = 2] + 4

This is the Laurent expansion in the neighborhood of z = 0 and z = oo both.

Problem 5.6. Find the Laurent expansion for

sin 2z

f(z) = —

z

that involves powers of z.

Problem 5.7. Find three Laurent expansion for

1

1) = 22 —-52+4+6

centered at zg = 0.

Problem 5.8. Find two Laurent expansions for

1
2(4 — 2)?

that involves powers of z.

Definition 5.9. If the number of nonzero coefficients ([5.5)) for j < 0 is

1. empty
2. finite

3. infinite

then zq is called a remowvable point, a pole and an essentially singular point for

f, respectively.
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Let zg be removable for f. Then its Laurent expansion has the form

o0
g cj(z — z9)’

Jj=0

where z € {2z : 0 < |z — 29| < r}. But this series, as a power series, converges
in the whole disk {z : |z — 29| < r} and it is equal to f(z) for all z # zp. If we
define f at the point zg as

[e.e]

f(z0) :==co = Zli_}nzlo ch(z — )’

J=0

then we obtain a new function in the whole disk {z : |z — 29| < r} which is
analytic there. In particular, f is bounded in the closed disk {z : |z — zo| < 71}
with r1 < r. The opposite property is also true. The following theorem holds.

Theorem 5.10. Let f be analytic in the annulus {z : 0 < |z — 29| < r} for
some r > 0. Then zy is a removable singular point of f if and only if f is
bounded in the deleted neighborhood of zg.

Proof. It remains to prove this theorem only in the opposite direction. Let
us assume that f is bounded in some deleted neighborhood of zg i.e. there is
M > 0 such that

lf(2)] <M, 0<]|z—2<0.

Due to Theorem [5.3| we have that for all z € {z : 0 < |z — 2| < 7} it holds that

fz)= > cj(z— =),
Jj=—00

where ) £0)

¢ = — ¢, 0<d<T

72w Jieg)=s (¢ — 20)7 !
Thus .

lej| < —— max |f(Q)|672r < M&I, j=0,41,42,... (5.6)
2T |¢—z0|=6

But for j < 0 it follows that ¢; = 0 because we may let 6 — 0 in these estimates.
Hence, zq is a removable singular point. O

Remark. The estimate ([5.6) has an independent interest.

If f is analytic in some domain D C C then 2y € D is a root of order m of
f if in some neighborhood Us(zp) C D f admits the representation

f(2) = (z = 20)"p(2), (5.7)
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where (z) is analytic in Us(2o) and ¢(z9) # 0. It is equivalent to

F(z0) =0, f'(20) = 0,..., f"V(z9) = 0, f™(20) # 0.

Another thing is: if f # 0 is analytic in D C C and f(z9) = 0,20 € D then the
order of the root is always finite i.e. there is m € N such that holds. If
we assume on the contrary that f(*)(z9) = 0,k = 0,1,... then by the Taylor
expansion we have

% 1) (5 .
=30 g

=0 7
for all z € Us(zg). Further, using the procedure of continuation (see proof of
Theorem for any z; € D we may obtain f(z1) = 01ie. f(z) =0in D. This
contradiction proves the fact.
Another consequence is: if f(z,) =0 and z, — 20, 2, # 20 wWith 29,2, € D
then f =0in D.
Let us assume that 2 is a pole of f. Then f has the Laurent expansion of

the form - .
z) = ch(z—zo)j —i—Zc_j(z—zg)*j, (5.8)
j=0 j=1

where c_,, # 0. Then we say that zy is a pole of order m.

Theorem 5.11. Let f be analytic in the annulus {z : 0 < |z — 29| < r}. Then
f has a pole of some order m at zq if and only if lim,_,,, |f(z)| = oo

Proof. Let us assume first that zg is a pole of order m € N. Then the following
representation holds

m

o0
ZC] z—2p) J + Zcfj(z— ZO)_jv

j=0 j=1
where c_,, # 0. Then for the function
F(2) := (2= 20)" f(2)
we have
F(2)=cm+cempi(z—20)+ 4 c_1(z—20)" 4+ colz — 20)™ + - -
i.e. F(z) has a removable singularity at zp. Moreover, there exists

lim F(z) =c_, #0.

Z—Z20

This fact implies that there is 0 < § < r such that

1F(2)| > |62m| >0
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for all 0 < |z — 29| < § and therefore

C— _
£ > 1l

l.e.

lim |f(2)| = oo. (5.9)

Z—r20

Conversely, if (5.9) holds then
lim 1 lim L
=20 [f(2)] 2220 f(2)

This fact can be interpreted as follows: a new function

is analytic in {z : 0 < |z — 29| < ¢} and the function g can be extended as an
analytic function everywhere in {z : |z — 29| < ¢} and zp is a root of analytic
function g. But the root of a analytic function (if it is not identically zero) is
of finite order, say m. That’s why

9(z) = (2 — 20)" p(2),
where (z) is analytic and ¢(zp) # 0. Hence

1 1

e Te)

where 1/¢(z) is analytic in the neighborhood of zyp and 1/¢(z9) # 0. This
condition allows us to represent 1/¢(z) via its Taylor expansion for |z — zg| < §

as
o0
g a;j(z — z9)’

Jj=0

where ag = 1/¢(z0) # 0. This implies that Laurent expansion for f is

fz) = (z — )™ T (z — zo) * ]z;amﬁ =)
This means that zg is a pole of order m for f. O

Corollary 5.12. 2 is a pole of order m for function f which is analytic in the
annulus {z : 0 < |z — zg| < 0} if and only if zy is a root of 1/f of order m and
this function is analytic in {z : |z — 29| < 0}.
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Theorem 5.13. Let f be analytic in the annulus {z : 0 < |z — zo| < r}. Then
f has an essentially singular point at zo if and only if there is no lim,_,,, f(2)
(finite or infinite).

Proof. If we assume on the contrary that there is lim,_,., f(z) finite or infinite
then in the first case 2 is a removable singularity and in the second case it is
a pole of some order. This contradiction proves the theorem. O

As the consequence of this fact we can obtain that there exist two dif-
ferent sequences z/, and 2]/ converging to zg such that f(z]) is bounded and
limy, 00 f(2))) = co. Even more is true.

Theorem 5.14 (Casorati-Sokhotski-Weierstrass). Let zp # oo be an essential
singularity of f(z). Let E be the set of all values of f(z) in the deleted neigh-
bourhood of zy. Then E is dense in C i.e. for any ¢ > 0,6 > 0 and complex
number w there exists a complex number z with 0 <| z — zo |< § such that
f() —w < e.

Proof. Let a be an arbitrary point of C. Let us assume that for any
z€{z€C:0<|z—2 |< 6}

we have f(z) # a. Otherwise there is
Zef{zeC:0<|z—2 <6}

such that f(2’) = @ and everything is proved.
Then in the deleted neighbourhood of zy the function

1
9(2) == m

is well-defined. For this function g(z) the point zy will be also essential sin-
gularity. Indeed, if zp is a pole or removable singularity for g(z) then zg is a
zero or removable singularity for f(z) — «, respectively. In both cases we have
a contradiction with essential singularity at zo for f(z). Thus g(z) cannot be
bounded in this neighbourhood and therefore there is a sequence z,, converging
to 2o such that lim, oo g(2,) = 00 or lim, o0 f(2,) = . It means that a« € E
and the theorem is proved. ]

Remark. If zy = oo is an essential singularity for f(z) then (by definition) zero
is the essential singularity for ¢(z) = f(1/z). Then, Theorem holds for
©(z) in the deleted neighbourhood of zero which is equivalent to the fact that
Theorem holds for f(z) in the neighbourhood of cc.

There is a substantial strengthening of Theorem which only guarantees
that the range of f(z) is dense in C. Namely, the following Great Picard’s
Theorem holds. We give it without proof.



5 Laurent expansions 99

Theorem 5.15 (Picard). If analytic function f(z) has an essential singularity
at zp then on any deleted neighbourhood of zy the function f(z) takes on all
possible complex values, with at most a single exception, infinitely often.

Example 5.16. 1. The function f(z) = e'/# has an essential singularity at
z = 0 but still never attains the value 0.

2. The function .

f(Z): 1 —ol/z

has an essential singularity at z = 0 and attains the value oo infinitely
often in any neighbourhood of 0 (z, =i/27n,n = +1,+2,...). However,
it does not attain the values 0 or 1, since e'/# # 0.

Example 5.17. 1. Consider the function

sin z
fl) =22,
Since
sinz_l z3+z5 _q 22+z4
2z i 3! 51 - 3! 5!

for |z| > 0 then we can remove the singularity at z = 0 if we define
f(0) =1 since then f will be analytic at z = 0.

2. Consider the function

cosz —1
9(z) = ———
Since again for all |z| > 0 we have
cosz—l_l z2+z4 _ 1+z2 z4+
22 22 21 4! 2 41 6!

then defining ¢(0) = —1/2 we obtain function that is analytic for all z.

Example 5.18. Consider the function

Since for all |z| > 0 we have

sin 2z 1 ( 23 2P )_ 1 1 22

=237 5

23 23

then ¢_o =1 # 0. Therefore f(z) has a pole of order 2 at 0.



100 Part I1

Example 5.19. Consider the function

1
2 .
z) = z“sin —.
7(z) :
Since for all |z| > 0 we have
z2sin1—z2 1 1 n 1 _, 1+ 1
z z 233! 255! N 23! 235!
then the Laurent expansion has infinitely many negative powers of z. Hence
z = 0 is essentially singular point for f.

Problem 5.20. Suppose that f has a removable singularity at zg. Show that
the function 1/f has either a removable singularity or a pole at zg.

Problem 5.21. 1. Let f be analytic and have a zero of order k at zg. Show
that f’ has a zero of order k — 1 at zg.

2. Let f be analytic and have a zero of order k at zg. Show that f'/f has a
simple pole (pole of order 1) at zo.

3. Let f have a pole of order k at 2. Show that f’ has a pole of order k + 1
at zg.

Problem 5.22. Find the singularities of
1

sin

f(z) =

—

z
Let f be analytic in the region {z : |2| > R}. Then the function

p(2) == f(1/2)
is analytic in the annulus {z : 0 < |z| < 1/R}. Hence z = 0 might be an isolated
singular point for ¢. The Laurent expansion for ¢ gives

[e.e]

» 1
= izl 0 —.
)= . o 0<ld< g
j=—o00
Thus we have the following expansion for f

o (e}

f(z) =¢(1/2) = Z cjz ™l = Z c—j?’, |2| > R. (5.10)

j=—o0 Jj=—00

Definition 5.23. If z = 0 is a removable singularity, a pole or an essential
singularity for ¢(z) then z = oo is called a removable singularity, a pole or an
essential singularity for f(z), respectively.
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Remark. This definition implies that if the number of coefficients (5.10]) for
j > 0 is empty, finite or infinite then z = oo is a removable singularity, a pole
or an essential singularity, respectively.

Example 5.24. 1. Let f be a polynomial of order n i.e.
f(2) =apz" +ar12" 4 +an, ag#0.
Then z = oo is a pole of order n.

2. Let f be analytic in the whole space C. If z = oo is a removable singularity
then f = constant and if z = oo is a pole of order n then f is a polynomial
of order n.

