Wondershare

PDFelement

Definition 1.7.5.

The statement $q \rightarrow p$ is called the **converse** of the statement $p \rightarrow q$ and the statement $\sim p \rightarrow \sim q$ is called the **inverse**.

Generally, the statement and its converse not necessary equivalent. Therefore, $p \Rightarrow q$ does not mean that $q \Rightarrow p$.

Example 1.7.6. The statement "the triangle which has equal sides, has two equal legs" equivalent to the statement "the triangle which has not two equal legs has no equal sides".

1.8. Quantifiers

Recall that a formula is a statement whose truth value may depend on the values of some variables. For example,

" $x \le 5 \land x > 3$ " is true for x = 4 and false for x = 6.

Compare this with the statement

"For every $x, x \le 5 \land x > 3$," which is definitely false and the statement

"There exists an x such that $x \le 5 \land x > 3$," which is definitely true.

Definition 1.8.1.

(i) The phrase "for all x" ("for every x", "for each x") is called a universal quantifier and is denoted by $\forall x$.

(ii) The phrase ''for some x'' (''there exists an x'') is called an existential quantifier and is denoted by $\exists x$.

(iii) A formula that contains variables is not simply true or false unless each of these variables is **bound** by a quantifier.

(iv) If a variable is not bound the truth of the formula is contingent on the value assigned to the variable from the universe of discourse.

Definition 1.8.2. (The Universal Quantifier)