(vi) $\sim p \lor q \lor r$ and $\sim p \land q \land r$: Both normal forms.

Remark 1.5.6. It turns out we can turn any logical proposition into either normal form.

(i) We can use the definitions to get rid of \rightarrow , \leftrightarrow , and V.

(ii) Use De Morgan's laws to move any \sim in past original statement, so they sit on the variables.

(iii) Use double negation to get rid of any $\sim \sim$ that showed up.

(iv) Use the distributive rules to move things in/out of original statement as we need to.

Example 1.5.7. Converting $\sim ((\sim p \rightarrow \sim q) \land \sim r)$ to conjunctive normal form.

$\sim ((\sim p \rightarrow \sim q) \land \sim r)$	$\equiv \sim ((\sim \sim p \lor \sim q) \land \sim r)$	Definition
	$\equiv \sim ((p \vee \sim q) \wedge \sim r)$	Double negation
	$\equiv \sim (\mathbf{p} \vee \sim \mathbf{q}) \vee \sim \sim \mathbf{r}$	De Morgan's
	$\equiv \sim (p \vee \sim q) \vee r$	Double negation
	≡(~p∧~~q)Vr	De Morgan's
	≡(~p∧q)Vr	Double negation : disjunctive normal form
	≡(~pVr)∧(qVr)	Distributive : conjunctive normal form

It was actually in disjunctive normal form in the second-last step.

inch Bassan