
 Data Structures

1

Queues

A queue is an ordered collection of items from which items may be deleted at one end (collect the

front of the queue) and into which items may be inserted at the other end (called the Rear of the

queue). The figure(1) illustrates a queue containing three elements A, B and C.

 Front

A B C

 Rear

 Figure -1-

In figure (2) an element has been deleted from the queue. Since may be deleted only from the front

of the queue, A is removed and B is now at the front.

 Front

 B C

 Rear

 Figure -2-

In figure (3) , when items D and E are inserted , they may be inserted at the rear of the queue.

 Front

 B C D E

 Rear

Figure -3-

The Queue Abstract Data Type

 Queue is an ADT data structure similar to stack, except that the first item to be inserted is

the first one to be removed.

 This mechanism is called First-In-First-Out (FIFO).

 Placing an item in a queue is called “insertion or enqueue”, which is done at the end of the

queue called “rear”.

 Removing an item from a queue is called “deletion or dequeue”, which is done at the other

end of the queue called “front”.

 Used extensively in operating systems

o Queues of processes, I/O requests, and much more

Problem:

 After a few insert and delete operations the rear might reach the end of the queue and no

more items can be inserted although the items from the front of the queue have been deleted

and there is space in the queue.

Solution: Circular Queue

 Data Structures

2

The figure(4) illustrates a Circular Queue containing five elements A, B , C , D and E.

 Front

 A B C D E

 Rear

Figure -4-

In figure (5) , when items F are inserted , they may be inserted at the rear of the queue.

 Front

 A B C D E F

 Rear

Figure -5-

Class specification :

Queue

-MaxSize:int

- QueueArray[]:object

-front:int

-rear:int

+Queue(int)

+ enqueue (object):void

+ dequeue():object

+Front():object

+IsFull():bool

+IsEmpty():bool

+Size():int

The queue abstract data type (ADT) supports the following Methods:

ADT : Queue

 {

 Data: a non zero positive integer number representing MaxSize . and array of object elements

represent the QueueArray.

 Operations:

 A constructor(queue) :initialize the data to some Data object certain value.

 enqueue (element): Insert object element at the rear of the queue.

 Input : Object; Output: None.

 Data Structures

3

 dequeue(): Remove and return from the queue the object at the front ; an error occurs if the

queue is empty.

 Input : None; Output: Object.

Notice that, as with the stack pop() operation, the dequeue () operation returns the object that was

removed (an alternative to avoid unnecessary copying by defining dequeue() so that no value is

returned) . The queue ADT also includes the following supporting member methods:

Front(): Return, but do not remove, a reference to the front element in the queue ; an error occurs if

the queue is empty.

 Input : None; Output: Object.

Size(): Return the number of objects in the queue .

 Input : None; Output: Integer.

IsEmpty() : Return a Boolean value indicating if the queue is empty.

 Input : None; Output: Boolean.

IsFull() : Return a Boolean value indicating if the queue is full.

 Input : None; Output: Boolean.

} end ADT Queue

We illustrate the operation in the queue ADT in the following example:

Example: The following table shows a series of queue operation and their effect on an initially

empty queue Q of integer .

Queue q=new Queue [6];

 Data Structures

4

Operation Output front Rear Queue

enqueue(5)

enqueue(3)

dequeue()

enqueue(7)

dequeue()

Front()

dequeue()

dequeue()

IsEmpty()

enqueue(9)

enqueue(7)

Size()

enqueue(3)

enqueue(5)

dequeue()

–

–

5

–

3

7

7

“error”

 true

–

–

2

–

–

9

0

0

0

1

1

2

2

3

3

0

0

0

0

0

0

1

0

1

2

2

3

3

3

3

3

0

1

2

2

3

4

4

(5)

(5, 3)

(3)

(3, 7)

(7)

(7)

()

 ()

()

(9)

(9, 7)

(9, 7)

(9, 7, 3)

(9, 7, 3, 5)

(7, 3, 5)

 0 1 2 3 4 5

 7 3 5

 front rear

class Queue

 {

// data member or data value

 private int front , rear, MaxSize ;

 private object[] QueueArray;

// Constructer or default Constructer

 public Queue(int n)

 {

 MaxSize = n;

 QueueArray = new object[MaxSize];

 rear = 0;

 front= 0;

 }

}

Queue Operations

 We describe how to use this method to implement a queue in code :

Implementation Array-based Queue

To Summarize the discussion of Queues , let us list all the methods we have discussed for

implementing queue:

 Data Structures

5

1 – The physical model: a linear array with the front always in the first position and all entries

moved up the array whenever the front is removed . This is generally a poor method for use in

computer .(O(n)).