Problem 5.25. Consider the function

21
flz)==z2 sin —.

Show that f has a pole of order 1 at z = co. Compare this result with second
part of Example [5.24]



Chapter 6

Residues and their calculus

Recall that if a piecewise smooth closed Jordan curve v : z(t),a < t < b is
parametrized so that int~y is kept on the left as z(¢) moves around « then we
say that v is oriented positively. Otherwise, « is said to be oriented negatively.

(a) positive (b) negative
Figure 6.1: Orientation illustrated with circles

Let zp be an isolated singular point for a function f i.e. f(z) is analytic in
the annulus {z : 0 < |z — 2| < r} if zg # oo and in the region {z : |z| > R} if
zZp = OQ.

Definition 6.1. The residue of f at the point zy is defined by
Res f = 5 [ £(0¢ (6.1)
z=z" " 27/, ’ ’

where zg € inty, v C {# : 0 < |z — 29| < 0} and ~ is positively oriented if
z0 # oo and 0 € inty, v C {z: |2| > R} and + is negatively oriented if zp = oc.

Remark. Due to Cauchy theorem for multiply connected domains the integral
in ([6.1) is independent on the corresponding curve and thus, the residue can be
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rewritten as

1
Res = — d

Res f=gn) SO«
1 (6.2)

Res f = —-— f(€)d¢

=0 271 Ji¢l=r )
If 29 # oo then the formulas (5.5) show us that
1

Res f = — f(Q)d¢ = ¢, (6.3)

z=20 271 Jj¢—zo)=6

where c_1 is the coefficient in front of (2 — z9) ™! of the Laurent expansion for
f. If zg = 0o then

1
Res f=—o~ Cn f(Qd¢ = —c1, (6.4)

where c; is the coefficient in front of z~! of the Laurent expansion for f.

Example 6.2. Let us find Res,—g g of

()= — 5
(A PR
Since
3 1. _ 32
22 +22—23 2z 142/2—22/2
and 3/2
9 =1

is analytic in the neighborhood of z = 0 and such that g;(0) = 3/2 then the
Laurent expansion for g has the form

_3/2 >
/ +Zc]zj

Thus
R_eg g=3/2.

Example 6.3. If f(z) = e?/* then the Laurent expansion of f about the point
0 has the form
2142 22
=145+ ot

and Res,—g f = 2. At the same time (by definition) Res,—o f = —2.
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Theorem 6.4 (Residues at poles). If f has a pole of order k at zy # oo then

k-1
Res f = ! lim d ((z - zo)kf(z)) . (6.5)

z=2zq (k: — 1). Z2—20 dzk 1

Proof. Suppose that f has a pole of order k at zg # oo. Then f can be written
as

oo
Ck C—k+1 ]
— + .. —_ — O-
/) (z—20)f | (2= 1 (z — 20) +;;32 ), e #

Multiplying both sides by (z — 20)* gives

oo
(z—20)f(z) = c_p + - +C1z—zok1—|—Zc]z—z03+k.

j=0

If we differentiate both sides k£ — 1 times we get

dk—1 o0 .

e (Chy %) f(2)) = (k= Dle_1 + Z(:)Cj(j k) (G +2)(2 - 20) T

j=
Letting z — zp the result is
dk-1 i
le)HZlO W(( —20)"f(z)) = (k = Dle_y.

By this leads to . O

Corollary 6.5. Let f = ¢/ be such that

¢(z0) #0, ¥(20) =0, ¢'(20) #0.
Then f has a pole of order 1 at zy and

¢(20)
Res 6.6
Res f = ) (6.6)
Proof. The conditions for ¢ and 1) show that z is a pole of order 1 for f = ¢ /4.
e (=) () _ plz)
o ey o(z) oz
Res /=l <(2 ZO)¢(2)> = M 0G0 T yiz)
z—20
by Theorem O

Corollary 6.6. Let f = ¢/ be such that

p(20) # 0, P(z0) ='(20) =0, " (20) # 0.

Then
(20)  2(20)9"(20)

_ 2y
RS = ) 307 ())?
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Corollary 6.7. If f has a pole of order k at zg = oo then

1 ) dk—H .
Res f= =gy i o G (/2)): (6.7)

Problem 6.8. Prove Corollaries [6.6] and [6.71
Problem 6.9. Find the residue of

f(z) = Wco;(ﬂz)
at zop = 0.

Theorem 6.10 (Cauchy’s residue theorem). Let D C C be a simply connected
domain and let v be a piecewise smooth closed Jordan curve which is positively
oriented and lies in D. If f is analytic in D except the points z1,29,...,2n €
inty then
n
/ F(O)dC = 27y Res f. (6.8)
— 2=2zj
Y j=1
Proof. Since there are finitely many singular points in int~y there exists r > 0
such that the positively oriented circles v; == {2 : |z — 2zj| =r},j =1,2,...,n
are mutually disjoint and all lie in inty. Applying the Cauchy theorem for
multiply connected domain we obtain

[#@ac+> [ roac=o
vy j=1 -

n n
[#©ac=3" [ 1@ac =2mi " Res 1
gl j=1"7 j=1""

O
Corollary 6.11. Let D C C be a multiply connected bounded domain with the
boundary 0D which is a combination of finitely many disjoint piecewise smooth
closed Jordan curves. If f is analytic in D and continuous in D except the
points z1,22,...,2n € D then

d¢ =271 Res f,
NRIOLS m;zfz?f

where the integration holds over positively oriented curves.

Corollary 6.12. Let f be analytic in C except z1, 22, ..., 2n,20 = 00. Then

Z Res f = 0. (6.9)
jzo Z—ZJ
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Proof. Let R > 0 be chosen so that z1,z22,...,2, € {2 : |2| < R}. Theorem

[6.10] gives that

1
271 Jigl=r

F(Od¢ =) Resf,
j=1

Z2=Zzj
where the circle {¢ : || = R} is positively oriented. But

1
2T Jil=r

by . O

Example 6.13. Let us find the isolated singular points and the residues at
these points for

f(¢)A¢ = — Res f

f2) = —=

1—cosz’

Since e* # 0 for all z € C then the singular points of f may appear only when
1 —cosz =0 or e = 1. So the singular points are

Zn =21, n=0,+1,£2,....
At the same time we have
(1 —cos2)|,=z, =sinz|,—,, =0, (1 —cosz)’|,=,, =cosz|,—s, =1.

It means that all these points z,, are roots of order 2 of the denominator. There-
fore all these points z, are poles of order 2 for f(z). From these considerations
it follows also that z = oo is not an isolated singular point (it is not classified).
By Theorem [6.4] we have that

d e? d e(+27rn
— 1 7 — 2z, 2 — 1 7 2
ineZif o dz <<Z 2n) 1—cosz> gl—% d¢ <C 1—cos§>
¢+2mn ¢
—m L (2 — & g 0
¢—0 d¢ 2/l —¢4/Al + - - ¢(—od¢ \1/2—¢2/41 —---

¢ C(— 3/6! —
2T 1: € _e( 2g/4'+4< /6' ) _ 2mn
- }136(1/2—42/4!+--- 1/2 = C2/Al+ CH/61 — - ) -

for n =0,+1,+2,.... This can be proved also using Corollary [6.6]

Example 6.14. Let P be a polynomial of degree at most 2. Let us show that
if a,b and c are distinct complex numbers then
P(z) A B C

f(z) = (z—a)(z—b)(z—c) :Z_a—i_z—b—i_z—c7
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where Pla)
a
TR R
_ P
B=a=an=g "8/
and Ple)
= o=y &/
Indeed, since
P(2) A B C

(z—a)(z=0b)(z—¢) z—a z-b z-c

then z = a,z = b and z = c are singular points of f (if, of course, a,b and c are
not roots of P). That’s why the terms

are the main parts of the Laurent expansion for f around a, b and ¢, respectively.
Thus,
A=Resf, B=Resf, C=Resf
zZ=a z=b z=c

and

~ lim P(2)(z —a) _ P(a)
A= Tt DGe-0  @-b-0
. PEGE-H PO
B= l—>b( —a)(z=b)(z—¢c) (b—a)(b—c)
g PO P

B G—aE-be—0 (c—alc—b)
Problem 6.15. Show that if P has degree of at most 3 then

f(z)= (z—a)%(z — b) - (z—a)2+2—a+2_b’

where

A=Res((z—a)f), B=Resf, C= R_esf.

Problem 6.16. Let v be a piecewise smooth closed Jordan curve and let f be
analytic in int . Let zg € inty be the only zero of f and of order k. Show that

L I
— d¢ = k = Res =.
omi ), 7O T T RS




Chapter 7

The principle of the argument
and Rouche’s theorem

Let G be a domain on the complex plane and D be a bounded subdomain
of G such that D C G. The domain D needs not be simply connected but
the boundary 0D of this domain is a combination of finitely many disjoint
piecewise smooth closed Jordan curves. Let f be an analytic function on G.
Consequently, f is analytic on the closed domain D.

Proposition 7.1. Let the domains D and G be as above and let f be analytic
on G, except finite number of poles z, € D of order pug fork=1,2,...,n. Let
us assume in addition that f(z) # 0 on D except finite number of zeros wy € D
of order A\, k =1,2,...,m. Then the function

f'(2)
f(2)

is analytic on D except the points {z}1_; and {wi}7, (which are poles of
order 1 for f'/f) and

1 f(Q)d¢

2mi Jop  f(Q)
where N =37 | Ay and P =%} .

=N-P, (7.1)

Proof. Consider the function f’/f in the neighbourhood of the pole z;. Then
f(2) can be represented there as

f(2) = (z = z) " f1(2),
where f1(z) is analytic in this neighbourhood and f;(zx) # 0.This implies that

F'(z) ez — ) M) (o) G e fG)

f(2) (2 = 21) 71k f1(2) oz a hlz)

L (7.2)
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where the second term f{(z)/f1(z) in the latter sum is analytic in this neigh-
bourhood of z; since fi(z;) # 0. The representation (7.2 shows that z; is a
pole of order 1 for f’/f and

1)
28T

= — k- (7.3)

Consider now the function f’/f in the neighbourhood of a zero wy. Then we
have that

f(2) = (z — wp)™ fa(2),
where fy(z) is analytic in this neighbourhood and fa(wy) # 0. Thus, we have

F1(2) Az —w)™ " fa2) + (2 —wp)* f5(2) N L f(?)

flz) (2 —wp) M fa(z) Cz—wy o fo(z)

where the second term in the latter sum is analytic in this neighbourhood since
fa(wy) # 0. The representation ([7.4]) shows also that wy, is a pole of order 1 for

f'/f and

(7.4)

f'z) _
Zfi%i 5 = k. (7.5)

Since the function f’/f is analytic on D except the points {z;}7_;, {wg}",
(where it has the simple poles) then applying the Cauchy’s residue theorem

(see Theorem [6.10]) we obtain (see ((7.3) and (7.5]))
LY (OLIQE < S IHONE < W
2mi Jop~ 1(O) ;fs 7 f(2) kzl’”‘”,; ‘

This finishes the proof. O

(2) +§: Res
() " &

Corollary 7.2. Suppose that f(z) is analytic on D and f(z) # 0 on D except
the zeros wy, € D of order A\, k =1,2,...,m. Then

R (S IS

2mi Jop  f(C)

Let v be a piecewise smooth closed Jordan curve and let f(z) be analytic
on int y

(7.6)

Definition 7.3. Let {y be a point of v and pg = Arg f(z) at (p. Let also
v1 = Arg f(z) at (p after going around once along this curve from ¢y to (p in
positive direction. Then the value ¢1 — ¢q is called the variation of Arg f(z)
along curve v and it is denoted by

©1— o = VgrArgf
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Theorem 7.4 (The principle of argument). Let f be analytic on int~y, where
7 is a piecewise smooth closed Jordan curve, except the poles {z;})_, C int~y
of order pj. Assume that f(z) # 0 on int~y except the zeros {wy}i"; C intvy of
order \,. Then

1
— VarArg f(z) = N — P, (7.7)
2 v
where N =Y A\ and P =)"}'_| fik.
Proof. Since f(z) # 0 on v we may consider the multivalued function
Log f(z) =log|f(2)| +iArg f(z).

Moreover, this function is analytic in the neighbourhood of ~ and

7
f(2)

(Log f(2))’

Proposition [7.1] says that

1

3 | (s FOaC =N —

It is equivalent to the changes of log f(() after going around once along 7 from
Co to (p i.e.

1
- 27

Arg f(C)

N - P = lLog fQISS = 5 llog 7(Q)] +i Ave Q1SS

= Var, Arg f(Q)

2 o=, 27

O]

Theorem 7.5 (Rouche). Let G be a simply connected domain, v be a piecewise
smooth closed Jordan curve in G and f and g be analytic functions on G except
finitely many poles which are located in int~y. If |f(C)| > |g(¢)| on «y then

Nyig— Pryg= Ny — Py, (7.8)

where N¢, Nyiq, Py and Ppiq denote the number of zeros or poles (taking into
account their multiplicity) for functions f and f + g, respectively.

Proof. The conditions for f and g on 7 show that |f(¢{)] > 0 and |f + g| >
|f] —lg| > 0 on ~ie. fand f+ g arenot equal to zero on . That’s why we
may apply Theorem [7.4] and obtain

1 1
o VarArg(f +g) — 5 Var Arg(f) = (Ny+g = Prg) — (Ny = Fy)-
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But the left hand side of the latter equality is equal to (see the proof of Theorem

7.4)

1 f+g 1
— Var A — — VarArg(1 .
27TV3r e 27TV§” rg(1+g/f)

We will show now that this value is equal to zero. Indeed, since on v we have

lg/f+1-1]=lg/f] <1

then the value g/f 4+ 1 on v changes inside the circle {w : |w — 1| < 1} such
that w = 0 does not belong to this set.

Since it does not go around zero along y then Var, Arg(1+4g/f) = 0. Hence
the equality ([7.8]) holds and Theorem is proved. O

Corollary 7.6. Suppose that f and g are analytic. Then under the conditions
of Theorem [7.5 we have that
Nyig = Ny. (7.9)

Example 7.7. Let P(z) = 2z!° — 527 4 2. The fundamental theorem of algebra
says that this polynomial has exactly 10 roots (taking into account their mul-
tiplicities). The question now is: how many of these roots are located in the
unit disk {2 : |z| < 1}. Indeed, if we denote g(z) = 2!% + 2 and f(z) = -5z
then P(z) = f(z)+g(z). The function f has 7 roots in this disc and for |z| = 1
we have that

9(2)] = 1219+ 2] < |2 + 2 =3 < 5= |f(2)] = 5]2|".
By Rouche’s theorem we obtain Ny, = Ny = 7.

Problem 7.8. Prove fundamental theorem of algebra using Corollary
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Problem 7.9. Show that the equation
ag + a1 cosp + azcos2p 4+ - - - 4+ a, cosnp = 0,
where 0 < ag < a1 < --- < a, has 2n simple roots on the interval (0, 27).

Problem 7.10. Show that if f(z) is analytic and univalent in the domain D
then f'(z) #0 for all z € D.



Chapter 8

Calculation of integrals by
residue theory

8.1 Trigonometric integrals

Suppose that we want to calculate an integral of the form
2m
/ R(cost,sint)dt, (8.1)
0

where R(u,v) is a rational function of two variables v and v i.e.

Zk,l apruFol

> o Dot 07

and the summation in both sums is finite. Due to periodicity (8.1]) is equal to

R(u,v) =

s
R(cost,sint)dt. (8.2)
-7
Consider the unit circle {z : |z| = 1} which is parametrized as (positive orien-
tation) v : z(t) = €', t € [~m,7]. Then

cost—eit—keiit z+1/z 2241

2 2 2z
) el —e™® 2 -1/2 22-1
sint = - = - = -
2% 2 2iz
and ' .
dz = d(e) = e'idt
or

ar=3 &

ielt iz’
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The integral (8.1)) transforms to the curve integral
™ 2 1 2 _ 1\ d -
/ R(cost,sint)dt = /R <z i ,Z - ) —Z :/R(z)dz, (8.3)
- o 2z 2iz iz y

~ 2 2
R(z):_1R<Z +17z 1>

where

iz 2z 21z

is a rational function of only one variable z. This rational function R may have
only singular points which are poles (roots of the denominator of E)

Let us consider the poles of R which are located inside the unit disk {z:
|z| < 1} and denote them as z1, 22, . .., zp,. The residue theorem gives

/ R(cost,sint)dt = / R(z)dz = 2mi) Res R, (8.4)

Z=Z;
—x v = J

Example 8.1. Let us evaluate the integral

2 1
| syt
o O-+2sint
Due to (8.3)) we have

S| 11 dz
O —— dt = ,*722_1 dZ = R
o 3+2sint v 123425 5 27431z —1

where v is the unit circle. The roots of the denominator are

—3iFivb

212 = 5
It is easy to see that |z1| > 1 and |z2| < 1. By (8.4) we get
2m
1 1 1 2
/ oo At =2mRes 5———— =2mi—— - = il
0o 3+ 2sint z=z2 22 + 3iz — 1 2204+ 31 /5

after using also .

Example 8.2. Let us evaluate the integral

2m 1
P [ eyt
o 14 3cos?t

Repeating the same procedure as above we obtain

7 1 1 d 1/ 4zdz
- 7—2 =T ﬁ
iz 2.1 i 3z% + 1024 + 3
Y 14_3(722:( ) ol
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The roots of the denominator are
1 = 1\/§a 2 = _1\/37 z3 = 1/\/57 Z4 = _1/\/§

It is clear that |z1], |z2] > 1 and |z3],|24] < 1. That’s why

I

4z 4z
) 4 4
" (f;gss 5110213 NS T 102 1 3>

4z3 4dzy
o (12z§ 202 | 1220+ 20z4>
—or i/V3 _ i/v3 _
3(i/V/3)3 + 5i/v3  3(—i/v/3)® — 5i/v/3

Problem 8.3. Evaluate
/2” cos(2t)
——dt
o ©—4cost

T sin?t¢
—dt
o ©D+4cost

8.2 Improper integrals of the form ffooo f(z)dx

Problem 8.4. Evaluate

Let f(z) be a continuous real-valued function of z € R. The Cauchy principal

value of the integral
/ f(z)dx

p.V./_: f(z)dz = lim /_Zf(:v)dx

R—o0

is defined by

provided the limit exists. By this definition we obtain

p. V. /OO f(z)dz =0
if f is odd and - -
. V. dez =2 d
pv. [ sz =2 [ s
if f is even.

Theorem 8.5. Let f be analytic for Imz > 0 and continuous for Imz > 0
except for the singular points z1, 2o, ..., 2z, withImz; >0 forallj =1,2,...,n.
If f(2) = o(1/|z|) for z = co,Imz > 0 then

p.v. /00 f(z)dx = 27rizn: Res f. (8.5)
o =

Z2=Zj
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Proof. Let R > 0 be chosen such that all points z1, 23, ..., 2, belong to the
region {z : |2| < R,Imz > 0}. Let v be the union of the line segment [—R, R]
and the upper semicircle I‘J}_fi.

Y

The residue theorem gives that

R n
/Rf(:c)da:—i—/rg f(z)dz = 2771]2;2%? f.
But

f(z)dz

+
FR

/71' f(Reit)Reitidt‘ S /Tr |f(Relt)|Rdt
0 0
_ /7r o(1/R)RAt = op(1)r — 0

0

as R — oo. That’s why

R—o00 z=2z;

R n
lim /R f(z)dx = 27?1% Res f.

Example 8.6. Let us evaluate the integral

] 1 [~ 1
[
o T+l 2 ) oatt1

The singular points of

are
171'/47 _ el77r/4'

Zp — € zZ1 =€ s Z9 =
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It is clear also that Im zp,Im z; > 0 and Im 29,Im 23 < 0. Hence

/OO 1 d i{ R 1 + R 1 = + L
T = 7i es es— | =7 — + —
o rr+1 z=z0 2441 2=z 2441 428 42{’

_ mi (e—3i77/4 4 e—917r/4)

4
i 3r .. 37r+ 9r . . I«
= — _— — — —1 e
cos 1 1sin 1 Cos 1 sin 1
7 L. ™2
= — (—215111 —) = —.
4 4 4

Example 8.7. Let us evaluate the integral
00 4
/ 656 dx.
o T +1

26 4+1

The singular points of

are
2 = e (T/6427k/6) 01, ... 5.

It is clear that only zg, 21 and zo belong to the upper half plane. Thus

0o 44 2 4 ! A 24
de=m) Res—— =mi| -2 4+ L 4 22
/0 b +1 jzo z=2; 26 + 1 (628 6z) 623

_m <1 + 1 + 1) _m (e*i”/ﬁ +e /2y 67157r/6>

6 20 Z1 Z9 6

i T .. T - om . . om
= —(cos= —isin— —i+ cos — —isin —

6 6 6 6 6
:E(—Qismﬁ—i):f.

6 6 3

Problem 8.8. Evaluate the integral

0 .%’2
——dx.
/_oo (@ + 42"

Problem 8.9. Evaluate the integral

o 1
——dx.
/_Oo (x* 4+ 1)2 v

Problem 8.10. Evaluate the integral

/OO b
PV o (2 4+1)



118 Part 11

8.3 Improper integrals of the form [~ e f(z)dx

Theorem 8.11 (Jordan’s lemma). Let us assume that f is continuous in the
region {z : |z| > R,Imz > 0} for some R > 0. If

lim f(2) =0, Imz>0

Z—>00
then
lim e F(O)dC =0 (8.6)
R—00 J|¢|=R,Im ¢>0
for any a > 0.

Proof. Under the conditions for f we have that for any € > 0 there exists R > 0
such that

1f(2)] <&, |z > R,Imz > 0.

