Chapter Five

Growth by Collision-Coalescence

Terminal Velocity

e The equilibrium falls speed of a droplet (terminal velocity is a balance between the
frictional drag and the weight of the droplet.

» Friction: Frictional force is given by

F :grzu 5C (5.1)

where u is the fall speed and Cp is the drag coefficient.
- The drag coefficient itself may be a function of the fall speed.

» Weight: The weight of the droplet is given by

4
F, =§nr3gp, (5.2)

e Setting (5.1) equal to (5.2) and solving for the fall speed leads to the formula for the
terminal velocity of the droplet

3pCyp
e Table 1 shows empirical formula for terminal velocity for droplets in varying size ranges.

Table 1: Empirical formulas for terminal velocity for different droplet sizes.

Radius Terminal Velocity Parameter Values

r<40 um u=ar? a=1.19x10°cm™'s™*

40 pum <r <0.6 mm u=br b =8x10°s"!

r>0.6 mm u=c(p, /p)r’?> | c=2.2x10°cm"*s™; p, =1.20kg m™

Growth Due to Droplet Collisions

e Figure 1 illustrates the volume swept out by a large droplet of radius R falling through
a population of smaller droplets of radius r.
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Figure 1: Collection volume swept out by a large droplet of radius R in a population of smaller

droplets of radius r.

The collection volume is given by

dvV =n(R +r)’dh (5.4)

If the larger droplet is falling at terminal velocity u(R), then dh = u(R)dt, and so (5.4)
becomes

dv =n(R +r) u(R)dt (5.5)

The large droplet will collide with any smaller droplets that lie within the collection
volume. If these smaller droplets all stick to the larger droplet, the larger droplets mass
will increase by the liquid water content, M, times the collection volume. So, the mass-
growth rate of the larger droplet will be

dm =MdV =nr(R +r)*Mu(R)dt (5.6)

Equation (5.6) assumes that the smaller droplets are stationary. But in reality they are
also falling at their terminal velocity, u(r). This decreases the ’effective’ volume through
which the larger drop sweeps. We account for this by using the relative velocity between
the large and small droplets, u(R) — u(r)in (5.6) to get

dm =7(R +r)°M [u(R)—u(r)]dt (5.7)
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which on dividing by dt gives our mass-growth-rate equation

Z—T:n(R £1PM [u(R)—u(r)] (5.8)

Correction for Collection Efficiency

e In the derivation of (5.8) we assumed that any small droplet that are within the effective
volume swept by the larger droplet would adhere, or coalesce to the larger droplet.

e In reality, not all collisions result in coalescence. This is due to several factors:

- A smaller droplet that is in the path of the larger droplet may get pushed out
of the way by the air currents around the larger droplet. Think of a bug heading
for your windshield. Sometimes the air currents force the bug up and over your
car, sparing the bug a gruesome fate.

- Droplets that weren’t even in the path of the larger droplet may get pulled in
from behind the droplet. This is called wake capture. Think of leaves
following behind a moving car in the autumn.

- Even if two droplets do collide, it is not guaranteed that they will coalesce.
There may be a microfilm of air preventing the two droplets from sticking, or
the surface tension of the two droplets may just allow them to bounce off
each other.

e To account for all these factors, we incorporate a collection efficiency, E, into (5.8),
which then becomes

Z—TanM (R+1)*[u(R)-u(r)] (5.9)

- The collection efficiency is a dimensionless number, usually less than 1,
although technically it could exceed 1 if wake capture is the only or the
dominant factor.

- The collection efficiency is empirically determined.
e Equation (5.9) if often written as

dm
pral K(R,rM (5.10)

where
K(R,r)=nER +r)*[u(R)-u(r)] (5.11)

and is called the gravitational collection kernel.
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Growth Rate in Terms of Radius

We can create a growth-rate equation in terms of radius by using the chain rule,
dR dR dm

dt  dm dt

Since m = iTcp, R *then S—R = (4np,R*)™. So in terms of radius our growth-rate equation
m

is
dR EM (R +r)

T 4p| =7 ~———[u(R)-u(r)] (5.12)

We can further simplify this result if we assume that
u(R)>u(r)
R>r

allowing us to ignore r and u(r) in (5.12). The simplified expression for growth rate is
then
%—T=ﬂ (R) 513

If we assume a terminal velocity that is linear with radius, u(R) = bR, where b is the value
from Table 1, then (5.13) can be integrated analytically to determine the droplet radius
as a function of time. The results are shown in Figure 2 for a droplet of initial radius
40 um and a collection efficiency of 90%.

Drop Radius vs. Altitude

Using the chain rule (5.13) can be converted to an equation for droplet radius as a function
of height,
dR dR dz
dt  dz dt

dz/dt is the vertical velocity of the drop, which is its terminal velocity subtracted from
the updraft speed, U — u(R). Therefore
d_R: 1 drR _ EM u(R) (5.15)
dz U -u(R)dt 4p U -u(R)

(5.14)

Allowing u(R) = bR and integrating (5.15) gives an equation for droplet altitude versus
radius,

42



_, M (R R
z _Z°+bEM {In(R } 0 (R Ro)} (5.16)

0

where R, is the initial droplet radius, and z,is the altitude at cloud base.

