Lecture note on wind turbine

Prepared by Minoru Taya, Jan. 26, 2016

Main reference: "Wind energy explained: theory, design and application", by F. Manwell, J.G. McGowan and A.L. Rogers, Joh Wiley and Sons, LTD, 2002

Sub reference, "Electronic Composites", by M. Taya, Cambridge University Press, 2005.

1. Fundamentals of wind energy harvesting

Linear momentum model

$$\underline{P} = \underline{m}\underline{v}$$
$$m: \text{mass}$$
$$w: \text{value}$$

v: velocity

For steady-state, conservation of mass

$$(\rho Au)_1 = (\rho Au)_4 = \dot{m} \tag{1}$$

Then,

$$T = U_1(\rho A u)_1 - U_4(\rho A u)_4 = \dot{m}(U_1 - U_4)$$
⁽²⁾

where, T: thrust

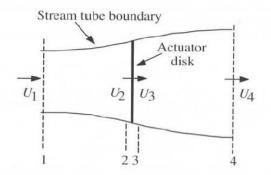


Fig.1: Actuator disk model of a wind turbine; U-mean air velocity, 1,2,3 and 4 indicate locations

Applying Bernoulli theory at control section 1, 2 (both upstream of turbine)

$$P_1 + \frac{1}{2}\rho U_1^2 = P_2 + \frac{1}{2}\rho U_2^2 \tag{3}$$

For downstream,

$$P_3 + \frac{1}{2}\rho U_3^2 = P_4 + \frac{1}{2}\rho U_4^2 \tag{4}$$

2

Assuming $P_1 = P_4$, $U_2 = U_3$

Thrust T can be expressed as

$$T = A_2(P_2 - P_3) \tag{5}$$

Using the assumption of $P_1 = P_4$, $U_2 = U_3$

$$P_{2} = P_{1} + \frac{1}{2}\rho U_{1}^{2} - \frac{1}{2}\rho U_{2}^{2}$$

$$P_{3} = P_{4} + \frac{1}{2}\rho U_{4}^{2} - \frac{1}{2}\rho U_{3}^{2}$$

$$P_{2} - P_{3} = \frac{1}{2}\rho (U_{1}^{2} - U_{4}^{2})$$
(6)

Substituting (6) into (5)

$$T = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) \tag{7}$$

Equating (7) to (2)

$$T = \dot{m}(U_1 - U_4) = \frac{1}{2}\rho A_2(U_1^2 - U_4^2)$$

$$\rho A_2 U_2(U_1 - U_4) = \frac{1}{2}\rho A_2(U_1 - U_4)(U_1 + U_4)$$

$$\therefore U_2 = \frac{1}{2}(U_1 + U_4)$$
(8)

Define a as the fractional decrease in wind velocity between free stream and rotor plane, then

$$a \equiv \frac{(U_1 - U_2)}{U_1} \tag{9}$$

$$U_2 = U_1(1-a) \tag{10}$$

From (8) and (10)

$$\frac{1}{2}(U_1 + U_4) = U_1(1 - a)$$

$$U_4 = U_1(1 - 2a)$$
(11)

 aU_1 : induction velocity

Power of wind turbine, P is equal to thrust (T) times velocity (U_2) , from (7)

$$P = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) U_2 = \frac{1}{2}\rho A_2 (U_1 - U_4) (U_1 + U_4) U_2$$
(12)

Substituting (10), (11) into (12)

$$P = \frac{1}{2}\rho A U^3 4a(1-a)^2$$
(13)

where $A_2 = A$, $U_1 = U$

Power coefficient, C_p is given by

$$C_p = \frac{P}{\frac{1}{2}\rho U^3 A} = \frac{Rotor \ power}{Power \ in \ the \ wind}$$
(14)

From (13) and (14)

$$C_p = 4a(1-a)^2$$
(15)

The maximum of C_p is obtained by taking its derivative $\frac{dC_p}{da}$ and setting it to be zero.

$$\frac{dC_p}{da} = 4\{(1-a)^2 + 4a2(1-a)(-1)\} = 0$$

$$a_{max} = \frac{1}{3}$$
(16)

Substituting $a = \frac{1}{3}$ in (15)

$$C_{p,max} = \frac{16}{27} = 0.5926 \tag{17}$$

Substituting (10), (11) into (7)

$$T = \frac{1}{2}\rho A_2 (U_1^2 - U_4^2) = \frac{1}{2}\rho A_2 \{U_1^2 - U_1^2 (1 - 2a)^2\}$$

= $\frac{1}{2}\rho A_2 U_1^2 \{1 - (1 - 2a)^2\} = \frac{1}{2}\rho A U_1^2 [4a(1 - a)]$ (18)

where $A_2 = A$

Thrust coefficient, C_T is given by

$$C_T = \frac{T}{\frac{1}{2}\rho U^2 A} = \frac{Thrust force}{Dynamic force}$$
(19)

$$=4a(1-a)$$

The maximum of C_T is obtained from

$$\frac{dc_T}{da} = 0 \rightarrow a = \frac{1}{2} \tag{20}$$

 C_T becomes the maximum, $C_T = 1$ at $a = \frac{1}{2}$

At $a = \frac{1}{2}$,

$$U_4 = U_1(1 - 2a) = 0$$

At maximum power output $(a = \frac{1}{3})$

$$C_T = \frac{8}{9} \tag{21}$$

It is noted from Fig. 2, the above model (Betz) is valid only for $a \le \frac{1}{2}$

At $a = \frac{1}{2}$, $C_{p,max} = \frac{16}{27} = 0.5926$, is theoretically the maximum rotor power efficiency.

Practical turbine efficiency, $\eta_{overall}$ is given by

$$\eta_{overall} = \frac{P_{out}}{\frac{1}{2}\rho A U^3} = \eta_{mech} C_p$$

$$\therefore P_{out} = \frac{1}{2}\rho A U^3 (\eta_{mech} C_p)$$
(22)

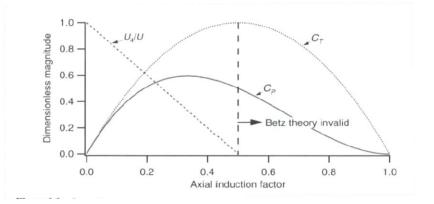


Fig. 2: Operating parameters for a Betz turbine: *U*-velocity of undisturbed air, U_4 -air velocity behind th e rotor, C_p -pwer coefficient, and C_T -thrust coefficient

The previous model did not account for the rotating turbine blades which induces angular momentum in the wake region, see Fig. 3.

Conservation of angular momentum

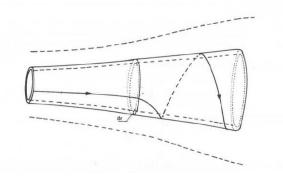


Fig. 3: Stream tube model of flow behind rotating wind turbine blade.

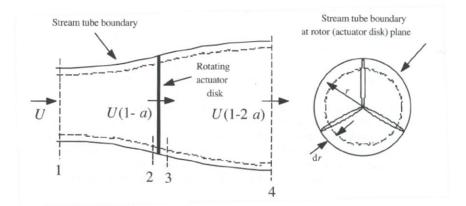


Fig. 4: Geometry for rotor analysis; U – velocity of undisturbed air, a - induction factor, r – radius ω : angular velocity of the air flow in the wake

 Ω : angular velocity of turbine blade

Assume $\Omega \gg \omega$

Then, the pressure gap before and after the rotor location is estimated as

$$P_2 - P_3 = \rho \left(\Omega + \frac{1}{2} \omega \right) \omega r^2 \tag{23}$$

For the annual element (dr), thrust, dT is given by

$$dT = (P_2 - P_3)dA = \rho \left(\Omega + \frac{1}{2}\omega\right)\omega r^2 \cdot 2\pi r \, dr \tag{24}$$

Define angular induction factor, a' as

$$a' = \frac{\omega}{2\Omega} \tag{25}$$

Induced velocity at the rotor is sum of axial component Ua, and $r\Omega a'$.

