
 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

In order to accomplish a task, the most important thing is to design a correct

algorithm. An algorithm can be called correct if it accomplishes the required task.

However, sometimes in spite of being correct, an algorithm may not be of much use, in

the case where it takes a lot of time. For example, applying linear search in order to find

out an element is correct, but what if the array contains more than 10
10

 elements? Even

if one element is processed in 10
-6

 seconds, it will take 10,000 seconds or around 3 hours

to search an element. Now imagine that the same task is to be accomplished in an array

that contains the roll numbers of all the students of a university. In that case this

procedure will require a lot of time. So, it is important that the algorithm should be

correct as well as efficient. The understanding of running time is also important in order

to compare the efficiency of two algorithms.

It is difficult to find the exact running time of an algorithm. It requires rigorous

mathematical analysis. The calculation of exact running time also requires the

knowledge of sequences and series and logarithms among others. Moreover, the exact

analysis provides no additional advantage compared to an approximate analysis. The

exact analysis gives the exact polynomial function that relates the input size with the

running time, whereas the approximate analysis gives the power of input size on which

the running time depends. For example, the exact running time of an algorithm may be 3

× n
2
 + 2 × n + 3. In this case, the approximate running time would be f (n

2
). So, the

highest power of n is what matters while calculating the approximate running time of an

algorithm. Even the constants that are there with the term containing the highest power

do not matter. It may also be stated that the number of inputs to an algorithm may not

always be the number of variables that are given as an input to the algorithm. For

example, if an algorithm takes an array as an input, then the input size is generally taken

as n and not 1. So, the idea is that since an array contains n elements, the number of

inputs to the algorithm must be taken as the number of elements in that array. The

algorithm will most probably deal with most, if not all, of the elements of the array.

The argument can be extended to a two-dimensional array as well. The number of

inputs of an algorithm that manipulates an array having n rows and m columns is taken

as n × m, and not 1. This is because the number of elements in the data structure is n ×

m.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

The definition of the general sequence and the sum of n terms of arithmetic,

and geometric progressions have been dealt with in the present section. This lecture also

throws light on logarithms, so that the idea of complexity can be understood clearly.

In examining algorithm efficiency we must understand the idea of complexity

a. Space complexity

b. Time Complexity

 When memory was expensive we focused on making programs as space

efficient as possible and developed schemes to make memory appear larger

than it really was (virtual memory and memory paging schemes)

 Space complexity is still important in the field of embedded computing

(hand held computer based equipment like cell phones, palm devices, etc)

S(P)= Const + Sp

Ex: What is the space complexity of the following code?

 Float abc (float a; float b , float c)

 {

 Return (a+b*6*c+(a+b+c)/(a+4.0)

 } Five space (a , b, c , return address , abc)

 Sabc (a,b,c) = 0 Const

 Is the algorithm “fast enough” for my needs

 How much longer will the algorithm take if I increase the amount of data

it must process

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 Given a set of algorithms that accomplish the same thing, which is the

right one to choose

 Time efficiency depends on :

 size of input

 speed of machine

 quality of source code

 quality of compiler

Time Complexity:

T(P)= Const + tp

 Where Const : compiler time and tp : time of running program

Ex: What is the Time complexity of the following code ?

 Float abc (float a; float b , float c) FC

 {

 Return (a+b*6*c+(a+b+c)/(a+)+4.0) 1

 }

 Steps count or FC = 1

Tabc (a,b,c) = 0 Const

Example :

 ∑

 Where i=0,1,2,….n

 Fc

float Sum (float a[], int n)

{

float s=0.0; 1

 for(int i=0 ; i< n ; i++) n+1

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

s+= a[i]; n

 return s; 1

 } Fc= 2n+3

 Tsum (n) = 2n+3

 Ssum >= 4

 Ssum=0

Space complexity :

 Srsum(n)= 3(n+1)

Time Complexity :

 𝑇𝑟𝑠𝑢𝑚(𝑛)∑

 ()

Sol

trsum(n)= 2+ trsum(n-1)

+ 2+2 = trsum(n-2(

 = 2(2) + 2+ trsum(n-3)

 = 3(2) + 2+ trsum(n-4)

 = k(2) + trsum(n-k)

 Let k = n

 = n(2) + trsum(n-n)

 = n(2) + trsum(0)

 = n(2) + 2

 = 2n + 2

 trsum(n)= 2n+2

 = O(n)

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Example: What is the Time complexity of the following code?

