Periodic Table

All A	020	WI	.180	a	Z	.948	5	NC	.798	1	TON	1.29	e	NC	222)	u	N	(10	STIUM	eralić	4.97	n	WOL		262)	2	
18 /	H	HELIL	10 20	Z	NEO	18 39.	A	ARGC	36 83	K	KRYPT	54 13	X	XENG	86 (RI	RADO	118 (Uu	I UNUNOC	12 Eni Gen	11 12	LI	LUTET		103 (LI	
		7 VIIA	18.998	[<u> </u>	LUORINE	7 35.453	Ū	CHLORINE	5 79.904	Br	BROMINE	3 126.90	Ι	IODINE	5 (210)	At	ASTATINE	17 ()	Uus	NUNSEPTIUM	yright © 201	0 173.05	Yb	TTERBIUM		02 (259)	NO	
S		VIA 1	15.999	C	YGEN	32.065 1	S	PHUR	78.96 3	9e	ENIUM	127.60 5	le	URIUM	(209) 8	0	MUINO	(291) 1	A	MORIUM UN	Cop	168.93 7	m			(258) 1	Ildl	-
Ĕ	nı.com	A 16	07 8		OX	74 16		RUS SUL	22 34		C SELE	76 52		NY TELL	98 84	H	H POL	.) 116	H d	IUM LIVER		26 69	L	A THU		57) 101	N	
	period	15	7 14.0	Z	NITROGE	15 30.9	P	PHOSPHOF	33 74.9	As	ARSENI	51 121.	Sb	ANTIMON	83 208.	Bi	BISMUT	115 (Uml	UNUNPENT		68 167.	Er	ERBIUN		100 (25	R	
M	MMM//:0	4 IVA	12.011	C	CARBON	4 28.086	S	SILICON	2 72.64	Ge	ERMANIUM	0 118.71	Sn	TIN	2 207.2	Pb	LEAD	14 (287)	[F]	FLERCVIUM		7 164.93	Ho	HOLMIUM		9 (252)	Es	
Щ	duu	IIA 1	10.811 6	a	RON	26.982		MININ	69.723 3	Ja		114.82	n	MUID	204.38 8	IJ	MULLIN	()	Funct	NTRIUM		162.50 6	y	ROSIUM		(251) 9	J	-
Ш		13	5		, De	13	+		38 31	0	GA	.41 49		M NI	59 81		THA THA	85) 113	D			.93 66	-	M DYSP		47) 98	0	
ш	[_	(Pa)	ţi		12	30 65.	Zn	ZINC	48 112	Cd	CADMIU	80 200.	Hg	MERCUF	112 (28	Ü	COPERNIC		65 158.	Tb	TERBIU		97 (24	IBIK	
H		ns elemen	element		5 °C; 101	- solid		8	63.546	Cu	COPPER	7 107.87	Ag	SILVER	196.97	Au	GOLD	1 (280)	IRG	ENTGENIUM		157.25	Gd	DOLINIUM		5 (247)	CIE	
	Nonmetal	Chalcogei	Halogens	Noble gas	STATE (25	un n		Π	8.693 29	ii	KEL	06.42 47	p	MUIDA	95.08 79	t	MUNI	(281) 11	S	TADTIUM RO		51.96 64	n	DPIUM GA		(243) 90		
Ο	al				NDARD	le - gas	0	10	33 28 5	4	NIC	91 46 1	Р	A PALLA	22 78 1	P	PLAT	6) 110	8	JM DARMST		86 63 1	E	M EURO		4) 95	¥	
ш	Semimet		etal	[ST/			9	27 58.93	Co	COBALT	45 102.9	Rh	RHODIUN	77 192.3	Ir	IRIDIUM	109 (27	MI	MEITNERIL		62 150.3	Sm	SANARIU		94 (24	IPu	
SL	-	metal	e earth me	tion metals	Inthanide	sunide		L	55.845	Fe	IRON	101.07	Ru	THENIUM	190.23	Os	NUIWSC	8 (277)	IHIS	IASSIUM		(145)	Pim	OMETHIUM		(237)	Np	1
A	Metal	Alkafi	Alkain	Transi	La	AC		VIIB 8	4.938 26	ln	ANESE	(98) 44	e	IETIUM RL	86.21	e	MUIN	(272) 10	P			44.24 61	p	MUIM P3		38.03 93	7	
								7	6 25 5	Σ	MMANG	6 43	E	IM TECHN	1 75 1	R	N RHE	1) 107	8	IM BOH		91 60 1	Z	UM NEOD		4 92 2		
<u>I</u> C	ASS (1)	ROUP CAS						9 VI	24 51.99	Cr	CHROMIU	42 95.9	Mo	MOLYBDENI	74 183.8	M	TUNGSTE	106 (27	60 V2	SEABORGIL		59 140.	Pr	PRASEODYMI		91 231.0	Pa	
	ATOMIC M	GF	10 811	110.01	2	RON	NT NAME	AB	50.942		NADIUM	92.906	Nb	MUIBOIN	180.95	Ta	INTALUM	5 (268)	DID	MUINAU		140.12	Ce	CERIUM		232.04	Th	
SIC	SLATIVE /	AC	2 4	0		BO	ELEMEN	IVB 5	7.867 2.3	;=	N MUII	1.224 41	1	MUM	73	Ŧ	IIUM TA	(267) 10	e=	ORDIUM D	HANIDE	38.91 58	a	ANUM	AIDE	(227) 90	c	_
Ш	RE	OUP IUP.	NUMBER		SYMBOI			4	22 47	F	TITAN	40 91	N	ZIRCO	72 17	H	IC HAFN	104	R	RUTHERFI	LANTI	57 13	L	LANTH	ACTIN	89	A	
Р		GR	ATOMIC	OTWO IV					1 44.956	Sc	SCANDIUM	9 88.906	Y	YTTRIUM	57-71	La-Lu	anthanid	89-103	Ac-Lr	Actinide		(2009)	ed with	osed in	f of the	towever o have a	position, lated.	
		IIA	9.0122	Se	TLIUM	24.305	10	VESIUM 3	40.078	a	CIUM	87.62 3	JL	MUITIUM	137.33	3a	RIUM L	(226)	ka.	MUID		1 2131-21	are express	value encl	ass number	a and U) d	otopic com ight is tabu	
4 4	D	EN 2	41 4	-	BER	90 12 2	2	MAG	38 20 4	0	JM CAL	58 38		M STRO	91 56	H	M BA	3) 88	H.	M RA		81 No 1	masses i	ides, the	ies the ma	nts (Th, P	atomic we	
GROU	H H	HYDROGE	3 6.9	-	LITHIUM	11 22.99	Na	SODIUM	19 39.0	X	POTASSIU	37 85.4	Rb	RUBIDIU	55 132.	Cs	CAESIUN	87 (22	Fr	FRANCIU		tool Chem	ive atomic	able nucli	ets indicat	such eleme	cteristic ter	
	1) Drue A 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4																											