By using (25), (24) is reduced to

$$dT = 4a'(1+a')\frac{1}{2}\rho\Omega^2 r^2 2\pi r dr$$
(26)

From (18) applied to the annual area element $(2\pi r dr)$

$$dT = 4a(1-a)\frac{1}{2}\rho U^2 2\pi r dr$$
(27)

Equating (26) to (27), we obtain

$$\frac{a(1-a)}{a'(1+a)} = \frac{\Omega^2 r^2}{U^2} \equiv \lambda_r^2 \tag{28}$$

where λr is local speed ratio. Tip speed ratio, λ is given by

$$\lambda = \frac{\Omega R}{U} \tag{29a}$$

Intermediate speed ratio (at *r*), λ_r is given by

$$\lambda_r = \frac{\Omega_r}{U} = \frac{\lambda r}{R} \tag{29b}$$

Let us consider the conservation of angular momentum focusing on the annual element. The torque (Q) expected on the rotor is equal to the change in the angular momentum;

6

$$dQ = d\dot{m}(\omega r)r = (\rho U_2 2\pi r dr)(\omega r)r$$
(30)

Since $U_2 = U(1 - a)$, i.e., Eq (10) and $a' = \frac{\omega}{2\Omega}$, Eq (25),

$$dQ = 4a'(1-a)\frac{1}{2}\rho U\Omega r^2 2\pi r dr$$
(31)

The power generated in each element, dP is

$$dP = \Omega dQ \tag{32}$$

Substituting (31) into (32) and using (29)

We arrive at

$$dP = \frac{1}{2}\rho A U^3 \left[\frac{8a'(1-a)\lambda_r^3}{\lambda^2} d\lambda_r \right]$$
(33)

where $A = \pi R^2$

Incremental contribution to the power coefficient (dC_p) from annual ring is

$$dC_p = \frac{dP}{\frac{1}{2}\rho AU^3} \tag{34}$$

Thus, total power coefficient (C_p) is given by

$$C_p = \frac{1}{\lambda^2} \int_0^\lambda a' (1-a) \lambda_r^{\ 3} d\lambda_r \tag{35}$$

From (28), we can express a' in terms of a,

$$a' = -\frac{1}{2} + \frac{1}{2}\sqrt{1 + \frac{4}{\lambda_r^2}a(1-a)}$$
(36)

Integrand in (35) is

$$f(a) = (1-a)\left\{-\frac{1}{2} + \frac{1}{2}\sqrt{1 + \frac{4}{\lambda_r^2}a(1-a)}\right\}$$
(37)

The maximum of f(a) gives the maximum of C_p ,

 $\frac{df(a)}{da} = 0$ gives us

$$\lambda_r^2 = \frac{(1-a)(4a-1)^2}{(1-3a)} \tag{38}$$

Substituting (38) into (28) for maximum power in each annual ring

$$a' = \frac{1-3a}{4a-1}$$
(39)

By taking derivatives of (38), we obtain

$$2\lambda_r d\lambda_r = \frac{6(4a-1)(1-2a)^2}{(1-3a)^2} da$$
(40)

Substituting (38)~(40) into (35), the maximum power coefficient, $C_{p,max}$ is obtained as

$$C_{p,max} = \frac{24}{\lambda^2} \int_{a_1}^{a_2} \left[\frac{(1-a)(1-2a)(1-4a)}{(1-3a)} \right]^2 da$$
(41)

where a_1 corresponds to axial induction factor for $\lambda_r = 0$, a_2 to the axial induction factor for $\lambda_r = \lambda$. From (38),

$$\lambda^2 = \frac{(1-a_2)(1-4a_2)^2}{(1-3a_2)} \tag{42}$$

Note in (42), $a_1 = 0.25$, $\lambda_r = 0$

Note in (42), $a_2 = \frac{1}{3}$, $\lambda \to \infty$, thus $a_2 = \frac{1}{3}$ is the upper limit of axial induction factor Integral in (41) is performed by setting¹ x = (1 - 3a), then, $C_{p,max}$ is expressed as

$$C_{p,max} = \frac{8}{729\lambda^2} \left[\frac{64}{5} x^5 + 72x^4 + 124x^3 + 38x^2 - 63x - 12\ln x - \frac{4}{x} \right]_{x=(1-3a_2)}^{x=0.25}$$
(43)

¹ Eggleston, D. M. and Stoddard, F. S., 1987, Wind Turbine Engineering Design, Van Nostrand Reinhold, New York.