2.3.3 Multiplication of Matrices and Vectors

In order for the product $\mathbf{A B}$ to be defined, the number of columns in \mathbf{A} must be the same as the number of rows in \mathbf{B}, in which case \mathbf{A} and \mathbf{B} are said to be conformable. Then the (ij)th element of $\mathbf{C}=\mathbf{A B}$ is

$$
\begin{equation*}
c_{i j}=\sum_{k} a_{i k} b_{k j} \tag{2.19}
\end{equation*}
$$

Thus $c_{i j}$ is the sum of products of the i th row of \mathbf{A} and the j th column of \mathbf{B}. We therefore multiply each row of \mathbf{A} by each column of \mathbf{B}, and the size of $\mathbf{A B}$ consists of the number of rows of \mathbf{A} and the number of columns of \mathbf{B}. Thus, if \mathbf{A} is $n \times m$ and \mathbf{B} is $m \times p$, then $\mathbf{C}=\mathbf{A B}$ is $n \times p$. For example, if

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 1 & 3 \\
4 & 6 & 5 \\
7 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 4 \\
2 & 6 \\
3 & 8
\end{array}\right)
$$

then

$$
\begin{aligned}
\mathbf{C}=\mathbf{A B} & =\left(\begin{array}{ll}
2 \cdot 1+1 \cdot 2+3 \cdot 3 & 2 \cdot 4+1 \cdot 6+3 \cdot 8 \\
4 \cdot 1+6 \cdot 2+5 \cdot 3 & 4 \cdot 4+6 \cdot 6+5 \cdot 8 \\
7 \cdot 1+2 \cdot 2+3 \cdot 3 & 7 \cdot 4+2 \cdot 6+3 \cdot 8 \\
1 \cdot 1+3 \cdot 2+2 \cdot 3 & 1 \cdot 4+3 \cdot 6+2 \cdot 8
\end{array}\right) \\
& =\left(\begin{array}{ll}
13 & 38 \\
31 & 92 \\
20 & 64 \\
13 & 38
\end{array}\right) .
\end{aligned}
$$

Note that \mathbf{A} is $4 \times 3, \mathbf{B}$ is 3×2, and $\mathbf{A B}$ is 4×2. In this case, $\mathbf{A B}$ is of a different size than either \mathbf{A} or \mathbf{B}.

If \mathbf{A} and \mathbf{B} are both $n \times n$, then $\mathbf{A B}$ is also $n \times n$. Clearly, \mathbf{A}^{2} is defined only if \mathbf{A} is a square matrix.

In some cases $\mathbf{A B}$ is defined, but $\mathbf{B A}$ is not defined. In the preceding example, $\mathbf{B A}$ cannot be found because \mathbf{B} is 3×2 and \mathbf{A} is 4×3 and a row of \mathbf{B} cannot be multiplied by a column of \mathbf{A}. Sometimes $\mathbf{A B}$ and $\mathbf{B A}$ are both defined but are different in size. For example, if \mathbf{A} is 2×4 and \mathbf{B} is 4×2, then $\mathbf{A B}$ is 2×2 and $\mathbf{B A}$ is 4×4. If \mathbf{A} and \mathbf{B} are square and the same size, then $\mathbf{A B}$ and $\mathbf{B A}$ are both defined. However,

$$
\begin{equation*}
\mathbf{A B} \neq \mathbf{B} \mathbf{A} \tag{2.20}
\end{equation*}
$$

except for a few special cases. For example, let

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{rr}
1 & -2 \\
3 & 5
\end{array}\right)
$$

Then

$$
\mathbf{A B}=\left(\begin{array}{ll}
10 & 13 \\
14 & 16
\end{array}\right), \quad \mathbf{B A}=\left(\begin{array}{rr}
-3 & -5 \\
13 & 29
\end{array}\right)
$$

Thus we must be careful to specify the order of multiplication. If we wish to multiply both sides of a matrix equation by a matrix, we must multiply on the left or on the right and be consistent on both sides of the equation.

Multiplication is distributive over addition or subtraction:

$$
\begin{align*}
& \mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C} \tag{2.21}\\
& \mathbf{A}(\mathbf{B}-\mathbf{C})=\mathbf{A B}-\mathbf{A C} \tag{2.22}\\
& (\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C} \tag{2.23}\\
& (\mathbf{A}-\mathbf{B}) \mathbf{C}=\mathbf{A C}-\mathbf{B C} \tag{2.24}
\end{align*}
$$

Note that, in general, because of (2.20),

$$
\begin{equation*}
\mathbf{A}(\mathbf{B}+\mathbf{C}) \neq \mathbf{B A}+\mathbf{C A} \tag{2.25}
\end{equation*}
$$

Using the distributive law, we can expand products such as $(\mathbf{A}-\mathbf{B})(\mathbf{C}-\mathbf{D})$ to obtain

$$
\begin{array}{rlr}
(\mathbf{A}-\mathbf{B})(\mathbf{C}-\mathbf{D}) & =(\mathbf{A}-\mathbf{B}) \mathbf{C}-(\mathbf{A}-\mathbf{B}) \mathbf{D} & {[\text { by }(2.22)]} \\
& =\mathbf{A C}-\mathbf{B C}-\mathbf{A D}+\mathbf{B} \mathbf{D} & {[\text { by }(2.24)]} \tag{2.26}
\end{array}
$$

The transpose of a product is the product of the transposes in reverse order:

$$
\begin{equation*}
(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime} \tag{2.27}
\end{equation*}
$$

Note that (2.27) holds as long as \mathbf{A} and \mathbf{B} are conformable. They need not be square.
Multiplication involving vectors follows the same rules as for matrices. Suppose \mathbf{A} is $n \times p, \mathbf{a}$ is $p \times 1, \mathbf{b}$ is $p \times 1$, and \mathbf{c} is $n \times 1$. Then some possible products are $\mathbf{A b}, \mathbf{c}^{\prime} \mathbf{A}, \mathbf{a}^{\prime} \mathbf{b}, \mathbf{b}^{\prime} \mathbf{a}$, and $\mathbf{a b}^{\prime}$. For example, let

$$
\mathbf{A}=\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 5
\end{array}\right), \quad \mathbf{a}=\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right), \quad \mathbf{c}=\binom{2}{-5}
$$

Then

$$
\mathbf{A b}=\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\binom{16}{31}
$$

$$
\begin{aligned}
& \mathbf{c}^{\prime} \mathbf{A}=\left(\begin{array}{ll}
2 & -5
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 5
\end{array}\right)=\left(\begin{array}{lll}
1 & -19 & -17
\end{array}\right), \\
& \mathbf{c}^{\prime} \mathbf{A} \mathbf{b}=\left(\begin{array}{ll}
2 & -5
\end{array}\right)\left(\begin{array}{rrr}
3 & -2 & 4 \\
1 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{ll}
2 & -5
\end{array}\right)\binom{16}{31}=-123, \\
& \mathbf{a}^{\prime} \mathbf{b}=\left(\begin{array}{lll}
1 & -2 & 3
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=8, \\
& \mathbf{b}^{\prime} \mathbf{a}=\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right)=8, \\
& \mathbf{a b} \\
& \mathbf{a}=\left(\begin{array}{r}
1 \\
-2 \\
3
\end{array}\right)\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)=\left(\begin{array}{rrr}
2 & 3 & 4 \\
-4 & -6 & -8 \\
6 & 9 & 12
\end{array}\right), \\
& 1 \\
& \mathbf{a}=\binom{-2}{3}\left(\begin{array}{rr}
2 & -5
\end{array}\right)=\left(\begin{array}{rr}
-5 \\
-4 & 10 \\
6 & -15
\end{array}\right) .
\end{aligned}
$$

Note that $\mathbf{A b}$ is a column vector, $\mathbf{c}^{\prime} \mathbf{A}$ is a row vector, $\mathbf{c}^{\prime} \mathbf{A b}$ is a scalar, and $\mathbf{a}^{\prime} \mathbf{b}=\mathbf{b}^{\prime} \mathbf{a}$. The triple product $\mathbf{c}^{\prime} \mathbf{A b}$ was obtained as $\mathbf{c}^{\prime}(\mathbf{A b})$. The same result would be obtained if we multiplied in the order $\left(\mathbf{c}^{\prime} \mathbf{A}\right) \mathbf{b}$:

$$
\left(\mathbf{c}^{\prime} \mathbf{A}\right) \mathbf{b}=\left(\begin{array}{lll}
1 & -19 & -17
\end{array}\right)\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)=-123 .
$$

This is true in general for a triple product:

$$
\begin{equation*}
\mathbf{A B C}=\mathbf{A}(\mathbf{B C})=(\mathbf{A B}) \mathbf{C} \tag{2.28}
\end{equation*}
$$

Thus multiplication of three matrices can be defined in terms of the product of two matrices, since (fortunately) it does not matter which two are multiplied first. Note that \mathbf{A} and \mathbf{B} must be conformable for multiplication, and \mathbf{B} and \mathbf{C} must be conformable. For example, if \mathbf{A} is $n \times p, \mathbf{B}$ is $p \times q$, and \mathbf{C} is $q \times m$, then both multiplications are possible and the product $\mathbf{A B C}$ is $n \times m$.

