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Intensity Transformations  

When you are working with gray-scale images, sometimes you want to 

modify the intensity values. For instance, you may want to reverse black 

and the white intensities or you may want to make the darks darker and 

the lights lighter. An application of intensity transformations is to 

increase the contrast between certain intensity values so that you can 

pick out things in an image. For instance, the following two images 

show an image before and after an intensity transformation. 

 Originally, the camera man's jacket looked black, but with an intensity 

transformation, the difference between the black intensity values, which 

were too close before, was increased so that the buttons and pockets 

became viewable.  

Original 

 

After Intensity Transformation  

 

Generally, making changes in the intensity is done through Intensity 

Transformation Functions. The next sections talk about four main 

intensity transformation functions: 

1. photographic negative using (new_image(J)=1-old_image(I) or   

J(x,y)=( 1- I(x,y) ) 

2. gamma transformation using(                ) where the 

non-negative real input image pixel value (I) is raised to the power 



γ and multiplied by the constant A, to get the output image pixel 

value J(x,y). In the common case of A = 1. 

3.  logarithmic transformations using (J(x,y)=c*log(1+I(x,y))) 

4. contrast-stretching transformations like using histogram 

equalization. 

 Photographic Negative 

The Photographic Negative is probably the easiest of the intensity 

transformations to describe. Assume that we are working with grayscale 

image arrays where black is 0 and white is 1. The idea is that 0's become 

1's, 1's become 0's, and any gradients in between are also reversed. In 

intensity, this means that the true black becomes true white and vise 

versa.. Below shows a graph of the mapping between the original values 

(x-axis) and the Negative function.  

 

The following is an example of a photographic negative. Notice how you can 

now see the writing in the middle of the tire better than before: 



Original 

 

Photographic Negative 

 

 Gamma Transformations 

With Gamma Transformations, you can curve the grayscale components 

either to brighten the intensity (when gamma is less than one) or darken 

the intensity (when gamma (γ) is greater than one). Following plots 

show the effect of the gamma transformation with varying gamma (γ). 

Notice that the red line has γ =0.4, which creates an upward curve and 

will brighten the image.  

 



The following shows the results of three of the gamma transformations 

shown in the plot above. Notice how the values greater than 1 one create 

a darker image, whereas values between 0 and 1 create a brighter image 

with more contrast in dark areas so that you can see the details of the 

tire. 

Original (and γ =1)  

 

γ =3 

 

γ =0.4 

 

 

 Logarithmic Transformations 

Logarithmic Transformations can be used to brighten the intensities of 

an image (like the Gamma Transformation, where γ < 1). More often, it 

is used to increase the detail (or contrast) of lower intensity values. The 

equation used to get the Logarithmic transform of image (I) is: 

J = c*log(1 + (I) 

The constant c is usually used to scale the range of the log function to 

match the input domain. It can also be used to further increase 

contrast—the higher the c, the brighter the image will appear. Used this 

way, the log function can produce values too bright to be displayed. The 

plot below shows the result for various values of c. The y-values are 

clamped at 1 by the min function for the plot of c=2 and c=5 (teal and 

purple lines, respectively). 



 

The following shows the original image and the results of applying three 

of the transformations from above. Notice that when c=5, the image is 

the brightest and you can see the radial lines on the inside of the tire 

(these lines are barely viewable in the original because there is not 

enough contrast in the lower intensities).  

 



Notice the loss of detail in the bright regions where intensity values are 

clamped. Any values greater than one, produced from the scaling, are 

displayed as having a value of 1 (full intensity) and should be clamped.  

Although logarithms may be calculated in different bases such as (log10, 

log2 and ln (natural log), the resulting curve, when the range is scaled 

to match the domain, is the same for all bases. The shape of the curve is 

dependent instead on the range of values it is applied to. Here are 

examples of the log curve for multiple ranges of input values: 

 

It is important to be aware of this effect if you plan to use logarithm 

transformations successfully, so here is the result of scaling an image's 

values to those ranges before applying the logarithm transform: 



 

Note that for domain [0, 1] the effects of the logarithm transform are 

barely noticeable, while for domain [0, 65535] the effect is extremely 

exaggerated. Also note that, unlike with linear scaling and clamping, 

gross detail is still visible in light areas.  

 Contrast-Stretching Transformations  

Contrast-stretching transformations increase the contrast between the 

darks and the lights. That transformation kept everything at relatively 

similar intensities and merely stretched the histogram to fill the image's 

intensity domain. Sometimes you want to stretch the intensity around a 

certain level. You end up with everything darker darks being a lot darker 

and everything lighter being a lot lighter, with only a few levels of gray 

around the level of interest. Following plots of the original gray images 



and their contrast enhancement images with histograms using histogram 

equalization method  

 

Image Filtering 

There are two main types of filtering applied to images: 

 spatial domain filtering: we are performing filtering operations 

directly on the  pixels of an image. 

 Frequency domain filtering: mean using of the Fourier 

Transform. 

