Nitrogen cycle

Nitrification Process :

Nitrification is the biological oxidation, is formally by a two-step process, in the first step oxidation ammonium to nitrite and in the second step the oxidation of the nitrite to nitrate. Nitrification is a second and important step in the nitrogen cycle in soil as convertes of soil ammonia to nitrates, compounds usable by plants.

NH₄ Nitrosococcus NO₂ Nitrobacter NO₃ NO₃

Nitrification is an aerobic process performed by small groups of autotrophic bacteria different microbes are responsible for each steps . Several bacteria of ammonia-oxidizing bacteria (AOB), including *Nitrosomonas*, *Nitrosospora*, and *Nitrosococcus*.

In the second step, nitrite is oxidized to nitrate, by groups of nitrite - oxidizing bacteria (NOB), including *Nitrobacter*, *Nitrococcus Nitrospira*.

Nitrifying bacteria :

Are chemoautotrophic or chemolithotrophs (family Nitrobacteraceae)depending on the genera (*Nitrosomonas*, *Nitrosococcus*, *Nitrobacter*, *Nitrococcus*) bacteria that grow by consuming inorganic nitrogen compounds. Many species of nitrifying bacteria have complex internal membrane systems that are the location for key enzymes in nitrification: ammonia monooxygenase which oxidizes ammonia to hydroxylamine, and nitrite oxidoreductase, which oxidizes nitrite to nitrate.

Nitrosomonas and Nitrobacter are gram negative, mostly rod-shaped, microbes ranging between 0.6-0.4 microns in length. They are obligate aerobes and cannot multiply or convert ammonia or nitrites in the absence of oxygen.

Isolation and detection ammonia oxidizing bacteria:

Procedure :

- Suspend 1 gm of soil sample in 9 ml of Allen I broth (contains (NH₄)₂SO₄ as ammonia source).
- 2- Incubate tubes at $28C^0$ for a week.
- 3- Mix 1ml microbial suspension with an equal volume of reagent A (salfanilic acid ,acetic acid) and reagent B (a-naphtholamine ,acetic acid).
- 4- Let for a few seconds ,formation of red colored deposit illustrate releasing of No₂ as a result of nitrification process.

Isolation and detection Nitrite oxidizing bacteria:

Procedure :

1-Follow previous procedure , but substitute Allen II broth instate of Allen I broth is contains NaNo₂ as nitrite source for detection of released No₃ .

2- Mix 1ml microbial suspension with drops of nitrate reagent (Diphenylamin DPA).

3- formation of blue colored deposit demonstrate releasing of No₃.