We can sometimes factor a sum of triple products on both the right and left sides. For example,

$$
\begin{equation*}
\mathbf{A B C}+\mathbf{A D C}=\mathbf{A}(\mathbf{B}+\mathbf{D}) \mathbf{C} . \tag{2.29}
\end{equation*}
$$

As another illustration, let \mathbf{X} be $n \times p$ and \mathbf{A} be $n \times n$. Then

$$
\begin{equation*}
\mathbf{X}^{\prime} \mathbf{X}-\mathbf{X}^{\prime} \mathbf{A X}=\mathbf{X}^{\prime}(\mathbf{X}-\mathbf{A X})=\mathbf{X}^{\prime}(\mathbf{I}-\mathbf{A}) \mathbf{X} \tag{2.30}
\end{equation*}
$$

If \mathbf{a} and \mathbf{b} are both $n \times 1$, then

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \tag{2.31}
\end{equation*}
$$

is a sum of products and is a scalar. On the other hand, $\mathbf{a b}^{\prime}$ is defined for any size \mathbf{a} and \mathbf{b} and is a matrix, either rectangular or square:

$$
\mathbf{a b}^{\prime}=\left(\begin{array}{c}
a_{1} \tag{2.32}\\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)\left(\begin{array}{llll}
b_{1} & b_{2} & \cdots & b_{p}
\end{array}\right)=\left(\begin{array}{cccc}
a_{1} b_{1} & a_{1} b_{2} & \cdots & a_{1} b_{p} \\
a_{2} b_{1} & a_{2} b_{2} & \cdots & a_{2} b_{p} \\
\vdots & \vdots & & \vdots \\
a_{n} b_{1} & a_{n} b_{2} & \cdots & a_{n} b_{p}
\end{array}\right)
$$

Similarly,

$$
\begin{align*}
\mathbf{a}^{\prime} \mathbf{a} & =a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}, \tag{2.33}\\
\mathbf{a a}^{\prime} & =\left(\begin{array}{cccc}
a_{1}^{2} & a_{1} a_{2} & \cdots & a_{1} a_{n} \\
a_{2} a_{1} & a_{2}^{2} & \cdots & a_{2} a_{n} \\
\vdots & \vdots & & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & \cdots & a_{n}^{2}
\end{array}\right) . \tag{2.34}
\end{align*}
$$

Thus $\mathbf{a}^{\prime} \mathbf{a}$ is a sum of squares, and $\mathbf{a a}^{\prime}$ is a square (symmetric) matrix. The products $\mathbf{a}^{\prime} \mathbf{a}$ and $\mathbf{a a}^{\prime}$ are sometimes referred to as the dot product and matrix product, respectively. The square root of the sum of squares of the elements of \mathbf{a} is the distance from the origin to the point \mathbf{a} and is also referred to as the length of \mathbf{a} :

$$
\begin{equation*}
\text { Length of } \mathbf{a}=\sqrt{\mathbf{a}^{\prime} \mathbf{a}}=\sqrt{\sum_{i=1}^{n} a_{i}^{2}} . \tag{2.35}
\end{equation*}
$$

As special cases of (2.33) and (2.34), note that if \mathbf{j} is $n \times 1$, then

$$
\mathbf{j}^{\prime} \mathbf{j}=n, \quad \mathbf{j}^{\prime}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{2.36}\\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)=\mathbf{J},
$$

where \mathbf{j} and \mathbf{J} were defined in (2.11) and (2.12). If \mathbf{a} is $n \times 1$ and \mathbf{A} is $n \times p$, then

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{j}=\mathbf{j}^{\prime} \mathbf{a}=\sum_{i=1}^{n} a_{i} \tag{2.37}
\end{equation*}
$$

$$
\mathbf{j}^{\prime} \mathbf{A}=\left(\sum_{i} a_{i 1}, \sum_{i} a_{i 2}, \ldots, \sum_{i} a_{i p}\right), \quad \mathbf{A} \mathbf{j}=\left(\begin{array}{c}
\sum_{j} a_{1 j} \tag{2.38}\\
\sum_{j} a_{2 j} \\
\vdots \\
\sum_{j} a_{n j}
\end{array}\right)
$$

Thus $\mathbf{a}^{\prime} \mathbf{j}$ is the sum of the elements in $\mathbf{a}, \mathbf{j}^{\prime} \mathbf{A}$ contains the column sums of \mathbf{A}, and $\mathbf{A j}$ contains the row sums of \mathbf{A}. In $\mathbf{a}^{\prime} \mathbf{j}$, the vector \mathbf{j} is $n \times 1$; in $\mathbf{j}^{\prime} \mathbf{A}$, the vector \mathbf{j} is $n \times 1$; and in $\mathbf{A} \mathbf{j}$, the vector \mathbf{j} is $p \times 1$.