We parametrize the semicircle as vy : ((t) = Rel’,;t € (0,7). In that case we
obtain

eiaR(cos t+isint) Rdt

lag ia¢ Q
[e<soa| < [leisonac << |

:gR/We—aRsintdt:28R/W/Ze—aRsintdt
0 0

/2
< 2eR / o aR2t/7 gy
0

since sint > 2t/m for 0 < t < 7/2 and a > 0. The latter integral can be
calculated precisely and therefore

e

/eiaCf(g)dg' <ZEl-eh) <
~ a

a
Since € > 0 was arbitrary we obtain . O

Corollary 8.12. Let us assume that f is continuous in the region {z : |z| >
R,Im z < 0} for some R > 0. If

lim f(z) =0, Imz<0

Z—00

then

lim e F(O)AC =0 (8.7)
R—00 Ji¢|=R,Im ¢<0

for any a < 0.
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Corollary 8.13. Let us assume that f is continuous in the regions {z : |z| >
R,Rez <0} or{z:|z| > R,Rez > 0} for some R > 0. If

lim f(z)=0 or lim  f(z) =0,

z—o0 Re z<0 z—oo Re z>0
then
lim e f(O)d¢ =0 (8.8)
R—00 J|¢|=R,Re ¢<0
or

lim e f(¢)d¢c =0 (8.9)
R—0o0 Ji¢|=R,Re >0

for any a > 0 or a < 0, respectively.

Theorem 8.14. Let f be analytic for Imz > 0 and continuous for Imz > 0
except at the singular points z1, 22, ..., 2z, with Imz; > 0 for all j =1,2,...,n.
If f(2) = 0(1) for z — oco,Imz > 0 then

—00 =25

p.v. /OO e f(x)dx = 2%12 Res(el%* f) (8.10)

fora > 0.

Proof. Let R > 0 be chosen such that all singular points z1, 23, ..., 2, belong
to the region {z : |z| < R,Imz > 0}. Let g be the union of the line segment
[— R, R] with the upper semicircle FE. The residue theorem gives that

n

R
/_R e f(x)dz + /F; e f(2)dz = QWi; ;Pg?s (el ).

Jordan’s lemma (see (8.6))) implies that for a > 0 the integral over '}, tends to
zero as R — oo. Hence, letting R — co we obtain (8.10]). ]

Example 8.15. Let us evaluate the integral

/ * xsinx

5 dx.
0 x +4
Indeed, we have

/ooxsinxd /OO xsinxd 1I /°° xel® d
—dz = V. —dz=—-Im|(p.v. —dz
, 214 PV | g™ T o\ ey

1
2
iz i2i0:
= %Im (27ri Res ez) = 1Im (27rie 21)
1
2

2=2i 22 + 4 2 2-2i
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Example 8.16. Let us evaluate the integral

(0.9}
/ co2s(azc) e
0 xre + 1
Indeed, we have

o) 1 [ee) 1 o] iax
/ Cos(am)dzv 1 p.v./ Cos(aw)dzv — “Re(p. V‘/ S da
o z¢+1 2 oo T2+1 2 N |
1 ) eiaz 1 .eiai T
= 5 Re (2771 52? M) = i Re <27T121> = 56 a.

Definition 8.17. Let f be a continuous real-valued function of = € [a, b] except
possibly the point ¢ € (a,b). The principal value of the integral

/a b f(z)da

pov. / " fa)de = lim { / " f@)de+ i f(x)d:z:]

e—+0

is defined as

if the limit exits.

Example 8.18. Let us evaluate the principal value integral

b
p.v./ dz, a<c<b.
o T—C
By the definition we have

/b dz , [ /H dz /b dx}
p.v. lim +
a T—C e=>+0[/, Tr—c e T—C
b—c

= lim [log|—¢| —log|a — c| 4+ log|b — ¢| — log |e|] = log .

e—+0 c—a

Example 8.19. Let us evaluate the integral

00 -
Sinx
dx.
0 X

*sinx 1 * sinx
/ dr = - p. V./ dz,
0 x 2 oo T

where principal value integral is considered with respect to oo and 0. We have

© din 1 [e'e) eix 1 —€ eiz R eix
p.v./ dz = _p.v./ —dx =+ lim (/ —dzx +/ dx) .
oo T 1 0o T 1 R—00,e—0 _R I c X

We have
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Here we have used the fact that

*® cos
p.v./ :de =0.
T

—0o0

Consider the function

It has only one singular point z = 0. That’s why we consider the closed curve
v=[-R,—e]UTZ Ule, R]UTF,

see Figure below.

T

SOIN

R —<c| e "R

Inside of « the function f is analytic and continuous up to the curve ~.
Using the Cauchy theorem we have

iz —e iz iz R iz iz
0= edz—/ edx—i—/ edz—i—/ edx+/ Cde. (8.11)
~ z _R o z c X FJI% z

The integral over FE tends to 0 as R — oo due to Jordan’s lemma. The integral
over I'_ can be calculated as

iz iz T ieelt: it T
e S e~ lee . : .
/ —dz = _/ —dz = _/ 7itdt — _1/ plecost —esint 3y
r; < r+ 2 0 ce 0

But the last integral tends to —im as ¢ — 0 due to continuity of the functions

et and e~ with respect to € and ¢ € [0, 7].

Letting now € — 0 and R — oo in (8.11]) we obtain

—€ eix R eix
0= lim (/ —dzx +/ dx) —im
R—00,e—0 _R e T
0o eia:
p- V./ —dx = im.
o T

* sinx 1 o0 glz
/ dx:_p.v./ —dx:z.
0 z 2i oo T 2

This integral is called the Dirichlet integral.

or

Therefore
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Problem 8.20. Evaluate the Fresnel integrals

/ cos(z?)dz and / sin(z?)dz.
0 0

Problem 8.21. Prove that

for any a > 0. In particular,

Problem 8.22. Show that

forO<a<1land XA >0.



Chapter 9

Calculation of series by
residue theory

There are two results which may work in applications to the calculation of
number series by residue theory.

Theorem 9.1. Let f(z) be analytic in C except the finite number of points
{2 }JLy with Imz; # 0. Let us assume in addition that f(z) — 0 as [z] — oco.
Then

Y (DFf(k) =) Res ;{1(72 (9.1)
j=1""

k=—00

Proof. For any n € Z large enough and for R > 0 let us consider the curve
(rectangle)

I'nr={2€Cux+iR,zx e [-n—-1/2,n+1/2],
r—iR,x€[-n—1/2,n+1/2],—n —1/2+1y,y € [-R, R],
n+1/2+1iy,y € [-R, R]}

such that all singular points of f(z) belong to intI';, r. Then the function

mf(2)

sin 7z

has the singular points
{2}y, 2 =k k= 0,4£1,£2,...,4n

inside int I';, . Using now the Cauchy residue theorem for this special domain
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intI';, g we obtain

/ B e —omi S Res ) | o Y Res f(2)
r = z=2z;

sinmz 2=k Sin 7wz sinmz
n,R k=—n

n

: mf(k) |~ mf(2)
=2 SRS 2L
m Z mcosTk + z;fwz? sinz

= 2mi Z(—l)kf(k)+z_:1ZRez§ ;ﬁg . (9.2)

k=—n

Now, in order to get (9.1) we need to investigate the curve integral in the left
hand side of (9.2)). This integral can be represented as the sum of the following
four integrals:

/”H/Q 7f(x —iR)dx

L = T T Dy
—n—1/2 sinm(z —iR)

I _/—"—1/2 7f(x +iR)dx

2T nt1j2  sinm(x +iR)

I _i/R mf(n+1/2+iy)dy
5 _p sinm(n+1/2 +iy)

I _i/RWf(—n—1/2+iy)dy
YTy sinm(—n—1/2+1y)

Since

eiwxein _ e—iﬂ'l'e:l:ﬂ'R
2i

|sinm(z £1iR)| =

then for I; and Iy we have the following estimate

HNAES=Y " emiR)e < T F@FiR)|@n+1)
s ~ —5 T 1 XS —% max T 1 n .
! 2 e —n—1/2 + el z€[—n—1/2,n+1/2) +

If we choose R > n and take into account that f(z) — 0 as |z| — 400 (actually
we need here only boundedness of f) then when R > n — oo the right hand
side of the latter inequality tends to zero. Next, since

sin(£7(n+1/2 +1y)) = £sin(n(n + 1/2) Firy)
= £(—1)" cos(iry) = £(—1)" cosh(ny)
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then we have the following estimates for I3 and Iy

i <« [ U2
st ="21 o cosh(my)

<7 max }\ (n+1/2 £iy) ]/

ye[-R,R cosh (my)
< 1/2 —— =0 —
< wyergiag }\ (n+1/2+iy ]/ cosh wy) , N — 00

due to the fact that f(z) — 0 as |z| = 400 and

/ _ody
— oo COsh(my) '

If we let now R > n — oo in (9.2) we obtain that

oo m
0 = 2mi
ADNEINCES ST
k=—o00 j=1
It implies (9.1)) and therefore Theorem is completely proved. O

Remark. Actually some of the singular points {2;}7"; of f(z) may locate on
the real line but such that they are not equal to n € Z.

Theorem 9.2. Let f(z) be analytic in C except the finite number of points
{2 }71 with Im z; # 0. Let us assume in addition that zf(z) — 0 as [z — oo.
Then

o m

Y f(k) == Res (mwcot(m2)f(2)). (9.3)
=17

k=—o00

Proof. Literally the same as for Theorem The only difference is

Resmcot(mz) f(z) = M

2=k ~ (sinmz) |—

= f(k).
O

Remark. Again (as in Theorem [9.1)) actually some singular points {z;}72; of
f(z) may locate on the real line such that they are not equal to n € Z.

Example 9.3. Show that for real a # 0 we have

> 1 s
E m = E COth(T{'G/).
=—00
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Indeed, let

1

This function has two singular points z; = ia and z; = —ia. Then Theorem
gives that

o0
1 7 cot(mz) mcot(mz)
— [ Res 252\2) L Reg 1oATE)
2 e (Res T+ ey T
=—00

_ <7r cot(ria) N 7TCOt(—7TiCL>) _ _WCOF(Wia) _ Ecoth(ﬁa).
ia a

2ia —2ia
Example 9.4. Show that
o0 2
LT
k2 6
k=1
Indeed, let @ = € > 0 and small. Then Example implies that

> 1 1 =1 T
Z P = ?4_227!@2—1—52 = gcoth(ws).
k=—0o0 k=1

So

1 ™ 1 em(e®®™4+1) —e®*™ +1
2; Pt+e2 e coth(me) - 2 e2(e%m —1)

Using Taylor expansion for e near zero we can easily obtain that the limit of
the right hand side of the latter equality is equal to 72/3. Thus

Problem 9.5. Show that
o0
> E T
k=1
Problem 9.6. Show that
o0
> i = o
k::O 2k: +1)* 96

Problem 9.7. Show that



Appendix A

Exercises

1. Find the primitives of the following functions
a) f(z) =sinzcosz b) f(z) =cos’z c¢) f(z) = ze¥
d) f(z) = 2%sinz e) f(z) = zsinz? f) f(z) =e*sinz

2. Let f be analytic in the whole C such that

z+1
z—1

If(z)] <

for all z € C. Prove that f is constant function.

3. Let f be analytic in the disk {2 : |2| < R}. Assume that f is non-constant.
Let us define the function

g(r) = 1|m‘zix|f(z)|, 0<r<R.

Prove that ¢g(r1) < g(r2) whenever 0 < r; < ry < R.
4. Let f(z) = cosz,z € C. Find max,<; |f(2)].

5. Investigate the convergence of the function sequence f,,n = 1,2,... in
the set F C (T(;Zvvhen
a) f(e) = - E={z: el <1} b) fulz) =
Is the convergence uniform in E7?

nz
nz+1

JE={z:|z| > 1}.

