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 The Nature of Electromagnetism 

 

Our physical universe is governed by four fundamental forces 

of nature: 

 

 The nuclear force , which is the strongest of the four, but its range is limited to 

subatomic scales, such as nuclei. 

 

 The electromagnetic force, which exists between all charged particles. It is the 

dominant force in microscopic systems, such as atoms and molecules, and its 

strength is on the order of 10
- 2

 that of the nuclear force. 

 

 The weak-interaction force , whose strength is only 10
- 14

 that of the nuclear force. 

Its primary role is in interactions involving certain radioactive elementary particles. 

 

  The gravitational force is the weakest of all four forces, having a strength on the 

order of 10
-41

 that of the nuclear force. However, it often is the dominant force in 

macroscopic systems, such as the solar system. 

 

 

Electric Fields 

 

The electromagnetic force consists of an electrical component Fe and a magnetic 

component Fm . The electrical force Fe is similar to the gravitational force, but with two 

major differences. First, the source of the electrical field is electric charge, not mass. 

Second, even though both types of fields vary inversely as the square of the distance from 

their respective sources, electric charges may have positive or negative polarity, resulting 

in a force that may be attractive or repulsive. 
 

The fundamental quantity of charge is the quantity of a single electron, usually denoted by 

the letter e which has an magnitude to be given                ( )  
 

The charge of a single electron is qe = -e and that of a proton is equal in magnitude but 

opposite in polarity: qp =+e. 
 

 
Figure (1): Electric forces on two positive point charges in free space. 



 

Coulomb's experiments demonstrated that:  two like charges repel one another, 

whereas two charges of opposite polarity attract, the force acts along the line joining the 

charges, and its strength is proportional to the product of the magnitudes of the two 

charges and inversely proportional to the square of the distance between them. 
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where Fe21 is the electrical force acting on charge q2 due to charge q1  when both are in 

free space (vacuum), R12 is the distance between the two charges,  ̂   is a unit vector 

pointing from charge q1 to charge q2 (Fig.l), and so ε0 is a universal constant called the 

electrical permittivity of free space   [ε0=8.854x10
-12

 farad per meter (F/m)]. The two 

charges are assumed to be isolated from all other charges. The force Fe12 acting on charge 

q1 due to charge q2 is equal to force Fe21 in magnitude, but opposite in direction: Fe12=- Fe21 

the electric field intensity E due to any charge q as: 
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Figure (2): Electric field E due to charge q. 

 

To extend Eq.(2) from the free-space case to any medium, we replace the permittivity of 

free space ε0with ε, where ε is the permittivity of the material in which the electric field is 

measured and is therefore characteristic of that particular material. Thus 
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Often, ε is expressed in the form: 

 

ε = εr ε0    (F/m)…..(4) 

 

Where εr is a dimensionless quantity called the material relative permittivity or dielectric 

constant. For vacuum, εr=1; for air near Earth's surface, εr = 1.0006. 



 

In addition to the electric field intensity E, we will often find it convenient to also use a 

related quantity called the electric flux density D, given by: 

                      (
 

  
)      ( ) 

 

With unit of coulomb per square meter (C/m
2
). These two electric quantities, E and D, 

constitute one of two fundamental pairs of electromagnetic fields. 

 

Magnetic Fields 
 

As early as 800 B.C., the Greeks discovered that certain kinds of stones exhibit a force that 

attracts pieces of iron. These stones are now called magnetite (Fe3O4) and the phenomenon 

they exhibit is known as magnetism. The magnetic-field pattern of a bar magnet is 

displayed in Fig.(3). It was also observed that like poles of different magnets repel each 

other and unlike poles attract each other. This attraction-repulsion property is similar to the 

electric force between electric charges, except for one important difference: electric 

charges can be isolated, but magnetic poles always exist in pairs. 

 
Figure (3): Pattern of magnetic field lines around a bar magnet. 

 

The magnetic lines surrounding a magnet represent the magnetic flux density B. A 

magnetic field not only exists around permanent magnets but can also be created by 



electric current. The current-carrying wire induced a magnetic field that formed closed 

circular loops around the wire Fig.(4).   

 

 

 

 
Figure (4) : The magnetic field induced by a steady current flowing in the z- direction 

 

 

The magnetic flux density B induced by a constant current I flowing in the z-direction is 

given by: 

   ̂
   

   
               ( )  ( ) 

Where r is the radial distance from the current and  ̂ is an azimuthal unit vector 

expressing the fact that the magnetic field direction is tangential to the circle surrounding 

the current. The magnetic field is measured in tesla (T), named. The quantity µ0is called 

the magnetic permeability of free space [µ0=4πx10
-7

 henry per meter (H/m)]. The 

product of ε0 and µ0 according to the following equation specifies c, the velocity of light in 

free space: 

  
 

√      
                                  (

 

 
)  ( ) 

 

The electric force on charge q is Fe=qE and the Magnetic force on moving charge q by 

velocity   is Fm=q     

 

To extend Eq.(6) to a medium other than free space, µ0 should be replaced with µ, the 

magnetic permeability of the material in which B is being observed. The majority of 

natural materials are nonmagnetic, meaning that they exhibit a magnetic permeability 

µ=µ0. While  For ferromagnetic materials, such as iron and nickel, µ can be much larger 

than µ0 The magnetic permeability µ accounts for magnetization properties of a material. 

In analogy with Eq.(4), µ of a particular material can be defined as: 

 



µ = µr µ0       (H/m), …..(8) 

 

where µr is a dimensionless quantity called the relative magnetic permeability of the 

material.  

 

We stated earlier that E and D constitute one of two pairs of electromagnetic field 

quantities.  
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)      ( ) 

 

The second pair is B and the magnetic field intensity H, which are related to each other 

through µ: 
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Traveling Waves: 
 

Waves are a natural consequence of many physical processes: waves manifest themselves 

as ripples on the surfaces of oceans and lakes; sound waves constitute pressure 

disturbances that travel through air; mechanical waves modulate stretched strings; and 

electromagnetic waves carry electric and magnetic fields through free space and material 

media as microwaves, light, and X-rays. All these various types of waves exhibit a number 

of common properties, including: 

 

Moving waves carry energy. 

• Waves have velocity. It takes time for a wave to travel from one point to another. 

Electromagnetic waves in vacuum travel at a speed of  3x10
8
 m/s, and sound waves in air 

travel at a speed approximately a million times slower, specifically 330m/s. 

 

• Many waves exhibit a property called linearity. Waves that do not affect the passage of 

other waves are called linear because they can pass right through each other. The total of 

two linear waves is simply the sum of the two waves as they would exist separately. 

Electromagnetic waves are linear, as are sound waves.  

 

Waves are of two types: transient waves caused by sudden disturbances and continuous 

periodic waves generated by a repetitive source. 

 

An essential feature of a propagating wave is that it is a self-sustaining disturbance of the 

medium through which it travels. If this disturbance varies as a function of one space 

variable, such as the vertical displacement of the string shown in Fig(5), we call the wave 

one-dimensional. The vertical displacement varies with time and with the location along 

the length of the string. Even though the string rises up into a second dimension, the wave 

is only one dimensional because the disturbance varies with only one space variable. 

 
Figure (5): A one-dimensional wave traveling on a string. 

 



Circular, cylindrical and spherical waves see fig(6). 

 
Figure (6): Examples of two-dimensional and three-dimensional waves: (a) circular waves 

on a pond, (b) a plane light wave exciting a cylindrical light wave through the use of a 

long narrow slit in an opaque screen, and (c) a sliced section of a spherical wave. 

 

Wave equation: 
 The general formula of differential wave equation given by: 

   

   
   

   

   
………………….……(1) 

Or 

   

   
  

 

  
   

   
………………….……(2) 

  Where   (   ) wave equation for wave travel in speed  . Use partial differential equation 

to solve eq.(1) or (2):  

Suppose :                                        

   ( ) ( ) …………………………..(3) 

 So eq.(1) becomes: 
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So get: 
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Now need to solve eq.(5) & (6): 

Case (1): when A=0 
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When a,b,c &d are constant.                    = (at+b)(cx+d) 

                                …………(9) 

 

Case (2): when A =       get: 
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)   ………………….(11) 

H.W (1): find     (   ). 

 



Case (3): when A =       :         H.W(2) find  (   ). 

H.W (3) : Solve the following wave eq.  
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              (   )=0 ,             (   ) =0                     

 

 (   )= f(x) ,              (   ) =0                   

 ( )        
               

 

 
            

                                
 

 
   

 

 

 Wave equations are linear: this means that a linear combination of solution is a solution. 

 

1-      

 
 

 

2-                

 

 

3-                                                                                          

 

This case different from stationary string: the energy stored in the string. 
 

 

4- 



 

If we have a string with different thicknesses (i.e. different densities (  ) &  tensions (T)): 

                                                   x=0                      

 

                                                                                    

Assuming that the tension (T) is uniform: 
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The velocity of a wave    in a denser string(  )             is slower than   by half. 

The wave will move through this string as: 

                                      

                                        x=0 

Incident wave 

                                                                 

                                                                                  Transmitted wave 

 

                                                                           

                 Reflected wave 

When a wave moves from one medium to another, the wavelength will be changed but the 

frequency will be constant. 

 

   
      

      
          Reflected (Rf) 

Tr 
    

      
           Transmitted (Tr) 

    
  

 
,        



                 
 

 
  , the phase change by (π); 

   
 

 
    , no phase change. 

 

Impedance:     
 

  
      &               

 

  
 

The amplitude of the transmitted and reflected wave is determined by the properties of the 

two media (systems). 

Consider two extreme cases: 

1. String attached a wall: 

                                                

                                                                                Wall 

                                                                                  =0 

 

 

                                                                             = big 

                                              

Rf=-1                                                                        Tr=0 

 

 

In a sense, the ( ) of the wall is very big, infinite in fact. Therefore, (  ≈0    

Rf= -1 & Tr= 0). The amplitude changes sign but not magnitude, and there is 

no transmitted wave. 
 

2. There is air on the other side: the ( ) of the air is zero, therefore, (       , Rf=1 

& Tr=2). 

                                                        

                                                                                   Massless ring 

                                                                                            

                                                                                            Air 

                                                                                                 

 

 

                                                                                         = 0 

 

 



 

Sinusoidal Waves in a Lossless Medium 
 

Regardless of the mechanism responsible for generating them, all linear waves can be 

described mathematically in common terms. A medium is said to be loss less if it does not 

attenuate the amplitude of the wave traveling within it or on its surface. By way of an 

example, let us consider a wave traveling on a lake surface, and let us assume for the time 

being that frictional forces can be ignored, thereby allowing a wave generated on the water 

surface to travel indefinitely with no loss in energy. 

 

If y denotes the height of the water surface relative to the mean height (undisturbed 

condition) and x denotes the distance of wave travel, the functional dependence of y on 

time t and the spatial coordinate x has the general form: 
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   )       ( ) ( ) 

 

Where A is the amplitude of the wave, T is its time period, λ is its spatial wavelength, and 

φo is a reference phase. The quantity y(x, t) can also be expressed in the form 

 

 (   )       ( (   ))        ( )…. 

Where 
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The angle  (   ) is called the phase of the wave, and it should not be confused with the 

reference phase   , which is constant with respect to both time and space. Phase is 

measured by the same units as angles, that is, radians (rad) or degrees, with                      

   radians=360°. 
 

Let us first analyze the simple case when    : 
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The plots in Fig.(1) show the variation of y(x, t) with x at t = 0 and with t at x=0. The 

wave pattern repeats itself at a spatial period   along x and at a temporal period T along t. 

We can measure the phase velocity of the wave. At the peaks of the wave pattern, the 

phase   (   ) is equal to zero or multiples of    radians. Thus; 
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i.e phase  (   )  is constant,  by taking the time derivative of Eq. (4)get: 

  

 
 
  

 

  

  
       ( ), 

 

Which gives the phase velocity up as: 
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The phase velocity, also called the propagation velocity, is the velocity of the wave pattern 

as it moves across the water surface. The water itself mostly moves up and down; when 

the wave moves from one point to another, the water does not move physically along with 

it.  The frequency of a sinusoidal wave, f, is the reciprocal of its time period T: 

  
 

 
              (  ) ( ) 

 

Combining the preceding two equations yields: 
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) ( ) 

The wave frequency f, which is measured in cycles per second, has been assigned the unit 

(Hz). Using Eq. (8), Eq. (3) can be rewritten in a more compact form as: 

 (   )       (     
  

 
 )      (     )    ( ) 

Where ω is the angular velocity of the wave and β is its phase constant (or wavenumber), 

defined as: 
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In terms of these two quantities, 

      
 

 
    (  ) 

 

So far, we have examined the behavior of a wave traveling in the +x-direction. To describe 

a wave traveling in the -x-direction, we reverse the sign of x in Eq.(9): 
 

