In words, this is " $\sim \mathrm{r}$: There exists a real number whose square is negative".
(ii) r: For all x, there exists y such that $x y=1$.

Solution.

$\mathrm{r}: \forall x, \exists y$ such that $x y=1$.
$\sim \mathrm{r}: \sim(\forall x, \exists y$ such that $x y=1) \equiv \exists x, \forall y$ such that $\sim(x y=1) \equiv \exists x, \forall y$ such that $x y \neq 1$.
In words, this is " \sim r: There exists x for all y such that $x y \neq 1$ ".
(iii) p : student who is intelligent will succeed.

Solution.
Let r : student who is intelligent.
s : succeed.
$\mathrm{p}: \mathrm{r} \rightarrow \mathrm{s}$
$\sim \mathrm{p}: \sim(\mathrm{r} \rightarrow \mathrm{s}) \equiv \sim(\sim \mathrm{r} \vee \mathrm{s}) \quad$ Implication Low.

$$
\equiv \mathrm{r} \wedge \sim \mathrm{~s} . \quad \text { De Morgan’s Law }
$$

$\sim \mathrm{p}$: student who is intelligent will not succeed.
There are six ways in which the quantifiers can be combined when two variables are present:
(1) $\forall x \forall y f(x, y)=\forall y \forall x f(x, y)=$ For every x, for every $y f(x, y)$.
(2) $\forall x \exists y f(x, y)=$ For every x, there exists a y such that $f(x, y)$.
(3) $\forall y \exists x f(x, y)=$ For every y, there exists an x such that $f(x, y)$.
(4) $\exists x \forall y f(x, y)=$ There exists an x such that for every $y f(x, y)$.
(5) $\exists y \forall x f(x, y)=$ There exists a y such that for every $y f(x, y)$.
(6) $\exists x \exists y f(x, y)=\exists y \exists x f(x, y)=$ There exists an x such that there exists a y $f(x, y)$.

Example 1.8.10. Show that the following are equivalents.
(i) $\sim[\forall x \forall y f(x, y)] \equiv \exists x \exists y \sim f(x, y)$.
(ii) $\sim[\exists x \forall \exists f(x, y)] \equiv \forall x \forall y \sim f(x, y)$.
(iii) $\sim[\forall x \exists y f(x, y)] \equiv \exists x \quad \forall y \sim f(x, y)$.

