Molecular Symmetry

By

Dr.Rehab A.M.Al Hassani
Dr.Mahamed M. Al Hasoon

Molecular symmetry in chemistry describes the symmetry present in molecules and the classification of molecules according to their symmetry. For qualitative refer to the shape of a molecule using terms such as tetrahedral, octahedral or square planar. It can be used to predict or explain many of a molecule's chemical properties, such as its dipole moment and its allowed spectroscopic transitions.

Symmetry is useful in the study of molecular orbital's, with applications such as the Hückel method, ligand field theory, and the Woodward-Hoffmann rules. Another framework on a larger scale is the use of crystal systems to describe crystallographic symmetry in bulk materials. Many techniques for the practical assessment of molecular symmetry exist, including X-ray crystallography and various forms of spectroscopy.

Types of molecules:-

1) Symmetry $\left(\mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{H}_{2} \mathrm{O}\right) \quad$ 2)Un Symmetry $\quad\left(\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{HDO}\right)$

Forms of molecules

> 1) Linear $(\mathrm{SP})\left[\mathrm{H}_{2}, \mathrm{HCl}\right]$, 2) Trigonal planar $\left(\mathrm{SP}^{2}\right)\left[\mathrm{BF}_{3}\right]$, 3) Tetrahedral $\left(\mathrm{SP}^{3}\right)\left[\mathrm{CH}_{4}\right]$, 4) Square planar $\left(\mathrm{dSP}^{2}\right)\left[\mathrm{PtCl}_{4}\right]$, 5) Octahedral $\left(\mathrm{d}^{2} \mathrm{SP}^{3}\right)\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Symmetry operations and symmetry elements

\boldsymbol{A} symmetry operation is an operation performed on an object which leaves it in a configuration that is indistinguishable from, and super imposable on, the original configuration.

Figure (1).. we applied $\mathbf{1 2 0}^{\circ}$ rotations to $\mathbf{B F}_{\mathbf{3}}$ and saw that each rotation generated a representation of the molecule that was indistinguishable from the first. Each rotation is an example of a Symmetry operation. The rotations described in Figure (1) were performed about an axis perpendicular to the plane of the paper and passing through the boron atom; the axis is an example of a Symmetry element.

Fig. (1) Rotation of the trigonal planar $\mathbf{B F}_{3}$ molecule through $\mathbf{1 2 0}^{\circ}$ generates

Symmetry element

The point group symmetry of a molecule can be described by $\mathbf{5}$ types of symmetry elements.

1) Identity operator (E) :

All objects can be operated upon by the identity operator \mathbf{E}. This is the simplest operator and effectively identifies the molecular configuration. The operator \mathbf{E} leaves the molecule unchanged, which returns the molecule to its initial state. All molecules(symmetrical and unsymmetrical) in nature possess (E).

2) Rotation about an n-fold axis of Symmetry [($\mathbf{C})]\left\{\left(\mathbf{C}^{\mathrm{n}-}{ }_{\mathrm{n}}\right),\left(\mathbf{C}_{1}{ }^{\mathbf{1}}\right),\left(\mathbf{C}_{\infty}\right)\right\}$

a) In Symmetric molecules $\left(\mathbf{C}^{\mathrm{n}-}{ }_{\mathrm{n}}\right)$ except linear:

The symmetry (operation of rotation about an n-fold axis (the symmetry element) is denoted by the symbol $\mathbf{C}_{\mathbf{n}}$, in which the angle of rotation is ($\mathbf{3 6 0} \%$ \mathbf{n}), \mathbf{n} is an integer, e.g. 2,3 or 4. While ($\mathrm{n}^{-}=$Rotation step number)

Example; this notation to the BF_{3} molecule gives a value of $\mathbf{n}=\mathbf{3}$, and therefore we say that the BF_{3} molecule contains a C_{3} rotation axis; in this case, the axis lies perpendicular to the plane containing the molecule $\cdot \mathbf{n}^{-}=\mathbf{3}$. Angle of rotation ($\mathbf{3 6 0} \% \mathbf{3 = 1 2 0}{ }^{\circ}$), therefore the rotation axis for $\mathbf{B F}_{3}=\mathbf{C}_{3}{ }_{3}$. Some molecule can have more than one (\mathbf{n}) symmetry axis; due to effect of the free electronic pair, for examples; the $\mathbf{C}^{2}{ }_{2}$ and \mathbf{C}_{4}^{4} axis in water $\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$ and the $\mathbf{C}_{\mathbf{3}}{ }^{3}$ and $\mathbf{C}^{4}{ }_{4}$ axis in ammonia $\left(\mathbf{N H}_{3}\right)$.Therefore ($\left.\mathbf{C}^{\mathrm{n}-}{ }_{\mathrm{n}}=\mathbf{E}\right)$.

b) In Unsymmetrical molecules $\left(\mathbf{C}_{1}{ }^{1}\right)$ except linear:

Molecules that appear to have no symmetry at all, must possess the symmetry element \mathbf{E} and effectively possess at least one $\mathbf{C}^{1}{ }_{1}$ axis of rotation. Therefore ($\mathbf{C}_{1}^{1}=\mathrm{E}$).
Example; $\mathbf{B F} \mathbf{F}_{\mathbf{2}} \mathbf{C l}$ molecule give a value of $\mathbf{n}=\mathbf{1}$, and therefore we say that the $\mathbf{B F}_{2} \mathbf{C l}$ molecule contains a $\mathbf{C}_{\mathbf{1}}$ rotation axis; in this case, the axis lies perpendicular to the plane containing the molecule. $\boldsymbol{n}^{-}=\mathbf{1}$. Angle of rotation
($\mathbf{3 6 0} \% \mathbf{1 = 3 6 0}{ }^{\circ}$), therefore the rotation axis for $\mathbf{B F}_{2} \mathbf{C l}=\mathbf{C}^{1}{ }_{1}$.As well as isotope molecules form $\mathbf{C}^{1}{ }_{1}$, like (HOD).

b) In linear molecules (\mathbf{C}_{∞})(symmetrical and unsymmetrical):

$\mathbf{C} \infty$ signifies the presence of ano-fold axis of rotation, i.e. that possessed by a linear molecule. These criteria are met by symmetrical and asymmetrical di
atomics such as $\mathbf{H}_{\mathbf{2}}, \mathrm{Br}_{\mathbf{2}}, \mathrm{BeH}_{\mathbf{2}}, \mathbf{H F}, \mathbf{C O}$ and $[\mathbf{C N}]^{-}$and linear poly atomics mean a (species containing three or more atoms) that do not possess a centre of symmetry, e.g. OCS and HCN.

3) Reflection through a plane of symmetry(mirror plane) [(σ)] \{($\sigma \mathbf{v})$,($\sigma \mathbf{h}$)

 , $\boldsymbol{\sigma} \infty$) $\}$A plane of reflection through which an identical copy of the original molecule is generated. This is also called a mirror plane and abbreviated σ (sigma). Water has two of them: one in the plane of the molecule itself and one perpendicular to it. A symmetry plane parallel with the principal axis is dubbed vertical ($\boldsymbol{\sigma v}$) and one perpendicular to it horizontal ($\boldsymbol{\sigma}$).
*In general, the plane particles show a symmetry process of type ($\sigma \mathbf{v}$), while the non- plane molecules show a symmetry process of type ($\boldsymbol{\sigma} \mathbf{h}$). ($\mathbf{\sigma} \infty$) signifies the presence of anoo-fold axis of reflection, i.e. that possessed by a linear molecule(in symmetric molecules).
*In general, the (unsymmetrical molecules) plane -non plan particles as well as asymmetric linearity do not show any kind of reflection, $\{(\boldsymbol{\sigma}),(\boldsymbol{\sigma} \mathbf{h})$ and $(\boldsymbol{\sigma}$ $\infty)$ \}.

4) Rotation about an axis, followed by reflection[($\left.\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}}\right)$]

Rotation-reflection axis: an axis around which a rotation by $\{\mathbf{3 6 0} \% \mathbf{n}\}$, followed by a reflection in a plane perpendicular to it, leaves the molecule unchanged. Also called an \mathbf{n}-fold improper rotation axis, it is abbreviated $\mathbf{S}_{\mathbf{n}}{ }^{\mathbf{n}}$. Examples are present in tetrahedral silicon tetra fluoride, species of the type $\mathbf{X Y}_{\mathbf{4}}$ (all \mathbf{Y} groups must be equivalent) possess three $\mathbf{S}_{\mathbf{4}}$ axes, and the operation $\left(\mathbf{S}_{4}^{4}\right)$ rotation-reflection in the $\mathbf{S i F}_{\mathbf{4}}$ molecule. As another example, in the case of $\mathbf{S F}_{6}$ the operation rotation-reflection will be equal to $\left(\mathbf{S}_{\mathbf{6}}^{\mathbf{6}}\right)$.
*In general, the non- plane molecules only show a symmetry process of type $\left(\mathbf{S}_{\mathrm{n}}{ }^{\mathbf{n}}\right)$. While the (unsymmetrical molecules) non plan particles did not show any operation of $\mathbf{S}_{\mathbf{n}}$ rotation-reflection, $\left\{\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}}\right\}$. Therefore $\left(\mathrm{S}_{\mathrm{n}}{ }^{\mathrm{n}-}=\mathbf{C}^{\mathrm{n}}{ }_{\mathrm{n}}=\mathbf{E}\right)$.

5) Reflection through a centre of symmetry (inversion centre) [(n i)]

If reflection of all parts of a molecule through the centre of the molecule produces an indistinguishable configuration, the centre is a centre of symmetry, also called a centre of inversion; it is designated by the symbol i. Each of the molecules $\mathbf{P t C l}_{\mathbf{4}}$, trans- $\mathbf{N}_{2} \mathbf{F}_{4}, \mathbf{S F}_{\mathbf{6}}$ and benzene possesses a centre of symmetry,
but $\mathbf{H}_{2} \mathbf{S}$, cis- $\mathbf{N}_{2} \mathbf{F}_{4}$ and $\mathbf{S i H}_{4}$ did not. ($\mathbf{i} \infty$) signifies the presence of an ∞ - centre of inversion, i.e. that possessed by a linear molecule(in symmetric molecules) ,for example the molecules $\mathbf{C O}_{\mathbf{2}}, \mathbf{C l}_{\mathbf{2}}$ and $\mathbf{B e F}_{\mathbf{2}}$ possesses a centre of inversion will be equal to($\mathbf{i} \infty$). While the (unsymmetrical molecules) [non plan particles as well as asymmetric linearity do not show any kind of inversion, \{ (ni) and $(\mathbf{i} \infty)$ \}, for example the molecules $\mathbf{H l}$ and trans $-\mathbf{N}_{2} \mathbf{F}_{2} \mathbf{C l}_{\mathbf{2}}$.

Factors affecting the presence of the free electronic pair

1) Increase symmetry.....($\left.\mathbf{H}_{2} \mathrm{O} . . \mathrm{C}_{2}^{2}, \mathrm{C}_{4}^{4}\right)$
2) Minimize of the angle due to angular tensile between the bonded bonds and the free electrons\{ CH_{4} (109.5)..., NH_{3} (107.3)..and $\mathrm{H}_{2} \mathrm{O}$ (105.1)\}. All molecules are tetrahedral, but with the free electronic pair there is a decrease in angle value.

Point groups

Point groups ... represents the total number of operations experienced by Molecule during rotation.

* $\mathrm{BF}_{3}=\left[\mathrm{C}_{3}{ }^{3}, \mathrm{E}, 3 \sigma \mathrm{v}\right]$
$* \mathrm{H}_{2} \mathrm{O}=\left[\mathrm{C}_{2}{ }^{2}, \mathrm{E}, 2 \sigma \mathrm{~V}\right],\left\{\mathrm{C}_{4}{ }^{4}, \mathrm{E}, \sigma \mathrm{h}, \mathrm{S}_{4}{ }^{4}\right\}$

Types of symmetry

1) Week symmetry represents molecules that contain only two processes.
2) Moderate symmetry represent molecules that contain three and four processes.
3) Strong or high symmetry \qquad represent the molecules that contain all processes.