6. Find the radius of convergence and disk of convergence for the following

series 3
- 1 k = 1 k = 2.k = k k
a)kZ_OQkHZ b);]{:?(zl) C)kZ_Okz d)kz_:ogkz.

7. Find the radius of convergence for the series

i <1 _11/2>k+1 (2 —i/2)F.

k=0
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Find also the sum of the series.
oo
8. Find the function f(z) = Zkzk for |z] < 1.
k=0
9. Find the Taylor series for f(z) = sin z around the point z = /4.
10. Find the Taylor series for f(z) = (2 — 1)~2 around the point z = 2.
11. Find the order of the root z =0 of f(z) =e* — 1 —sinz.
12. Problem[4:12] Apply this problem to prove that if f is an analytic function
in the unit disk such that
n n
= i =23,...
f<2n+1> f(2n+11)’ A
then £19(0) = 0.
13. Find the Laurent series for f at zg = 0 and investigate the type of singular
point 0 and evaluate the residue, when
1—cosz e
= — b = —
D) f2) = 22 ) f2) = 5
14. Find the Laurent series for f(z) = ——— at 2y = 0.
/() 2z 1)(z+2) 70
2w 1
15. Evaluate the integral / —dt,a > 1.
o a-+cost
* 1
16. Evaluate the integral / — 4=z
0 T + 1
17. Evaluate the integral
oo 3 b
/ e, a,b> 0
s ¥t a
18. Evaluate the integral
/°° rsinz
o X2
19. Evaluate the integrals

® sinx > cosz
dz, dz,
o T — W o T — W

where Imw # 0.
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20. Evaluate the series

o) _1k
>
k=1

21. Evaluate the series

|
R\ {0}.
k:ZOOkHG, a € R\ {0}
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Chapter 1

Conformal mappings

We return now to the geometrical properties of non-zero derivative. Let f be
analytic in the domain D and let zg € D be an arbitrary point. If f’(z9) # 0
then this is equivalent to (see Cauchy-Riemann conditions)

ou\? ov\? Oudv  Oudv
f'(20)]* = { 5~ — ) =———-—_—>0.

ox ox oxdy Oy ox
It means that the Jacobian of the transformation from (z,y) to (u,v) is non-
zero at (zg,yo) and thus in the neighborhood of (ug,vo) = (u(xo,y0), v(z0, Yo))

there exists an inverse function z = z + iy = f~!(w),w = u + iv such that
z = f~Yw) is analytic at wo = ug + ivg and

1 / 1
(17" ) (w0) = 7.
This fact can be interpreted as follows: in the neighborhood of zg the function
w = f(z) is univalent and analytic. But this property is local (as we can see).
Another geometric property of analytic function with non-zero derivative is
the following. Let f be analytic in the domain D and f’(zg) # 0 for zg € D.
Consider two arbitrary curves ; and 9 on the z-plane which intersect at the
point zg. Assume that the angle between v and o at zg is w9 — @1, and the
angle between I'; and I'y at wg = f(zp) in the w-plane is equal to ¢2 — ¢1, where
I'; is the image of ; under the mapping f for j = 1,2, see Figure below. If
z1 =20+ Az €y and 29 = 29+ Azg € 9 then f(21) = f(z0+Az1) = f(z0) +
Afi = wo+Aw; € 'y and f(22) = f(20+Az) = f(20)+Af2 = wo+Aws € I'y.
Moreover,

Aw1
li = 1l Awy — arg Az1] = ¢1 —
Al Ry T Al At m e Aa) = 01—

and A
. w3 .
Azlggoarg Az A;go[arg wa —arg Az = 62 = 2
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By the existence of f’(z9) # 0 and due to the independence of this derivative
with respect to direction we obtain

b1 — 1 = g2 — 2 = arg f'(20). (1.1)

So, we may conclude that the transformation w = f(z) preserves the angles
with respect to orientation and magnitude. In addition, since f’(zp) # 0 then

|Aw| = k|Az] +o(|Az]), k= |f(20)l, (1.2)

i.e. there is the factor of stretching in all directions.

It is also proved earlier (see Problem of Part II) that if f is analytic in
the domain D and univalent there then f’(z) # 0 for all z € D.

These properties justify the following definition.

Definition 1.1. The mapping f : D — C is called conformal at zg € D if it
preserves the angles and the factor of stretching at this point. If f is conformal
at each point in D then f is called conformal in D.

There is a very deep connection between analytic functions and conformal
mappings.

Theorem 1.2. The mapping f: D — C is conformal in D if and only if f is
analytic and univalent in D.

Proof. Let f be analytic and univalent in the domain D. Then applying Prob-
lem of Part IT we conclude that f’(z) # 0 everywhere in D. Hence, see
and , f is conformal at each point z € D and therefore it is conformal
in D.

Conversely, let zp be an arbitrary point in D and let wg = f(zp). By the
conditions of this theorem we have

arg(we — wp) — arg(wy — wg) = « + o(max(|wy — wyl, jwe — wpl))

and

arg(ze — 2z0) — arg(z1 — 2z0) = a + o(max(|z1 — 20l, |22 — 20])),
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where a = @9 — 1 = ¢9 — @9, see Figure above. Moreover,

|wa — wo |wi — wol

=k+o(1), =k+o(1
2 — 20l (1) o — 0l (1)
as |zo — 20, |21 — 20| — 0. These equalities imply that
D270 _ kele + o(1), Y0 _ kele + o(1),
22 — 20 21— 20
where (since « is the same in both equalities)
wg — W wy — w
arg ——— = o +0(1), arg——— =+ o(1)
22 — 20 21— 20

as |z2 — zol,]21 — 20| — 0. Since 7; and 79 are arbitrary then zo and z; are
arbitrary too. Hence we may conclude that there exists

lim f(Z) — f(ZO) _ kei(p _ f,(ZO)7
Z—20 Z— 20
and f'(z0) # 0 (or k # 0) i.e. f is analytic and univalent in D. O

Remark. Theorem [1.2] says that univalent functions and only they realize con-
formal mappings.

The next important property of conformal mappings is contained in the
following theorem.

Theorem 1.3 (Boundary correspondence principle). Let D be simply connected
domain with the boundary 0D which is a closed curve 7. Let also f € H(D)N
C(D). Assume that f maps v to the closed curve I := f(7) bijectively with the
same direction of the circuit as for v. Then f : D — int1' is surjective and
conformal.

Proof. Due to Theorem it suffices to show that f is univalent in D and
f maps D onto int~y. Let us consider two different points w; € intI" and
wy € C\ intI" and two different functions

Fl(z) = f(Z) — w1, FQ(Z) = f(Z) —wy, ZzE€ D.

If z goes over 7 then w = f(z) goes over I' and the direction of the circuit over
these curves are the same. Thus, using the principle of argument (see Theorem
of Part II) we obtain that

1 1
— VarArg Fi(z) = N(F1) =1, — VarArgFs(z) = N(F3) =0,
2 v 2m v

where N (F;) and N(F») denote the number of zeros of F} and Fj, respectively.
It means that for any w; € intI" there is only one point z; € D such that
w1 = f(z1) and for any we € C\ intT there are no points z € D such that
wg = f(z) i.e. f maps D onto int " and it is univalent in D. O
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There is one more important property of conformal mappings: Schwarz
reflection principle (or Schwarz symmetry principle).

Definition 1.4. Let D C C be a domain. The set
J(D)={(eC:(=%z2€ D} (1.3)
is called the conjugate domain.

This definition implies that J(D) is a domain and that if f(z) is analytic
in D then g(z) := f(%) is analytic in J(D). Indeed, since f(z) is analytic in D
then for each zg € D the Taylor expansion holds i.e.

z) = iaj(z —z20), a; = f(j;(!zo)

for |2 — 20| < R with R = dist(z9,0D). Thus, if ¢,{yp € J(D) then (,{y € D

and -
O=> a;((—C
=0
or

ZCTC ¢o)’
=0

i.e. g(¢) is analytic too.

Theorem 1.5 (Schwarz reflection principle). Let D be a domain in the upper
half of the complex plane whose boundary includes an interval I := (a,b) of the
real azis. Let f € H(D)N C(D). Suppose that f(x +i0) is real for all x € T
and define the function

7@, zec D).
Then F' is analytic on DU T U J(D).

Proof. Since f(z) € H(D) and f(Z) € H(J(D)) then it remains to show that
F(z) is analytic at each point zp € I. First we check that F(z) is continuous
everywhere in DUIUJ(D). Continuity of F'in DUI follows from the conditions
of the theorem. The definition of F' and the real-valuedness of f(x + i0)
imply that

Pz) = {f@% zeDUI 14

F(z —i0) = f(x —i0) = f(z +10) = F(z +10).
This proves that F' is continuous. Next, we introduce the closed curves
"= {¢:|¢ = 20| = 6,Im ¢ > 0} U [21, x2)]

and
T ={C:|¢— 2| =6,Im( <0} U [z, 2]
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By Theorem in Part I we obtain

! QK _ L, [ HOEK, L, [ HOK

277Ti |¢—20|=0 C — 20 27 i C— o

C—ZO 2mi

= SF(e+10) + 3 F(x —i0) = f(z).

Hence, the Cauchy integral formula yields that F' is analytic also at x. O

Problem 1.6. Suppose that f(z) = >°72, ajz’ and this series converges for

|z] < r and f is real for z € (—r,r). Show that all a; are real and f(z) = f(%)
for all |z| < r.

There is a key question at this point: Is there, in fact, a conformal mapping
from a given domain D to some other domain, for example, unit disc? The
theoretical answer is the celebrated Riemann Mapping Theorem which we give
without a proof.

Theorem 1.7 (Riemann). If D is any simply-connected domain, not equal to
the whole complex plane C, then there exists a conformal mapping of D onto
{w : |w| < 1}. This mapping is uniquely determined by the value f(zp) and
arg f'(z0) at one arbitrary point z9 € D, for example, by the values f(z9) = 0
and f'(zp) > 0.

Remark. The assumption that the domain D is not equal to the entire complex
plane C is essential. Indeed, if we assume that there exists a conformal mapping
f(2) of the complex plane C onto the unit disc {w : |w| < 1} then f(z) is
bounded entire function. Hence, due to Liouville theorem f = constant and
f'(2) = 0. The same is true if D = C \ {z9} with some fixed point zy € C
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since zp is a removable singularity for f(z), therefore again f(z) = constant
and f'(z) = 0. That’s why the equivalent formulation of the Riemann Mapping
Theorem includes the assumption that the boundary of D C C has more than
two points.

Example 1.8. Let f(z) = e'a?, a > 0. Then f maps {z: 0 < Rez < a} onto
{w : Jw| < 1} conformally. Indeed, if z = x 4 iy,0 < z < a then

N Caim oz T N
ela(fv+1y) — e aYe'a? = e Y (cos —a:+1sm—:z:)
a a

so that [f(z)] = e"«¥ € (0,400) if y € R and arg f(z) = 2r € (0,m) if
0 < z < m. Since in addition f/(z) = igeigz # 0 for all z and f is one-to-one
transformation, then f is conformal.

