## Definition 1.7.5.

The statement $\mathrm{q} \rightarrow \mathrm{p}$ is called the converse of the statement $\mathrm{p} \rightarrow \mathrm{q}$ and the statement $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$ is called the inverse.

Generally, the statement and its converse not necessary equivalent. Therefore, $\mathrm{p} \Rightarrow \mathrm{q}$ does not mean that $\mathrm{q} \Rightarrow \mathrm{p}$.

Example 1.7.6. The statement "the triangle which has equal sides, has two equal legs" equivalent to the statement " the triangle which has not two equal legs has no equal sides".

### 1.8. Quantifiers

Recall that a formula is a statement whose truth value may depend on the values of some variables. For example,
$" x \leq 5 \wedge x>3 "$ is true for $x=4$ and false for $x=6$.
Compare this with the statement
"For every $x, x \leq 5 \wedge x>3$," which is definitely false and the statement
"There exists an $x$ such that $x \leq 5 \wedge x>3$," which is definitely true.

## Definition 1.8.1.

(i) The phrase 'for all $\boldsymbol{x}$ " ('for every $\boldsymbol{x}$ ', ' 'for each $\boldsymbol{x}$ ') is called a universal quantifier and is denoted by $\forall \boldsymbol{x}$.
(ii) The phrase 'for some $\boldsymbol{x}$ " ('there exists an $\boldsymbol{x}$ ') is called an existential quantifier and is denoted by $\exists \boldsymbol{x}$.
(iii) A formula that contains variables is not simply true or false unless each of these variables is bound by a quantifier.
(iv) If a variable is not bound the truth of the formula is contingent on the value assigned to the variable from the universe of discourse.

## Definition 1.8.2. (The Universal Quantifier)

