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2.3.3 Multiplication of Matrices and Vectors

In order for the product AB to be defined, the number of columns in A must be the
same as the number of rows in B, in which case A and B are said to be conformable.
Then the (i j)th element of C = AB is

ci j =
∑

k

aikbk j . (2.19)

Thus ci j is the sum of products of the i th row of A and the j th column of B. We
therefore multiply each row of A by each column of B, and the size of AB consists
of the number of rows of A and the number of columns of B. Thus, if A is n × m and
B is m × p, then C = AB is n × p. For example, if

A =




2 1 3
4 6 5
7 2 3
1 3 2


 and B =


 1 4

2 6
3 8


 ,

then

C = AB =




2 · 1 + 1 · 2 + 3 · 3 2 · 4 + 1 · 6 + 3 · 8
4 · 1 + 6 · 2 + 5 · 3 4 · 4 + 6 · 6 + 5 · 8
7 · 1 + 2 · 2 + 3 · 3 7 · 4 + 2 · 6 + 3 · 8
1 · 1 + 3 · 2 + 2 · 3 1 · 4 + 3 · 6 + 2 · 8




=




13 38
31 92
20 64
13 38


 .

Note that A is 4 × 3, B is 3 × 2, and AB is 4 × 2. In this case, AB is of a different
size than either A or B.

If A and B are both n × n, then AB is also n × n. Clearly, A2 is defined only if A
is a square matrix.

In some cases AB is defined, but BA is not defined. In the preceding example, BA
cannot be found because B is 3×2 and A is 4×3 and a row of B cannot be multiplied
by a column of A. Sometimes AB and BA are both defined but are different in size.
For example, if A is 2 × 4 and B is 4 × 2, then AB is 2 × 2 and BA is 4 × 4. If A and
B are square and the same size, then AB and BA are both defined. However,

AB �= BA, (2.20)

except for a few special cases. For example, let

A =
(

1 3
2 4

)
, B =

(
1 −2
3 5

)
.
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Then

AB =
(

10 13
14 16

)
, BA =

( −3 −5
13 29

)
.

Thus we must be careful to specify the order of multiplication. If we wish to multiply
both sides of a matrix equation by a matrix, we must multiply on the left or on the
right and be consistent on both sides of the equation.

Multiplication is distributive over addition or subtraction:

A(B + C) = AB + AC, (2.21)

A(B − C) = AB − AC, (2.22)

(A + B)C = AC + BC, (2.23)

(A − B)C = AC − BC. (2.24)

Note that, in general, because of (2.20),

A(B + C) �= BA + CA. (2.25)

Using the distributive law, we can expand products such as (A − B)(C − D) to
obtain

(A − B)(C − D) = (A − B)C − (A − B)D [by (2.22)]

= AC − BC − AD + BD [by (2.24)]. (2.26)

The transpose of a product is the product of the transposes in reverse order:

(AB)′ = B′A′. (2.27)

Note that (2.27) holds as long as A and B are conformable. They need not be square.
Multiplication involving vectors follows the same rules as for matrices. Suppose

A is n × p, a is p × 1, b is p × 1, and c is n × 1. Then some possible products are
Ab, c′A, a′b, b′a, and ab′. For example, let

A =
(

3 −2 4
1 3 5

)
, a =


 1

−2
3


 , b =


 2

3
4


 , c =

(
2

−5

)
.

Then

Ab =
(

3 −2 4
1 3 5

) 2
3
4


 =

(
16
31

)
,
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c′A = (2 −5)
(

3 −2 4
1 3 5

)
= (1 −19 −17),

c′Ab = (2 −5)

(
3 −2 4
1 3 5

) 2
3
4


 = (2 −5)

(
16
31

)
= −123,

a′b = (1 −2 3)


 2

3
4


 = 8,

b′a = (2 3 4)


 1

−2
3


 = 8,

ab′ =

 1

−2
3


(2 3 4) =


 2 3 4

−4 −6 −8
6 9 12


 ,

ac′ =

 1

−2
3


(2 −5) =


 2 −5

−4 10
6 −15


 .

Note that Ab is a column vector, c′A is a row vector, c′Ab is a scalar, and a′b = b′a.
The triple product c′Ab was obtained as c′(Ab). The same result would be obtained
if we multiplied in the order (c′A)b:

(c′A)b = (1 −19 −17)


 2

3
4


 = −123.

This is true in general for a triple product:

ABC = A(BC) = (AB)C. (2.28)

Thus multiplication of three matrices can be defined in terms of the product of two
matrices, since (fortunately) it does not matter which two are multiplied first. Note
that A and B must be conformable for multiplication, and B and C must be con-
formable. For example, if A is n × p, B is p × q, and C is q × m, then both multi-
plications are possible and the product ABC is n × m.