General instructions

ان منهج السلامة في المختبر يتضمن رغبة الشخص العامل لانجاز عمله بطريقة صحيحة, وهناك بعض الارشادات العامة للعاملين في المختبرات ومنها الالمام بطريقة العمل في الحالات الاضطرارية او الفجائية مثل اجهزة اخماد الحريق وصندوق الاسعافات الاولية ويمنع العمل الفردي في الاعمال المحذورة ويمنع التعامل مع مواد او اجهزة لم يتم الاطلاع على كيفية عملها يجب ارتداء صدرية المختبر و النظارات الزجاجية بصورة دائمية مع توفير منشفة و اسفنجة و صابونة ويمنع التدخين و الاكل و الشرب داخل المختبر . يجب ان يتجنب العامل في المختبر اضافة الماء الى الحامض او القاعدة لان ذلك يؤدي الى حدوث حرائق ولاكن يمكن اضافة الحامض او القاعدة الى الماء

ان تسجيلا كاملا ودقيقا لنتائج العمل المختبري مهم جدا لكل طالب في المختبر ويجب ان يحتفظ الطالب بسجل لعمله في المختبر يحتوي على وصف كامل و دقيق لكل تجربة قام بها. ان التفصيل في الكتابة يجب ان يكون كافيا حتى يتمكن باحث اخر من اعادة العمل و معرفة نتيجة التجربة بصورة مضبوطة. في ادناه مقترحات تنظيمية لسجل مختبري لتسجيل اية تجربة:

- ابدأ بتسجيل كل تجربة على صفحة جديدة مدونا في السطر الأول تاريخ وعنوان ورقم التجربة المراد القيام بها.
 - اكتب المعادلة الكيميائية الموزونة للتفاعل و المصدر المتبع في التجربة
- 3. يمكنك كتابة كميات المواد الكيميائية المستعملة في جدول آو آدراجها في وصف التجربة ويجب ذكر اوزان المواد الكيميائية و عدد المولات و حجوم المذيبات المستعملة.
- 4. يجب ان تحتوي الطريقة العملية على:
 أ- وصف لكل جهاز غريب و جديد, وإذا كانت هناك طريق تبريد معينة أو خاصة فيجب وصفها أو ذكرها.
 ب- التسلسل في اضافة الكواشف وأوقات الإضافة و مدد التفاعل.
 ت- درجات الحرارة وخروج الغازات وتغيرات الالوان
 - ث- طريقة العمل وبضمنها ألمذيبات المستعملة. ج-وزن منتوج المادة الخام وكذلك المادة النقية ودرجات انصبهار المواد الصلبة.
 - ج-ورن منتوج أنمادة أنكام وتحدثك أنمادة أتلقيه ودرجات أنصبهان أنمواد أنصبه ينظم تقرير كل تجربة حسب الترتيب التالي

The names of participating studentsاسماء الطلبة المشاركين:Name of experimentalاسم التجربة :Data of experimentalتاريخ اجراء التجربة:Purpose of experimentalالغرض من التجربة:Chemical and apparatusالدوات و المواد المستخدمة:Discussionالمناقشة (متضمنة المعادلات ان وجدت او التركيب):الحسابات و النتائج (متضمنا القوانين وجداول الكشوفات):

Results and calculations

Classes and Apparatus

Round – bottomed flasks

Joint

adapters distillation heads

Condenser

- (1): receiver adapters or connectors ;
- (2): a,b, rubber tubing adapters ;
 - (3) calcium chloride guard tube

a,b : flat bottomed flasks ; c, d: round bottomed flasks

e: short – necked boiling flask

a : beaker ; b : conical beaker /

a: long funnel ; b: short funnel

Separatory funnels

- a: Buchner funnel; b : Hirsch funnel;
- c: Buchner funnel and flask
- d: slit sieve funnel;
- e : sintered glass funnel ;
- f: Buchner funnel or Hirsch funnel with glass joints

Heating mental

Desiccators

a : Heating a reaction mixture under reflux with addition of liquid

b: Heating a reaction mixture under reflux with addition of liquid

c: Heating a reaction mixture under reflux with addition of liquid and with stirring

Steam distillation

simple distillation at atmosphere pressure

Fractional columns

Cylindrical glass jar

Vaccum distillation

Simple distillation at atmosphere pressure

Steam distillation

Vacuum filtration setup using the Buchner funnel

Melting Point

Purpose of experimental

- 1) To determine melting point of unknown compounds.
- 2) To identify a solid unknown.
- 3) To determine the purity of organic compound.

Theory part of experimental

The melting point of a compound is the temperature at which the solid phase is in equilibrium with the liquid phase. A solid compound changes to a liquid when the molecules acquire enough energy to overcome the forces holding them together in an orderly crystalline lattice. For most organic compounds, these intermolecular forces are relatively weak. The melting point range is defined as the span of temperature from the point at which the crystals first begin to liquefy to the point at which the entire sample is liquid. Most pure organic compounds melt over a narrow temperature range of 1-2 °C. The presence of a soluble impurity almost always causes a decrease in the melting point range.

Melting points can also be used to assess compound purity. Purification of the compound causes the melting point range to narrow and the melting point to increase.

The branched chain compounds have lower melting points than the corresponding straight chain isomers. For example, n- butane has a melting points of (- 138 °C) and isobutene (- 159 °C), This is due to the fact that branching of the chain makes the molecule more compact and

thereby decreases the surface area. Therefore, the intermolecular attractive forces which depend upon the surface area, also become small in magnitude on account of branching. Consequently, *the boiling points of the branched chain alkanes are less than the straight chain isomers*.

CH ₃ CH ₂ CH ₂ CH ₃	CH ₃ -CH-CH ₃ CH ₃
n- butane ,M.P. = (- 138 °C)	isobutane , M.P. = (- 159 ℃)
B.P. = (O °C)	B.P. = (- 12 ℃)

Properties of oil bath:

- 1) Oil must have a high temperature (> 300 °C)
- 2) Oil vapor is not toxic
- 3) Oil must be transparent

Factors affecting the melting point

- 1) The nature of the organic compound (aliphatic or aromatic or salt)
- 2) Molecular weight organic compound
- Geometric shape of the organic compound (branched chain or straight chain)
- 4) Composite purity

<u>Chemical and Apparatus</u>

Capillary tubes (about 1 mm bore, about 8 cm length), thermometer (-10 - 110° C), rubber band, glass rod, stand and clamp, burner, 250 cm³ beaker, food oil or paraffin oil , chemical compound (powder).

Procedure of Experimental

- 1) Obtain a sample from your instructor. Record sample ID.
- 2) Put the sample into a capillary tube (about 1-2 mm in height).
- Measure the melting point using the apparatus as shown in Figure 4. Attach the capillary tube to a thermometer with sewing thread. Place 25-30 mL of paraffin oil or glycerol in a 50 mL beaker.
- 4) Turn on the hotplate and observe the melting point. Use a clean glass rod to stir the oil to ensure a uniform heat distribution.
- 5) Record the melting point range (for example 70-73°C)

Question for discussion

- 1. What is the melting point range of pure compound?
- 2. Is the melting point sharp?
- 3. How is the melting point of a solid defined?
- 4. How is the melting point of a solid used to identify the solid?
- 5. How is the melting point of a solid used to assess the purity of the solid?