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BASIC THEORY OF UNIVALENT FUNCTIONS

DANIEL GIRELA

1. Introduction

The modern theory of conformal mappings goes back to Göttingen in 1851, at the
inaugural conference in which Riemann formulated his famous theorem on conformal
mappings of simply connected domains.

Theorem 1 (Original version of the Riemann mapping theorem). Let D and G be two
simply connected proper subdomains of the complex plane C. Given z0 ∈ D, ξ0 ∈ ∂D,
w0 ∈ G, and ζ0 ∈ ∂G, there exists a unique mapping f from D onto G which is analytic
and injective in D and applies z0 into w0 and ξ0 into ζ0.

The proof that Riemann gave of this result was based on the Dirichlet principle which
asserted that the problem of minimizing the integral∫∫

D

[(
∂u

∂x

)2

+

(
∂u

∂y

)2
]
dx dy,

under certain conditions on the boundary has a solution. This principle was widely
accepted in those days until Weierstrass observed that other similar problems in calculus
of variations did not have solution: The existence of the infimum of those integral does
not imply the existence of a minimizing function.

In view of this situation it became necessary to provide a new proof of Riemann’s
theorem. The work of very prestigious mathematicians such as C. Newmann, H. A.
Schwarz, H. Poincaré, and D. Hilbert led to solve the Dirichlet problem for a very
general class of domains between the end of the XIX-th century and the beginning of
the XX-th century. As a consequence, the Riemann mapping theorem was proved for
domains bounded by piecewise analytic curves.

The normalizations considered in the original formulation of the Riemann mapping
theorem make reference to the boundaries of the domains. The boundary of a do-
main can be very complicated and, hence, the conditions chosen by Riemann led to
unnecessary difficulties. The mapping in question is supposed to be analytic in the
interior of the domain and, in general, not in the boundary. It seems more natural to
consider conditions referring only to interior points. In the beginning of the XX-th cen-
tury, mathematicians such as P. Koebe, C. Carathéodory, L. Bieberbach, E. Lindelöf,
and P. Montel developed new methods in the theory of functions which led to simpler
formulations and proofs of Riemann’s theorem.

Theorem 2 (The Riemann mapping theorem). Let D be a simply connected domain
in C with D 6= C and let z0 be a point in D. Then there exists a unique mapping f

1



2 D. GIRELA

from D onto the unit disc D = {z ∈ C : |z| < 1} which is analytic and injective in D
with f(z0) = 0 and f ′(z0) > 0.

If D and G are two domains in C and f is a mapping which is analytic and injective in
D and with f(D) = G, then f is said to be a conformal mapping from D onto G. Since
the inverse of a conformal mapping is also a conformal mapping, the Riemann mapping
theorem implies that two simply connected domains D and G in C with D 6= C and
G 6= C, are conformally equivalent.

Modern proofs of the Riemann mapping theorem use the concept of normal family.
The function whose existence is insured in the statement is characterized as the element
of a certain family F of analytic functions in D which maximizes a certain functional
within F . The existence of such a maximizing function follows from the theory of
normal functions.

In addition to the obtention of a new proof of the Riemann mapping theorem, the
introduction of the concept of normal family supposed a change in the way of working
in geometric function theory. Until then analytic functions in a certain domain were
studied individually seeking for their geometric properties. After the appearance of
normal families mathematicians turned to study different classes of conformal mappings
and looked for properties shared by all the elements of the family. The most studied
class since then has been the class S which has a very simple definition, has the property
of being compact and, hence, closed under the operation of taking limits. Furthermore,
any conformal mapping from the unit disc onto a domain is related in a standard a
simple way with a function in S. Consequently, any result obtained for the class S give
rise to a result for arbitrary conformal mappings of the disc.

These notes are mainly devoted to study the basic properties of the class S.

2. Notation and preliminaries

2.1. Hardy spaces. The unit disc in the complex plane will be denoted by D, D =
{z ∈ C : |z| < 1}, and Hol(D) will stand for the space of all analytic functions in D.

If a ∈ C and r > 0 the disc of center a and radius r will be denoted by D(a, r), that
is,

D(a, r) = {z ∈ C : |z − a| < r}.
If f ∈ Hol(D) and 0 < r < 1, we set

Mp(r, f) =

(
1

2π

∫ π

−π
|f(reit)|p dt

)1/p

, 0 < p <∞,

Ip(r, f) = Mp(r, f)p, 0 < p <∞,

M∞(r, f) = sup|z|=r |f(z)|.
For 0 < p ≤ ∞, the Hardy space Hp is defined to be the set of all analytic functions f
in the disc for which

‖f‖Hp
def
= sup

0<r<1
Mp(r, f) <∞.
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We remark that
H∞ ( Hq ( Hp, 0 < p < q <∞.

Furthermore, a function f ∈ Hp has a finite non-tangential limit f(eiθ) at almost every
point eiθ ∈ ∂D.

2.2. Automorphisms of the disc. Let C? = C∪{∞} denote the Riemann sphere. If
D and D′ are two domains in C?, a conformal mapping from D onto D′ is a function F
which is meromorphic and injective in D and such that F (D) = D′. If F is a conformal
mapping from D onto D′ then F−1 is a conformal mapping from D′ onto D.

If D is a domain in C?, Aut (D) will denote the set of all conformal mappings from
D onto itself. It is clear that Aut (D) is a group with the composition.

A Möbius transformation is a map T : C? → C? of the form

T (x) =
az + b

cz + d
, z ∈ C?

where a, b, c, d are complex numbers with ad− bc 6= 0 (it should be understood that T
is defined at∞ and at the point z0 for which cz0 + d = 0 in such a way that it becomes
continuous). A Möbius transformation is a conformal mapping from C? onto itself. In
fact, Aut (C?) coincides with the set of all Möbius transformations.

A generalized circle is either a circle or a line (which can be considered as a cir-
cle through the point at infinity). Möbius transformations map generalized circles to
generalized circles. From this it follows easily that the image of a disc under a Möbius
transformation is either a disc, or the exterior of a disc (with the point infinity included),
or a half plane.

For a ∈ C with |a| 6= 1, we set

ϕa(z) =
z + a

1 + az
.

Then ϕa is a Möbius transformation which maps the unit circle into itself and and
applies 0 into a. Also, we have that (ϕa)

−1 = ϕ−a. It turns out that the set of all
Möbius transformations which map the unit circle into itself is {λϕa : |λ| = 1, |a| 6= 1},
while the set of all Möbius transformations which map the unit disc D into itself is
{λϕa : |λ| = 1, |a| < 1}.

The Schwarz’s lemma plays a basic role in the theory of analytic functions in the
disc:

Theorem 3 (The Schwarz’s lemma). Suppose that ω is an analytic function in the unit
disc D with ω(D) ⊂ D and ω(0) = 0. Then

(i) |ω(z)| ≤ |z|, for all z ∈ D.
(ii) |ω′(0)| ≤ 1.

Furthermore, if equality holds in (i) for some z 6= 0, or if equality holds in (ii), then ω
is of the form

ω(z) = λz, z ∈ D,
for a certain constant λ with |λ| = 1, in other words, ω is a rotation.
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Now, if we have a function f ∈ Hol(D) with f(D) ⊂ D and α ∈ D, then if β = f(α)
and we apply the Schwarz lemma to the function ω = ϕ−β ◦ f ◦ ϕα we obtain the
following result:

Theorem 4 (The theorem of Schwarz-Pick). Suppose that f ∈ Hol(D) with f(D) ⊂ D.
Then

(i)
∣∣∣ f(z)−f(α)

1−f(α)f(z)

∣∣∣ ≤ ∣∣ z−α1−αz

∣∣ , z, α ∈ D.

(ii) |f ′(z)|
1−|f(z)|2 ≤

1
1−|z|2 , z ∈ D.

Furthermore, if equality holds in (i) for some pair of points z, α ∈ D with z 6= α, or
if equality holds in (ii) for some z ∈ D then f is a Möbius transformation. If f is a
Möbius transformation then equality holds in (i) for any pair of points α, z ∈ D and,
also, in (ii) for any z ∈ D.

Remark 1. Let us define ρ : D× D→ R by

ρ(z1, z2) =

∣∣∣∣ z1 − z2

1− z2z1

∣∣∣∣ , z1, z2 ∈ D.

It turns out that ρ is a distance in D with 0 ≤ ρ(z1, z2) < 1, for all z1, z2 ∈ D. The
distance ρ is called the pseudohyperbolic distance in D.

The content of the Schwarz-Pick theorem can be expressed saying that ρ in invariant
under Möbius transformations of the disc into itself and that for any analytic self-map
f of the disc

ρ (f(z1), f(z2)) ≤ ρ (z1, z2) , z1, z2 ∈ D.

Using the Schwarz-Pick theorem one easily obtains that any automorphism of the
unit disc is a Möbius transformation. Consequently,

Aut (D) = {λϕa : |λ| = 1, |a| < 1}.

3. Univalent functions

Definition 1. Let D be a domain in C?. A function f : D → C? is said to be univalent
in D if it is meromorphic and injective (one-to-one) in D.

We remark that we include the assumption of meromorphy in the definition. Thus
the function f is univalent in D if and only if it is analytic in D except for at most one
pole and

f(z1) 6= f(z2), (z1, z2 ∈ D, z1 6= z2).

