q: *a* is an even number.

Then

~p: a^2 is an odd number, ~q: a is an even number. Therefore, The contrpositive statement is a is an odd number $\rightarrow a^2$ is an odd number. (1) a = 2(k + 1), k is an integer (definition of odd number). (2) $a^2 = 4k^2 + 4k + 1$, square both sides of (1) (3) $a^2 = 2(2k^2 + 2k) + 1$, (4) a^2 is odd number, since $2k^2 + 2k$ is an integer and definition of odd number.

1.10.4 To Prove Statement of Type $(p \leftrightarrow q)$.

(i) Since $(p \rightarrow q) \land (q \rightarrow p) \equiv (p \leftrightarrow q)$, so we can proved first $p \rightarrow q$ and then proved $q \rightarrow p$.

(ii) Moved from p into q through series of logical equivalent statements s_i as follows:

$$p \leftrightarrow s_1$$

$$s_1 \leftrightarrow s_2$$

$$\vdots$$

$$s_n \leftrightarrow q$$

This is exactly the tautology

 $((\mathbf{p} \leftrightarrow s_1) \land (s_1 \leftrightarrow s_2) \land \dots \land (s_n \leftrightarrow \mathbf{q})) \to (\mathbf{p} \leftrightarrow \mathbf{q}).$

1.10.5 To Prove Statement of Type $\forall x P(x)$ or $\exists x P(x)$.

(i) To prove a sentence of type $\forall x P(x)$, we suppose x is an arbitrary element and then prove that P(x) is true.

(ii) To prove a sentence of type $\exists x P(x)$, we have to prove there exist at least one element x such that P(x) is true.

1.10.6 To Prove Statement of Type $p \lor r \rightarrow q$.

Depending on the tautology

 $[(p \rightarrow q) \land (r \rightarrow q)] \rightarrow [(p \lor r) \rightarrow q]$

We must prove that $p \rightarrow q$ and $r \rightarrow q$.

Example 1.10.7. Prove that

$$(a = 0 \lor b = 0) \to ab = 0$$

where *a*, *b* are real numbers.

Proof.

Firstly, we prove that $a = 0 \rightarrow ab = 0$. Suppose that a = 0, then ab = 0. b = 0.

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

Wondershare

PDFelement