Example 1.9. Consider a linear-fractional transformation

az+b
w=f() =0 ad-tet0, cf
We call it a non-degenerate (or regular) linear-fractional transformation. This
transformation is well-defined and analytic everywhere on C \ {—d/c}. Its
derivative is equal to
ad — be _ bc—ad

f/(Z) = mv z 7é —d/C, f’(OO)

c2

and it is not equal to zero everywhere on C\ {—d/c}. We know that f maps
C onto C bijectively (see Example of Part I). So f is conformal. Let us

represent it in the form

ASEZ g £ ()
f(z)—{ﬁz " (15)
ﬂ_l’_Z? - M

where A = a/c,aa =b/a and f=d/cifa# 0and A =b,5 =d/cif a =0. The
following theorem holds.

Theorem 1.10. If z1 # 29,29 # 23,21 # 23 and wy # wa, W2 # W3, W] # W3

then the correspondence
Zj —r Wy, 7=1,2,3

defines uniquely a mon-degenerate linear-fractional transformation (a # 0).
Moreover,

Awy — Buny Bwiz9 — Awgzy Bzy — Az
A= ————— = = — 1.6
A-B YT Aw—Buw  PT a-B (16)
where
A= w1 ws B— Z1 z3

’LUQ—’U)3’ 22—23‘
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Proof. Using (1.5 for a # 0 we have

(21 — z3)(a = B)

(22 —23)(B—«q)

w1 — w3 = Wy — W3 = A

(B+21)(B+23)
Here 8 # « since ad # be. These equalities imply that

w1 — w3 721—235—0—2’2
wo — W3 22—23/8+Zl

or
w1 —W3 22—23 A
5 z9 — Z17w27w3 =23 Z9 — §2’1 BZQ — A21
w1 —ws 22—23 A _
13228 ] 51 A-B

W2—wW3 21—23

It proves (1.6)) for 8. Next,

wl:)\a—s—m Wy — a+ 22
B+ 2z’ B+ 2
imply that
wy  a+tz B+ 2z
wys Bz a+ 2z
or

(B+22)(B+23)

B QU2Z1(B + 22) — wle(ﬁ + 2’1) B Bwizo — Awazy . Awgz1 — Bwizo

w1(6+z1) —WQ(,B+ZQ) N Awy — Bwy N Bwi — Aws

This proves ([1.6|) for . Finally,

Bzo—Az _
A= w1 (B +21) wl( A=B +Zl) _ wy 222 _ Awy — Buy
- — Awsz1—Bwize ~ Bwiz1—Bwiza _
a+z Bwi—Aws +2 Bwi—Aws A B

proving the claim for A. The formulae ((1.6) show that «, 5 and A are uniquely
determined by the correspondence z; — wj, j = 1,2, 3 if z; and w; are mutually

distinct points.

Corollary 1.11. If we denote

w::f(z)—)\a+z

T a70

then Theorem says that

w) — w3 w; —w 21 —Rk3 21— %

Wo — W3 Wy —W  z9 — 23 29— 2

O]
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Proof. As it is proved in Theorem [1.10

wl—’w3_Z1—Z3B+Z2

Wy — W3 Z2—235+21.

Similarly, if w # wy, w # we and z # 21, 2 # 22, we obtain

wy —w 21— 20+ 2
we —w 29— zf+ 21

Hence, (|1.7)) follows straightforwardly from the latter equalities. O

Corollary 1.12. For the case a =0 (b # 0 necessarily) instead of three corre-
spondences it is enough to have only two different points z1 # zo and wy # wo,
respectively with wy # 0 and wy # 0. In that case, see ((1.5)),
8= w121 — w22’2’ \— wiwz (21 — 22)‘ (1.8)
w2 — W1 w2 — Wy
Problem 1.13. Show (|1.8) for the case a = 0,b # 0,¢ # 0 in the non-

degenerate linear-fractional transformation.

Example 1.14. Let us find w = f(z) which is a conformal mapping of the unit
disk {z : |z| < 1} onto the domain {w : Imw > 0}. Let z; and w; be as in the
Figure below.

By Theorem [I.10] and Theorem [1.3] we have
0—c0 0—w 141 1-2

l—c0 1—w i+1 i—-2"

So )
1—w 2 z-—1

w i+ 1lz-—1

or
~£Z—1

E ‘
z+1

w=e
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Problem 1.15. Using Example show that

z4e /2

T e—im/2 _
maps conformally the domain {z : Im z > 0} onto the unit disc {w : |w| < 1}.

Problem 1.16. Show that

Z— 20

w=f(z) =

zzg— 1

maps conformally the unit disc {z : |z| < 1} onto the unit disc {w : |w| < 1}
such that an arbitrary point zg, |20| < 1 is transferred to wy = 0 and « is an
arbitrary real parameter. Show that if arg f’(z) is prescribed then « is uniquely
determined.

Problem 1.17. Show that a non-degenerate linear-fractional transformation
maps lines and circles on the extended complex plane onto lines or circles.

Problem 1.18. Find the conditions on 0 < 71 < 79 and 0 < R; < R which
guarantee the existence of the conformal mapping of the annulus {z : r1 < |z| <
ro} onto the annulus {w : Ry < |w| < Ra}.

Example 1.19. Consider a non-concentric ring (annulus), i.e. the set which
is formed by two circles {z : |z — a1| = R1} and {z : |z — a2| = Ra} such that
0 < Ry < R; and the first circle is located inside of the second one. We assume
without loss of generality that a; and ag are real, see Figure below.

Y

The task is to map conformally this annulus onto the domain {w : Imw >
0}. Let now a and b be two real numbers such that they are symmetric with
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respect to the first and second circle at the same time, i.e. they satisfy the
equations

(a—a1)(b—a)) =R?, (a—az)(b—as) = R3. (1.9)

Solving these equations we can easily obtain a and b uniquely (a < b). Then
the map
z—a

z—0b

w1 =

transfers conformally given non-concentric ring to the concentric one centered
at 0. Indeed, if z — a7 = R1e'%? then

z—a (z—a)—(a—a1) Rie¥—(a—ay)

z—b (2—ay)—(b—a1) Ryele — Li5i
a—ai

w1 =

_a—ap Rie'? — (a — aq)

~_ele,
Ry (a—aj)— Rie™ ¥
This equality implies that
| ’ a — ay a — ay
w1 = = =T
|z—a1|=R1 Ry Ry
Similarly we obtain that
’ ‘ a — ag a — ag
wy = = =:79.
|z—a2|=Ra2 R2 R2

Let us note that for 0 < Ry < Ry it follows that r9 < r1 since b > a. The next
step is: we consider

wy = log w1

with the main branch of logarithm. Under this transformation this symmetric
(or concentric) annulus is transferred conformally to the set

{ws : logre < Rewy < logr}.

Using now Example we may conclude that the required conformal mapping

is given by
a
—1
 —ogn )

Example 1.20. Let us find the conformal mapping of the crescent shape (lune)
formed by two arcs of two different circles.

z

i— -
w = e log(r1/72) ]og
z —

where a and b are from (1.9)).
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We consider first
z—a

w = —
z—0b’

where a and b are the two intersecting points of these circles. Then this confor-
mal mapping transfers this lune to the angle of span « (this angle is the same
as for lune due to conformality), with the vertex in the origin.

1

AANALAANNNANNANN NN

Uy

Indeed, if z = ppe'?, g < ¢ < ) for the part of the first circle in the
boundary of the lune and z = p1e'¥, p; < ¢ < ¢} for the second circle then

zZ—a B p0e190 — poeiSOO _ eiSO — ei‘PD
2=b|,peie  poel® — poel®o el — %o
_ ooy €TI0y sin(e = 90)/2.
el(—90)/2 _ o—ilp—¢p)/2 sin(p — ¢})/2
Similarly
Z-a _ oileri—pp)SIN(P — 91)/2

2= b sin( — 9})/2

Z=p1 ei‘P
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These formulae show that the arcs are mapped to the rays starting from the
origin because
U1

U1
— =tan(po — ¢p), — = tan(pr — @),
U1 Uy

respectively for these two arcs. Next,

Wy = e*i’Bwl
maps conformally the sector {w; : f < argw; < a + [} to the sector {ws : 0 <

arg wy < ac}.

Finally,
. T/
w = w;r/a = (eiﬁz a)
maps conformally the latter sector onto the domain {w : Imw > 0}. Indeed,

/o log |wa|+iargwa) _

w=wh'" = eg( _ eig argwgeglog|w2|‘

This is equivalent that argw = T argws € (0,7), and Rew € (—o0,00), Imw >
0. Here we have used the boundary correspondence principle.

Problem 1.21. Show that the Zhukovski function
1 n 1
w=~=z+—
2 z

1. {z:]z] <1} onto C\ [-1,1],

maps conformally

2. {z:]z] < 1,Imz < 0} onto {w : Imw > 0} and
3. {z:|z] > 1} onto C\ [—1,1].

There is an application of conformal mappings also in the theory of partial
differential equations.
Let D be a simply-connected and bounded domain on the complex plane C.

Definition 1.22. A function G(z,() is said to be Green’s function for the
Laplace operator A in the domain D if the following conditions are satisfied:
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G(2,¢) = gz log|z — (| + g(2,¢) for z,( € D
2. ALg(z,{)=0for z,( € D
3. 9(z,¢) = —%log\z—d for z € 0D, € D.

Remark. This definition implies (in particular) that G(z,¢) = 0 for z € 9D and
ceD.

With the Green’s function in hand, the solution of the inhomogeneous bound-
ary value problem
Au(z)=F(z), z€D
u(z) =up(z), =z€0D

is given by the superposition principle as

/ G(z ¢)dédn + / ¢)da(&,m),

where z = x +iy,{ = £ 4+ in and 39, is the outward normal derivative with
respect to ¢ on the boundary 0D.

Using the principles of conformal mappings we may construct the Green’s
function for arbitrary simply-connected bounded domain D. Indeed, let ¢ be an
arbitrary fixed point from D. Let h(z, () be a function which maps conformally
D onto the unit disc {w : |w| < 1} such that h(¢,{) = 0. This function exists
due to Riemann Mapping Theorem (see Theorem [1.7). Moreover, h.(z,() # 0
for all z € D (see Theorem [1.2] of this Part and Problem [7.10]of Part II). Hence,
h(z,¢) has a zero of order 1 at z = (. This fact allows us to represent h(z,()
in the form

It implies that

1 1
ﬂlogm(%C)’ - %log|z - q —l—g(Z, C)v

where g(z,() = 5= log [¢)(2, ¢)|. We prove that

G(=:€) = 5 log Ih(=, )|

is the Green’s function for A in D. Indeed, since h(z,{) € H(D) (¢ is a
parameter) and h’,(z,() # 0 for all z € D then ¥(z,{) # 0 for all z € D and
analytic there. Thus g(z,() = 5= log |¥(2,()| is harmonic in D (see Problem
of Part II). Next, since |h(z,()| = 1 for all z € 9D and for all ¢ € D (see
Theorem then

1
g(Z,C):—%lOgVJ—C’, ZeaDvCGD-

This proves that G(z, () is the needed Green’s function.
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Problem 1.23. Show that the Green’s function for the unit disc is given by

1 z—C
G(z,() = —log | —
(2,¢) = 5 log|~ -
Hint: Use the fact that a non-degenerate linear-fractional transformation
z—C
w=—= . IC )zl < 1
z(—1

maps conformally unit disc onto itself such that w = 0 for z = (.

Problem 1.24. Using Problem show that the Green’s function for simply-
connected bounded domain D can be written as

where g maps conformally D onto the unit disc.



Chapter 2

Laplace transform

Let f be a function (possibly complex-valued) of one real variable t. We denote
by F7 the class of functions (and write f € F1) which satisfy the conditions

1. f(t)=0,t <0

2. f(t) is continuous for ¢t > 0

3. there exists M > 0 and a > 0 such that |f(t)| < Me* for any t > 0.
The value s := inf a is called the growth index of f.

Problem 2.1. Show that if the growth index of f € F7 is equal to s > 0 then
the growth index of t# f(t) for any p > 0 is also equal to s. In particular, the
growth index of t* for any p > 0 is equal to zero.

Definition 2.2. Let f be a function from the class F*. The Laplace transform
of f, denoted by L(f)(p) is defined by

L)) = [ e pec (2.1)

0

Theorem 2.3 (Existence). Suppose f € F with growth index s > 0. Then
the Laplace tranform L(f)(p) is well-defined analytic function in the domain
{p € C:Rep > s}. Moreover,

lim L(f)(p) =0 (2.2)

Rep—+o0
uniformly with respect to Imp € R.

Proof. Let p=xz+iy and f € F" with growth index s > 0. Then for any ¢ > 0
there is M. > 0 such that |f(¢)] < M.e(t9)! ¢ > 0. It implies for any fixed
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x = Rep > s that

|£uxm|<Léme*ﬂwﬂﬂway<ﬂmeﬂﬂﬂwMt

M

gm/eﬂ+%mw:<m>
0 X

—s—¢
if € is chosen such that 0 < e < & — s. This proves well-posedness of (2.1 for
Rep > s. In addition, (2.3)) shows that the integral in (2.1)) converges uniformly
for all z = Rep > sg > s. Let us prove now that £(f)(p) is analytic in the
domain {p € C: Rep > s}. If pp and Ap are chosen so that Re po, Re(po+Ap) >
s then

L(f)po+Ap) = L)) [ _pot prn€ P =1
= e POt f(t) ————dt.
Ap 0 Ap
But it is known that
e APt 1
lim ——— = —t.
Ap—0 Ap
Due to this fact, Problem and the fact that the integral in (2.1) converges
uniformly for Rep > sg > s we may consider the limit Ap — 0 under the
integral sign. Hence we obtain the existence of the limit

- L(f)(po+Ap) — LIS po) _ [ |
Aim Ap = / TS Jim ———dt

_ /0 et ()t = —L(LF) (o).

The latter formula proves the analyticity of £(f)(p) for all Rep > s and also
the equality

L(tf)(p) = —(L(f)) (). (2.4)
Finally, follows from ([2.3]) straightforwardly. O

Corollary 2.4. Formula can be generalized as
LA M) = VL)W @), n=12.... (2:5)

Proof. Follows from (2.4 by induction using the fact that any analytic function
is infinitely many times differentiable. O

Example 2.5. Let us show that

n!
L(t")(p) = SOSE Rep >0 (2.6)
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for any n = 0,1,2,.... Indeed, Problem gives that for each n = 0,1,2,...
the growth index of t" € F* is equal to zero. Formula (2.5) yields

L)) = (L)) = (-1 [ = (s
(—=1)"n! n!

= (_1)" pn+1 = pn—l—l

for Rep>0and n=0,1,2,....
Problem 2.6. Generalize (2.6) and show that, for v > 0,

y I'v+1
L(t")(p) = (p”H)’ Rep >0,

where T is Euler’s gamma function and p”*! is the multi-valued analytic func-
tion given by

v+1 v o vlo _ v[lo +iAr _ v iv Ar
p = pp¥ = pe”’ 18P = pe (log [p| g p] = plp|’e gp.

Example 2.7. Let f € F' and f(t) = e**,t > 0 with Rea > 0. Then, by
definition,

o 1
L(e™)(p) = / e~ P=tqt = ——— Rep>Rea (2.7)
0 p—a
is well-defined in the domain {p : Rep > Rea}. In particular, for real w we
have

. 1 w
L(e“h) = L(sinwt) = ——
(€*7) PR (sinwt) ol

L(coswt) = (2.8)

p2 +w2
for Rep > 0.

Remark. For Rea < 0 we have [e®!| < 1 for ¢t > 0 and therefore the growth
index is s = 0. In that case (2.7)) holds for Rep > 0 (even for Rep > 0).

Problem 2.8. 1. Show that if f € F* is periodic with period T > 0 then

1 T
L(f)(p) = 1—ePT/0 e P f(t)dt, Rep > 0.

2. Show that if a > 0 then
a _p

ol L(cosh(at)) = T2

L(sinh(at)) = 5 5

for Rep > a.
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3. Show that if @ > 0 then

r <smh(at)> _ }logp—i_ a
t 2 p—a

for Rep > a.

4. Show that if f,g € F' and tf(t) = ¢'(t) then
LW = | 2Ll
P

where the integral on the right hand side is a primitive (with minus sign)
for the analytic function 2£(g)(z). In particular,

L(tf)(p) = L(g) () = —(L(f)) (p) = pL(g)(p).

5. Show that if f,g € F* and f(t) = [ g(7)d7 then

L(f)(p) = ;E(g)(p), Rep > 0.

Definition 2.9. Let f1, fo € F. The convolution g := f1 x fo = fo* f1 of fi
and fo is defined by

o(t) = /0 f1(7) falt — 7)dr = /O fo(n) fi(t — 7)dr. (2.9)

Remark. The growth index of g = fy * fo is max(sy, s2), where s; and s9 are
the growth indices of fi and fa, respectively.

We collect some properties of the Laplace transform in class FT in the

following theorem.

Theorem 2.10. 1. Let fi, € FT with growth indices s, > 0 fork =1,2,...,m.
Then f(t) := > peq cufr(t), ci € C belongs to the class F+ with the growth

inder s = max(sy,...,Sy) and
L(f)(p) = chﬁ(fk)(p), Rep > s.
k=1

2. Let fi and fa have growth indices s1 and so, respectively. Then g =
f1 % fo € FT with the growth index s = max(s1, s2) and

L(g)(p) = L(f1* f2)(p) = L(f1)(p)L(f2)(p), Rep>s. (2.10)
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3. Let f € Ft with the growth index s and let f € C™][0,00). Then
L(f™)(p) exists for Rep > s and

L)) =p" |L(Hp) = == = = | (2.11)

4. If f € F* with the growth index s > 0 and X € C then
LEe M) =L(f)(p+A), Rep>max(0,s—Rel). (2.12)

Proof. 1. Follows from the linearity of integral and from the fact that for
two functions fi; and fo with growth indices s; and so the growth index
of the sum f; + fo is max(sy, s2).

2. By the definition of convolution we have for € > 0 small enough that

_ M(l)M(2)6(52+E)t6(81—82)t -1
¢ S1 — 892
s1+e)t sa+¢€)t
— MO MO (1ot _e<sa+e>t); MO M(2>e( O oot
£ £ 81—82_ £ € |81—32‘

for s1 # ss. This shows that the growth index s for g is equal to
max(sy, s2). Next, for Rep > s we have that

o) = [ e ( / A t_T>dT> at
/ fi(r / e P fo(t — 7)dtdr
- /0 f1(7) /0 e PE) £y (€)dedr

_ / e fi () / e py()dedr = LU )L (0).
0 0

We have used here Fubini’s theorem and the fact that Rep > s =
max($1, s2). For the case s; = s9 the proof is similar.

3. We proceed by induction with respect to n. For n = 1 we assume that
f € FT with growth index s and f’ € C[0,00). Then for Rep > s we
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obtain formally by integration by parts that
L) = [ e
0
— | 4 [ (0t = ~£0) + P,
0

The right hand side exists and is finite due to the fact that f € F* with
growth index s > 0 and Rep > s. This proves (2.11)) for n = 1. Let us
assume that (2.11)) holds for any n > 1. Then by induction hypothesis we

may write
(n—1)
— ™ (0) 4 p <p" [ﬁ(f)(p) - fg’) S fp;@)])
(n)
= [E(f)(p) - ff) o fpn +@] |

This proves (2.11]) by induction.

4. If f € F™ with growth index s then for any ¢ > 0 there is M, > 0 such
that

e f(8)] = e (1)

—Re A
< Moelsto)t—tReX < pp elsteReNE s > Re
B B et s < Re.

This means that the growth index for e f(t) is equal to s, := max(0, s —

Re ). Next,
L F (1) (p) = /0 T e ()t = £(£(8) (p + N
for Rep > sj.

O]

The next result shows how we can recover the original function f € F7 if
its Laplace transform is known.

Theorem 2.11 (Mellin’s formula). Let L(f)(p) be the Laplace transform of
f € F* with growth index s > 0. Then

Rep+iA
10 = tim oo [ et

A—4o0 27 Rep—iA
1 Re p+ico

= P L(f)(p)dp = LTHL())(B), (2.13)

27 Rep—ico



152 Part I11

where the integration is carried out over the line for fived Rep such that Rep > s
and where L~ denotes the inverse Laplace transform.

Proof. Let us define
p(t)=e"f(t), a>s.

Since x > s then for any 0 < ¢ < x — s we have
lp(t)] < Mee™ (7579,

It means that ¢ tends to zero as t — +o0 exponentially and ¢(t) = 0 for ¢t < 0.
Using now the Fourier inversion formula

1§(t M dnd
27‘(’/ / ndg
we obtain

0 =g [ [ et e

1 / / @+ £ o€t dde = / L(f)(x +i&)e'dE.
So

o0 r4ico
0 =5 [ LD+ g = o [ () +igel M age)

27Tl —ico

where the integral is understood in the sense of principal value at infinity (as
in Fourier inversion formula). This proves (2.13]). O

Remark. Formula (2.13)) shows that the result of inversion is actually indepen-
dent on Rep if Rep > s.

Example 2.12. Let us evaluate the inverse Laplace transform of the function

1
p(p?+1)
Using (2.10) and Examples and we have
1 1 1 t2 t2
= — =L —=)L(sint) =L | — *sint ).
pp*+1)  pPpi+l <2> (sint) (2*Sm>

Therefore

Rep > 0.

1 t 7_2 t2
L_l <p3(p2-{—1)) :/0 ?Sin(t—T)dT:5—|—COSt—l.
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Example 2.13. Let us evaluate the inverse Laplace transform of the function

p
(p+a)(p+0)

Let us first assume that a # b. Then the Mellin’s formula reads as

a,beC.

( ) 1 Re p+ioco ot P
Flt) = — N SR—
27 Rep—ico (p + a) (p + b)

Using now Jordan’s lemma in the left half plane (see Corollary in Part II),
where Rep > —Rea,Rep > —Reb and Rep > 0 we obtain

pept pept be—bt — qge~

=R vy TR pr o h - b-a

Imp

]

Rep

Rep

For the second case a = b we may proceed by the same manner or use
limiting process b — a in the latter formula to obtain that

t) = e ¥ — qte .
f@)

Problem 2.14. Using Mellin’s formula find the inverse Laplace transforms of
the following functions:

1. F(p) = p%_l,Rep >1

3. F(p)zw,0§a<b,l{ep>0

4. F(p):%,0§a<b,Rep>0
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5. F(p) = log%,a # b, Rep > max(0, — Rea, — Reb)

6. F'(p) =plog p2p_2a2’a > 0,Rep > 0.
Problem 2.15. Show that

LHFG)=LYF)xL(G),
where F' and G satisfy all conditions of Theorem [2.11

The next theorem (given here without proof) characterizes the set of an-
alytic functions that are Laplace transforms of some function from the class

Fr.