 



Spatial filtering 

Spatial filtering is a technique that uses a pixel and its neighbors to 

select a new value for the pixel. The simplest type of spatial filtering is 

called linear filtering. It attaches a weight to the pixels in the 

neighborhood of the pixel of interest, and these weights are used to 

blend those pixels together to provide a new value for the pixel of 

interest. Linear filtering can be uses to smooth, blur, sharpen, or find 

the edges of an image. The following four images are meant to 

demonstrate what spatial filtering can do. The original image is shown in 

the upper left-hand corner. 

 

Sometimes a linear filter is not enough to solve a particular problem. 

Non-linear filters are useful for smoothing only smooth areas, enhancing 

only strong edges or removing speckles from images. Spatial Filtering is 

sometimes also known as neighborhood processing. Neighborhood 

processing is an appropriate name because you define a center point and 

perform an operation (or apply a filter) to only those pixels in 

predetermined neighborhood of that center point. The result of the 

operation is one value, which becomes the value at the center point's 

location in the modified image. Each point in the image is processed 

with its neighbors. The general idea is shown below as a "sliding filter" 

that moves throughout the image to calculate the value at the center 

location.  



 

 

Mean Filter: The following diagram is meant to illustrate in further 

details how the filter is applied. The filter (an averaging filter) is applied 

to location 2,2.  

 



Notice how the resulting value is placed at location 2,2 in the filtered 

image. The breakdown of how the resulting value of 251 (rounded up 

from 250.66) was calculated mathematically is: 

= 251*0.1111 + 255*0.1111 + 250*0.1111 + 251*0.1111 + 244*0.1111 + 

255*0.1111 + 255*0.1111 + 255*0.1111 + 240*0.1111 

= 27.88888 + 28.33333 + 27.77777 + 27.88888 + 27.11111 + 28.33333 + 

28.33333 + 28.33333 + 26.66666  = 250.66 

 The following illustrates the averaging filter applied to location 4,4. 

 

Once again, the mathematical breakdown of how 125 (rounded up from 

124.55) was calculated is below: 

= 240*0.1111 + 183*0.1111 + 0*0.1111 + 250*0.1111 + 12*0.1111 + 87*0.1111 

+ 255*0.1111 + 0*0.1111 + 94*0.1111 = 26.6666 + 20.3333 + 0 + 27.7777 + 

1.3333 + 9.6666 + 28.3333 + 0 + 10.4444= 124.55  



To apply the filter to the example above, the following w-mask 

convolved with the siding mask on image plane to produced smooth 

image,  

 

Image Edge detection 

Edge detection includes a variety of mathematical methods that aim at 

identifying points in a digital image at which the image brightness 

changes sharply or, more formally, has discontinuities. The points at 

which image brightness changes sharply are typically organized into a 

set of curved line segments termed edges. Edge detection is a 

fundamental tool in image processing, machine vision and computer 

vision, particularly in the areas of feature detection and feature 

extraction. The purpose of detecting sharp changes in image brightness 

is to capture important events and changes in properties of the world. It 

can be shown that under rather general assumptions for an image 

formation model, discontinuities in image brightness are likely to 

correspond to:  

 Discontinuities in depth, 

 Discontinuities in surface orientation, 

 Changes in material properties and 

 Variations in scene illumination. 

 

https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Machine_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Feature_detection_(computer_vision)
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Feature_extraction


 

 

To illustrate why edge detection is not a trivial task, consider the 

problem of detecting edges in the following one-dimensional signal. 

Here, we may intuitively say that there should be an edge between the 

4th and 5th pixels. 

 

 

If the intensity difference were smaller between the 4th and the 5th 

pixels and if the intensity differences between the adjacent neighboring 

pixels were higher, it would not be as easy to say that there should be an 

edge in the corresponding region. Moreover, one could argue that this 

case is one in which there are several edges. 



 

Hence, to firmly state a specific threshold on how large the intensity 

change between two neighbouring pixels must be for us to say that there 

should be an edge between these pixels is not always simple. Indeed, 

this is one of the reasons why edge detection may be a non-trivial 

problem unless the objects in the scene are particularly simple and the 

illumination conditions can be well controlled. 

 

 Robert gradient edge detector 

 Robert’s gradient operator: is used in image processing and computer 

vision for edge detection. It was one of the first edge detectors and was 

initially proposed by Lawrence Roberts in 1963. As a differential 

operator, the idea behind the Roberts cross operator is to approximate 

the gradient of an image through discrete differentiation which is 

achieved by computing the sum of the squares of the differences 

between diagonally adjacent pixels. In order to perform edge detection 

with the Roberts operator we first convolve the original image, with the 

following two kernels: 

 

Let I(x,y) be a point in the original image and Gx(x,y) be a point in an 

image formed by convolving with the first kernel and Gy(x,y) be a point 

https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Edge_detection
https://en.wikipedia.org/wiki/Lawrence_Roberts_(scientist)
https://en.wikipedia.org/wiki/Difference_operator
https://en.wikipedia.org/wiki/Difference_operator
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Convolution


in an image formed by convolving with the second kernel. The gradient 

can then be defined as: 

 
 

 

