In words, this is "~r: There exists a real number whose square is negative".

(ii) r: For all x, there exists y such that xy = 1.
Solution.

r: ∀ x, ∃ y such that xy = 1.
~r: ~ (∀ x, ∃ y such that xy = 1) ≡ ∃x, ∀ y such that ~ (xy = 1) ≡ ∃x, ∀ y such that xy ≠ 1.
In words, this is "~r: There exists x for all y such that xy ≠ 1".
(iii) p: student who is intelligent will succeed.

Solution.

Let r: student who is intelligent.
s: succeed.

p: r → s

~p: ~ (r → s) ≡~ (~ r ∨ s)
Implication Low.

 \equiv r $\wedge \sim$ s. De Morgan's Law \sim p: student who is intelligent will not succeed.

There are six ways in which the quantifiers can be combined when two variables are present:

(1) $\forall x \forall y f(x, y) = \forall y \forall x f(x, y) =$ For every *x*, for every *y* f(*x*, *y*).

(2) $\forall x \exists y f(x, y) =$ For every x, there exists a y such that f(x, y).

(3) $\forall y \exists x f(x, y) =$ For every y, there exists an x such that f(x, y).

(4) $\exists x \forall y f(x, y) =$ There exists an x such that for every y f(x, y).

(5) $\exists y \forall x f(x, y) =$ There exists a y such that for every y f(x, y).

(6) $\exists x \exists y f(x, y) = \exists y \exists x f(x, y) =$ There exists an x such that there exists a y f(x, y).

Example 1.8.10. Show that the following are equivalents.

(i)
$$\sim [\forall x \forall y f(x, y)] \equiv \exists x \exists y \sim f(x, y).$$

(ii)
$$\sim [\exists x \forall \exists f(x,y)] \equiv \forall x \forall y \sim f(x,y).$$

(iii) $\sim [\forall x \exists y f(x, y)] \equiv \exists x \forall y \sim f(x, y).$

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana