Geometric Distribution

The geometric distribution represents the number of failures before you get a success in a series of Bernoulli trials. In other words, the Geometric pmf tells us the probability that the first occurrence of success requires x number of independent trials, each with success probability p. If the probability of success on each trial is p, then the probability that the $x^{\text {th }}$ trial (out of x trials) is the first success is:

This discrete probability distribution is represented by the probability density function:

$$
P(X=x)= \begin{cases}P(1-P)^{x-1}, & x=1,2, \ldots \\ 0, & o . w\end{cases}
$$

For example,

1. Toss a coin repeatedly. Let $X=$ number of tosses to first head.
2. It is known that 20% of products on a production line are defective. Products are inspected until first defective is encountered. Let $X=$ number of inspections to obtain first defective 4.

Geometric Distribution Conditions:

1. An experiment consists of repeating trials until first success.
2. Each trial has two possible outcomes;
(a) A success with probability p
(b) A failure with probability $q=1$ - p.
3. Repeated trials are independent. $X=$ number of trials to first success.

The properties of the Geometric distribution

1. $E(X)=\frac{1}{p}$
2. $\operatorname{ver}(X)=\frac{1-p}{p^{2}}$

Proof:

$$
\begin{gathered}
E(X)=\sum_{\forall X} x p(x) \\
=\sum_{\forall X} x p q^{x-1} \\
=p \sum_{\forall X} x q^{x-1} \\
=p \sum_{\forall X} \frac{d}{d q} q^{x} \\
=p \frac{d}{d q} \sum_{x=1}^{\infty} q^{x}=p \frac{d}{d q}\left(q+q^{2}+q^{3}+\cdots\right) \\
=p \frac{d}{d q}\left(\frac{q}{1-q}\right) \\
=p \frac{(1-q)-q(-1)}{(1-q)^{2}}
\end{gathered}
$$

$$
=p \frac{1-q+q}{(1-q)^{2}}=p \frac{1}{(1-q)^{2}}=\frac{1}{p}
$$

2. var (x)

$$
\begin{gathered}
\operatorname{var}(x)=E(X)^{2}-[E(X)]^{2} \\
E(X)^{2}=E(X(X-1))+E(X) \\
E(X-1))=\sum_{\forall X}(X(X-1)) p(x) \\
=\sum_{\forall X}(X(X-1)) p q^{x-1} \\
=p q \sum_{x=2}^{\infty}(X(X-1)) q^{x-2} \\
=p q \sum_{x=2}^{\infty} \frac{d^{2}}{d q^{2}} q^{x-2} \\
=p q \frac{d^{2}}{d q^{2}} \sum_{x=2}^{\infty} q^{x} \\
=p q \frac{d^{2}}{d q^{2}} \sum_{x=2}^{\infty} q^{x} \\
=p q \frac{d^{2}}{d q^{2}}\left(q^{2}+q^{3}+\cdots\right) \\
=p q^{3} \frac{d^{2}}{d q^{2}}\left(1+q+q^{2}+q^{3}+\cdots\right)
\end{gathered}
$$

$$
\begin{gathered}
=p q^{3} \frac{d^{2}}{d q^{2}}\left(\frac{1}{1-q}\right) \\
=p q^{3} \frac{d}{d q}\left[\frac{1}{(1-q)^{2}}\right] \\
=p q^{3}\left[\frac{-2(1-q)(-1)}{(1-q)^{4}}\right] \\
=p q^{3}\left[\frac{2}{(1-q)^{3}}\right] \\
=\frac{2 q^{3}}{p^{2}} \\
E(X)^{2}=\frac{2 q^{3}}{p^{2}}+\frac{1}{p} \\
\operatorname{var}(x)= \\
\frac{2 q^{3}}{p^{2}}+\frac{1}{p}-\frac{1}{p^{2}}=\frac{2 q^{3}+p-1}{p^{2}}
\end{gathered}
$$

Example. 1

Products produced by a machine has a 3% defective rate. What is the probability that the first defective occurs in the fifth item inspected?
Solution:

$$
P(X=x)= \begin{cases}P(1-P)^{x-1}, & x=1,2, \ldots \\ 0, & o . w\end{cases}
$$

$P=0.03$
$\mathbf{P}(\mathbf{X}=5)=\mathbf{P}(1$ st 4 non-defective) $\mathbf{P}($ 5th defective $)$
$=(1-0.03)^{5-1}(0.03)$
$=(0.97)^{4}(0.03)$
Example. 2:
The probability of hitting a target is (0.4) what is the probability of hitting this target on the fourth attempt.

Solution:

The probability of hitting the target on the fourth attempt means that failure in the previous three attempts, and therefore the probability is:

$$
\begin{array}{rl}
& P(X=x)=\left\{\begin{array}{c}
P(1-P)^{x-1}, \\
0,
\end{array}\right. \\
P=0.4 & x=1,2, \ldots \\
= & (1-0.4)^{4-1}(0.4) \\
= & (0.6)^{3}(0.4)=0.0864
\end{array}
$$