Remark 2. It is well known that if f is analytic in D and z0 ∈ D then f is injective
in a neighborhood of z0 if and only if f ′(z0) 6= 0. In other words, for f analytic in z0

we have
f ′(z0) 6= 0 ⇔ f is locally univalent at z0.

On the other hand, if f has a pole at z0, then f is locally univalent at z0 if and only
if z0 is a simple pole.
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Remark 3. If f is univalent in a domain D then it is trivially locally univalent through-
out D. The converse is not true. Consider D = C \ {0} and f(z) = z2 (z ∈ D).
It is clear that f is analytic in D and locally univalent at any point of D because
f ′(z0) = 2z0 6= 0 for all z0 ∈ D. However f is not univalent in D because f(z) = f(−z)
for all z ∈ D.

Remark 4. If f is analytic in a domain D and a ∈ D, then the Jacobian of f at a is
|f ′(a)|2. Consequently, if f is analytic and univalent in D and A is a measurable subset
of D, then

Area (f(A)) =

∫
A

|f ′(z)|2 dA(z).

If D is a domain in C? and f is a univalent function in D with f(D) = D′ (which is
then also a domain), then we say that f is a conformal mapping from D onto D′.

Recall that the Riemann mapping theorem asserts that any simply connected proper
subdomain of C is conformally equivalent to the unit disc. More precisely, if D ( C is
a simply connected domain and z0 ∈ D then there exists a unique conformal mapping
f from D onto the unit disc D with f(z0) = 0 and f ′(0) > 0. Therefore, statements
about univalent functions in arbitrary simply connected domains can be translated into
statements about univalent functions in D. For this reason we shall study in detail
univalent functions in D.

Definition 2. We let U denote the class of all functions f which are analytic and
univalent in the unit disc D.

We also let S be the set of all functions f which are analytic and univalent in the
unit disc D and satisfy f(0) = 0 and f ′(0) = 1. That is,

S = {f ∈ U : with f(0) = 0 and f ′(0) = 1}.

If f ∈ U then the function g given by g(z) = f(z)−f(0)
f ′(0)

(z ∈ D) belongs to the class

S and properties of g can be trivially translated into properties of f . Thus studying
functions in the class S is sufficient to study general functions in U .

It follows that any f ∈ S has a Taylor expansion of the form

f(z) = z + a2z
2 + a3z

3 + . . . , z ∈ D.

Examples of functions in the class S.

(i) The identity map, f(z) = z. We have f(D) = D.
(ii) The Möbius transformation

f(z) =
z

1− z
= z + z2 + z3 + · · · =

∞∑
n=1

zn, z ∈ D,

which maps D onto the half plane {Re z > −1
2
}.
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(iii) The function f defined by

f(z) =
1

2
log

1 + z

1− z
= z − z3

3
+
z5

5
− · · · =

∞∑
n=0

(−1)n−1 z
2n+1

2n+ 1
, z ∈ D,

which maps D onto the strip {−π
4
< Im z < π

4
}.

(iv) The Koebe function k defined by

k(z) =
z

(1− z)2
= z + 2z2 + 3z3 + · · · =

∞∑
n=1

nzn, z ∈ D,

which maps D onto the domain C \ {x ∈ R : x ≤ −1
4
}.

The sum of two functions in the class S is not in the class S (this follows trivially
from the fact that any f ∈ S satisfies that f ′(0) = 1). Thus, S is not a vector space.
We can even assert that f is not a convex set:

Set f(z) = z
1−z , g(z) = z

1+iz
(z ∈ D). It is easy to check that f, g ∈ S. We have

1

2
(f ′(z) + g′(z)) =

1− (1− i)z
(1− z)2(1 + iz)2

.

Thus 1
2

(f ′(z) + g′(z)) = 0 for z = 1
1−i = 1+i

2
. It follows that 1

2
(f + g) is not injective in

D and, hence 1
2
(f + g) /∈ S.

We now present several transformations which preserve S.

Theorem 5. The class S is preserved under the following transformations:

(i) Rotation: If f ∈ S, θ ∈ R, and g(z) = e−iθf(eiθz) (z ∈ D), then g ∈ S.
(ii) Dilatation: If f ∈ S, 0 < r < 1, and g(z) = 1

r
f(rz) (z ∈ D), then g ∈ S.

(iii) Conjugation: If f ∈ S and g(z) = f(z) (z ∈ D), then g ∈ S.
(iv) Disc automorphism: If f ∈ U , a ∈ D, and

g(z) =
f( z+a

1+az
)− f(a)

(1− |a|2)f ′(a)
, z ∈ D,

then g ∈ S. This function g is usually denoted by Saf .
(v) Range transformation: If f ∈ S, φ : f(D) → C is analytic and univalent in

f(D), and

g(z) =
φ ◦ f(z)− φ(0)

φ′(0)
, z ∈ D,

then g ∈ S.
(vi) Omitted value transformation: If f ∈ S, w ∈ C \ f(D), and

g(z) =
wf(z)

w − f(z)
, z ∈ D,

then g ∈ S.
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The proof is quite elementary. We shall include only the proof of (vi). So, suppose
that f ∈ S, w ∈ C \ f(D), and

g(z) =
wf(z)

w − f(z)
, z ∈ D.

We have g = T ◦f , where T (z) = wz
w−z . Notice that T is a Möbius transformation whose

pole is w which does not belong to f(D). Then it follows that g = T ◦ f is analytic and

univalent in D. It is clear that g(0) = 0 and g′(z) = w2f ′(z)
(w−f(z))2

(z ∈ D). Hence g′(0) = 1.

Then it follows that g ∈ S.

Theorem 6 (Square-root transformation). Let f ∈ S, then there exists a function
g ∈ S such that

g(z)2 = f(z2), z ∈ D.
This function g is odd and, hence, it has a Taylor series expansion of the form

g(z) = z + a3z
3 + a5z

5 + · · · =
∞∑
n=0

a2n+1z
2n+1, z ∈ D.

Proof. Take f ∈ S, f(z) =
∑∞

n=1 anz
n (z ∈ D) (here, of course, a1 = 1). We can write

f in the form f(z) = zφ(z) where φ is analytic in D and φ(0) = 1. Indeed,

φ(z) = 1 +
∞∑
n=2

anz
n−1, z ∈ D.

The injectivity of f implies that φ never vanishes in D. Consequently, there exist a
branch h of

√
φ in D with h(0) = 1, that is, h is an analytic function in D with h(0) = 1

and h(z)2 = φ(z) for all z ∈ D. The we have

f(z2) = z2φ(z2) = z2h(z2)2 =
[
zh(z2)

]2
, z ∈ D.

Set g(z) = zh(z2) (z ∈ D). Then g(z) is a branch of
√
f(z2) and, clearly, g is an odd

function. It is also clear that g(0) = 0, g(z) 6= 0 if z 6= 0, and

g′(0) = h(0) = 1.

Thus, it only remains to prove that g is univalent.
Suppose that z1, z2 ∈ D and g(z1) = g(z2). Then g(z1)2 = g(z2)2 which is equivalent

to saying that f(z2
1) = f(z2

2). Since f is univalent, this implies that z2
1 = z2

2 , that is,
either z1 = z2, or z1 = −z2.

• If z1 = z2 we are done.
• If z1 = −z2, then using the fact that g is odd, it follows that g(z1) = g(z2) =
g(−z1) = −g(z1), which implies that g(z1) = g(z2) = 0 and, hence z1 = z2 = 0.

Thus in any case conclude that z1 = z2. �

With a similar argument we can prove the following result.
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Theorem 7 (N -th root transformation). Let N ≥ 2 be an integer and f ∈ S. Then
there exists a function g ∈ S such that

g(z)N = f(zN), z ∈ D.

This function g satisfies

g(e
2πi
N z) = e

2πi
N g(z), z ∈ D.

The Taylor expansion of g is of the form

g(z) = z + aN+1z
N+1 + a2N+1z

2N+1 + · · · =
∞∑
k=0

akN+1z
kN+1, z ∈ D.

The image domain g(D) has N-fold rotational symmetry, that is,

z ∈ g(D) ⇔ e
2πi
N z ∈ g(D).

Remark 5. It is easy to prove that if a function g ∈ S is odd then there exists f ∈ S
such that f(z2) = g(z)2 for all z ∈ D. Thus the odd functions in the class S are precisely
those which are obtained applying the square-root transformation to a function in S.

More generally, if N ≥ 2 and g ∈ S then the following conditions are equivalent:

• g(e
2πi
N z) = e

2πi
N g(z), for all z ∈ D.

• The image domain g(D) has N-fold rotational symmetry.
• The Taylor series of g is of the form

g(z) = z + aN+1z
N+1 + a2N+1z

2N+1 + · · · =
∞∑
k=0

akN+1z
kN+1, z ∈ D.

• There exists f ∈ S such that

g(z)N = f(zN), z ∈ D.

Example 1. We have k(z2) = z2

(1−z2)2
(z ∈ D). Hence, applying the square-root trans-

formation to the Koebe function we obtain the function

g(z) =
z

1− z2
= z + z3 + z5 + · · · =

∞∑
n=0

z2n+1, z ∈ D.

We have that g ∈ S and g(D) = C \ {iy : y ∈ R and |y| ≥ 1
2
}.

Similarly, applying the N-th root transformation to the Koebe fucntion, we obtain the
function

g(z) =
z

(1− zN)2/N
, z ∈ D.

The function g belongs to S and the image domain g(D) is the complement of N equally
spaced radial semi-lines

g(D) = C \
(
∪N−1
k=0 {re

(2k+1)πi/N : 4−1/N ≤ r <∞}
)
.
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4. The class Σ and the area theorem

Definition 3. We let Σ to denote the class of all function F which are analytic and
univalent in ∆ = {z ∈ C : 1 < |z| <∞}, have a simple pole at ∞, and whose Laurent
expansion in ∆ is of the form

F (z) = z + b0 + b1z
−1 + b2z

−2 + · · · = z + b0 +
∞∑
n=1

bnz
−n, z ∈ ∆.

Remark 6. If F ∈ Σ then C \ F (∆) is a compact and connected set.

Remark 7. If f ∈ S, f(z) = z+a2z
2 +a3z

3 + . . . (z ∈ D), then the function F defined
by

F (z) = f

(
1

z

)−1

= z − a2 + (a2
2 − a3)z−1 + . . . , z ∈ ∆,

belongs to Σ and satisfies g(z) 6= 0 for all z.
Conversely, if F ∈ Σ, F (z) = z + b0 + b1z

−1 + . . . (z ∈ ∆), and c ∈ C \ F (∆) then
the function f defined by

f(z) =
1

F (z−1)− c
= z + (c− b0)z2 + . . . , z ∈ D,

belong to S.

Now we pass to state and prove the so called area theorem proved by Gronwall in
1914. It shows that the univalence of the functions in Σ has strong implications on the
coefficients bn in the Laurent expansion of F . The name “area theorem” comes from
the fact that that the theorem follows from the fact that the area of a certain set is (of
course) non-negative.

Theorem 8 (The Area Theorem). Suppose that F ∈ Σ has the Laurent expansion

F (z) = z + b0 + b1z
−1 + b2z

−2 + · · · = z + b0 +
∞∑
n=1

bnz
−n, z ∈ ∆.

Then,
∑∞

n=1 n|bn|2 ≤ 1.

Proof. First of all, we may assume without loss of generality that b0 = 0. We may also
assume that b1 ≥ 0. Indeed, take F ∈ Σ with b0 = 0. For any λ ∈ C with |λ| = 1 the
function Fλ defined by Fλ(z) = λF

(
z
λ

)
also belongs to Σ and its Laurent expansion is

Fλ(z) = z +
∞∑
n=1

λn+1bnz
−n, z ∈ ∆.

So the quantity
∑∞

n=1 n|bn|2 is the same for F and for Fλ. Thus, we just need to choose
λ with |λ| = 1 such that λ2b1 ≥ 0 and work with this function Fλ in the place of F .

Thus assume that F ∈ Σ, F (z) = z +
∑∞

n=1 bnz
−n (z ∈ ∆), with b1 ≥ 0.
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Set U = ReF , V = ImF and Φ(z) =
∑∞

n=2 bnz
−n (z ∈ ∆). Thus, we have

F (z) = U(z) + iV (z) = z +
b1

z
+ Φ(z), z ∈ ∆.

For z = reit ∈ ∆, we have

F (reit) = reit + b1
r
e−it + Φ(reit)

=
(
r + b1

r

)
cos t+ i

(
r − b1

r

)
sin t+ Φ(reit)

and then

U(reit) =
(
r + b1

r

)
cos t+ Re (Φ(reit))

V (reit) =
(
r − b1

r

)
sin t+ Im (Φ(reit)) .

Set Ar = r + b1
r

, Br = r − b1
r

for r > 1 and big enough (say r ≥ r0) so that Br > 0.
We have

U(reit)2

A2
r

+ V (reit)2

B2
r

=

(
cos t+

Re (Φ(reit))
Ar

)2

+

(
sin t+

Im (Φ(reit))
Br

)2

= 1 + 2 cos t
Re (Φ(reit))

Ar
+ 2 sin t

Im (Φ(reit))
Br

+

(
Re (Φ(reit))

Ar

)2

+

(
Im (Φ(reit))

Br

)2

.

Bearing in mind the definitions of Φ, Ar and Br, it follows that there exists a positive
constant M such that

U(reit)2

A2
r

+
V (reit)2

B2
r

≤ 1 +
M

r3
, r ≥ r0, t ∈ R,

or, equivalently,

(1)
U(reit)2(

Ar
√

1 +Mr−3
)2 +

V (reit)2(
Br

√
1 +Mr−3

)2 ≤ 1.

For r ≥ r0, set

Cr = {z ∈ C : |z| = r}, Dr = {z ∈ C : |z| > r}, Gr = {z ∈ C : 1 < |z| < r}
and let Er be the ellipse

Er =

{
z = x+ iy : x ∈ R, y ∈ R,

x2(
Ar
√

1 +Mr−3
)2 +

y2(
Br

√
1 +Mr−3

)2 = 1

}
.

With this notation, the inequality (1) simply says that F (Cr) is contained in I(Er),
the domain interior to the ellipse Er. Also, using the univalence of F , we deduce that
F (Dr) is E(F (Cr)), the domain exterior to F (Cr), and, finally,

F (Gr) ⊂ I(F (Cr)) ⊂ I(Er).

This implies that the area of the domain F (Gr) is smaller than or equal to that of
I(Er). This is equivalent to saying that

(2)

∫
1<|z|<r

|F ′(z)|2 dA(z) ≤ πArBr

(
1 +

M

r3

)
, r ≥ r0.
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Now, we have ∫
1<|z|<r

|F ′(z)|2 dA(z) =

∫ r

1

ρ

∫ 2π

0

|F ′(ρeit)|2 dt dρ

= 2π

∫ r

1

ρ (1 +
∑∞

n=1 n
2|bn|2ρ−2n−2) dρ

= 2π

∫ r

1

(ρ+
∑∞

n=1 n
2|bn|2ρ−2n−1) dρ

= 2π
[(

r2

2
− 1

2

)
+
∑∞

n=1 n
2|bn|2 1

2n

(
1− 1

r2n

)]
= π

[
r2 − 1 +

∑∞
n=1 n|bn|2

(
1− 1

r2n

)]
.

Using this and (2), we obtain that, for r ≥ r0,

r2 − 1 +
∑∞

n=1 n|bn|2
(
1− 1

r2n

)
≤ ArBr

(
1 + M

r3

)
=
(
r2 − b21

r2

) (
1 + M

r3

)
= r2 + M

r
− b21

r2
− b21M

r3
≤ r2 + M

r
.

This implies that
∞∑
n=1

n|bn|2
(

1− 1

r2n

)
≤ 1 +

M

2r
, r ≥ r0.

Letting r tend to infinity, we obtain that
∑∞

n=1 n
2|bn| ≤ 1. �

Remark 8. A shorter proof of the area theorem could be given using Green’s theorem
as follows: For r > 1, let A(r) denote the area of the domain I (F (Cr)) (the domain
interior to the Jordan curve F (Cr)). Using Green’s theorem we have

0 < A(r) =

∣∣∣∣∫ π

−π
U(reiθ)

∂V

∂θ
(reiθ) dθ

∣∣∣∣ = π

∣∣∣∣∣r2 −
∞∑
n=1

n|bn|2r−2n

∣∣∣∣∣ , 1 < r <∞.

Now, r2 −
∑∞

n=1 n|bn|2r−2n > 0 for r big enough. Then, by continuity, it follows that

r2 −
∞∑
n=1

n|bn|2r−2n > 0, 1 < r <∞.

Letting r tend to 1, we obtain
∑∞

n=1 n|bn|2 ≤ 1.

As an immediate consequence of the area theorem we obtain the following result.

Corollary 1. Suppose that F ∈ Σ has the Laurent expansion

F (z) = z + b0 + b1z
−1 + b2z

−2 + · · · = z + b0 +
∞∑
n=1

bnz
−n, z ∈ ∆.

Then |b1| ≤ 1. Furthermore the equality |b1| = 1 holds if and only if F is of the form

F (z) = z + b0 +
λ

z
, z ∈ ∆,
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where b0 ∈ C and |λ| = 1. This is a conformal mapping from ∆ ∪ {∞} onto the
complement of a segment of length 4.

5. Coefficient estimates in the class S

Using the corollary just stated, Bieberbach proved in 1916 a bound for the coefficient
a2 of a function in the class S.

Theorem 9 (Bieberbach). Suppose that f ∈ S, f(z) = z + a2z
2 + a3z

3 + . . . (z ∈ D).
Then |a2| ≤ 2. Furthermore the equality |a2| = 2 holds if and only if f is a rotation of
the Koebe function.

Proof. Take f ∈ S, f(z) = z + a2z
2 + a3z

3 + . . . (z ∈ D). Take g ∈ S odd such that
g(z)2 = f(z2) for all z. The Taylor expansion of g is of the form g(z) = z + c3z

3 +
c5z

5 + . . .We have then

(z + c3z
3 + c5z

5 + . . . )(z + c3z
3 + c5z

5 + . . . ) = z2 + a2z
4 + . . .

Comparing coefficients, we obtain that c3 = a2
2

.

Set F (z) = 1

g( 1
z )

(z ∈ ∆). Then F ∈ Σ. Also it is clear that F is odd and the Laurent

series expansion of F in ∆ is of the form

F (z) = z − c3

z
+ · · · = z − a2/2

z
+ . . . .

Using Corollary 1, we deduce that |a2| ≤ 2.

If |a2| = 2 then Corollary 1 also yields that F is of the form F (z) = z − λ
z

for some
λ ∈ C with |λ| = 1. Then it follows that g(z) = z

1−λz2 and f(z) = z
(1−λz)2 (z ∈ D). �

If we start with a function f ∈ S, f(z) = z + a2z
2 + a3z

3 + . . . , we take directly
F (z) = 1

f( 1
z )

= z − a2 + (a2
2 − a3)z1 + . . . (z ∈ ∆) and we apply Corollary 1 to this

function F we obtain:

Theorem 10. Suppose that f ∈ S, f(z) = z + a2z
2 + a3z

3 + . . . (z ∈ D). Then
|a2

2 − a3| ≤ 1.

Remark 9. For the Koebe function we have |a2
2− a3| = 1 but there are other functions

in S which give equality in Theorem 10. For example, the function f(z) = z
1−z2 .

Corollary 2. Suppose that f is an odd function in S, f(z) = z + c3z
3 + c5z

5 + . . .
(z ∈ D). Then |c3| ≤ 1. Moreover, equality holds if and only f is a rotation of the
function g(z) = z

1−z2 .
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We can use this result to give an easy example showing that the class S is not convex
(we have already observed this fact). Take

f(z) = k(z) and g(z) = −k(−z) = z − 2z2 + 3z3 − 4z4 + . . . , z ∈ D.
Then f, g ∈ S (g is a rotation of the Koebe function). Now the function h = 1

2
f + 1

2
g

is odd and

h(z) = z + 3z3 + 5z5 + . . . .

Using Corollary 2, we see that h is not univalent.

Bieberbach conjectured in his paper that if f ∈ S then the coefficient an of f satisfied
that |an| ≤ n with equality only for rotations of the Koebe function. This conjecture was
proved for n = 3 by Löwner in 1923 and subsequently proofs were given for n = 4, 5, 6.
Littlewood proved in 1925 the estimate |an| ≤ en and Bazilevic (1951) proved that

lim supn→∞
|an|
n
≤ e

2
. Milin proved in the 1960’s that |an| ≤ 1.243n and FitzGerald

in the 1970’s that |an| ≤
√

7
6
n. Finally, Louis de Branges proved the validity of the

Bieberbach conjecture for all n in 1984.

6. The Koebe 1/4-theorem

Any function f in S is an open mapping with 0 ∈ f(D). Hence it follows that the
range of any f in S contains a disc D(0, rf ) centered at 0. To start with, the radius
rf of this disc depends on f . Koebe proved the existences of positive number δ such
that the disc D(0, δ) is contained f(D) for any f ∈ S. The Koebe function shows that
δ ≤ 1

4
. Bieberbach proved that actually one can take δ = 1

4
.

Theorem 11 (The Koebe 1/4-theorem). Let f ∈ S then the disc D(0, 1
4
) of center 0

and radius 1/4 is contained in the image of f . Furthermore, if there exists a point w
with |w| = 1

4
and w /∈ f(D), then f is a rotation of the Koebe function.

Proof. Take f ∈ S, f(z) = z + a2z
2 + a3z

3 + . . . (z ∈ D), and suppose that w /∈ F (D).
Applying the omitted value transformation, we have that the function g defined by

g(z) =
wf(z)

w − f(z)
, z ∈ D

belongs to S. Let the Taylor series expansion of g be

g(z) = z + b2z
2 + b3z

3 + . . . , z ∈ D.
We have g(z) (w − f(z)) = wf(z) (z ∈ D) and, hence,(

z + b2z
2 + b3z

3 + . . .
) (
w − z − a2z

2 − a3z
3 − . . .

)
= wz + wa2z

2 + wa3z
3 + . . . .

Working out the product, we see that the coefficient of z2 in the left-hand side is b2w−1.
Then we must have b2w− 1 = wa2, or, equivalently, b2 = 1

w
+ a2. Since f and g belong

to S we have that |a2| ≤ 2 and |b2| ≤ 2. Then it follows that∣∣∣∣ 1

w

∣∣∣∣ ≤ ∣∣∣∣ 1

w
+ a2

∣∣∣∣+ |a2| = |b2|+ |a2| ≤ 4,
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that, is |w| ≥ 1
4
. Furthermore, if |w| were 1

4
then we would have |a2| = 2 and then f

would be a rotation of the Koebe function. �

Remark 10. The univalence of the functions in S is essential to the Koebe 1/4-
Theorem. If for n = 1, 2, 3, . . . we set

fn(z) =
1

n
(enz − 1) , z ∈ D

then the functions fn are analytic in D and satisfy fn(0) = 0 and f ′n(0) = 1. However,
the function fn omits the value − 1

n
(which may of course be chosen arbitrarily close to

zero).

As a consequence of the Koebe 1/4-Theorem (and Schwarz’s Lemma), for any given
simply connected proper subdomain of the plane Ω we can estimate the distance of a
point w ∈ Ω to the boundary. This quantity is important in geometric applications.

If Ω is a domain in C with Ω 6= C and w ∈ Ω, we shall let dΩ(w) denote the distance
from w to the boundary of Ω,

dΩ(w) = dist (w, ∂Ω), w ∈ Ω.

Theorem 12. If f ∈ U and Ω = f(D) then

(3)
1

4
(1− |z|2)|f ′(z)| ≤ dΩ(f(z)) ≤ (1− |z|2)|f ′(z)|.

Proof. Take f ∈ U and a ∈ D. Let

g(z) =
f
(
z+a
1+az

)
− f(a)

(1− |a|2)f ′(a)
, z ∈ D.

We have that g ∈ S (see Theorem 5). By the Koebe 1/4-theorem D(0, 1
4
) ⊂ Ω which is

equivalent to saying that D
(
f(a), 1

4
(1− |a|2)|f ′(a)|

)
⊂ Ω. Hence, we have that

1

4
(1− |a|2)|f ′(z)| ≤ dist(f(a), ∂Ω).

To prove the upper bound we shall use Schwarz’s Lemma. Set R = dist(f(a), ∂Ω).
Consider the mappings

Φ : D→ D (f(a), R) , defined by Φ(z) = f(a) +Rz

and

f−1 : D (f(a), R)→ D
and set ω(z) = ϕ−a ◦ f−1 ◦ Φ(z) (z ∈ D), where ϕ−a is the Möbius transformation of
the disc given by ϕ−a(z) = z−a

1−az . We have that ω(D) ⊂ D and ω(0) = 0. Using the
Schwarz’s Lemma, we deduce that |ω′(0)| ≤ 1. Using the chain rule we see that

ω′(0) =
R

(1− |a|2)f ′(a)
.

Hence it follows that R ≤ (1− |a|2)|f ′(a)|. �
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An analytic function f in the disc is said to be a Bloch function if

%B(f)
def
= sup

z∈D
(1− |z|2)|f ′(z)| <∞.

The space of all Bloch functions is denoted by B. It is a Banach space with the norm
‖ · ‖B defined by

‖f‖B = |f(0)|+ %B(f), f ∈ B.
There are a lot of characterizations of Bloch functions which show up naturally in many
contexts. Theorem 12 implies that if f ∈ U and Ω = f(D) then

(1− |z|2)|f ′(z)| � dist(f(z), ∂Ω), z ∈ D.
Using this and the definition of the Bloch space, we obtain the following characterization
of the univalent Bloch functions.

Theorem 13. Let f ∈ U and Ω = f(D). Then the following statements are equivalent:
(i) f ∈ B.
(ii) sup

w∈Ω
dΩ(w) <∞.

(iii) Ω dos not contain discs or arbitrarily large radius.

Remark 11. If X is a subspace of Hol(D), a domain Ω ⊂ C is said to be a univalent-
X-domain if every univalent function f which maps D into Ω must belong to X. Also,
Ω ⊂ C is said to be an X-domain if every f ∈ Hol(D) which maps D into Ω must
belong to X.

It is easy to see that Theorem 13 implies that if Ω ⊂ C is a simply connected domain
then it is a univalent-Bloch-domain if and only if Ω dos not contain discs or arbitrarily
large radius. With some more work it is possible to prove that actually this property
characterized the univalent-Bloch-domains. In fact, more is true: Bloch domains are
those which do not contain arbitrarily large discs.

7. Distortion theorems

Take f ∈ U and a ∈ D. Applying the disc automorphism transformation Sa to f , we
see that the function g defined by

g(z) = Saf(z) =
f
(
z+a
1+az

)
− f(a)

(1− |a|2)f ′(a)
, z ∈ D,

belongs to the class S. Then Bieberbach’s theorem implies that |g′′(0)| ≤ 4. We have

g′(z) =
f ′( z+a

1+az )
f ′(a)(1+az)2

g′′(z) =
(1−|a|2)f ′′( z+a

1+az )
(1+az)4f ′(a)

− 2a
f ′( z+a

1+az )
f ′(a)(1+az)3

.

Hence

g′′(0) = (1− |a|2)
f ′′(a)

f ′(a)
− 2a.

Consequently, we have proved the following result.
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Proposition 1. Let f ∈ U and a ∈ D, then

(4)

∣∣∣∣f ′′(a)

f ′(a)
− 2a

(1− |a|2)

∣∣∣∣ ≤ 4

1− |a|2
.

Remark 12. Proposition 1 implies that if f ∈ U then log f ′ is a Bloch function and

‖ log f ′‖B ≤ 6.

It turns out that a certain converse of this result is true:
If g ∈ B then there exist a function f ∈ U and a constant C such that g = C log f ′.