Prewitt operator  
Mathematically, the operator uses two 3×3 kernels which 

are convolved with the original image to calculate approximations of the 

derivatives - one for horizontal changes, and one for vertical. If we 

define I(x.y) as the source image, and Gx and Gy are two images which 

at each point contain the horizontal and vertical derivative 

approximations, the latter are computed as: 

 
 

 

 

https://en.wikipedia.org/wiki/Convolution


 
 

Sobel operator(edge detector) 
Sobel’s edge detector or Sobel operator: is used in image 

processing and computer vision, particularly within edge detection 

algorithms where it creates an image emphasizing edges. It is a discrete 

differentiation operator, computing an approximation of the gradient of 

the image intensity function. At each point in the image, the result of the 

Sobel operator is either the corresponding gradient vector or the norm of 

this vector. The Sobel operator is based on convolving the image with a 

small, separable, and integer-valued filter(3*3 mask) in the horizontal 

and vertical directions and is therefore relatively inexpensive in terms of 

computations. On the other hand, the gradient approximation that it 

produces is relatively crude, in particular for high-frequency variations 

in the image. 

 

The operator uses two 3×3 kernels which are convolved with the original 

image to calculate approximations of the derivatives one for horizontal 

changes, and one for vertical. If we define (I) as the source image, 

and Gx and Gy are two images which at each point contain the vertical 

and horizontal derivative approximations respectively, the computations 

are as follows:  

 

https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Difference_operator
https://en.wikipedia.org/wiki/Difference_operator
https://en.wikipedia.org/wiki/Image_gradient
https://en.wikipedia.org/wiki/Norm_(mathematics)


 

where (*) here denotes the 2-dimensional signal processing convolution 

operation. 

 

The x-coordinate is defined here as increasing in the "right"-direction, 

and the y-coordinate is defined as increasing in the "down"-direction. At 

each point in the image, the resulting gradient approximations can be 

combined to give the gradient magnitude, using: 

 

Can also calculate the gradient's direction: 

 

 
 

 
 

 

 

When using a Sobel Edge Detector, it is first best to convert the image 

from an RGB scale to a Grayscale image. Then from there, we will use 



what is called kernel convolution. A kernel is a 3 x 3 matrix consisting 

of differently (or symmetrically) weighted indexes. This will represent 

the filter that we will be implementing for an edge detection. 
 

Examples:(Soble) 

When we want to scan across the X direction of an image for example, 

we will want to use the following X Direction Kernel to scan for large 

changes in the gradient. Similarly, when we want to scan across the Y 

direction of an image, we could also use the following Y Direction 

Kernel to scan for large gradients as well. 

 

By using Kernel Convolution, we can see in the example image below 

there is an edge between the column of 100 and 200 values. 



 

This Kernel Convolution is an example of an X Direction Kernel usage. 

If an image were scanning from left to write, we can see that if the filter 

was set at (2,2) in the image above, it would have a value of 400 and 

therefore would have a fairly prominent edge at that point. 

Here in order to determine whether the point (2,2) is an edge, we 

must compare the value of the gradient 400 with a specific threshold 

(th), so if it is greater than the threshold, then it is an edge, and we 

place a value of 255 for it, otherwise it is not an edge, we place a 

value of zero for it i.e 

 
If  th=300 then point (2,2) represent edge point where( G=400>th=300). 



 If a user wanted to exaggerate the edge, then the user would need to 

change the filter values of -2 and 2 to higher magnitude. Perhaps -5 and 

5. This would make the gradient of the edge larger and therefore, more 

noticeable. Once the image is processed in the X direction, we can then 

process the image in the Y direction. Magnitudes of both the X and Y 

kernels will then be added together to produce a final image showing all 

edges in the image.  

 

H.W. 

 

 

 



Laplacian filter 

The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is 

given by: 

 

This can be calculated using a convolution filter. Since the input image 

is represented as a set of discrete pixels, we have to find a discrete 

convolution kernel that can approximate the second derivatives in the 

definition of the Laplacian. Two commonly used small kernels are 

shown follow. 

 

Two commonly used discrete approximations to the Laplacian filter. (Note, we 
have defined the Laplacian using a negative peak because this is more common; 

however, it is equally valid to use the opposite sign convention.) 

Laplacian Operator is also a derivative operator which is used to find 

edges in an image. The major difference between Laplacian and other 

operators like Robert’s , Sobel, is that these all are first order derivative 

masks but Laplacian is a second order derivative mask.  

In this mask we have two further classifications one is Positive 

Laplacian Operator and other is Negative Laplacian Operator. 

Another difference between Laplacian and other operators is that unlike 

other operators Laplacian didn’t take out edges in any particular 

direction but it take out edges in following classification. 



Sharpen filters( Enhancement filters) 

Image sharpening process is emphasize the texture and fine details in the 

image  and increase its focus. Any imaging system always blurs an 

image to some extent. That is why sharpening image enhancement is a 

very useful process that can sharpen blurry image and make it clearer. 

As a result, a image appears to be a bit too soft and fuzzy, so it needs 

correction. When used image sharpening filters will enhance image 

edges and makes it look brighter and more precise. 

 

 



In the example below, the image is convolved with the following 

sharpening filter: 

 

 

 

 


