Differences Between Order and Molecularity

Order of a Reaction

1. It is the sum of powers of the concentration terms in the rate law expression.
2. It is an experimentally determined value.
3. It can have fractional value.
4. It can assume zero value.
5. Order of a reaction can change with the conditions such as pressure, temperature, concentration.

Molecularity of a Reaction

1. It is number of reacting species undergoing simultaneous collision in the elementary or simple reaction.
2. It is a theoretical concept.
3. It is always a whole number.
4. It can not have zero value.
5. Molecularity is invariant for a chemical equation.

PSEUDO-ORDER REACTIONS

A reaction in which one of the reactants is present in a large excess shows an order different from the actual order. The experimental order which is not the actual one is referred to as the pseudo order. Since for elementary reactions molecularity and order are identical, pseudo-order reactions may also be called pseudo molecular reactions.

Let us consider a reaction

$$
\mathrm{A}+\mathrm{B} \longrightarrow \text { products }
$$

in which the reactant B is present in a large excess. Since it is an elementary reaction, its rate law can be written as

$$
\text { rate }=k[\mathrm{~A}][\mathrm{B}]
$$

As B is present in large excess, its concentration remains practically constant in the course of reaction. Thus the rate law can be written as

$$
\text { rate }=k^{\prime}[\mathrm{A}]
$$

where the new rate constant $k^{\prime}=k[B]$. Thus the actual order of the reaction is second-order but in practice it will be first-order. Therefore, the reaction is said to have a pseudo-first order.

Examples of Pseudo-order Reactions

(1) Hydrolysis of an ester. For example, ethyl acetate upon hydrolysis in aqueous solution using a mineral acid as catalyst forms acetic acid and ethyl alcohol.

$$
\begin{array}{cc}
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \\
\text { ethyl acetate } & +\mathrm{H}_{2} \mathrm{O} \\
\text { (excess) }
\end{array} \longrightarrow \quad \begin{aligned}
& \mathrm{CH}_{3} \mathrm{COOH} \\
& \text { acetic acid }
\end{aligned} \underset{\text { ethyl alcohol }}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}
$$

Here a large excess of water is used and the rate law can be written as

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] \\
& =k\left[\mathrm{CH}_{3} \mathrm{COOH}\right]
\end{aligned}
$$

The reaction is actually second-order but in practice it is found to be first-order. Thus it is a pseudo-first order reaction.
(2) Hydrolysis of sucrose. Sucrose upon hydrolysis in the presence of a dilute mineral acid gives glucose and fructose.

$$
\underset{\text { sucrose }}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}}+\underset{\text { (excess) }}{\mathrm{H}_{2} \mathrm{O}} \quad \longrightarrow \quad \underset{\text { glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{\text { fructose }}
$$

If a large excess of water is present, $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is practically constant and the rate law may be written as

$$
\begin{aligned}
\text { rate } & =k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] \\
& =k\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right]
\end{aligned}
$$

The reaction though of second-order is experimentally found to be first-order. Thus it is a pseudo-first-order reaction.

ZERO ORDER REACTIONS

In a zero order reaction, rate is independent of the concentration of the reactions. Let us consider a zero-order reaction of the type

	A	\longrightarrow
Initial conc.	a	Products
Final conc.	$a-x$	0

$$
\begin{aligned}
\text { Rate of reaction } & =\frac{-d[A]}{d t}=k_{0}[A]^{\circ} \\
\frac{d x}{d t} & =\frac{-d(a-x)}{d t}=k_{0}(a-x)^{\circ}=k_{0}
\end{aligned}
$$

or
On integrating we get

$$
k_{0}=\frac{x}{t} \text { or } x=k_{0} t
$$

where k_{0} is the rate constant of a zero-order reaction, the unit of which is concentration per unit time. In zero order reaction, the rate constant is equal to the rate of reaction at all concentrations.

FIRST ORDER REACTIONS

Let us consider a first order reaction

$$
\mathrm{A} \longrightarrow \text { products }
$$

Suppose that at the beginning of the reaction $(t=0)$, the concentration of A is a moles $^{\text {litre }}{ }^{-1}$. If after time t, x moles of A have changed, the concentration of A is $a-x$. We know that for a first order reaction, the rate of reaction, $d x / d t$, is directly proportional to the concentration of the reactant. Thus,

$$
\begin{align*}
\frac{d x}{d t} & =k(a-x) \\
\frac{d x}{a-x} & =k d t \tag{1}
\end{align*}
$$

or
Integration of the expression (1) gives

$$
\int \frac{d x}{a-x}=\int k d t
$$

or

$$
\begin{equation*}
-1 \mathrm{n}(a-x)=k t+\mathrm{I} \tag{2}
\end{equation*}
$$

where I is the constant of integration. The constant k may be evaluated by putting $t=0$ and $x=0$.
Thus,

$$
\mathrm{I}=-1 \mathrm{n} a
$$

Substituting for I in equation (2)

$$
\begin{equation*}
\ln \frac{a}{a-x}=k t \tag{3}
\end{equation*}
$$

or

$$
k=\frac{1}{t} \ln \frac{a}{a-x}
$$

Changing into common logarithms

$$
\begin{equation*}
k=\frac{2.303}{t} \log \frac{a}{a-x} \tag{4}
\end{equation*}
$$

The value of k can be found by substituting the values of a and $(a-x)$ determined experimentally at time interval t during the course of the reaction.

Sometimes the integrated rate law in the following form is also used :

$$
k=\frac{2.303}{t_{2}-t_{1}} \log \frac{\left(a-x_{1}\right)}{\left(a-x_{2}\right)}
$$

where x_{1} and x_{2} are the amounts decomposed at time intervals t_{1} and t_{2} respectively from the start.

Examples of First order Reactions

Some common reactions which follow first order kinetics are listed below :
(1) Decomposition of $\mathbf{N}_{2} \mathbf{O}_{5}$ in CCl_{4} solution. Nitrogen pentoxide in carbon tetrachloride solution decomposes to form oxygen gas,

$$
\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}
$$

The reaction is carried in an apparatus shown in Fig. 20.4. The progress of the reaction is monitored by measuring the volume of oxygen evolved from time to time.

An apparatus for monitoring the volume of O_{2} evolved in the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ dissolved in carbon tetrachloride.

If V_{t} be the volume of O_{2} at any time t and V_{∞} the final volume of oxygen when the reaction is completed, the V_{∞} is a measure of the initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\left(V_{\infty}-V_{t}\right)$ is a measure of undecomposed $\mathrm{N}_{2} \mathrm{O}_{5}(a-x)$ remaining at time t. Thus,

$$
k=\frac{2.303}{t} \log _{10} \frac{V_{\infty}}{V_{\infty}-V_{t}}
$$

On substituting values of $V_{\infty},\left(V_{\infty}-V_{t}\right)$ at different time intervals, t, the value of k is found to be constant. Thus it is a reaction of the first order.

SOLVED PROBLEM. From the following data for the decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} solution at $48^{\circ} \mathrm{C}$, show that the reaction is of the first order

$t(\mathrm{mts})$	10	15	20	∞
Vol of O_{2} evolved	6.30	8.95	11.40	34.75

SOLUTION
For a first order reaction the integrated rate equation is

$$
\frac{1}{t} \log \frac{V_{\infty}}{V_{\infty}-V_{t}}=k
$$

In this example, $V_{\infty}=34.75$

t	$V_{\infty}-V t$	$\frac{1}{t} \log \frac{V_{\infty}}{V_{\infty}-V_{t}}$	$=k$
10	28.45	$\frac{1}{10} \log \frac{34.75}{28.45}$	$=0.00868$
15	25.80	$\frac{1}{15} \log \frac{34.75}{25.80}$	$=0.00862$
20	23.35	$\frac{1}{20} \log \frac{34.75}{23.35}$	$=0.00863$

Since the value of k is fairly constant, it is a first order reaction.
(2) Decomposition of $\mathbf{H}_{2} \mathrm{O}_{2}$ in aqueous solution. The decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the presence of Pt as catalyst is a first order reaction.

$$
\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{Pt}} \mathrm{H}_{2} \mathrm{O}+\mathrm{O}
$$

The progress of the reaction is followed by titrating equal volumes of the reaction mixture against standard KMnO_{4} solution at different time intervals.

SOLVED PROBLEM. A solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ when titrated against KMnO_{4} solution at different time intervals gave the following results :

t (minutes)	0	10	20
Vol KMnO_{4} used for $10 \mathrm{ml} \mathrm{H}_{2} \mathrm{SO}_{4}$	23.8 ml	14.7 ml	9.1 ml

Show that the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is a first order reaction.
SOLUTION
The integrated rate equation for first order reaction is

$$
k=\frac{2.303}{t} \log \frac{a}{a-x}
$$

Since volume of KMnO_{4} used in the titration is measure of concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ in solution,

$$
\begin{array}{lll}
a & =23.8 \mathrm{ml} & \\
(a-x)=14.7 & \text { when } t=10 \mathrm{mts} \\
(a-x)=9.1 & \text { when } t=20 \mathrm{mts}
\end{array}
$$

Substituting these values in the rate equation above, we have

$$
\begin{aligned}
k & =\frac{2.303}{10} \log \frac{23.8}{14.7} \\
& =0.2303(\log 23.8-\log 14.7)
\end{aligned}
$$

and

$$
\begin{aligned}
& =0.2303(1.3766-1.1673) \\
& =0.04820 \\
k & =\frac{2.303}{20} \log \frac{23.8}{9.1} \\
& =0.10165(\log 23.8-\log 9.1) \\
& =0.10165(1.3766-0.9595)=0.04810
\end{aligned}
$$

Since the value of k is almost constant, the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is a first order reaction.
(3) Hydrolysis of an Ester. The hydrolysis of ethyl acetate or methyl acetate in the presence of a mineral acid as catalyst, is a first order reaction.

