
 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

After studying this chapter, the students will be able to

 • Understand the importance of algorithms

 • Trace the origin of algorithm

 • Define an algorithm

 • Learn the various ways of writing an algorithm

 • Understand what the future has in store for us vis-à-vis algorithms

 • Understand the concept of designing an algorithm

Algorithms are used everywhere, from a coffee machine to a nuclear power plant.

A good algorithm should use the resources such as the CPU usage, time, and memory

judiciously. It should also be unambiguous and understandable. The output produced by

an algorithm lies in a set called range. The input is taken from a set „domain‟ (input

constraints). From the domain only the values satisfying given constraints can be taken.

These constraints are referred to as input constraints. Input constraints determine the

values of xi, i.e., input. The inputs are related to each other as governed by relation

corresponding to the task that is to be accomplished. This is referred to as explicit

constraint .

Summarizing the importance of algorithms discussed earlier, we can say the

following:

• It helps in enhancing the thinking process. They are like brain stimulants that will give

a boost to our thinking process.

• It helps in solving many problems in computer science, computational biology, and

economics.

• Without the knowledge of algorithms we can become a coder but not a programmer.

• A good understanding of algorithms will help us to get a job. There is an

immense demand of good programmers in the software industry who can

analyze the problem well.

• The fourth section of the book that introduces genetic algorithms and

randomized approach will help us to retain that job.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

An algorithm is a sequence of steps that must be carried out in order to

accomplish a particular task. Three things are to be considered while writing an

algorithm: input, process, and output. The input that we give to an algorithm is

processed with the help of the procedure and finally, the algorithm returns the output. It

may be stated at this point that an algorithm may not even have an input. An example of

such an algorithm is pseudorandom number generator (PRNG). Some random number

generators generate a number without a seed. In such cases, the algorithm does not

require any input. The processing of the inputs generates an output. This processing is

the most important part of the algorithm. While writing an algorithm, the time taken to

accomplish the task and the memory usage must also be considered. The prime motto is

to solve the problem but efficiency of the process followed should not be compromised.

There is a distinction between natural language and algorithmic writing. While speaking

or writing a letter, we may use ambiguous terms unknowingly or deliberately. To

summarize the main goal of discussion

• An algorithm is a sequence of steps in order to carry out a particular task.

• It can have zero or more inputs.

• It must have at least one output.

• It should be efficient both in terms of memory and time.

• It should be finite.

• Every statement should be unambiguous. The meaning of finite is that the

algorithm should have countable number of steps.

It may be stated that a program can run infinitely but an algorithm is always finite.

For example, an operating system of a server, in spite of being a program runs 24 × 7 but

an algorithm cannot be infinite.

 There are various ways of writing an algorithm. In this section, three ways have

been explained and exemplified taking requisite examples.

An algorithm can be written in many ways. It can be written in simple English but this

methodology also has some demerits. Natural languages can be ambiguous and

therefore lack the characteristic of being definite. Since each step of an algorithm

should be clear and should not have more than one meaning, English language-like

algorithms are not considered good for most of the tasks. However, an example of

linear search, in which an element is searched at every position of the array and the

position is printed if an element is found, is given below. In this algorithm, „A‟ is the

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

array in which elements are stored and „item‟ is the value which is to be searched.

The algorithm assumes that all the elements in „A‟ are distinct. Algorithm below

depicts the above process.

Algorithm 1.1: English-like algorithm of linear search
Step 1. Compare „item‟ with the first element of the array, A.

Step 2. If the two are same, then print the position of the element and exit. Step 3.

else repeat the above process with the rest of the elements.

Step 4. If the item is not found at any position, then print „not found‟ and exit.

Flowcharts pictorially depict a process. They are easy to understand and are

commonly used in the case of simple problems. The process of linear search,

explained in the previous subsection, is depicted in the flowchart illustrated in

Fig. 1.1. The conventions of flowcharts are depicted in Table 1.1.

In the flowchart, shown in Fig 1.1, A[] is an array containing N elements. The index

of the first element is O which is also the initial value of i. Such depictions, though easy

to comprehend, are used only for simple straightforward problems. Hence, this lecture

neither recommends nor uses the above two types for writing algorithms, except for

some cases.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

The pseudocode has an advantage of being easily converted into any

programming language. This way of writing algorithm is most acceptable and most

widely used. In order to be able to write a pseudocode, one must be familiar with the

conventions of writing it. Table 1.2 shows the pseudocode conventions.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Algorithm 1.2 depicts the process of linear search. The name of the algorithm is

„Linear Search‟. The element „item‟ is to be searched in the array „A‟. The algorithm

uses the conventions stated in Table 1.2.

Algorithm 1.2 linear search

Algorithm Linear_Search (A, n, item)

{

 for i = 1 to n step 1 do

 { if(A[i] == item)

 { print i;

 exit();

 }

 }

 print “Not Found”

}

In order to accomplish a task, a solution needs to be developed. This is called

designing of an algorithm. For example, if an array „A‟ of length n is given and our

requirement is to find out the maximum element of the array, then we can take a variable

„Max‟ whose initial value is A[1], which is the first element of the array. Now, start

traversing the array, compare the value of Max with each element, if we are able to find

any element greater than Max, then we can set Max to the value of that element, else

continue. The process is depicted in Algorithm 1.3.

Algorithm 1.3 Finding maximum element from an array

Algorithm Max(A, n)

{ Max = A[1];

 for i = 2 to n step 1 do

 {

 if(A[i]>Max) then

 {

 Max=A[i];

 }

 }

 Print “The maximum element is A[i]”

 }

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 The next step would be to analyse the time complexity of the algorithm.

Table 1.3 shows the number of times each statement is executed. The above analysis

gives an idea of maximum amount of resources (in this case time) required to run the

algorithm. This is referred to as algorithm design and analysis (ADA) (see Fig. 1.2).

However, this may not be the case most of the times. Often, we have to develop

software for the client. The client has some set-up and will not want to upgrade his

systems in order to install the software. In such cases, we must analyse the hardware

and

 The set-up of the client and then decide on the algorithms we would be

using in order to accomplish the tasks. Here, we cannot apply techniques like diploid

genetic algorithm on a system that uses a P4, similarly there is no point in using

algorithms that are time efficient but probably use extensive resources in a very

advanced set-up. The process is referred to as analysis and design. The process is

depicted in Fig. 1.3. The general approach being used is design and analysis; however,

analysis and design is far more practical and hence implementable.