Since $\mathbf{a}^{\prime} \mathbf{b}$ is a scalar, it is equal to its transpose:

$$
\begin{equation*}
\mathbf{a}^{\prime} \mathbf{b}=\left(\mathbf{a}^{\prime} \mathbf{b}\right)^{\prime}=\mathbf{b}^{\prime}\left(\mathbf{a}^{\prime}\right)^{\prime}=\mathbf{b}^{\prime} \mathbf{a} . \tag{2.39}
\end{equation*}
$$

This allows us to write $\left(\mathbf{a}^{\prime} \mathbf{b}\right)^{2}$ in the form

$$
\begin{equation*}
\left(\mathbf{a}^{\prime} \mathbf{b}\right)^{2}=\left(\mathbf{a}^{\prime} \mathbf{b}\right)\left(\mathbf{a}^{\prime} \mathbf{b}\right)=\left(\mathbf{a}^{\prime} \mathbf{b}\right)\left(\mathbf{b}^{\prime} \mathbf{a}\right)=\mathbf{a}^{\prime}\left(\mathbf{b} \mathbf{b}^{\prime}\right) \mathbf{a} . \tag{2.40}
\end{equation*}
$$

From (2.18), (2.26), and (2.39) we obtain

$$
\begin{equation*}
(\mathbf{x}-\mathbf{y})^{\prime}(\mathbf{x}-\mathbf{y})=\mathbf{x}^{\prime} \mathbf{x}-2 \mathbf{x}^{\prime} \mathbf{y}+\mathbf{y}^{\prime} \mathbf{y} . \tag{2.41}
\end{equation*}
$$

Note that in analogous expressions with matrices, however, the two middle terms cannot be combined:

$$
\begin{aligned}
(\mathbf{A}-\mathbf{B})^{\prime}(\mathbf{A}-\mathbf{B}) & =\mathbf{A}^{\prime} \mathbf{A}-\mathbf{A}^{\prime} \mathbf{B}-\mathbf{B}^{\prime} \mathbf{A}+\mathbf{B}^{\prime} \mathbf{B}, \\
(\mathbf{A}-\mathbf{B})^{2} & =(\mathbf{A}-\mathbf{B})(\mathbf{A}-\mathbf{B})=\mathbf{A}^{2}-\mathbf{A B}-\mathbf{B} \mathbf{A}+\mathbf{B}^{2} .
\end{aligned}
$$

If \mathbf{a} and $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$ are all $p \times 1$ and \mathbf{A} is $p \times p$, we obtain the following factoring results as extensions of (2.21) and (2.29):

$$
\begin{align*}
\sum_{i=1}^{n} \mathbf{a}^{\prime} \mathbf{x}_{i} & =\mathbf{a}^{\prime} \sum_{i=1}^{n} \mathbf{x}_{i}, \tag{2.42}\\
\sum_{i=1}^{n} \mathbf{A} \mathbf{x}_{i} & =\mathbf{A} \sum_{i=1}^{n} \mathbf{x}_{i}, \tag{2.43}\\
\sum_{i=1}^{n}\left(\mathbf{a}^{\prime} \mathbf{x}_{i}\right)^{2} & =\mathbf{a}^{\prime}\left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right) \mathbf{a} \quad[b y(2.40)], \tag{2.44}\\
\sum_{i=1}^{n} \mathbf{A} \mathbf{x}_{i}\left(\mathbf{A} \mathbf{x}_{i}\right)^{\prime} & =\mathbf{A}\left(\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right) \mathbf{A}^{\prime} . \tag{2.45}
\end{align*}
$$

We can express matrix multiplication in terms of row vectors and column vectors. If \mathbf{a}_{i}^{\prime} is the i th row of \mathbf{A} and \mathbf{b}_{j} is the j th column of \mathbf{B}, then the $(i j)$ th element of $\mathbf{A B}$
is $\mathbf{a}_{i}^{\prime} \mathbf{b}_{j}$. For example, if \mathbf{A} has three rows and \mathbf{B} has two columns,

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\mathbf{a}_{3}^{\prime}
\end{array}\right), \quad \mathbf{B}=\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)
$$

then the product $\mathbf{A B}$ can be written as

$$
\mathbf{A B}=\left(\begin{array}{cc}
\mathbf{a}_{1}^{\prime} \mathbf{b}_{1} & \mathbf{a}_{1}^{\prime} \mathbf{b}_{2} \tag{2.46}\\
\mathbf{a}_{2}^{\prime} \mathbf{b}_{1} & \mathbf{a}_{2}^{\prime} \mathbf{b}_{2} \\
\mathbf{a}_{3}^{\prime} \mathbf{b}_{1} & \mathbf{a}_{3}^{\prime} \mathbf{b}_{2}
\end{array}\right)
$$

This can be expressed in terms of the rows of \mathbf{A} :

$$
\mathbf{A B}=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \tag{2.47}\\
\mathbf{a}_{2}^{\prime}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \\
\mathbf{a}_{3}^{\prime}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)
\end{array}\right)=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \mathbf{B} \\
\mathbf{a}_{2}^{\prime} \mathbf{B} \\
\mathbf{a}_{3}^{\prime} \mathbf{B}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\mathbf{a}_{3}^{\prime}
\end{array}\right) \mathbf{B} .
$$

Note that the first column of $\mathbf{A B}$ in (2.46) is

$$
\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \mathbf{b}_{1} \\
\mathbf{a}_{2}^{\prime} \mathbf{b}_{1} \\
\mathbf{a}_{3}^{\prime} \mathbf{b}_{1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\mathbf{a}_{3}^{\prime}
\end{array}\right) \mathbf{b}_{1}=\mathbf{A} \mathbf{b}_{1}
$$

and likewise the second column is $\mathbf{A b}_{2}$. Thus $\mathbf{A B}$ can be written in the form

$$
\mathbf{A B}=\mathbf{A}\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=\left(\mathbf{A} \mathbf{b}_{1}, \mathbf{A} \mathbf{b}_{2}\right)
$$

This result holds in general:

$$
\begin{equation*}
\mathbf{A B}=\mathbf{A}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{p}\right)=\left(\mathbf{A} \mathbf{b}_{1}, \mathbf{A} \mathbf{b}_{2}, \ldots, \mathbf{A} \mathbf{b}_{p}\right) \tag{2.48}
\end{equation*}
$$

To further illustrate matrix multiplication in terms of rows and columns, let $\mathbf{A}=$

$$
\begin{align*}
\mathbf{A x} & =\binom{\mathbf{a}_{1}^{\prime}}{\mathbf{a}_{2}^{\prime}} \mathbf{x}=\binom{\mathbf{a}_{1}^{\prime} \mathbf{x}}{\mathbf{a}_{2}^{\prime} \mathbf{x}}, \tag{2.49}\\
\mathbf{A S} \mathbf{A}^{\prime} & =\left(\begin{array}{cc}
\mathbf{a}_{1}^{\prime} \mathbf{S} \mathbf{S a}_{1} & \mathbf{a}_{1}^{\prime} \mathbf{S} \mathbf{S a}_{2} \\
\mathbf{a}_{2}^{\prime} \mathbf{S} \mathbf{a}_{1} & \mathbf{a}_{2}^{\prime} \mathbf{S} \mathbf{a}_{2}
\end{array}\right) . \tag{2.50}
\end{align*}
$$

Any matrix can be multiplied by its transpose. If \mathbf{A} is $n \times p$, then
$\mathbf{A} \mathbf{A}^{\prime}$ is $n \times n$ and is obtained as products of rows of \mathbf{A} [see (2.52)].

Similarly,

$\mathbf{A}^{\prime} \mathbf{A}$ is $p \times p$ and is obtained as products of columns of \mathbf{A} [see (2.54)].
From (2.6) and (2.27), it is clear that both $\mathbf{A X}^{\prime}$ and $\mathbf{A}^{\prime} \mathbf{A}$ are symmetric.
In the preceding illustration for $\mathbf{A B}$ in terms of row and column vectors, the rows of \mathbf{A} were denoted by \mathbf{a}_{i}^{\prime} and the columns of \mathbf{B}, by \mathbf{b}_{j}. If both rows and columns of a matrix \mathbf{A} are under discussion, as in $\mathbf{A A}^{\prime}$ and $\mathbf{A}^{\prime} \mathbf{A}$, we will use the notation \mathbf{a}_{i}^{\prime} for rows and $\mathbf{a}_{(j)}$ for columns. To illustrate, if \mathbf{A} is 3×4, we have

$$
\mathbf{A}=\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\mathbf{a}_{3}^{\prime}
\end{array}\right)=\left(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \mathbf{a}_{(3)}, \mathbf{a}_{(4)}\right),
$$

where, for example,

$$
\begin{aligned}
\mathbf{a}_{2}^{\prime} & =\left(\begin{array}{lll}
a_{21} & a_{22} & a_{23} \\
a_{24}
\end{array}\right), \\
\mathbf{a}_{(3)} & =\left(\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right) .
\end{aligned}
$$

With this notation for rows and columns of \mathbf{A}, we can express the elements of $\mathbf{A}^{\prime} \mathbf{A}$ or of $\mathbf{A A}^{\prime}$ as products of the rows of \mathbf{A} or of the columns of \mathbf{A}. Thus if we write \mathbf{A} in terms of its rows as

$$
\mathbf{A}=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\vdots \\
\mathbf{a}_{n}^{\prime}
\end{array}\right),
$$

then we have

$$
\begin{align*}
& \mathbf{A}^{\prime} \mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right)\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\vdots \\
\mathbf{a}_{n}^{\prime}
\end{array}\right)=\sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{a}_{i}^{\prime}, \tag{2.51}\\
& \mathbf{A A}^{\prime}=\left(\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\vdots \\
\mathbf{a}_{n}^{\prime}
\end{array}\right)\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right)=\left(\begin{array}{cccc}
\mathbf{a}_{1}^{\prime} \mathbf{a}_{1} & \mathbf{a}_{1}^{\prime} \mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{\prime} \mathbf{a}_{n} \\
\mathbf{a}_{2}^{\prime} \mathbf{a}_{1} & \mathbf{a}_{2}^{\prime} \mathbf{a}_{2} & \cdots & \mathbf{a}_{2}^{\prime} \mathbf{a}_{n} \\
\vdots & \vdots & & \vdots \\
\mathbf{a}_{n}^{\prime} \mathbf{a}_{1} & \mathbf{a}_{n}^{\prime} \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}^{\prime} \mathbf{a}_{n}
\end{array}\right) . \tag{2.52}
\end{align*}
$$

Similarly, if we express \mathbf{A} in terms of its columns as

$$
\mathbf{A}=\left(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \ldots, \mathbf{a}_{(p)}\right),
$$

then

$$
\begin{align*}
\mathbf{A} \mathbf{A}^{\prime} & =\left(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \ldots, \mathbf{a}_{(p)}\right)\left(\begin{array}{c}
\mathbf{a}_{(1)}^{\prime} \\
\mathbf{a}_{(2)}^{\prime} \\
\vdots \\
\mathbf{a}_{(p)}^{\prime}
\end{array}\right)=\sum_{j=1}^{p} \mathbf{a}_{(j)} \mathbf{a}_{(j)}^{\prime}, \tag{2.53}\\
\mathbf{A}^{\prime} \mathbf{A} & =\left(\begin{array}{c}
\mathbf{a}_{(1)}^{\prime} \\
\mathbf{a}_{(2)}^{\prime} \\
\vdots \\
\mathbf{a}_{(p)}^{\prime}
\end{array}\right)\left(\mathbf{a}_{(1)}, \mathbf{a}_{(2)}, \ldots, \mathbf{a}_{(p)}\right) \\
& =\left(\begin{array}{cccc}
\mathbf{a}_{(1)}^{\prime} \mathbf{a}_{(1)} & \mathbf{a}_{(1)}^{\prime} \mathbf{a}_{(2)} & \cdots & \mathbf{a}_{(1)}^{\prime} \mathbf{a}_{(p)} \\
\mathbf{a}_{(2)}^{\prime} \mathbf{a}_{(1)} & \mathbf{a}_{(2)}^{\prime} \mathbf{a}_{(2)} & \cdots & \mathbf{a}_{(2)}^{\prime} \mathbf{a}_{(p)} \\
\vdots & \vdots & & \vdots \\
\mathbf{a}_{(p)}^{\prime} \mathbf{a}_{(1)} & \mathbf{a}_{(p)}^{\prime} \mathbf{a}_{(2)} & \ldots & \mathbf{a}_{(p)}^{\prime} \mathbf{a}_{(p)}
\end{array}\right) \tag{2.54}
\end{align*}
$$

Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix and \mathbf{D} be a diagonal matrix, $\mathbf{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Then, in the product $\mathbf{D A}$, the i th row of \mathbf{A} is multiplied by d_{i}, and in $\mathbf{A D}$, the j th column of \mathbf{A} is multiplied by d_{j}. For example, if $n=3$, we have

$$
\begin{align*}
\mathbf{D A} & =\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right)\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
& =\left(\begin{array}{lll}
d_{1} a_{11} & d_{1} a_{12} & d_{1} a_{13} \\
d_{2} a_{21} & d_{2} a_{22} & d_{2} a_{23} \\
d_{3} a_{31} & d_{3} a_{32} & d_{3} a_{33}
\end{array}\right), \tag{2.55}\\
\mathbf{A D} & =\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{ccc}
d_{1} & 0 & 0 \\
0 & d_{2} & 0 \\
0 & 0 & d_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
d_{1} a_{11} & d_{2} a_{12} & d_{3} a_{13} \\
d_{1} a_{21} & d_{2} a_{22} & d_{3} a_{23} \\
d_{1} a_{31} & d_{2} a_{32} & d_{3} a_{33}
\end{array}\right) \tag{2.56}\\
\mathbf{D A D} & =\left(\begin{array}{ccc}
d_{1}^{2} a_{11} & d_{1} d_{2} a_{12} & d_{1} d_{3} a_{13} \\
d_{2} d_{1} a_{21} & d_{2}^{2} a_{22} & d_{2} d_{3} a_{23} \\
d_{3} d_{1} a_{31} & d_{3} d_{2} a_{32} & d_{3}^{2} a_{33}
\end{array}\right) \tag{2.57}
\end{align*}
$$

In the special case where the diagonal matrix is the identity, we have

$$
\begin{equation*}
\mathbf{I} \mathbf{A}=\mathbf{A} \mathbf{I}=\mathbf{A} \tag{2.58}
\end{equation*}
$$

If \mathbf{A} is rectangular, (2.58) still holds, but the two identities are of different sizes.