We can sometimes factor a sum of triple products on both the right and left sides.
For example,

ABC + ADC = A(B + D)C. (2.29)

As another illustration, let X be n × p and A be n × n. Then

X′X − X′AX = X′(X − AX) = X′(I − A)X. (2.30)



14 MATRIX ALGEBRA

If a and b are both n × 1, then

a′b = a1b1 + a2b2 + · · · + anbn (2.31)

is a sum of products and is a scalar. On the other hand, ab′ is defined for any size a
and b and is a matrix, either rectangular or square:

ab′ =




a1
a2
...

an


(b1 b2 · · · bp) =




a1b1 a1b2 · · · a1bp

a2b1 a2b2 · · · a2bp
...

...
...

anb1 anb2 · · · anbp


 . (2.32)

Similarly,

a′a = a2
1 + a2

2 + · · · + a2
n , (2.33)

aa′ =




a2
1 a1a2 · · · a1an

a2a1 a2
2 · · · a2an

...
...

...

ana1 ana2 · · · a2
n


 . (2.34)

Thus a′a is a sum of squares, and aa′ is a square (symmetric) matrix. The products a′a
and aa′ are sometimes referred to as the dot product and matrix product, respectively.
The square root of the sum of squares of the elements of a is the distance from the
origin to the point a and is also referred to as the length of a:

Length of a = √
a′a =

√∑n
i=1 a2

i . (2.35)

As special cases of (2.33) and (2.34), note that if j is n × 1, then

j′j = n, jj′ =




1 1 · · · 1
1 1 · · · 1
...

...
...

1 1 · · · 1


 = J, (2.36)

where j and J were defined in (2.11) and (2.12). If a is n × 1 and A is n × p, then

a′j = j′a =
n∑

i=1

ai , (2.37)
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j′A =
(∑

i

ai1,
∑

i

ai2, . . . ,
∑

i

aip

)
, Aj =



∑

j a1 j∑
j a2 j
...∑
j anj


 . (2.38)

Thus a′j is the sum of the elements in a, j′A contains the column sums of A, and Aj
contains the row sums of A. In a′j, the vector j is n × 1; in j′A, the vector j is n × 1;
and in Aj, the vector j is p × 1.

Since a′b is a scalar, it is equal to its transpose:

a′b = (a′b)′ = b′(a′)′ = b′a. (2.39)

This allows us to write (a′b)2 in the form

(a′b)2 = (a′b)(a′b) = (a′b)(b′a) = a′(bb′)a. (2.40)

From (2.18), (2.26), and (2.39) we obtain

(x − y)′(x − y) = x′x − 2x′y + y′y. (2.41)

Note that in analogous expressions with matrices, however, the two middle terms
cannot be combined:

(A − B)′(A − B) = A′A − A′B − B′A + B′B,

(A − B)2 = (A − B)(A − B) = A2 − AB − BA + B2.

If a and x1, x2, . . . , xn are all p×1 and A is p× p, we obtain the following factoring
results as extensions of (2.21) and (2.29):

n∑
i=1

a′xi = a′
n∑

i=1

xi , (2.42)

n∑
i=1

Axi = A
n∑

i=1

xi , (2.43)

n∑
i=1

(a′xi )
2 = a′

(
n∑

i=1

xi x′
i

)
a [by (2.40)], (2.44)

n∑
i=1

Axi (Axi )
′ = A

(
n∑

i=1

xi x′
i

)
A′. (2.45)

We can express matrix multiplication in terms of row vectors and column vectors.
If a′

i is the i th row of A and b j is the j th column of B, then the (i j)th element of AB
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is a′
i b j . For example, if A has three rows and B has two columns,

A =

 a′

1
a′

2
a′

3


 , B = (b1,b2),

then the product AB can be written as

AB =

 a′

1b1 a′
1b2

a′
2b1 a′

2b2
a′

3b1 a′
3b2


 . (2.46)

This can be expressed in terms of the rows of A:

AB =

 a′

1(b1,b2)

a′
2(b1,b2)

a′
3(b1,b2)


 =


 a′

1B
a′

2B
a′

3B


 =


 a′

1
a′

2
a′

3


B. (2.47)

Note that the first column of AB in (2.46) is


 a′

1b1
a′

2b1
a′

3b1


 =


 a′

1
a′

2
a′

3


b1 = Ab1,

and likewise the second column is Ab2. Thus AB can be written in the form

AB = A(b1,b2) = (Ab1,Ab2).