Theorem 2.16. Let F(p) be a function of complex variable p which satisfies
the conditions:

1. F(p) is analytic for Rep > s >0
2. limp 1 F'(p) = 0 uniformly in argp with Rep > s

3. for any x > s we have
[o.¢]
/ |F(z +1iy)|dy < oo.
—o0
Then for any fired Rep > s there exists the limit

1 Rep+iA "
Ii — eP*F(p)dp =: f(t
Asstoo 27 /Repi N (p)dp =: f()

such that F(p) = L(f)(p).

We consider now applications of Laplace transform to differential equations
with constant coefficients and to some class of integral equations. Let us con-
sider the initial value problem (or Cauchy problem) of the form

aoy™ @) + a1y " V(@) 4 -+ any(t) = f(£), t>0
¥(0) = y0,5'(0) = y1, ...,y V(0) = yn_1,

where a;,y; are given complex constants (ag # 0) and f is a given function.
The task is to determine y(t). Due to linearity of this problem can
be represented as the sum of two separate problems: (a) with homogeneous
equation (f = 0) and (b) with homogeneous initial conditions (y; = 0). Next,
in order to solve problem (a) it suffices to find the fundamental system of
solutions i.e. the system {¢;(t) ?:_& such that

(2.14)

a0§0§n)(t) + alsogn_l)(t) + -4 an@](t) = 07 ] = 0, 1, NN 1
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with
(k) 1, k=
2 0) = 2.15
A0) {Q oy 2.15
for k=1,2,...,n — 1. In that case the solution of (a) is given by
n—1
u(t) =Y yie;(t), (2.16)
j=0
where the constants y; are from (2.14]). Since we know that, see (2.11]),
(k—1)
k ;(0) v, (0)
5(805' D) =" |Ei(p) - Jp - ]T , Fy=L(g;)
then (2.16)) implies
P"Fj(p) k<
L)) = o (217)
! PFIF;(p) — 1]: k>j.

Using (2.17) and applying the Laplace transform to the homogeneous equation

from ([2.14]) we obtain

aop" [Fj@) } T agpn! {Fj(p) . ,1} .

pj+1
]mnMFu tanF5(p) = 0.

1
pj+1
j+1 1
+an—j—1pj F}(p) p]+1
This equation can be rewritten as

Q;(p)
P.(p)’

where P,(p) = agp™ + a1p” ! + - - - + a, is the characteristic polynomial of the
differential operator from (2.14) and

F(p) = =0,1,2,...,n— 1, (2.18)

Qj(p) = ap” Tt apV T4+ 4 an—j—1, j=0,1,....,n—1. (2.19)

To solve (2.18)) with respect to L~1(F;j(p))(t) we apply Mellin’s formula for fixed
Rep > s, where s > 0 is to the right of all singular points of Q;(p)/Pn(p). We

obtain Renti
L e p+ioco ept Qj (p)

B 2mi Rep—ico Pn(p)
Jordan’s lemma in the left half plane gives

Z Res (ept %ng 3) : (2.20)

dp.

p=p1
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where p;,l =1,2,...,m are the singular points of Q;(p)/P,(p). Now the prob-
lem (a) is solved by (2.16) and ([2.20]).

For solving the problem (b), i.e. the problem (2.14) with non-homogeneous
equation (f # 0) and with homogeneous initial conditions (y; = 0) we use

([2.11)) and easily obtain

where P, is a characteristic polynomial and v is the solution of the problem.
Applying Mellin’s formula gives

ot) = = /Rep““’eptﬁ(f)(p)dp,

. 2.21
27 Rep—ico Pn(p) ( )

where fixed Rep > s > 0 is to the right of all singular points of L(f)(p)/P.(p).

Formula (2.21)) can be simplified as follows. Since ag # 0 then by (2.19) we
have

_ iQn—l(p)
agp Pn(p)

— aloﬁ(gon_l)ﬁ(f)(p) = aloﬁ(cpn_l « [)(p)s

L(f)(p)

where ;1 is defined in (2.20)). The inverse Laplace transform yields

o(t) = + /0 o1 (D)t — 7)dr (2.22)

ao

Combining (2.16) and (2.22)) we see that the of solution ({2.14)) is given by

n—1 t
y(t) = u(t) + o(t) = 3 res(t) + — / on 1 () f(t—T)dr.  (2.23)
= ao Jo

Example 2.17. Let us solve the initial value problem

y W)+ 29" (1) +y(t) =0, y(0) =y'(0) =5"(0) =0,y (0) = 1.
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Formula (2.23)) leads in this case to the solution y(t) = ¢3(t). But ¢3(t) equals
t ept

Res —
+10=e—si pt+2p2+1

t) =Res 5
palt) =Res = 5 g

::Gfﬁpjiv)/pz

1 1 2
=tePl— | —e , + telt ———— — et -
(p+i)?| _ (p+i)?| p—i)? (p—1)?| _
p=i ES p=—i p=—i
B 75eit 2€it N te—it 2e—it
Co@)2 (@) (=202 (20
teit elt te—it e—it t 1
- 4~ — —— = —~cost + = sint.
1 + I 1 5 2cos + 2sm
Example 2.18. Let us solve the initial value problem
y"(t) +y(t) = sint, y(0) =y'(0) =0.
Formula ([2.23)) leads to the solution
t
y(t) = / ©1(7) sin(t — 7)dr,
0
where . . y y
eP e' e’
t)=Res —— + Res —— = — — — gint.
prt) =Res g+ Res g =7 — oy o

Thus,

t 1 t
y(t) = / sin Tsin(t — 7)dr = —5 / (cost — cos(27 — t))dr
0 0

t
t - 1sin(27 —t)

=—-cost+ -——=

2 2 2

L t L t
= —sint — — cost.
2

2

Example 2.19. Let us solve the initial value problem
y"(t) + w?y(t) = cos(vt), y(0) =0,4'(0)=1,v,weC.
Let first v # +w. Then (2.23)) gives the solution as
t
y(t) = 1)+ [ er(r) costot = )i
0

where ¢1(t) is defined as

el ePt elwt emwWt  gin(wt)
t)=Res————=+ Res — = — + — = .
e1(t) p=iw p?2 + w?  p=—iwp?+w? 2w 2w w
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For w = 0 we have ¢ (t) =t. So for w # 0 we get

_ sin(wt) 1

y(t) +— /0 sin(wT) cos(v(t — 7))dr.

w w

Since v # 4w then the latter integral equals

1 ot [(cos((w —V)T ut)>' - (cos((w +v)7 — ut))’] "

2w V—w V4w
1 [cos(wt) cos(vt) cos(wt) N cos(vt)]  cos(wt) — cos(vt)
2|l v—w V—w v+ w vtw | V2 — w? ’

Therefore the solution is (v # +w # 0)

sin(wt) n cos(wt) — cos(vt)

t p—
y(t) . 22
If w=0 and v # +w then

1 — cos(vt

In the case v = +w we may use the limiting process to obtain

sin(wt) | ¢ sin(wt)

y(t) = + .

w 2w

Problem 2.20. Solve the problems
Loy/(t) + by(t) = e, y(0) = yo
2. y"(t) +y(t) = 1,y(0) = y'(0) = y"(0) = 0
3. y"(t) +y(t) = sin(wt), y(0) = 0,4'(0) = 1
4.y (1) + 4y(t) = sint,y(0) = ¥/ (0) = y"(0) = y""(0) = 0
5. y"(t) +4y'(t) + 8y = 1,y(0) = y'(0) =0
) —y(t) = —2t(e™" + 1),y(0) = 0,y(0) = yo.

Example 2.21. Let us solve the integral equation

6. v (¢

ot) = F(t) + A /0 K(t - r)g(r)dr,

where ¢, f, K € F' with the corresponding growth indices. Applying the
Laplace transform we obtain

L(9)(p) = L(f)(p) + AL(K)(p)L(9)(p)-
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So we have (formally)

o) = (50 ) o

This formula can be simplified as follows (see Problem [2.15)). We have

o) = £ (£0) 4 AT 60 ) 0
= 1)+ 2 (15 ) 0

- f(t)+A/Otf(t_T)£—1 < L(K)

T () AE(K)) (1)dr.

This formula gives the solution with any kernel K (¢) of the integral equation.
For example, if K(t) = e’ then for Rep > 1 we have

and so we may conclude that

Therefore, for this particular case the solution of the integral equation

o) = £+ [ L Tg(r)dr

is equal to
¢
)+ A / ft —7)eMTdr = f(t) + A / F(r)eADE=mqr,
0
Problem 2.22. Solve the equations
= fye " g(r)dr

2. g(t)=1- fo (t—7)g(T)dT

3. f(t) fo sin?(t — 1)g(r)dr
Problem 2.23. 1. Generalize Problem for the case v > —1. Namely,

show that I D
v v+
‘C(t )(p) = py+1 ) v > _17

where L(t”)(p) is understood as the limit

L(t")(p) == 61—i>I-I|-10 ; tVe Pldt

which exists.
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Part 111
2. Using part 1. solve the integral equation
¢
9(7)
t)=f(t)+ X\ d 0<a<l.
o) = 1)+ [ 20car 0<a
Problem 2.24 (Abel’s equation). Let 0 < a < 1 and
¢
9(7)
fo- | r
o (t—T7)
o et (ar) (FO) [ £
sin(am 0 7)dT
t) = e
o= =0 (55 [ )
is a solution of this equation. Hint: Use the first part of Problem and the
formula

MNa)l'(1l—a)=

- , O<a<l.
sin(ar)



Index

Abel’s equation, [160 curve integrals,
absolutely convergent series, [19]

analytic function, 0] De Moivre formula, [T4]

argument, [T2] dense set,

derivative, [33|
backwards curve, [@9] di.ff?rentia.uble function,
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entire function, [81
Boundary correspondence principle, Bl

essentially singular point,
Euler’s formula,
exponential function,
extended complex plane,
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Cauchy principal value of the integral, Fresnel integrals,

[I15] [120] fundamental theorem of algebra,
Cauchy sequence, 18] fundamental theorem of complex inte-
Cauchy theorem, gration, [73]

Cauchy type integral,
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Change of variable in integral, Green’s function, [143

closure, growth index,

complex conjugate, harmonic function,
complex number,

composite function, imaginary unit, [I0]
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Jordan’s lemma, [118 removable point, [94]

residue, [102]
L’Hopital’s rule, 4] Riemann Mapping Theorem, [130]
Laplace equation,
Laplace transform, [140] Schwarz reflection principle, [135]
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main part of Laurent expansion,
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Maximum modulus principle,

maximum principle , Weierstrass’ M-test, [83]
mean-value formula, [76] .

Mellin’s formula, [T5]] zero of function, [89
modulus Zhukovski function,

Morera’s theorem, [74]
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pole, [04]

polynomial, [40]
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radius of convergence, [84]
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