

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

1

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

1- Introduction

Have you ever thought how the message we send from our computer finds its path

to some other computer? The message travels via a complicated mesh of routers and

tries to go via a path which has least cost. There are two issues involved in the above

problem.

The first issue that needs to be addressed is whether there is a path between source

and the receiver and if there are more than one path, then which is the shortest? The

above problem is a subclass of the problem which would be discussed in this chapter.

The chapter introduces single-source shortest path algorithm, known as Dijkstra’s

algorithm, to find the shortest path from a node designated as ‘source’ to all other

nodes.

2- weighted graphs

Before we can really get into Dijkstra’s algorithm, we need to pick up a few seeds

of important information that we will need along the way, first.

In the previous chapter, not only have we learned about various graph traversal

algorithms, but we have also taught the fundamentals of graph theory, as well as the

various ways of representing graphs. We already know that graphs can be directed,

or undirected, and may even contain cycles. We have also learned how we can

use breadth-first search and depth-first search to traverse through them.

In our journey to understand graphs and the different types of graph structures that

exist, there is one type of graph that we have managed to skip over — until now, that

is weighted graph.

A weighted graph is interesting because it has little to do with whether the graph is

directed, undirected, or contains cycles. At its core, a weighted graph is a graph

whose edges have some sort of value that is associated with them. The value that is

attached to an edge is what gives the edge its “weight”.

https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://medium.com/basecs/from-theory-to-practice-representing-graphs-cfd782c5be38
https://medium.com/basecs/spinning-around-in-cycles-with-directed-acyclic-graphs-a233496d4688
https://medium.com/basecs/going-broad-in-a-graph-bfs-traversal-959bd1a09255
https://medium.com/basecs/deep-dive-through-a-graph-dfs-traversal-8177df5d0f13

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

2

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

A common way to refer to the “weight” of a single edge is by thinking of it as

the cost or distance between two nodes. In other words, to go from node a to

node b has some sort of cost to it.

Or, if we think of the nodes like locations on a map, then the weight could instead

be the distance between nodes a and b. Continuing with the map metaphor, the

“weight” of an edge can also represent the capacity of what can be transported, or

what can be moved between two nodes, a and b.

For example, in the following example, we could ascertain that the cost, distance, or

capacity between the nodes c and b is weighted at 8.

A weighted graph can be represented with an adjacency list, with one added

property: a field to store the cost/weight/distance of every edge in the graph.

For every single edge in our graph, we will tweak the definition of the linked list

that holds the edges so that every element in the linked list can contain two values,

rather than just one. These two values will be the opposite node’s index, which is

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

3

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

how we know where this edge connects to, as well as the weight that is associated

with the edge.

The above weighted graph, therefore, can be represented using an adjacency list as

follows:

3- Dijkstra’s algorithm

Finding the shortest path between two nodes becomes much trickier when we have

to take into account the weights of the edges that we are traversing through.

Algorithm 1 shows the pseudocode of a single-source shortest path algorithm (also

called Dijkstra’s algorithm).

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

4

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Algorithm 1 Single-source shortest path (Dijkstra’s algorithm)
Input

• A graph G = (V, E)

• The cost corresponding to each edge

Output

• Shortest paths from the source node to all other nodes

Strategy

• Start from the source node and select the path which has minimum cost.

• The paths from the node selected and the source node are then explored. In order

to go to a node, say X, the direct path from a source node and path via any of the

selected nodes are considered, whichever is smaller is selected.

The array selected_vertex[] keeps track of the vertex selected at any instant. The

initial value of each element is 0, it becomes 1 if that vertex is selected. Another

array distance[] stores the minimum distance of a node from the source vertex. In

the algorithm, i is a counter and n is the number of vertices in the graph.

Single Source shortest path returns distance[]
{
while (i<n)

{
 selected_vertex[i]=0;
}

i=0;
selected_vertex[i]= 1;
while(i<n)
 {

From amongst (n−1) edges (maximum) originating from I vertex,
select the one which has minimum cost.
Let the selected vertex be k.
selected_vertex[k]=1;
for each vertex m adjacent to i such that selected_vertex[m]=0

{
if(distance[k]>distance[m]+cost[m, k])

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

5

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

{
distance[k] = distance[m]+cost[m,k];

}
}

 }
return distance[]
}

Complexity: The first loop runs n times, the second loop runs n times, and in each

iteration, the inner loop runs, thus, making the complexity as O(n2). However, if all

the shortest paths are to be determined using the above algorithm, then the

complexity would be O(n3).

