Secondly, we prove that $b = 0 \rightarrow ab = 0$. Suppose that b = 0, then $ab = a \cdot 0 = 0$. Therefore, the statement $(a = 0 \lor b = 0) \rightarrow ab = 0$ is tautology.

1.10.8 . Proof by Contradiction.

The contradiction is always false statement whatever the truth values of its components. Proof by contradiction is type of indirect proof. The way of proof logical proposition \mathbf{p} by contradiction start by supposing that $\sim \mathbf{p}$ and then try to find sentence of type

 $R \wedge \sim R$

where R is any sentence contain \mathbf{p} or any pervious theorem or any axioms or any logical propositions.

This way supports by the tautology

 $\sim [\sim p \land (R \land \sim R)] \rightarrow p.$

By this way we can also prove sentences of type $\forall x P(x)$ or $\exists x P(x)$ or $(p \rightarrow q)$ or $(p \Rightarrow q)$.

Example 1.10.9. Prove that $x \neq 0 \Rightarrow x^{-1} \neq 0$, *x* is real number. **Proof.**

Let $p: x \neq 0$, $q: x^{-1} \neq 0$. We must prove $p \Rightarrow q$. Suppose $\sim (p \Rightarrow q)$ is true. (1) $\sim (p \rightarrow q)$ is tautology, by def. of logical implication. (2) $p \land \sim q$ is tautology, since $\sim (p \rightarrow q) \equiv p \land \sim q$ (3) $x \neq 0 \land x^{-1} = 0$. (4) $x \cdot x^{-1} = 1 \neq 0$. (5) $x \cdot x^{-1} = x \cdot 0 = 0$. (6) 1 = 0, from (4) and (5). This is contradiction, since $1 \neq 0 \land 1 = 0$. Thus, the statement $\sim (p \Rightarrow q)$ is not true. Therefore, $p \Rightarrow q$.

Remove Watermark

Wondershare

PDFelement