This result holds in general:

AB = A(b1,b2, . . . ,bp) = (Ab1,Ab2, . . . ,Abp). (2.48)

To further illustrate matrix multiplication in terms of rows and columns, let A =(a′
1

a′
2

)
be a 2 × p matrix, x be a p × 1 vector, and S be a p × p matrix. Then

Ax =
(

a′
1

a′
2

)
x =

(
a′

1x
a′

2x

)
, (2.49)

ASA′ =
(

a′
1Sa1 a′

1Sa2
a′

2Sa1 a′
2Sa2

)
. (2.50)

Any matrix can be multiplied by its transpose. If A is n × p, then

AA′ is n × n and is obtained as products of rows of A [see (2.52)].



OPERATIONS 17

Similarly,

A′A is p × p and is obtained as products of columns of A [see (2.54)].

From (2.6) and (2.27), it is clear that both AA′ and A′A are symmetric.
In the preceding illustration for AB in terms of row and column vectors, the rows

of A were denoted by a′
i and the columns of B, by b j . If both rows and columns of

a matrix A are under discussion, as in AA′ and A′A, we will use the notation a′
i for

rows and a( j) for columns. To illustrate, if A is 3 × 4, we have

A =

 a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34


 =


 a′

1
a′

2
a′

3


 = (a(1), a(2), a(3), a(4)),

where, for example,

a′
2 = (a21 a22 a23 a24),

a(3) =

 a13

a23
a33


 .

With this notation for rows and columns of A, we can express the elements of
A′A or of AA′ as products of the rows of A or of the columns of A. Thus if we write
A in terms of its rows as

A =




a′
1

a′
2
...

a′
n


 ,

then we have

A′A = (a1, a2, . . . , an)




a′
1

a′
2
...

a′
n


 =

n∑
i=1

ai a′
i , (2.51)

AA′ =




a′
1

a′
2
...

a′
n


(a1, a2, . . . , an) =




a′
1a1 a′

1a2 · · · a′
1an

a′
2a1 a′

2a2 · · · a′
2an

...
...

...

a′
na1 a′

na2 · · · a′
nan


 . (2.52)

Similarly, if we express A in terms of its columns as

A = (a(1), a(2), . . . , a(p)),
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then

AA′ = (a(1), a(2), . . . , a(p))




a′
(1)

a′
(2)
...

a′
(p)


 =

p∑
j=1

a( j)a′
( j), (2.53)

A′A =




a′
(1)

a′
(2)
...

a′
(p)


(a(1), a(2), . . . , a(p))

=




a′
(1)a(1) a′

(1)a(2) · · · a′
(1)a(p)

a′
(2)a(1) a′

(2)a(2) · · · a′
(2)a(p)

...
...

...

a′
(p)a(1) a′

(p)a(2) . . . a′
(p)a(p)


 . (2.54)

Let A = (ai j ) be an n×n matrix and D be a diagonal matrix, D = diag(d1, d2, . . . , dn).
Then, in the product DA, the i th row of A is multiplied by di , and in AD, the j th
column of A is multiplied by d j . For example, if n = 3, we have

DA =

 d1 0 0

0 d2 0
0 0 d3




 a11 a12 a13

a21 a22 a23
a31 a32 a33




=

 d1a11 d1a12 d1a13

d2a21 d2a22 d2a23
d3a31 d3a32 d3a33


 , (2.55)

AD =

 a11 a12 a13

a21 a22 a23
a31 a32 a33




 d1 0 0

0 d2 0
0 0 d3




=

 d1a11 d2a12 d3a13

d1a21 d2a22 d3a23
d1a31 d2a32 d3a33


 , (2.56)

DAD =

 d2

1 a11 d1d2a12 d1d3a13

d2d1a21 d2
2 a22 d2d3a23

d3d1a31 d3d2a32 d2
3 a33


 . (2.57)

In the special case where the diagonal matrix is the identity, we have

IA = AI = A. (2.58)

If A is rectangular, (2.58) still holds, but the two identities are of different sizes.
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The product of a scalar and a matrix is obtained by multiplying each element of
the matrix by the scalar:

cA = (cai j ) =




ca11 ca12 · · · ca1m

ca21 ca22 · · · ca2m
...

...
...

can1 can2 · · · canm


 . (2.59)

For example,

cI =




c 0 · · · 0
0 c · · · 0
...

...
...

0 0 · · · c


 , (2.60)

cx =




cx1
cx2
...

cxn


 . (2.61)

Since cai j = ai j c, the product of a scalar and a matrix is commutative:

cA = Ac. (2.62)

Multiplication of vectors or matrices by scalars permits the use of linear combi-
nations, such as

k∑
i=1

ai xi = a1x1 + a2x2 + · · · + akxk,

k∑
i=1

ai Bi = a1B1 + a2B2 + · · · + akBk .