Theorem 14 (Distortion Theorem). Suppose that f ∈ S and z ∈ D. Then:

(i) 1−|z|
(1+|z|)3 = k′(−|z|) ≤ |f ′(z)| ≤ 1+|z|

(1−|z|)3 = k′(|z|).

(ii) |z|
(1+|z|)2 = −k(−|z|) ≤ |f(z)| ≤ |z|

(1−|z|)2 = k(|z|).

(iii) 1−|z|
1+|z| = −|z|k′(−|z|)

k(−|z|) ≤
∣∣∣ zf ′(z)f(z)

∣∣∣ ≤ | |z|k′(|z|)k(|z|) = 1+|z|
1−|z| .

Furthermore, equality holds in any of these inequalities for some z 6= 0 if and only if f
is a rotation of the Koebe function.

Proof of (i). Using (4), we have∣∣∣∣∫
[0,z]

(
f ′′(a)
f ′(a)
− 2a

(1−|a|2)

)
da

∣∣∣∣ ≤ ∫
[0,z]

∣∣∣f ′′(a)
f ′(a)
− 2a

(1−|a|2)

∣∣∣ |da|
≤
∫

[0,z]

4
1−|a|2 |da| =

∫ 1

0

4|z|
1−t2|z|2 dt = 2 log 1+|z|

1−|z| .

But ∫
[0,z]

(
f ′′(a)
f ′(a)
− 2a

(1−|a|2)

)
da = log f ′(z)−

∫
[0,z]

2a
1−|a|2 da

= log f ′(z)−
∫ 1

0

2t|z|2
1−t2|z|2 dt = log f ′(z)− log 1

1−|z|2 .

Consequently, we have ∣∣∣∣log f ′(z)− log
1

1− |z|2

∣∣∣∣ ≤ 2 log
1 + |z|
1− |z|

which implies

−2 log
1 + |z|
1− |z|

≤ Re

(
log f ′(z)− log

1

1− |z|2

)
≤ 2 log

1 + |z|
1− |z|

or, equivalently

log

(
1− |z
1 + |z|

)2

≤ log |f ′(z)| − log
1

1− |z|2
≤ log

(
1 + |z
1− |z|

)2

.

This is equivalent to the inequalities in (i).
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If z 6= 0 then equality in any of the two inequalities of (i) would imply∣∣∣∣f ′′(a)

f ′(a)
− 2a

(1− |a|2)

∣∣∣∣ =
4

1− |a|2
, for all a ∈ [0, z]

and, in particular, for a = 0. Hence |f ′′(0)| = 4 which, by Bieberbach theorem, implies
that f is a rotation of the Koebe function. �

Proof of (ii). We have, using (i),

|f(z)| =
∣∣∣∣∫

[0,z]

f ′(ξ) dξ

∣∣∣∣ ≤ ∫
[0,z]

|f ′(ξ)| |dξ|

=

∫ 1

0

|f ′(tz)||z| dt ≤
∫ 1

0

k′(t|z|)|z| dt = k(|z|).

Thus we have proved that |f(z)| ≤ k(|z|). If z 6= 0 and we had |f(z)| = k(|z|) then
we would have |f ′(ξ)| = k′(|ξ|), for all ξ ∈ [0, z], and then the equality statement in (i)
gives that f is a rotation of the Koebe function.

Notice that 0 ≤ r
(1+r)2

< 1
4

whenever 0 ≤ r < 1. Thus, if |f(z)| ≥ 1
4

we have trivially

that |z|
(1+|z|)2 ≤ |f(z)|.

Suppose now that |f(z)| < 1
4
. By the Koebe 1/4-Theorem, the segment [0, f(z)] is

contained in f(D). Let γ be the Jordan arc preimage of this segment:

γ(t) = f−1 (tf(z)) , t ∈ [0, 1].

It is clear that ∫
γ

|f ′(ξ)||dξ| = |f(z)| =

∣∣∣∣∣
∫
γ

f ′(ξ) dξ

∣∣∣∣∣ .
Then, using (i), we see that

|f(z)| =
∫
γ

|f ′(ξ)||dξ| ≥
∫
γ

k′(−|ξ|)|dξ|.

Take now a parametrization of γ of the form

γ(t) = r(t)eiθ(t), t ∈ [0, 1].

Then we have

|f(z)| ≥
∫
γ

k′(−|ξ|)|dξ| ≥
∫ 1

0

k′(−r(t))r′(t))dt = −k(−|z|).

If z 6= 0 and we had |f(z)| = |z|
(1−|z|)2 then, necessarily, we would be in the case |f(z)| < 1

4

and, furthermore, we would have |f ′(ξ)| = k′(−|ξ)| for all ξ ∈ f−1([0, z]). Then the
equality statement of (i) would imply that f is a rotation of the Koebe function. �

Proof of (iii). Take a ∈ D and g(z) = Saf(z). Then g ∈ S and

|g(−a)| =
∣∣∣∣ f(a)

(1− |a|2)|f ′(a)

∣∣∣∣ .
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Use that g ∈ S and apply (ii) to obtain

|a|
(1 + |a|)2

≤ |g(−a)| =
∣∣∣∣ f(a)

(1− |a|2)|f ′(a)

∣∣∣∣ ≤ |a|
(1− |a|)2

, a ∈ D.

This is equivalent to (iii). The statement about equality follows from that in (ii). �

As an immediate consequence of (ii) we obtain that S is a normal family. Even more,
using Hurwitz’s theorem we can assert that it is a compact family (with respect to the
topology of uniform convergence in compact subsets).

Also, using (ii) we can deduce that if f ∈ S, f(z) =
∑∞

n=1 anz
n, then |an| ≤ en2, for

all n. To see this use that

(5) an =
1

2πi

∫
|z|=r

f(z)

zn+1
dz, 0 < r < 1.

This and part (ii) of the distortion theorem give

|an| ≤
1

2π
2πr

r

(1− r)2

1

rn+1
=

1

(1− r)2rn−1
, 0 < r < 1.

Taking r = 1− 1
n

we obtain |an| ≤ en2.

8. Other conjectures

W. Hayman proved in the 1950’s that if f ∈ S then

α(f) = lim
r→1

(1− r)2M∞(r, f)

exists and 0 ≤ α(f) ≤ 1. Furthermore α(f) = 1 if and only if f is a rotation of the
Koebe function. The number α(f) is called the Hayman index of f .

Hayman also proved that if f(z) =
∑∞

n=1 anz
n ∈ S, then the limit limn→∞

|an|
n

exists
and coincides with α(f).

These two facts imply that given f(z) =
∑∞

n=1 anz
n ∈ S, there exist n(f) such that

n ≥ n(f) ⇒ |an| ≤ n.

For n = 1, 2, 3, . . . set

An = sup{|an| : an is the n-th-Taylor coefficient of some function f in S}.

Hayman proved that λ = limn→∞
An
n

exists. The asymptotic Bieberbach conjecture
asserted that λ = 1. This is weaker than Bieberbach conjecture.

Other classes of univalent has been considered, among them we should mention the
class S0 which consists of those f ∈ U with f(0) = 1 which omit the value 0. The
function f0 given by

f0(z) =

(
1 + z

1− z

)2

= 1 +
∞∑
n=1

4nzn, z ∈ D,
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belongs to S0 and is extremal for a lot of problems within this class. Littlewood con-
jectured asserted that if f(z) =

∑∞
n=1 anz

n ∈ S0, then |an| ≤ 4n, for all n. It turns out
that Littlewood conjecture and the asymptotic Bieberbach conjecture are equivalent.

We have proved that if f(z) =
∑∞

n=0 c2n+1z
2n+1 is an odd function in S then |c3| ≤ 1.

Payley proved that there exists an absolute constant A such that |c2n+1| ≤ A for all n.
It was conjecture that A could be taken to be 1. This is not true for any n ≥ 2.

Robertson conjectured that 1+|c3|2+|c5|2+. . . |c2n−1|2 ≤ n, for all n. This conjecture
is stronger also than Bieberbach conjecture.

For f ∈ S consider the branch of log f(z)
z

which takes the value 0 at 0 and write its
Taylor series in the form

log
f(z)

z
= 2

∞∑
j=1

γjz
j.

The γj’s are called the logarithmic coefficients of f . For the Koebe function we have
γj = 1

j
for all j. Is is easy to see that if |γj| were less than 1

j
for all j, then one could

deduce |an| ≤ n for all n. The inequality |γj| ≤ 1
j
, for all j, is true for starlike functions

in S but not in general. We remark that the inequality
∞∑
j=1

|γj|2r2j ≤
∞∑
j=1

1

j2
r2j, 0 < r < 1

is true. This was proved by Duren and Leung in 1979 and can be written in the form

M2

(
r, log

f(z)

z

)
≤ M2

(
r, log

f(z)

z

)
, 0 < r ≤ 1, f ∈ S.

The author of this notes extended this result in 1986 showing that if 0 < p ≤ 2 then

Mp

(
r, log

f(z)

z

)
≤ Mp

(
r, log

k(z)

z

)
, 0 < r ≤ 1, f ∈ S.

We do not know whether or not this is also true for 2 < p <∞.

It was conjectured that

(6)
n∑
k=1

k|γk|2 ≤
n∑
k=1

1

k
, for all n.

This would imply the truth of Bieberbach conjecture but (6) was shown to be false.
Milin arrived to the conjecture

n∑
m=1

m∑
j=1

(
j|γj|2 −

1

j

)
≤ 0, for all n.

It turns out that Milin conjecture implies Robertson conjecture and that this one
implies the Bieberbach conjecture.