Figure 2: Growth rates from (5.13) for different liquid water contents (g m—2) for initial droplet
radius of 40 um and a collection efficiency of 90%. The faint, dashed horizontal line
represents the cut-off radius between drizzle and rain.

Figure 3: Droplet altitude vs. radius for varying values of updraft velocity, U, from equation
(5.16), with E=0.9, M = 1gm~3, and R,= 40 um. Faint dotted vertical lines are
at 5 minute intervals.
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Droplet Trajectories

e We can derive an equation for the trajectory of a droplet within the cloud by first
starting with the expression
dz
—=U —-u(R 5.17
m (R) (5.17)

- What we need is an expression for the terminal velocity as a function of time,
u(t). We can derive this by the chain rule,

du _du dR

dt dR dt

- Assuming the terminal velocity is given by u = bR, and using (5.13) for dR/dt,
(5.18) become

(5.18)

d_u = bE_Mu (5.19)
dt  4p
- Integrating (5.19) results in
U(t)=bR, exp[bE—Mtj (5.20)
4n
where bR, = Uo is the terminal velocity at t = 0.
e Putting (5.20) into (5.17) and integrating again with respect to t results in

z(t)=z, +Ut +% 1-exp bE—Mt (5.21)

EM 4p,

where z, is the altitude at cloud base.
e Figure 4 shows results for varying values of updraft velocity, U.

- The stronger the updraft, the longer the droplet remains within the cloud.
- Stronger updrafts also lift the droplet higher into the cloud.
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Figure 4: Droplet trajectories for varying values of updraft velocity, U, from Equation (5.21),
WithE =09, M =1gm 3, and R, =40 um

Nonuniform Droplet Populations

e The equations we’ve developed so far only apply to a droplet that is falling through a

uniform population of smaller droplets (i.e., the smaller droplets are all the same
size).

e Equation (5.8) is easily extended to a population of smaller droplets of N different sizes
by using a summation
N
Z—TznZEiMi(R +1)?[u(R)-u(r)] (5.22)
i=1
- Each of the N different droplet sizes has its own radius, collection efficiency;,
and liquid water content, represented as r;, E;, and M;.

e If we define the collection kernal for each droplet size as

KR,r)=mER+r,)*[uR)-u(r)] (5.23)
then (5.22) becomes
Z—TziK(R,n)Mi (5.24)
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If the droplet population isa continuous spectrum, then the summation in (5.24) becomes
an integral,

dm
o _J‘K (R,r)dM (5.25)

and we know that

dMm :gnp, r°n, (r)dr

Therefore, (5.25) becomes
d—m=£np,.|'K(R,r)r3nd(r)dr (5.26)
dt 3 "'y

Equation (5.26) must be solved numerically, and is complicated by the fact that the
collection kernel has to remain within the integral.
The collection kernel is usually determined empirically.

If we assume that R >> r and u(R) >> u(r) then we can show that

R muR)%_
d_t:—-([Er n, (r)dr (5.27)

Using the mean-value theorem this becomes

drR _mu R
Y ( )Ejr ng (r)dr (5.28)
where
Ap, T s
E=—=L|Er’°n, (r)dr 5.29
o j 4 (1) (5.29)

is the mass-weighted mean collection efficiency?

Equation (5.28) can also be written as

dR EM
E—H u(R) (5.30)

which is nearly identical to (5.13)

- This is nice, because all the analysis and graphs that we created based on a
uniform droplet population are still relevant for a continuous droplet population,
as long as we used the mass-weighted mean collection efficiency calculated
from (5.29).
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Further Commentson Collision-Coalescence

e The growth rate is very sensitive to the drop size spectrum, with broader spectra leading
to faster growth rates.

e A broad spectrum is beneficial because it leads to greater relative velocity between the
drops, and more chance for collision. In a narrow spectrum, all the drops are falling at
roughly the same velocity, and are less likely to collide.

e Clouds droplets are initially formed via diffusion, which leads to a narrowing, rather
than a broadening of the drop size spectra.

e Computations using (5.26) with typical drop size spectra give growth rates too small to
explain how precipitation sized drops form in reality.

e To achieve growth rates comparable to that observed in natural clouds (about 15 minutes),
a stochastic process is required, whereby a small population of fortunate drops happen
to grow much faster than the average rate.

e As these drops grow very large (4 to 5 mm), they become unstable and break apart.
This creates some additional large drops which can themselves start to grow through
collision-coalescence.

e The physical cause of these stochastic phenomena is a source of study, but turbulence is
likely a factor.

e The collision-coalescence process is often called the warm-rain process, since itis the
only way to explain precipitation formation in clouds that remain above freezing.
However, it can also occur in cold clouds.
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