1.7. Logical Implication

Definition 1.7.1. (Logical implication)

We say the logical proposition r implies the logical proposition s (or s logically deduced from r) and write $r \Rightarrow s$ if $r \rightarrow s$ is a tautology. **Example 1.7.2.** Show that $(p \rightarrow t) \land (t \rightarrow q) \Rightarrow p \rightarrow q$.

Solution. Let P: the proposition $(p \rightarrow t) \land (t \rightarrow q)$

Q: the proposition $p \rightarrow q$

р	t	q	$p \rightarrow t$	$t \rightarrow q$	Р	Q	$P \rightarrow Q$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Remark 1.7.3.

(i) We use $r \Rightarrow s$ to imply that the statement $r \rightarrow s$ is true, while the statement $r \rightarrow s$ alone does not imply any particular truth value. The symbol is often used in proofs as shorthand for "implies".

(ii) If $r \Rightarrow s$ and $s \Rightarrow r$, then we denote that by $r \Leftrightarrow s$.

Example 1.7.4. Show that (i) $r \Rightarrow s$ if and only if $\sim r \lor s$ is tautology. (ii) $r \Leftrightarrow s$ if and only if $r \equiv s$. **Solution.** (i) $r \Rightarrow s$ if and only if $r \rightarrow s$ is a tautology (by def.) But $\sim r \lor s \equiv r \rightarrow s$ is a tautology. Then, $r \Rightarrow s$ if and only if $\sim r \lor s$ is tautology.

(ii) $r \Longrightarrow s$ if and only if $r \to s$ is tautology (by def.) $s \Longrightarrow r$ if and only if $s \to r$ is tautology (by def.) Then, $r \to s \land s \to r$ is tautology. Therefore, $r \equiv s$.

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

Wondershare

PDFelement