Let $f(x)$ be a logical proposition which depend only on x. A sentence $\forall x f(x)$ is true if and only if $f(x)$ is true no matter what value (from the universe of discourse) is substituted for x.

Example 1.8.3.

$\forall x:\left(x^{2} \geq 0\right)$, i.e., "the square of any number is not negative."
$\forall x$ and $\forall y,(x+y=y+x)$, i.e., the commutative law of addition.
$\forall x, \forall y$ and $\forall z,((x+y)+z=x+(y+z))$, i.e. the associative law of addition.
Remark .1.8.4. The "all" form, the universal quantifier, is frequently encountered in the following context:

$$
\forall x(f(x) \Rightarrow Q(x))
$$

which may be read, "For all x satisfying $f(x)$ also satisfy $Q(x)$. " Parentheses are crucial here; be sure you understand the difference between the "all" form and $\forall x f(x) \Rightarrow \forall x Q(x)$ and $(\forall x f(x)) \Rightarrow Q(x)$.

Definition 1.8.5. (The Existential Quantifier)

A sentence $\exists x f(x)$ is true if and only if there is at least one value of x (from the universe discourse of) that makes $f(x)$ is true.

Example 1.8.6.

$\exists x:\left(x \geq x^{2}\right)$ is true since $x=0$ is a solution. There are many others.
$\exists x \exists y:\left(x^{2}+y^{2}=2 x y\right)$ is true since $x=y=1$ is one of many solutions
Negation Rules 1.8.7. When we negate a quantified statement, we negate all the quantifiers first, from left to right (keeping the same order), then we negative the statement.

Definition 1.8.8.

(i) $\forall x f(x)=\sim \exists x \sim f(x)$.
(ii) $\exists x f(x)=\sim \forall x \sim f(x)$.

Example 1.8.9. Express each of the following sentences in symbolic form and then give its negation.
(i) r: The square of every real number is non-negative.

Solution. Symbolically, r can be expressed as $\forall x \in \mathbb{R}, x^{2} \geq 0$.
$\sim \mathrm{r}: \sim\left(\forall x \in \mathbb{R}, x^{2} \geq 0\right) \equiv \exists x \in \mathbb{R}, \sim\left(x^{2} \geq 0\right) \equiv \exists x \in \mathbb{R}, x^{2}<0$.