The product of a scalar and a matrix is obtained by multiplying each element of the matrix by the scalar:

$$
c \mathbf{A}=\left(c a_{i j}\right)=\left(\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 m} \tag{2.59}\\
c a_{21} & c a_{22} & \cdots & c a_{2 m} \\
\vdots & \vdots & & \vdots \\
c a_{n 1} & c a_{n 2} & \cdots & c a_{n m}
\end{array}\right)
$$

For example,

$$
\begin{align*}
c \mathbf{I} & =\left(\begin{array}{cccc}
c & 0 & \cdots & 0 \\
0 & c & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & c
\end{array}\right), \tag{2.60}\\
c \mathbf{x} & =\left(\begin{array}{c}
c x_{1} \\
c x_{2} \\
\vdots \\
c x_{n}
\end{array}\right) \tag{2.61}
\end{align*}
$$

Since $c a_{i j}=a_{i j} c$, the product of a scalar and a matrix is commutative:

$$
\begin{equation*}
c \mathbf{A}=\mathbf{A} c \tag{2.62}
\end{equation*}
$$

Multiplication of vectors or matrices by scalars permits the use of linear combinations, such as

$$
\begin{aligned}
& \sum_{i=1}^{k} a_{i} \mathbf{x}_{i}=a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{k} \mathbf{x}_{k} \\
& \sum_{i=1}^{k} a_{i} \mathbf{B}_{i}=a_{1} \mathbf{B}_{1}+a_{2} \mathbf{B}_{2}+\cdots+a_{k} \mathbf{B}_{k}
\end{aligned}
$$

If \mathbf{A} is a symmetric matrix and \mathbf{x} and \mathbf{y} are vectors, the product

$$
\begin{equation*}
\mathbf{y}^{\prime} \mathbf{A y}=\sum_{i} a_{i i} y_{i}^{2}+\sum_{i \neq j} a_{i j} y_{i} y_{j} \tag{2.63}
\end{equation*}
$$

is called a quadratic form, whereas

$$
\begin{equation*}
\mathbf{x}^{\prime} \mathbf{A} \mathbf{y}=\sum_{i j} a_{i j} x_{i} y_{j} \tag{2.64}
\end{equation*}
$$

is called a bilinear form. Either of these is, of course, a scalar and can be treated as such. Expressions such as $\mathbf{x}^{\prime} \mathbf{A y} / \sqrt{\mathbf{x}^{\prime} \mathbf{A x}}$ are permissible (assuming \mathbf{A} is positive definite; see Section 2.7).

2.4 PARTITIONED MATRICES

It is sometimes convenient to partition a matrix into submatrices. For example, a partitioning of a matrix \mathbf{A} into four submatrices could be indicated symbolically as follows:

$$
\mathbf{A}=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)
$$

For example, a 4×5 matrix \mathbf{A} can be partitioned as

$$
\mathbf{A}=\left(\begin{array}{rrr|rr}
2 & 1 & 3 & 8 & 4 \\
-3 & 4 & 0 & 2 & 7 \\
9 & 3 & 6 & 5 & -2 \\
\hline 4 & 8 & 3 & 1 & 6
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)
$$

where

$$
\begin{array}{ll}
\mathbf{A}_{11}=\left(\begin{array}{rrr}
2 & 1 & 3 \\
-3 & 4 & 0 \\
9 & 3 & 6
\end{array}\right), & \mathbf{A}_{12}=\left(\begin{array}{rr}
8 & 4 \\
2 & 7 \\
5 & -2
\end{array}\right), \\
\mathbf{A}_{21}=\left(\begin{array}{lll}
4 & 8 & 3
\end{array}\right), & \mathbf{A}_{22}=\left(\begin{array}{ll}
1 & 6
\end{array}\right) .
\end{array}
$$

If two matrices \mathbf{A} and \mathbf{B} are conformable and \mathbf{A} and \mathbf{B} are partitioned so that the submatrices are appropriately conformable, then the product $\mathbf{A B}$ can be found by following the usual row-by-column pattern of multiplication on the submatrices as if they were single elements; for example,

$$
\begin{align*}
\mathbf{A B} & =\left(\begin{array}{ll}
\mathbf{A}_{11} & \mathbf{A}_{12} \\
\mathbf{A}_{21} & \mathbf{A}_{22}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{B}_{11} & \mathbf{B}_{12} \\
\mathbf{B}_{21} & \mathbf{B}_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\mathbf{A}_{11} \mathbf{B}_{11}+\mathbf{A}_{12} \mathbf{B}_{21} & \mathbf{A}_{11} \mathbf{B}_{12}+\mathbf{A}_{12} \mathbf{B}_{22} \\
\mathbf{A}_{21} \mathbf{B}_{11}+\mathbf{A}_{22} \mathbf{B}_{21} & \mathbf{A}_{21} \mathbf{B}_{12}+\mathbf{A}_{22} \mathbf{B}_{22}
\end{array}\right) . \tag{2.65}
\end{align*}
$$

It can be seen that this formulation is equivalent to the usual row-by-column definition of matrix multiplication. For example, the $(1,1)$ element of $\mathbf{A B}$ is the product of the first row of \mathbf{A} and the first column of \mathbf{B}. In the $(1,1)$ element of $\mathbf{A}_{11} \mathbf{B}_{11}$ we have the sum of products of part of the first row of \mathbf{A} and part of the first column of B. In the $(1,1)$ element of $\mathbf{A}_{12} \mathbf{B}_{21}$ we have the sum of products of the rest of the first row of \mathbf{A} and the remainder of the first column of \mathbf{B}.