De Branges actually proved the truth of Milin conjecture.

De Branges’ original proof relied on ideas from operator theory. However it was
simplified and the distinct published proofs do not show the operator theory basis.
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Finally, the ingredients used in the distinct published proofs have been the Löwner
method (1923), a certain inequality proved by Lebedev and Milin in 1966 relating the
Taylor coefficients of a function f ∈ Hol(D) with those of ef , and an inequality of Askey
and Gasper (1976) concerning Jacobi polynomials or some other inequalities concerning
special functions.

9. subordination

Suppose that F is a univalent function in the unit disc D and Ω = f(D); let f be
an analytic function in D with f(0) = 0 and f(D) ⊂ Ω. Then f = F ◦ ω where
ω = F−1 ◦ f . Notice that ω is analytic in D and satisfies ω(0) = 0 and ω(D) ⊂ D, that
is, ω is in the conditions of Schwarz’s Lemma. The concept of subordination generalizes
this situation.

Definition 4. Let f an F be two analytic functions in D. We say that f is subordinated
to F , written f ≺ F , if there exists ω ∈ Hol(D) with ω(0) = 0 and ω(D) ⊂ D such that
f = F ◦ ω.

Bearing in mind the comment made before the definition, we have:

Proposition 2. If F is a conformal mapping from D onto a domain Ω and f is an
analytic function in D with f(0) = F (0) and f(D) ⊂ Ω then f ≺ F .

We have:

Proposition 3. Suppose that f, F ∈ Hol(D) and f ≺ F . Then;

(i) f(0) = F (0).
(ii) f(D) ⊂ F (D).

(iii) M∞(r, f) ≤M∞(r, F ), for all r ∈ (0, 1).
(iv) f (D(0, r)) ⊂ F (D(0, r)), for all r ∈ (0, 1).
(v) |f ′(0)| ≤ |F ′(0)|.

(vi) sup|z|<r(1− |z|2)|f ′(z)| ≤ sup|z|<r(1− |z|2)|F ′(z), for all r ∈ (0, 1).

Furthermore, if equality holds either in (iii) for some r > 0, or in (v) then f is of the
form f(z) = F (λz) (z ∈ D) for a certain constant λ with |λ| = 1.

(i) and (ii) are trivial; (iii), (iv), and (v) follow easily using the Schwarz’s Lemma.
Finally, (vi) follows using the Schwarz-Pick Theorem. We omit the details.

Remark 13. Suppose that f and F are analytic in D, f(z) =
∑∞

n=0 anz
n and F (z) =∑∞

n=0Anz
n (z ∈ D), and f ≺ F . Then we have

a0 = A0, |a1| ≤ |A1|.
However, for n ≥ 2 the inequality |an ≤ |An| does not hold in general. Example: Take
f(z) = zn, F (z) = z.

Remark 14. Notice that (vi) implies that the Bloch space is closed under subordination,
that is:

If F ∈ B and f ≺ F , then f ∈ B.
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The concept of subordination can be extended to subharmonic functions.

Definition 5. Let u an v be two subharmonic functions in D. We say that u is sub-
ordinated to v, written u ≺ v, if there exists ω ∈ Hol(D) with ω(0) = 0 and ω(D) ⊂ D
such that u = v ◦ ω.

Theorem 15. Let Let u an v be two subharmonic functions in D with u ≺ v. Then

(7)
1

2π

∫ π

−π
u(reit) dt ≤ 1

2π

∫ π

−π
v(reit) dt.

Proof. We have u = v ◦ ω for a certain ω ∈ Hol(D) with ω(0) = 0 and ω(D) ⊂ D.
Take r ∈ (0, 1) and let {hn} be a sequence of real valued continuous functions defined
on the circle {|z| = r} with hn ↓ v on this circle. For each n, let un be the solution
of the Dirichlet problem in the closed disc {|z| ≤ r} with boundary values hn, that is,
un : {|z| ≤ r} → R is continuous in {|z| ≤ r}, harmonic in {|z| < r}, and un = hn on
the circle {|z| = r}. By the principle of the harmonic majorant, v ≤ un in {|z| ≤ r}.
Since ω({|z| ≤ r}) ⊂ {|z| ≤ r}, this implies that

u(reit) = v(ω(reit)) ≤ un(ω(reit)), t ∈ R.

Using this and the mean value property of harmonic functions, we deduce that

1

2π

∫ π

−π
u(reit) dt ≤ 1

2π

∫ π

−π
un(ω(reit)) dt = un(ω(0)) = un(0) =

1

2π

∫ π

−π
hn(reit) dt.

Then the conclusion of the theorem follows letting n tend to infinity (using the monotone
convergence theorem). �

If f is analytic in D and p > 0 then |f |p is subharmonic in D. Consequently, we have
the following result.

Proposition 4. Let f and F be two analytic functions in D with f ≺ F . Then

Mp(r, f) ≤Mp(r, F ), 0 < r < 1,

whenever 0 < p ≤ ∞.

Remark 15. Proposition 4 for p = 2 gives:
If f and F are analytic in D, f(z) =

∑∞
n=0 anz

n and F (z) =
∑∞

n=0 Anz
n (z ∈ D),

and f ≺ F , then
∞∑
n=0

|an|2r2n ≤
∞∑
n=0

|An|2r2n, 0 ≤ r ≤ 1.
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10. Analytic functions with positive real part in the disc

Let P denote the class of all f ∈ Hol(D) with f(0) = 1 and Re (f(z)) > 0, for all
z ∈ D. Set

P (z) =
1 + z

1− z
= 1 +

∞∑
n=1

2zn, z ∈ D.

Then P is a conformal mapping from the unit disc onto the right-half plane H = {z ∈
C : Re z > 0} and P (0) = 1. Consequently, any f ∈ P is subordinated to P :

(8) f ∈ P ⇒ f ≺ P.

Using Proposition 3 and Proposition 4, we obtain:

Theorem 16. Suppose that f ∈ P, f(z) = 1 +
∑∞

n=1 anz
z (z ∈ D). Then:

(i) |f ′(0)| = |a1| ≤ 2.

(ii) 1−|z|
1+|z| = P (−|z|) ≤ |f(z)| ≤ 1+|z|

1−|z| = P (|z|), z ∈ D.

(iii) Mp(r, f) ≤Mp(r, P ), 0 ≤ r < 1, 0 < p ≤ ∞.
(iv) f ∈ Hp, for all p ∈ (0, 1).

(i), (iii) and the upper bound in (ii) follow directly from the fact that f ≺ P . Notice
that

f ∈ P ⇒ 1

f
∈ P

then the lower bound in (ii) follows. Finally, (iv) follows from (iii) because P ∈ Hp for
p < 1.

In spite of Remark 13, we have the following result.

Theorem 17. Let f ∈ P, f(z) = 1 +
∑∞

n=1 anz
n (z ∈ D). Then

(9) |an| ≤ 2, n = 2, 3, 4, . . . .

This result follows from the following one about analytic functions in D with image
contained in a convex domain.

Theorem 18. Let Ω ( C be a convex domain, and let F be a conformal mapping from
the unit disc D onto Ω. Let f be an analytic function in D with f(0) = F (0) and
f(D) ⊂ Ω. Say that

f(z) =
∞∑
n=0

anz
n, F (z) =

∞∑
n=0

Anz
n, z ∈ D.

Then

(10) |an| ≤ |A1|, for all n ≥ 1.

Proof. We have f ≺ F and, hence, a0 = A0, |a1| ≤ |A1|.
Take n ≥ 2. Set ω = e2πi/n. Since Ω is convex,

z ∈ D ⇒ f(z) + f(ωz) + f(ω2z) + . . . f(ωn−1z)

n
∈ Ω.
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Then, set

h(z) =
f(z) + f(ωz) + f(ω2z) + . . . f(ωn−1z)

n
, z ∈ D.

We have that f is analytic in D, h(0) = F (0) and h(D) ⊂ Ω. Thus h ≺ F.
We have

h(z) = a0 +
∞∑
k=1

ak
1 + ωk + ω2k + . . . ω(n−1)k

n
zk, z ∈ D,

but 1+ωk+ω2k+...ω(n−1)k

n
is equal to 1 if k is a multiple of n, and 0 otherwise. Consequently,

we have

h(z) = a0 +
∞∑
j=1

ajnz
jn, z ∈ D.

Set

g(z) = a0 +
∞∑
j=1

ajnz
j, z ∈ D.

Then g is analytic in D and h(z) = g(zn) (z ∈ D). Then it follows that g(D) ⊂ Ω,
which together with the fact that g(0) = F (0), implies that g ≺ F and then |an| =
|g′(0)| ≤ |A1|. �

Remark 16. The most usual proof of (17) makes use of the Herglotz representation of
functions in the class P.

For a function f ∈ Hol(D), we have that f ∈ P if and only if f can be written in the
form

f(z) =
1

2π

∫ π

−π

1 + ze−it

1− ze−it
dµ(t)

for a certain positive Borel measure µ on [−π, π] with total mass equal to 2π.

11. Convex and starlike functions

We define
K = {f ∈ S : f(D) is a convex domain}.

S? = {f ∈ S : f(D) is a domain which is starlike with respect to origin }.
For instance, the functions z

1−z and 1
2

log 1+z
1−z belong to K. The Koebe function and its

square root transformation z
1−z2 belong to S?.

Theorem 18 implies the following

Theorem 19. Suppose that f ∈ K, f(z) =
∑∞

n=1 anz
n (z ∈ D), then |an| ≤ 1 for all n.

Let us give an analytic characterization of functions in S?.
Let us notice that a domain Ω in C is starlike with respect to the origin means that

(11) w ∈ Ω ⇒ tw ∈ Ω, for all t ∈ [0, 1].
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Theorem 20. Let f be an analytic function in the unit disc D with f(0) = 0, f ′(0) = 1.

Then f ∈ S? if and only if Re
(
zf ′(z)
f(z)

)
> 0 for all z ∈ D. In other words,

f ∈ S? ⇔ zf ′(z)

f(z)
∈ P .

Proof. Suppose that f ∈ S? and set Ω = f(D). Using (11) we see that

z ∈ D ⇒ tf(z) ∈ Ω, for all t ∈ [0, 1].

Then it follows that tf ≺ f for all t ∈ [0, 1] and this implies that

{tf(z) : |z| < r} ⊂ f({|z| < r}, (0 < r < 1, 0 ≤ t ≤ 1).

This shows that for each r ∈ (0, 1) the domain f({|z| < r}) is also starlike and then
a simple geometric consideration yields that arg

(
f(reiθ)

)
is increasing in 0 ≤ θ ≤ 2π.

Hence,

(12)
∂

∂θ
arg
(
f(reiθ)

)
= Re

(
reiθ

f ′(reiθ)

f(reiθ)

)
≥ 0,

which, since f(0) = 0 and f ′(0) = 1, gives that zf ′(z)
f(z)
∈ P .

Conversely, suppose f(0) = 0, f ′(0) = 1 and p(z) = zf ′(z)
f(z)

∈ P . Then f(z) 6= 0 for

z ∈ D \ {0} because otherwise p would have a pole. Take r ∈ (0, 1). Using (12) we see
that arg

(
f(reiθ)

)
is incresing in 0 ≤ θ ≤ 2π and, using the argument principle, we see

that the total increase is∫ 2π

0

∂

∂θ
arg
(
f(reiθ)

)
dθ = Re

(∫ 2π

0

reiθ
f ′(reiθ)

f(reiθ)
dθ

)
= Re

(
1

i

∫
|z|=r

f ′(z)

f(z)
dz

)
= 2π

Then it follows that f maps the circle {|z| = r} in an injective way onto a Jordan
analytic curve Jr whose inner domain is starlike with respect to 0. It is easy to see that
this implies that f in univalent in {|z| < r} and f({|z| < r}) is the inner domain of the
curve Jr. Since this is true for any r ∈ (0, 1), it follows that f ∈ S?. �

This result implies the truth of Bieberbach conjecture for functions in S?.

Theorem 21. Let f ∈ S?, f(z) =
∑∞

n=1 anz
n, then |an| ≤ n for all n.

Proof. Set p(z) = zf ′(z)
f(z)

(z ∈ D). Then p ∈ P . Write

p(z) = 1 +
∞∑
n=1

bnz
n, z ∈ D.

we know that |bn| ≤ 2, for all n. Comparing the Taylor coefficients in zf ′(z) = f(z)p(z)
we see that

an =
1

n− 1

n−1∑
k=1

bn−kak, n = 2, 3, . . . .
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Since |bk| ≤ 2 for all k, we have

|an| ≤
2

n− 1

n−1∑
k=1

|ak|, n = 2, 3, . . . .

Since a1 = 1 induction shows that |an| ≤ n for all n. Also, we have strict inequality
unless |a2| = 2, that is, unless f is a rotation of the Koebe function. �

Remark 17. Using geometric considerations and subordination we can prove that a
function f ∈ Hol(D) with f(0) = 0 and f ′(0) = 1 belongs to K if and only if

1 + z
f ′′(z)

f ′(z)
∈ P .

This easily implies that
f ∈ K ⇔ zf ′(z) ∈ S?.

Remark 18. There are some other subclasses of the class S for which the Bieberbach
conjecture can be proved with elementary methods. For example, let us mention that
Dieudonné proved in 1931 the validity of the Bieberbach conjecture for functions f ∈ S
with real Taylor coefficients.

12. Estimates of the integral means

The estimate |an| ≤ en2 obtained at the end of in Section 7 is far from being sharp,
it is not even of the right order. We deduced it from (5) and the distortion theorem.
A better result would be obtained using, instead of the estimate |f(reit)| ≤ k(r), an
upper bound on the integral means M1(r, f) =

∫ π
−π |f(reit)| dt. Notice that

(13) M1(r, k) =
r

1− r2
.

Littlewood proved in 1925 the estimate

(14)

∫ π

−π
|f(reit)| dt ≤ r

1− r
, 0 < r < 1, f ∈ S.

Using this in (5) we obtain:

Theorem 22 (Littlewood). Let f ∈ S, f(z) =
∑∞

n=1 anz
n (z ∈ D). Then |an| ≤ en

for all n.

A. Baernstein proved that if f ∈ S and 0 ≤ r < 1 then

M1(r, f) ≤M1(r, k) =
r

1− r2
.

This estimate implies that |an| ≤ e
2
n, for all n.

Actually, Baernstein proved a much more stronger result. He showed that the Koebe
function is extremal for a very general class of problems about integral means in the
class S. Namely:
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Theorem 23 (Baernstein). Let Φ : R→ R be a convex function. Then for f ∈ S and
0 < r < 1 ∫ π

−π
Φ
(
log |f(reit)|

)
dt ≤

∫ π

−π
Φ
(
log |k(reit)|

)
dt.

Furthermore, if equality holds for son r ∈ (0, 1) and some strictly convex function Φ,
then f is a rotation of the Koebe function.

In particular, taking p > 0 and Φ(x) = epx (x ∈ R), we obtain:

Mp(r, f) ≤Mp(r, k), 0 < r < 1, f ∈ S,
with equality for some r ∈ (0, 1) if and only f is a rotation of the Koebe function.

We shall not prove this theorem here. We shall prove a result of Prawitz (1927) which
for p = 1 implies Littlewood’s estimate, and for general p gives an upper bound of the
right order for Mp(r, f).

A result of Hardy and Littlewood asserts that, for any f ∈ Hol(D),∫ r

0

M∞(ρ, f)p dρ ≤ πIp(r, f).

An inequality in the opposite direction is not true in general, but Prawitz proved one
for univalent functions.

Theorem 24 (Prawitz). Let f ∈ S and p > 0. Then

(15) Ip(r, f) ≤ p

∫ r

0

M∞(ρ, f)pρ−1 dρ.

The following result will be used to prove Prawitz’s theorem.

Lemma 1. For f ∈ Hol(D) and 0 < p <∞ we have

(16)
d

dr

(
r
d

dr
Ip(r, f)

)
=
p2r

2π

∫ π

−π
|f(reiθ)|p−2|f ′(reiθ)|2 dθ, 0 < r < 1.

Proof. Setting z = reiθ, we have

r
∂

∂r
|f(z)| = |f(z)|Re

(
z
f ′(z)

f(z)

)
,

∂

∂θ
|f(z)| = −|f(z)|Im

(
z
f ′(z)

f(z)

)
.

For simplicity, write I(r) for Ip(r, f) and

u(z) = Re

(
z
f ′(z)

f(z)

)
, v(z) = Im

(
z
f ′(z)

f(z)

)
.

The Cauchy-Riemann equations in polar coordinates take the form

(17)
∂u

∂r
=

1

r

∂v

∂θ
,

∂v

∂r
= −1

r

∂u

∂θ
.

Then we have

r
∂

∂r
(|f(z)|p) = p|f(z)|pu(z),

∂

∂θ
(|f(z)|p) = −p|f(z)|pv(z)
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and, hence,

r
∂

∂r

(
r
∂

∂r
|f(z)|p

)
= r

∂

∂r
(p|f(z)|pu(z)) = p2|f(z)|pu(z)2 + p|f(z)|pr∂u

∂r
(z)

∂2

∂θ2
(|f(z)|p) =

∂

∂θ
(−p|f(z)|pv(z)) = p2|f(z)|pv(z)2 − p|f(z)|p∂v

∂θ
(z).

Adding up and using (17), we obtain

r
∂

∂r

(
r
∂

∂r
|f(z)|p

)
+

∂2

∂θ2
(|f(z)|p) = p2|f(z)|p

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣2 .
Since

∫ π

−π

∂2

∂θ2
(|f(reiθ)|p) dθ = 0, it follows that

r
d

∂r

(
r
d

∂r
(I(r))

)
=
p2

2π

∫ π

−π
|f(reiθ)|p

∣∣∣∣reiθf ′(reiθ)f(reiθ)

∣∣∣∣2 d θ,
which is equivalent to (16). �

Proof of Prawitz′s Theorem. Take f ∈ S. Integrating (16) we obtain

r
d

dr
Ip(r, f) =

p2

2π

∫
|z|<r
|f(z)|p−2|f ′(z)|2 dA(z).

Making the change of variable w = f(z), and bearing in mind that f is injective, and
using that |f(z)| ≤M∞(r, f) whenever |z| < r, it follows that

r d
dr
Ip(r, f) = p2

2π

∫
f(|z|<r)

|w|p−2 dA(w) ≤ p2

2π

∫
|w|<M∞(r,f)

|w|p−2 dA(w)

= p2

∫ M∞(r,f)

0

tp−1 dt = pM∞(r, f)p

and (15) follows by integration �

Using the estimate M∞(r, f) ≤ r
(1−r)2 , Prawitz’s Theorem easily implies the following

result.