Let n=m FC

 void Add(int a[] ; int b[] ; int c[] ; int n ; int m)

 {

 for (int i=0; i<n; i++) n+1 n+1

 for (int j=0; j<m; j++) n(n+1) n2+n

 c[i,j] = a[i,j] +b[i,j]; n(n) n2

 }

 FC = 2n2+ 2n +1

T add (…) = 2n
2
+ 2n +1

 Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are

positive constants c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

Example: The function 8n+5 is O(n).

Justification: By the big-Oh definition, we need to find a real constant c>0 and an

integer constant n0 ≥ 1 such that 8n+5 ≤ cn for every integer n ≥ n0. It is easy to see that

a possible choice is c = 9 and n0 = 5. Indeed, this is one of infinitely many choices

available because there is a trade-off between c and n0.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Example: 10n2 +4n+2 is O(n2).

Justification: Note that 10n2 +4n+2 <= cn
2
,

for c = 11, n0 =5 when n ≥ 5.

Example: 2n + 10 is O(n)

2n + 10 ≤ cn

2n + 10 ≤ 3n

For c = 3 and n0 = 10, n >=10

Example: the function n
2
 is not O(n)

n2 ≤ cn

n ≤ c

The above inequality cannot be satisfied since c must be a constant

n
2
 is O(n

2
).

Example: 7n+2 is O(n)

need c > 0 and n0 ≥ 1 such that 7n+ 2 ≤ c•n for n ≥ n0

this is true for c = 8 and n0 = 2

Given functions f(n) and g(n), we say that f(n) is Ω (g(n)) if there are positive constants

c and n0 such that

 f(n)≥ cg(n) for n≥ n0

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Example: The function 8n+5 is Ω (n).

Justification: By the Omega- definition, we need to find a real constant c>0 and an

integer constant n0 ≥ 1 such that 8n+5 >= cn for every integer n ≥ n0. It is easy to see

that a possible choice is c = 8 and n0 = 1. Indeed, this is one of infinitely many choices

available because there is a trade-off between c and n0.

Example: 10n
2
 +4n+2 is Ω (n

2
).

Justification: Note that 10n
2
 +4n+2 >= cn

2
,

for c = 10, n0 = 1 when n ≥ 5.

Example: 7n+ 2 is Ω (n)

need c > 0 and n0 ≥ 1 such that 7n+2 ≥ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

Example: 3n
3
 + 20n

2
 + 5 is Ω (n

3
)

need c > 0 and n0 ≥ 1 such that 3n
3
 + 20n

2
 + 5 ≥ c•n

3
 for n ≥ n0

this is true for c = 3 and n0 = 1

Given functions f(n) and g(n), we say that f(n) is Θ (g(n)) if f (n) is O(g(n)) and f (n) is

Ω (g(n)), that is, there are real constants c1 > 0 and c2 > 0, and an integer constant n0 ≥

1 such that c1g(n) ≤ f (n) ≤ c2g(n), for n ≥ n0.

Example: 10n
2
 +4n+2 is Θ (n

2
).

Justification: 10n
2
 ≤10n

2
 +4n+2 ≤11 n

2
 for n ≥ 5.

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

Example: 8n+5 is Θ (n).

Justification: 8n ≤8n+5 ≤9n for n ≥ 5.

Example: 7n+2 is Θ (n)

need c > 0 and n0 ≥ 1 such that c1n ≤ 7n+2 ≤ c2n for n ≥ n0

this is true for c1 = 7 and c2 = 8 and n0 = 2

Common big Ohs

 constant O(1)

 logarithmic O(log2 N)

 linear O(N)

 n log n O(N log2 N)

 quadratic O(N2)

 cubic O(N
3
)

 exponential O(2
N
)

 Best case

 If the algorithm is executed, the fewest number of instructions are executed

 Average case

 Executing the algorithm produces path lengths that will on average be the

same

 Worst case

 Executing the algorithm produces path lengths that are always a maximum

Example: Use Big –O notation to analyze the time efficiency of the following

code:

 ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis

(2018-2019)

 Inst Code F.C. F.C

 1 for (int i=0; i< n ; i++) n+1 n+1

 2 for int j=0 ; j < n; j++) n(n+1) n
2
+n

 3 { s= s+i; n*n n
2

 4 p = p + i*j ; n*n n
2

 } 3n2+2n+1

Discarding constant terms produces: 3n
2
+2n

Clearing coefficients: n
2
+n

Picking the most significant term: n
2

 Big O = O(n
2
)

