$\mathrm{q}: a$ is an even number.
Then
$\sim \mathrm{p}: a^{2}$ is an odd number,
$\sim \mathrm{q}: a$ is an even number.
Therefore, The contrpositive statement is
a is an odd number $\rightarrow a^{2}$ is an odd number.
(1) $a=2(k+1), \quad k$ is an integer (definition of odd number).
(2) $a^{2}=4 k^{2}+4 k+1, \quad$ square both sides of (1)
(3) $a^{2}=2\left(2 k^{2}+2 k\right)+1$,
(4) a^{2} is odd number, since $2 k^{2}+2 k$ is an integer and definition of odd number.

1.10.4 To Prove Statement of Type ($\mathbf{p} \leftrightarrow \mathbf{q}$).

(i) Since $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{p}) \equiv(\mathrm{p} \leftrightarrow \mathrm{q})$, so we can proved first $\mathrm{p} \rightarrow \mathrm{q}$ and then proved $\mathrm{q} \rightarrow \mathrm{p}$.
(ii) Moved from p into q through series of logical equivalent statements s_{i} as follows:

$$
\begin{aligned}
& \mathrm{p} \leftrightarrow s_{1} \\
& s_{1} \leftrightarrow s_{2} \\
& \vdots \\
& s_{n} \leftrightarrow \mathrm{q}
\end{aligned}
$$

This is exactly the tautology

$$
\left(\left(\mathrm{p} \leftrightarrow s_{1}\right) \wedge\left(s_{1} \leftrightarrow s_{2}\right) \wedge \ldots \wedge\left(s_{n} \leftrightarrow \mathrm{q}\right)\right) \rightarrow(\mathrm{p} \leftrightarrow \mathrm{q})
$$

1.10.5 To Prove Statement of Type $\forall x P(x)$ or $\exists x P(x)$.
(i) To prove a sentence of type $\forall x P(x)$, we suppose x is an arbitrary element and then prove that $P(x)$ is true.
(ii) To prove a sentence of type $\exists x P(x)$, we have to prove there exist at least one element x such that $P(x)$ is true.

1.10.6 To Prove Statement of Type $\mathbf{p} \vee \mathbf{r} \rightarrow \mathbf{q}$.

Depending on the tautology

$$
[(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{r} \rightarrow \mathrm{q})] \rightarrow[(\mathrm{p} \vee \mathrm{r}) \rightarrow \mathrm{q}]
$$

We must prove that $\mathrm{p} \rightarrow \mathrm{q}$ and $\mathrm{r} \rightarrow \mathrm{q}$.
Example 1.10.7. Prove that

$$
(a=0 \vee b=0) \rightarrow a b=0
$$

where a, b are real numbers.
Proof.
Firstly, we prove that $a=0 \rightarrow a b=0$.
Suppose that $a=0$, then $a b=0 . b=0$.