Theorem 25. Let f ∈ S. Then:

(i) f ∈ Hp for all p ∈ (0, 1
2
).

(ii) M1(r, f) ≤ r
1−r , for all r ∈ (0, 1).

(iii) I1/2(r, f) = O
(
log 1

1−r

)
, as r → 1.

(iv) If p > 1
2

then Ip(r, f) = O
(

1
(1−r)2p−1

)
, as r → 1.

Notice that (ii) is (14). The Koebe function does not belong to H1/2, hence (i) is
best possible. Also, the Koebe function shows that the estimates in (iii) and (iv) are
sharp.



28 D. GIRELA

The derivative of the Koebe function k′(z) = 1+z
(1−z)3 belongs to Hp for all p ∈ (0, 1

3
)

and it does not belong to H1/3. We also have

I1/3(r, k′) �
(

log
1

1− r

)
, as r → 1,

and

Ip(r, k
′) �

(
1

(1− r)3p−1

)
, as r → 1.

It is natural to ask whether the analogues for the derivatives of parts (i), (iii) and
(iv) Theorem 25 hold. In general, it is interesting to estimate the growth of the integral
means Ip(r, f

′) within the class S.

Of course, using de Branges’s theorem (the fact that the Bieberbach conjecture is
true) it follows that

I2(r, f ′) ≤ I2(r, k′), 0 < r < 1, f ∈ S.

Actually this can be extended to the integral means of order a power of two:

(18) I2N (r, f ′) ≤ I2N (r, k′), 0 < r < 1, f ∈ S, N = 1, 2, 3, . . . .

Let us mention also that Leung (1979) used the results of Baernstein to prove that
if f ∈ S?, then Ip(r, f

′) ≤ Ip(r, k
′) (0 < r < 1), for all p > 0.

In the negative side we have the following:
There exists a function f ∈ S such that f ′ does not belong to any of the Hardy spaces.
More precisely: There exists f ∈ S such that f ′ dos has radial limit almost nowhere.
One way of constructing such an f is the following: Take F (z) =

∑∞
k=0 z

2k (z ∈ D).
This function F is a Bloch function has has radial limit almost nowhere. Since F ∈ B,
F is of the form F = C log f ′ for a certain constant C and a function f ∈ S. The
function f ′ has radial limits almost nowhere.

Let us finish with some positive results. We start obtaining an upper bound for the
integral

∫ π
−π |f(reiθ)|p−2|f ′(reiθ)|2 dθ which appears in the right-hand side of (16).

Proposition 5. For any given p ∈ (0,∞) there exists a positive constant C = C(p)
such that whenever f ∈ S and 0 < r < 1 we have

(19)

∫ π

−π
|f(reit)|p−2|f ′(reit)|2 dt ≤ C(p)

M∞(r, f)p

1− r
.

The following results will be used to prove Proposition 5.

Lemma 2. There exists an absolute constant A > 0 (which can be taken to be log 2)
such that if f is a Bloch function then

(20)
∣∣f(ρeiθ)− f(reiθ)

∣∣ ≤ A‖f‖B, r ≤ ρ ≤ 1 + r

2
,

whenever 0 < r < 1 and θ ∈ R.
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Proof. Take f ∈ B, 0 < r < 1 and θ ∈ R. For simplicity, write r′ = 1+r
2

. Notice that

r < r′ < 1 and 1− r′ = 1−r
2

.
For r ≤ ρ ≤ r′, we have∣∣f(ρeiθ)− f(reiθ)

∣∣ =

∣∣∣∣∫
[reiθ,ρeiθ]

f ′(ξ) dξ

∣∣∣∣ ≤ ∫ ρ

r

|f ′(teiθ)| dt

≤ ‖f‖B
∫ r′

r

1
1−t2 dt ≤ ‖f‖B log 1−r

1−r′ = (log 2)‖f‖B.

�

Corollary 3. There exist a positive constant M such that if f ∈ S, 0 < r < 1, and
θ ∈ R then

(21)
1

M
≤
∣∣∣∣f ′(ρeiθ)f ′(reiθ)

∣∣∣∣ ≤M and
1

M
≤
∣∣∣∣f(ρeiθ)

f(reiθ)

∣∣∣∣ ≤M, for r ≤ ρ ≤ 1 + r

2
.

Proof. Using Remark 12 and part (iii) of the distortion theorem we see that there exists
a positive constant A such for any function f ∈ S

log f ′ ∈ B and ‖log f ′‖B ≤ 6

and

log
f(z)

z
∈ B and ‖ log

f(z)

z
‖B ≤ 8.

Then Corollary 3 follows using Lemma 2. �

Proof of Proposition 5. Using Corollary 3, we see that there exists a positive constant
A(p) such that for whenever f ∈ S and f ∈ S and 0 < r < 1, and θ ∈ R, we have

|f ′(reiθ)|2|f(reiθ)|p−2 ≤ A(p)|f ′(ρeiθ)|2|f(ρeiθ)|p−2, r ≤ ρ ≤ 1 + r

2

Setting r′ = 1+r
2

, and integrating, we obtain∫ r′

r

∫ 2π

0

r|f ′(reiθ)|2|f(reiθ)|λ−2dθdρ ≤ A(p)

∫ r′

r

∫ 2π

0

ρ|f ′(ρeiθ)|2|f(ρeiθ)|λ−2dθdρ,

for 0 < r < 1. This implies that

(r′ − r)r
∫ 2π

0

|f ′(reiθ)|2|f(reiθ)|p−2dθ ≤ A(p)

∫
|z|<r
|f(z)|p−2|f ′(z)|2dA(z) =

= A(p)

∫
f{|z|<r′}

|w|p−2dA(w) ≤ A(p)

∫
|w|<M∞(r′,f)

|w|p−2dA(w) ≤

≤ Ã(p)M∞(r′, f)p ≤ C(p)M∞(r, f)p,

for all r > 0 (to obtain the last inequality we have used (21)). Since r′ − r = 1−r
2

, this
implies (19). �

Now we can prove the following result of Feng and MacGregor (1976) which asserts
that if f ∈ S then Mp(r, f

′) = O (Mp(r, k
′)), at least for p > 2/5.
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Theorem 26 (Feng-MacGregor). Suppose that 2
5
< p <∞ and f ∈ S. Then

Ip(r, f
′) = O

(
1

(1− r)3p−1

)
, as r → 1.

Proof of Theorem 26. Take f ∈ S and 1
2
< r < 1.

Suppose first that p ≥ 2. Using that
∣∣∣ zf ′(z)f(z)

∣∣∣ ≤ 1+|z|
1−|z| and Proposition 5, we see that∫ π

−π
|f ′(reiθ)|pdθ =

∫ π

−π
|f ′(reiθ)|2 |f(reiθ)|p−2

[∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣]p−2

dθ

≤ 1
rp−2

(
1+r
1−r

)p−2
∫ π

−π
|f ′(reiθ)|2 |f(reiθ)|p−2dθ

≤ 1
rp−2

1
(1−r)p−2

M∞(r,f)p

1−r .

Using the distortion Theorem, this gives that Ip(r, f
′) ≤ Cp

(1−r)3p−1 .

Suppose now that 0 < p < 2. Write p = α + β with α, β ≥ 0.

(22)

∫ π

−π
|f ′(reiθ)|pdθ =

∫ π

−π

∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣p |f(reiθ)|α |f(reiθ)|βdθ.

Set µ = 2
p

and let ν be the conjugate exponent of µ, that is, 1
µ

+ 1
ν

= 1 or ν = 2
2−p .

Using Hölder’s inequality we obtain∫ π

−π

∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣p |f(reiθ)|α |f(reiθ)|βdθ(23)

≤
(∫ π

−π

∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣2 |f(reiθ)|α
2
pdθ

) p
2

·
(∫ π

−π
|f(reiθ)|β

2
2−pdθ

) 2−p
2

Using Lemma 5 and the distortion theorem, we obtain(∫ π

−π
|f ′(reiθ)|2 |f(reiθ)|α 2

λ
−2dθ

) p
2

(24)

≤
(
M∞(r,f)

α 2
p

1−r

) p
2

≤ C

(1−r)(
4α
p +1) p2

= C

(1−r)2α+
p
2
.

Also, assuming that β · 2
2−p >

1
2
, we have

(25)

(∫ π

−π
|f(reiθ)|β

2
2−pdθ

) 2−p
2

≤ C

(
1

1− r

)( 4β
2−p−1)· 2−p

2

=
C

(1− r)2β+ p
2
−1
.

Putting together (22), (23), (24), and (25), we obtain the desired estimate∫ π

−π
|f ′(reiθ)|λdθ = O

(
1

(1− r)3λ−1

)
.

under the assumption that β · 2
2−p > 1

2
or, equivalently β > 2−p

4
. But recall that

0 ≤ α = p − β. Then the condition β · 2
2−p >

1
2

implies that 0 ≤ α = p − β < 5p−2
4

.

Hence this is possible only for p > 2
5
. �
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Remark 19. The result of Feng and MacGregor for 2 ≤ p < ∞ can be deduced from
(18) by interpolation.

There are a lot of publications about univalent functions. We shall simply mention
4 excellent books.
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Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga,
Campus de Teatinos, 29071 Málaga, Spain

E-mail address: girela@uma.es

View publication statsView publication stats

https://www.researchgate.net/publication/265794696