 (   )      (     )    (  ) 
 

We now examine the role of the phase reference    given previously in Eq.(1). If     is 

not zero, then Eq. (9) should be written as: 
 

 (   )      (       
 
)    (  ) 

 

A plot of y(x, t) as a function of x at a specified t or as a function of t at a specified x will 

be shifted in space or time, respectively, relative to a plot with    = 0 by an amount 

proportional to   . This is illustrated by the plots shown in Fig.(2). We observe that when 

   is positive, y (t) reaches its peak value, or any other specified value, sooner than when 

    . Thus, the wave with   =π/4 is said to lead the wave with      by a phase lead 

of π /4; and similarly, the wave with   = -π/4 is said to lag the wave with   =0 by a 

phase lag of π/4. A wave function with a negative    takes longer to reach a given value 

of y(t), such as its peak, than the zero-phase reference function.  

 

When its value is positive,    signifies a phase lead in time, and when it is negative, it 

signifies a phase lag.  

 
Figure (2): Plots of y(0, t) = A cos [(2 πt/T)+   ] for three different values of the 

reference phase   . 
 

Example: Consider the red wave shown in Fig.(3). What is the wave's  

(a) amplitude, (b) wavelength, and (c) frequency, given that its phase velocity is 6 m/s? 



 
Fig(3) 

Solution: 

a) A = 6 V,    b) λ = 4 cm.,   c)  
   

 
  

 

      
        

 

Sinusoidal Waves in a Lossy Medium 
 

If a wave is traveling in the x-direction in a lossy medium, its amplitude will decrease as 

    . This factor is called the attenuation factor, and   is called the attenuation constant 

of the medium and its unit is neper per meter (Np/m). Thus, in general: 

 

 (   )           (       
 
)    (  ) 

 

The wave amplitude is now        , and not just . Figure (4) shows a plot of y(x, t) as a 

function of  x at t = 0 for A = 10m, λ = 2 m,   = 0.2 Np/m, and    =0. Note that the 

envelope of the wave pattern decreases as e-ax. 
 

The real unit of   is (m
-1

); the neper (Np) part is a dimensionless, artificial adjective 

traditionally used as a reminder that the unit (Np/m) refers to the attenuation constant of 

the medium,    A similar practice is applied to the phase constant   by assigning it the 

unit (rad/m) instead of just (m
-1

). 

 
Fig(4): Plot of  ( )  (           (  ))meters. Note that the envelope is bounded 

between the curve given by 10e
-0.2x

 and its mirror image. 

 

 



Example: An acoustic wave traveling in the x-direction in a fluid (liquid or gas) is 

characterized by a differential pressure p(x,t). The unit for pressure is newton per square 

meter (N/m
2
). 

Find an expression for p(x,t) for a sinusoidal sound wave traveling in the positive x-

direction in water, given that the wave frequency is 1 kHz, the velocity of sound in water 

is 1.5 km/s, the wave amplitude is 10 N/m2 , and p(x,t) was observed to be at its maximum 

value at t = 0 and x = 0.25 m. Treat water as a lossless medium. 

 

Solution: According to the general form given by Eq.(1) for a wave traveling  in the 

positive x-direction, 

 (   )      (     
  

 
   

 
)  (    ) 

 

The amplitude A= 10 N/m
2
 , T = l / f = 10

-3
 s, and from       

  
  

 
  

       

   
  1.5m 

 

Hence 
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Since at t = 0 and x = 0.25 m, p(0.25,0)=10N/m
2
, we have 
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which yields the result φ0 = π /3. 
 

Hence, 

 (   )       (        
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Example : Power Loss: A laser beam of light propagating through the atmosphere is 

characterized by an electric field given by:  

 (   )               (            )           (
 

 
) 

where x is the distance from the source in meters. The attenuation is due to absorption by 

atmospheric gases. Determine: 

a) the direction of wave travel, 

b) the wave velocity, and 

c) the wave amplitude at a distance of 200 m. 



 

Solution: 

 a) Since the coefficients of t and x in the argument of the cosine function have opposite 

signs, the wave must be traveling in the +x-direction. 

b)                                     
 

 
 
      

   
                  

This is equal to c, the velocity of light in free space. 

 

(c) At  x =200m, the amplitude of E(x, t) is 

 (     )                             (   ) 
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