Pseudocode deQueue():

 Physical mode c.f.

if isEmpty() then

 Throw a queueEmpty Exception

else

{

 item ← QueueArray[0]

 for(i←0 to (size()-2))

 {

 QueueArray[i] ← QueueArray[i+1]

 }

rear←rear-1

return item

}

1

1

1

n

n

1

1

= 2n+5

=O(n)

2- A linear array with two indices always increasing . this is a good method if the queue can be

emptied all at once . (all methods O(1))

Pseudocode Size():

return (rear-front)

Pseudocode IsEmpty():

if (front equal rear) { front ← 0; rear ← 0; return true } else return false

Pseudocode Front():

if IsEmpty() then

 Throw a queueEmpty Exception

Return QueueArray[front]

 Data Structures

6

Pseudocode dequeue():

if IsEmpty() then

 Throw a queueEmpty Exception

else

{

 item ← QueueArray[front]

 front←front+1

 return item

}

Pseudocode IsFull():

If (rear equal Maxsize) return true else return false

Pseudocode enqueue(element):

if IsFull() then

 Throw a queueFullException

else

{

 QueueArray[rear] ←element

 rear←rear+1

}

3- A circular array with use a gap cell within the array to check for fullness or emptiness

rear

front

 front

 rear

E

 front

 rear

B

 D A

 C

A D

 C

 front=1 front = 2 front = 3

 rear= 2 rear= 0 rear= 2

 a b c

In figure (a) removing the last element, leaving the queue empty (front=rear) . In figure (c) in

adding an element to the last free slat in the queue leaving the queue full (front = rear). The value

of front and rear in the two situation are identical.

One solution is to use a gap cell within the array to check for fullness or emptiness

 Data Structures

7

Pseudocode Size():

return (MaxSize - front+rear)mod MaxSize

Pseudocode IsEmpty():

if (front equal rear) { front ← 0 ; rear ← 0; return true } else return false

Pseudocode Front():

if IsEmpty() then

 Throw a queueEmpty Exception

Return QueueArray[front]

Pseudocode dequeue():

if IsEmpty() then

 Throw a queueEmpty Exception

else

{

 item ← QueueArray[front]

 front← (front+1) mod MaxSize

 return item

}

Pseudocode IsFull():

If ((rear+1)% MaxSize equal front) return true else return false

Pseudocode enqueue(element):

Circular Queue (gap cell)

if IsFull () then

 Throw a queueFullException

else

{

 QueueArray[rear] ← element

 rear ← (rear+1) mod MaxSize

}

 Data Structures

8

Example1 : Consider the following operations on a circular queue data structure that stores integer

values?

 Queue Q1=new Queue [10];

 for (int i=0; i< 7 ; i++)

 Q1.enqueue (i) ;

 for (int i=1; i< 5 ; i++)

 Q1.enqueue(Q1.dequeue ()) ;

What queue will look like after the code above executes(what position of rear and front)?

Solution

0 1 2 3 4 5 6 7 8 9

3 4 5 6 0 1 2

 Rear Front

Example2 : Consider the following operations on a circular queue data structure that stores integer

values?

Queue q=new Queue(9);

q.enqueue(6); q.enqueue(1); q.enqueue(8); q.enqueue(q.dequeue()); q.enqueue(q.dequeue());

q.enqueue(5); q.enqueue(9); q.enqueue(q.dequeue()); q.enqueue(q.dequeue());q.enqueue(3);

 what q will look like after the code above executes(what position of rear and front)?

Solution

0 1 2 3 4 5 6 7 8

3 1 5 9 8 6

 Rear Front

The table show the running times of methods in realization of a queue by an array

Method Time

Size O(1)

isEmpty O(1)

Front O(1)

Enqueue O(1)

Dequeue O(1)

 Data Structures

9

Exercises

Q1/Write method to print Queue?

Q2/Write method to print Circular Queue ?

Q3/ Consider the following operations on a circular queue data structure that stores integer values?

Queue q=new Queue [10];

q.enqueue(6);

q.enqueue(1);

q.enqueue(q.dequeue());

q.enqueue(8);

 q.enqueue(2);

q.enqueue(5);

q.enqueue(9);

q.enqueue(q.dequeue());

q.enqueue(q.dequeue());

 what q will look like after the code above executes?

Q4/ Consider the following operations on a circular queue data structure that stores integer values?

Queue q=new Queue [6];

q.enqueue(9);

q.enqueue(3);

q.enqueue(5);

q.enqueue(q.dequeue());

q.enqueue(4);

 q.enqueue(2);

q.enqueue(q.dequeue());

q.enqueue(q.dequeue());

q.enqueue(8);

 what q will look like after the code above executes?

 Data Structures

11

Q5/ Describe the output for the following sequence of queue operation?

Queue q=new Queue [7];

q.enqueue(5);

q.enqueue(3);

q.dequeue()

q.enqueue(2);

 q.enqueue(8);

q.dequeue();

q.dequeue();

q.enqueue(7);

Q6/ Describe the output for the following sequence of circular queue operation?

Queue [] q=new Queue [6];;

q.enqueue(15);

q.enqueue(13);

q.dequeue()

q.enqueue(21);

 q.enqueue(8);

q.dequeue();

q.dequeue();

q.enqueue(7);

q.enqueue(9);

q.enqueue(1);

q.enqueue(8);

