
Integrative Programming Selection Statements

Chapter 3: Java Control Statements

In java, the default execution flow of a program is a sequential order. But the

sequential order of execution flow may not be suitable for all situations.

Sometimes, we may want to jump from line to another line, we may want to skip

a part of the program, or sometimes we may want to execute a part of the program

again and again. To solve this problem, java provides control statements.

1. Selection Statement

 Like all high-level programming languages, Java provides selection statements:

statements that let you choose actions with alternative courses. The program can

decide which statements to execute based on a condition. Selection statements

use conditions that are Boolean expressions. A Boolean expression is an

expression that evaluates to a Boolean value: true or false.

Integrative Programming Selection Statements

2. boolean Data Type

The boolean data type declares a variable with the value either true or false.

How do you compare two values, such as whether a radius is greater than 0,

equal to 0, or less than 0? Java provides six relational operators (also known as

comparison operators), shown in Table 3.1, which can be used to compare two

values (assume radius is 5 in the table).

3. if Statement

Java has several types of selection statements: one-way if statements, two-

way if-else statements, nested if statements, multi-way if-else statements,

switch statements, and conditional operators.

In java, we use the if statement to test a condition and decide the execution

of a block of statements based on that condition result. The if statement

checks, the given condition then decides the execution of a block of

statements. If the condition is True, then the block of statements is executed

and if it is False, then the block of statements is ignored. The syntax and

execution flow of if the statement is as follows.

Let's look at the following example java code.

Integrative Programming Selection Statements

Let's look at the following example java code.

When we run this code, it produces the following output.

Integrative Programming Selection Statements

In the above execution, the number 12 is not divisible by 5. So, the condition

becomes False and the condition is evaluated as False. Then the if statement

ignores the execution of its block of statements.

When we enter a number, which is divisible by 5, then it produces the output as

follows.

A one-way if statement executes an action if and only if the condition is true.

The syntax for a one-way if statement is as follows:

if (boolean-expression) {

 statement(s);

 }

Integrative Programming Selection Statements

The flowchart in Figure 3.1a illustrates how Java executes the syntax of an if

statement.

If the boolean-expression evaluates to true, the statements in the block are

executed.

As an example, see the following code:

if (radius >= 0) {

 area = radius * radius * PI;

 System.out.println("The area for the circle of radius " +

 radius + " is " + area);

}

The flowchart of the preceding statement is shown in Figure 3.1b. If the value

of radius is greater than or equal to 0, then the area is computed and the result

is displayed; otherwise, the two statements in the block will not be executed.

The boolean-expression is enclosed in parentheses. For example, the code in

(a) is wrong. It should be corrected, as shown in (b).

Integrative Programming Selection Statements

The block braces can be omitted if they enclose a single statement. For

example, the following statements are equivalent:

Listing 3.2 gives a program that prompts the user to enter an integer. If the

number is a multiple of 5, the program displays HiFive. If the number is

divisible by 2, it displays HiEven.

The program prompts the user to enter an integer (lines 6–7) and displays

HiFive if it is divisible by 5 (lines 9–10) and HiEven if it is divisible by 2 (lines

12–13).

Integrative Programming Selection Statements

3.1 Two-Way if-else Statements
An if-else statement decides the execution path based on whether the condition is

true or false. A one-way if statement performs an action if the specified condition

is true. If the condition is false, nothing is done. But what if you want to take

alternative actions when the condition is false? You can use a two-way if-else

Let's look at the following example java code.

When we run this code, it produces the following output.

Integrative Programming Selection Statements

3.2 Nested if and Multi-Way if-else Statements

An if statement can be inside another if statement to form a nested if statement.

The statement in an if or if-else statement can be any legal Java statement,

including another if or if-else statement. The inner if statement is said to be nested

inside the outer if statement. The inner if statement can contain another if

statement; in fact, there is no limit to the depth of the nesting. For example, the

following is a nested if statement:

if (i > k) {

 if (j > k)

 System.out.println("i and j are greater than k");

 }

else

 System.out.println("i is less than or equal to k");

The if (j > k) statement is nested inside the if (i > k) statement.

The nested if statement can be used to implement multiple alternatives. The

statement given in Figure 3.3a, for instance, prints a letter grade according to the

score, with multiple alternatives.

Integrative Programming Selection Statements

The if statement in Figure 3.3a is equivalent to the if statement in Figure 3.3b. In

fact, Figure 3.3b is the preferred coding style for multiple alternative if

statements. This style, called multi-way if-else statements, avoids deep

indentation and makes the program easy to read.

The execution of this if statement proceeds as shown in Figure 3.4. The first

condition (score >= 90) is tested. If it is true, the grade is A. If it is false, the

second condition (score >= 80) is tested. If the second condition is true, the grade

is B. If that condition is false, the third condition and the rest of the conditions (if

necessary) are tested until a condition is met or all of the conditions prove to be

false. If all of the conditions are false, the grade is F. Note a condition is tested

only when all of the conditions that come before it are false.

Integrative Programming Selection Statements

4. Logical Operators

Sometimes, whether a statement is executed is determined by a combination of

several conditions. You can use logical operators to combine these conditions

to form a compound Boolean expression. Logical operators, also known as

Boolean operators, operate on Boolean values to create a new Boolean value.

Listing 3.6 gives a program that checks whether a number is divisible by 2 and

3, by 2 or 3, and by 2 or 3 but not both.

Integrative Programming Selection Statements

(number % 2 == 0 && number % 3 == 0) (line 12) checks whether the number

is divisible by both 2 and 3. (number % 2 == 0 || number % 3 == 0) (line 15)

checks whether the number is divisible by 2 or by 3. (number % 2 == 0 ^

number % 3 == 0) (line 18) checks whether the number is divisible by 2 or 3,

but not both.

Integrative Programming Selection Statements

5. switch Statements

Using the switch statement, one can select only one option from more number of

options very easily. In the switch statement, we provide a value that is to be

compared with a value associated with each option. Whenever the given value

matches the value associated with an option, the execution starts from that option.

In the switch statement, every option is defined as a case.

The switch statement has the following syntax and execution flow diagram.

Let's look at the following example java code.

Integrative Programming Selection Statements

When we run this code, it produces the following output.

Integrative Programming Selection Statements

6. Conditional Operators
You might want to assign a value to a variable that is restricted by certain

conditions. For example, the following statement assigns 1 to y if x is greater than

0 and -1 to y if x is less than or equal to 0:

 if (x > 0)

 y = 1;

 else

 y = −1;

Alternatively, as in the following example, you can use a conditional operator to

achieve the same result.

y = (x > 0) ? 1 : −1;

The symbols ? and : appearing together is called a conditional operator (also

known as a ternary operator because it uses three operands. It is the only ternary

operator in Java. The conditional operator is in a completely different style, with

no explicit if in the statement. The syntax to use the operator is as follows:

boolean-expression ? expression1 : expression2

The result of this expression is expression1 if boolean-expression is true;

otherwise, the result is expression2.

Suppose you want to assign the larger number of variable num1 and num2 to

max. You can simply write a statement using the conditional operator:

max = (num1 > num2) ? num1 : num2;

For another example, the following statement displays the message “num is even”

if num is even, and otherwise displays “num is odd.”

System.out.println((num % 2 == 0) ? "num is even" : "num is odd");

As you can see from these examples, the conditional operator enables you to write

short and concise code.

