Wondershare

PDFelement

1.5. Normal or Canonical Forms

From Examples 1.4.1.(ii)(iii), even though are expressed with only \land , \lor and \sim , it is still hard to tell without doing a proof.

- (i) What we need is a unique representation of a compound proposition that uses ∧, ∨ and ~.
- (ii) This unique representation is called the Disjunctive Normal Form as define below.

Definition 1.5.1. A clause that contains only \lor is called a **disjunctive clause** and only \land is called a **conjunctive clause**.

Negation is allowed, but only directly on variables.

Example 1.5.2.

- (i) $pV \sim qVr$: a disjunctive clause.
- (ii) $\sim p \land q \land \sim r$: a conjunctive clause.

(iii) $\sim p \land \sim q \lor r$: neither.

Definition 1.5.3.

(i) A bunch of disjunctive clauses together with \wedge , it is called **conjunctive normal** form(CNF).

(i) A bunch of conjunctive clauses together with V, it is called **disjunctive normal** form(DNF).

Remark 1.5.4. The individual conjunction clauses (disjunctive clauses) that make up the DNF (CNF) are called **minterms**.

Example 1.5.5 (i) p

: Both normal forms, since single literal is always conjunctive and disjunctive normal form.

(**ii**) p ∧ q

: Conjunctive and disjunctive normal form.

(iii) $(p \land q \land \sim r \land s) \lor (\sim q \land s) \lor (p \land s)$: disjunctive normal form.

(iv) $(p \lor q \lor \sim r \lor s) \land (\sim q \lor s) \land \sim s$: conjunctive normal form.

(v) $(pVr)\Lambda(q\Lambda(pV\sim q))$: not in a normal form.

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana