Wondershare

PDFelement

1.3. Tautology /Contradiction / Contingency

Definition 1.3.1. (Tautology)

A tautology (theorem or lemma) is a logical proposition that is always true.

Remark 1.3.2. One informal way to check whether or not a certain logical formula is a theorem is to construct its truth table.

Example 1.3.3. p V ~p.

Definition 1.3.4. (Contradiction)

A contradiction is a logical proposition that is always false.

Example 1.3.5. p $\land \sim p$.

Definition 1.3.6. (Contingency)

A contingency is a logical proposition that is neither a tautology nor a contradiction.

Example 1.3.7.

(i) The logical proposition $p \lor q \rightarrow \sim r$ is a contingency. See Example 1.2.3(i).

(ii) The logical proposition $p \lor \sim (p \land q)$ is a tautology.

р	q	p∧q	$\sim (p \land q)$	$p \vee \sim (p \land q)$
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

Exercise 1. 1.3.8

(i) Build a truth table to verify that the logical proposition

$$(p \leftrightarrow q) \land (\sim p \land q)$$

is a contradiction.