If A is a symmetric matrix and x and y are vectors, the product

y′Ay =
∑

i

aii y2
i +

∑
i �= j

ai j yi y j (2.63)

is called a quadratic form, whereas

x′Ay =
∑

i j

ai j xi y j (2.64)
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is called a bilinear form. Either of these is, of course, a scalar and can be treated
as such. Expressions such as x′Ay/

√
x′Ax are permissible (assuming A is positive

definite; see Section 2.7).

2.4 PARTITIONED MATRICES

It is sometimes convenient to partition a matrix into submatrices. For example, a
partitioning of a matrix A into four submatrices could be indicated symbolically as
follows:

A =
(

A11 A12
A21 A22

)
.

For example, a 4 × 5 matrix A can be partitioned as

A =




2 1 3 8 4
−3 4 0 2 7

9 3 6 5 −2

4 8 3 1 6


 =

(
A11 A12
A21 A22

)
,

where

A11 =

 2 1 3

−3 4 0
9 3 6


 , A12 =


 8 4

2 7
5 −2


 ,

A21 = (4 8 3), A22 = (1 6).

If two matrices A and B are conformable and A and B are partitioned so that the
submatrices are appropriately conformable, then the product AB can be found by
following the usual row-by-column pattern of multiplication on the submatrices as if
they were single elements; for example,

AB =
(

A11 A12
A21 A22

)(
B11 B12
B21 B22

)

=
(

A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

)
. (2.65)

It can be seen that this formulation is equivalent to the usual row-by-column defi-
nition of matrix multiplication. For example, the (1, 1) element of AB is the product
of the first row of A and the first column of B. In the (1, 1) element of A11B11 we
have the sum of products of part of the first row of A and part of the first column of
B. In the (1, 1) element of A12B21 we have the sum of products of the rest of the first
row of A and the remainder of the first column of B.
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Multiplication of a matrix and a vector can also be carried out in partitioned form.
For example,

Ab = (A1,A2)

(
b1
b2

)
= A1b1 + A2b2, (2.66)

where the partitioning of the columns of A corresponds to the partitioning of the
elements of b. Note that the partitioning of A into two sets of columns is indicated
by a comma, A = (A1,A2).

The partitioned multiplication in (2.66) can be extended to individual columns of
A and individual elements of b:

Ab = (a1, a2, . . . , ap)




b1
b2
...

bp




= b1a1 + b2a2 + · · · + bpap. (2.67)

Thus Ab is expressible as a linear combination of the columns of A, the coefficients
being elements of b. For example, let

A =

 3 −2 1

2 1 0
4 3 2


 and b =


 4

2
3


 .

Then

Ab =

 11

10
28


 .

Using a linear combination of columns of A as in (2.67), we obtain

Ab = b1a1 + b2a2 + b3a3

= 4


 3

2
4


+ 2


 −2

1
3


+ 3


 1

0
2




=

 12

8
16


+


 −4

2
6


+


 3

0
6


 =


 11

10
28


 .
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We note that if A is partitioned as in (2.66), A = (A2,A2), the transpose is not equal
to (A′

1,A′
2), but rather

A′ = (A1,A2)
′ =

(
A′

1
A′

2

)
. (2.68)

2.5 RANK

Before defining the rank of a matrix, we first introduce the notion of linear inde-
pendence and dependence. A set of vectors a1, a2, . . . , an is said to be linearly
dependent if constants c1, c2, . . . , cn (not all zero) can be found such that

c1a1 + c2a2 + · · · + cnan = 0. (2.69)

If no constants c1, c2, . . . , cn can be found satisfying (2.69), the set of vectors is said
to be linearly independent.

If (2.69) holds, then at least one of the vectors ai can be expressed as a linear
combination of the other vectors in the set. Thus linear dependence of a set of vec-
tors implies redundancy in the set. Among linearly independent vectors there is no
redundancy of this type.

The rank of any square or rectangular matrix A is defined as

rank(A) = number of linearly independent rows of A

= number of linearly independent columns of A.

It can be shown that the number of linearly independent rows of a matrix is always
equal to the number of linearly independent columns.

If A is n × p, the maximum possible rank of A is the smaller of n and p, in which
case A is said to be of full rank (sometimes said full row rank or full column rank).
For example,

A =
(

1 −2 3
5 2 4

)

has rank 2 because the two rows are linearly independent (neither row is a multiple of
the other). However, even though A is full rank, the columns are linearly dependent
because rank 2 implies there are only two linearly independent columns. Thus, by
(2.69), there exist constants c1, c2, and c3 such that

c1

(
1
5

)
+ c2

( −2
2

)
+ c3

(
3
4

)
=
(

0
0

)
. (2.70)