For studying the kinetics of the reaction, a known volume of ethyl acetate is mixed with a relatively large quantity of acid solution, say $\mathrm{N} / 2 \mathrm{HCl}$. At various intervals of time, a known volume of the reaction mixture is titrated against a standard alkali solution. Hydrolysis of the ester produces acetic acid. Therefore as the reaction proceeds, the volume of alkali required for titration goes on increasing.

SOLVED PROBLEM. The following data was obtained on hydrolysis of methyl acetate at $25^{\circ} \mathrm{C}$ in 0.35 N hydrochloric acid. Establish that it is a first order reaction.

t (secs)	0	4500	7140	∞
$m \mathrm{ml}$ alkali used	24.36	29.32	31.72	47.15

SOLUTION
For a first order reaction,

$$
k=\frac{2.303}{t} \log \frac{a}{a-x}
$$

At any time, the volume of alkali used is needed for the acid present as catalyst and the acid produced by hydrolysis.

The volume of alkali used for total change from t_{0} to t_{∞} gives the initial concentration of ester. Thus,

$$
\begin{aligned}
a=47.15-24.36 & =22.79 \mathrm{ml} \\
(a-x) \text { after } 4500 \mathrm{sec} & =47.15-29.32=17.83 \mathrm{ml} \\
(a-x) \text { after } 7140 \mathrm{sec} & =47.15-31.72=15.43 \mathrm{ml}
\end{aligned}
$$

Substituting values in the rate equation above, we have

$$
\begin{aligned}
& k=\frac{2.303}{4500} \log \frac{22.79}{17.83}=0.00005455 \\
& k=\frac{2.303}{7140} \log \frac{22.79}{15.43}=0.0000546
\end{aligned}
$$

Since the values of k in the two experiments are fairly constant, the reaction is of the first order.
(4) Inversion of Cane sugar (sucrose). The inversion of cane sugar or sucrose catalyzed with dil HCl ,

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \underset{\text { D-glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
$$

follows the first order kinetics. The progress of the reaction is followed by noting the optical rotation of the reaction mixture with the help of a polarimeter at different time intervals. The optical rotation
goes on changing since D-glucose rotates the plane of polarised light to the right and D-fructose to the left. The change in rotation is proportional to the amount of sugar decomposed.

Let the final rotation be r_{∞}, the initial rotation r_{0} while the rotation at any time t is r_{t}
The initial concentration, a is $\infty\left(r_{0}-r_{\propto}\right)$.
The concentration at time $t,(a-x)$ is $\propto\left(r_{t}-r_{\infty}\right)$
Substituting in the first order rate equation,

$$
k=\frac{2.303}{t} \log _{10} \frac{a}{a-x}
$$

we have

$$
k=\frac{2.303}{t} \log _{10} \frac{\left(r_{0}-r_{\propto}\right)}{\left(r_{t}-r_{\propto}\right)}
$$

If the experimental values of $t\left(r_{0}-r_{\propto}\right)$ and $\left(r_{t}-r_{\propto}\right)$ are substituted in the above equation, a constant value of k is obtained.

SOLVED PROBLEM. The optical rotation of sucrose in 0.9 N HCl at various time intervals is given in the table below.

time (min)	0	7.18	18	27.1	∞
rotation (degree)	+24.09	+21.4	+17.7	+15	-10.74

Show that inversion of sucrose is a first order reaction.

SOLUTION

The available data is substituted in the first order rate equation for different time intervals.

$$
k=\frac{2.303}{t} \log _{10} \frac{r_{0}-r_{\propto}}{r_{t}-r_{\propto}}
$$

$r_{0}-r_{\infty}=24.09-(-10.74)=34.83$ for all time intervals. Thus, the value of rate constant can be found.

$$
\begin{array}{lll}
\text { time }(t) & r_{t}=r_{\infty} & k=\frac{1}{t} \log \frac{\left(r_{0}-r_{\infty}\right)}{\left(r_{t}-r_{\infty}\right)} \\
7.18 & 32.14 & k=\frac{1}{7.18} \log \frac{34.83}{32.14}=0.0047 \\
18 & 28.44 & k=\frac{1}{18} \log \frac{34.83}{28.44}=0.0048 \\
27.1 & 25.74 & k=\frac{1}{27.1} \log \frac{34.83}{25.74}=0.0048
\end{array}
$$

Since the value of k comes out to be constant, the inversion of sucrose is a first order reaction.

SECOND ORDER REACTIONS

Let us take a second order reaction of the type

$$
2 \mathrm{~A} \longrightarrow \text { products }
$$

Suppose the initial concentration of A is a moles litre ${ }^{-1}$. If after time t, x moles of A have reacted, the concentration of A is $(a-x)$. We know that for such a second order reaction, rate of reaction is proportional to the square of the concentration of the reactant. Thus,

$$
\begin{equation*}
\frac{d x}{d t}=k(a-x)^{2} \tag{1}
\end{equation*}
$$