Multiplication of a matrix and a vector can also be carried out in partitioned form. For example,

$$
\begin{equation*}
\mathbf{A b}=\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)\binom{\mathbf{b}_{1}}{\mathbf{b}_{2}}=\mathbf{A}_{1} \mathbf{b}_{1}+\mathbf{A}_{2} \mathbf{b}_{2} \tag{2.66}
\end{equation*}
$$

where the partitioning of the columns of \mathbf{A} corresponds to the partitioning of the elements of \mathbf{b}. Note that the partitioning of \mathbf{A} into two sets of columns is indicated by a comma, $\mathbf{A}=\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$.

The partitioned multiplication in (2.66) can be extended to individual columns of \mathbf{A} and individual elements of \mathbf{b} :

$$
\begin{align*}
\mathbf{A} \mathbf{b} & =\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{p}\right)\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right) \\
& =b_{1} \mathbf{a}_{1}+b_{2} \mathbf{a}_{2}+\cdots+b_{p} \mathbf{a}_{p} \tag{2.67}
\end{align*}
$$

Thus $\mathbf{A b}$ is expressible as a linear combination of the columns of \mathbf{A}, the coefficients being elements of \mathbf{b}. For example, let

$$
\mathbf{A}=\left(\begin{array}{rrr}
3 & -2 & 1 \\
2 & 1 & 0 \\
4 & 3 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
4 \\
2 \\
3
\end{array}\right)
$$

Then

$$
\mathbf{A b}=\left(\begin{array}{l}
11 \\
10 \\
28
\end{array}\right)
$$

Using a linear combination of columns of \mathbf{A} as in (2.67), we obtain

$$
\begin{aligned}
\mathbf{A} \mathbf{b} & =b_{1} \mathbf{a}_{1}+b_{2} \mathbf{a}_{2}+b_{3} \mathbf{a}_{3} \\
& =4\left(\begin{array}{r}
3 \\
2 \\
4
\end{array}\right)+2\left(\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right)+3\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \\
& =\left(\begin{array}{r}
12 \\
8 \\
16
\end{array}\right)+\left(\begin{array}{r}
-4 \\
2 \\
6
\end{array}\right)+\left(\begin{array}{l}
3 \\
0 \\
6
\end{array}\right)=\left(\begin{array}{l}
11 \\
10 \\
28
\end{array}\right) .
\end{aligned}
$$

We note that if \mathbf{A} is partitioned as in (2.66), $\mathbf{A}=\left(\mathbf{A}_{2}, \mathbf{A}_{2}\right)$, the transpose is not equal to $\left(\mathbf{A}_{1}^{\prime}, \mathbf{A}_{2}^{\prime}\right)$, but rather

$$
\begin{equation*}
\mathbf{A}^{\prime}=\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)^{\prime}=\binom{\mathbf{A}_{1}^{\prime}}{\mathbf{A}_{2}^{\prime}} \tag{2.68}
\end{equation*}
$$

2.5 RANK

Before defining the rank of a matrix, we first introduce the notion of linear independence and dependence. A set of vectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ is said to be linearly dependent if constants $c_{1}, c_{2}, \ldots, c_{n}$ (not all zero) can be found such that

$$
\begin{equation*}
c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+\cdots+c_{n} \mathbf{a}_{n}=\mathbf{0} \tag{2.69}
\end{equation*}
$$

If no constants $c_{1}, c_{2}, \ldots, c_{n}$ can be found satisfying (2.69), the set of vectors is said to be linearly independent.

If (2.69) holds, then at least one of the vectors \mathbf{a}_{i} can be expressed as a linear combination of the other vectors in the set. Thus linear dependence of a set of vectors implies redundancy in the set. Among linearly independent vectors there is no redundancy of this type.

The rank of any square or rectangular matrix \mathbf{A} is defined as

$$
\begin{aligned}
\operatorname{rank}(\mathbf{A}) & =\text { number of linearly independent rows of } \mathbf{A} \\
& =\text { number of linearly independent columns of } \mathbf{A} .
\end{aligned}
$$

It can be shown that the number of linearly independent rows of a matrix is always equal to the number of linearly independent columns.

If \mathbf{A} is $n \times p$, the maximum possible rank of \mathbf{A} is the smaller of n and p, in which case \mathbf{A} is said to be of full rank (sometimes said full row rank or full column rank). For example,

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & -2 & 3 \\
5 & 2 & 4
\end{array}\right)
$$

has rank 2 because the two rows are linearly independent (neither row is a multiple of the other). However, even though \mathbf{A} is full rank, the columns are linearly dependent because rank 2 implies there are only two linearly independent columns. Thus, by (2.69), there exist constants c_{1}, c_{2}, and c_{3} such that

$$
\begin{equation*}
c_{1}\binom{1}{5}+c_{2}\binom{-2}{2}+c_{3}\binom{3}{4}=\binom{0}{0} . \tag{2.70}
\end{equation*}
$$