Ex(1): Apply single-source shortest path (Dijkstra’s algorithm) to find the minimum

distance from A of graph G1 (Fig. 1) to each vertex.

 Figure 1: Graph G1

Solution From A, there are three outgoing edges having costs 5, 9, and 2. The edge

having minimum cost is selected, as per the greedy approach (Fig. 2).

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

6

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Figure 2: Graph G1, edge AC selected

The minimum cost edge from amongst the remaining edges is CD. So in order to go

from A to D, the optimal path is A→C→D (Fig. 3).

Figure 3: Graph G1, edge CD selected

A packet can traverse from A to B in two ways, either directly or through C.

However, the path from C costs 2 + 6 = 8, whereas the direct cost is 9 (Fig. 4).

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

7

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Figure 4: Graph G1, edge CB selected

A packet can traverse from A to E directly. The path costs 5 (Fig. 5).

Figure 5: Graph G1, edge AE selected

Though we select the minimum cost edge at a particular point, however, the cost is

also being compared with other costs (i.e., via k).

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

8

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Ex(2): In the simple directed, weighted graph below, we have a graph with three

nodes (a, b, and c), with three directed, weighted edges. Apply Dijkstra’s algorithm

to find the shortest path from node a to node e.

Solution:

First, we need to initialize some things to keep track of some important information

as this algorithm runs.

We will create a table to keep track of the shortest known distance to every vertex

in our graph. We will also keep track of the previous vertex that we came from,

before we “checked” the vertex that we are looking at currently.

Once we have our table all set up, we will need to give it some values. When we

start Dijkstra’s algorithm, we do not know anything at all! We do not even know if

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

9

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

all of the other vertices that we have listed out (b, c, d, and e) are

even reachable from our starting node a.

This means that, when we start out initially, the “shortest path from node a" is going

to be infinity (∞). However, when we start out, we do know the shortest path for one

node, and one node only: node a, our starting node, of course! Since we start at

node a, we are already there to begin with. So, the shortest distance from node a to

node a is actually just 0!

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

10

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Now that we have initialized our table, we will need one other thing before we can

run this algorithm: a way to keep track of which nodes we have or have not visited!

We can do this pretty simply with two array structures: a visited array and

an unvisited array. When we start out, we haven’t actually visited any nodes yet, so

all of our nodes live inside of our unvisited array.

First, we will visit the vertex with the smallest-known cost/distance. We can look at

the column that tells us the shortest distance from a. Right now, every vertex has a

distance of infinity (∞), except for a itself! So, we will visit node a.

Next, we will examine it’s neighboring nodes, and calculate the distance to them

from the vertex that we are currently looking at (which is a). The distance to

node b is the cost of a plus the cost to get to node b: in this case, 7. Similarly, the

distance to node c is the cost of a plus the cost to get to node c: in this case, 3.

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

11

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

12

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Finally, if the calculated distance is less than our currently-known shortest distance

for these neighboring nodes, we will update our tables values with our new “shortest

distance”. Well, currently, our table says that the shortest distance from a to b is ∞,

and the same goes for the shortest distance from a to c. Since 7 is less than infinity,

and 3 is less than infinity, we will update node b's shortest distance to 7, and node c's

shortest distance to 3. We will also need to update the previous vertex of

both b and c, since we need to keep a record of where we came from to get these

paths! We will update the previous vertex of b and c to a, since that is where we just

came from.

Now, we are done checking the neighbors of node a, which means we can mark it as

visited! Onto the next node.

Again, we will look at the node with the smallest cost that has not been visited yet.

In this case, node c has a cost of 3, which is the smallest cost of all the unvisited

nodes. So, node c becomes our current vertex.

We will repeat the same procedure as before: check the unvisited neighbors of

node c, and calculate their shortest paths from our origin node, node a. The two

neighbors of node c that have not been visited yet are node b and node d. The

distance to node b is the cost of a plus the cost to get from node c to b: in this case, 4.

The distance to node d is the cost of a plus the cost to get from node c to d: in this

case, 5.

Now, let ’s compare these two “shortest distances” to the values that we have in our

table. Right now, the distance to d is infinity, so we have certainly found a shorter-

cost path here, with a value of 5. But what about the distance to node b? Well, the

distance to node b is currently marked as 7 in our table. But, we have found a shorter

path to b, which goes through c, and has a cost of only 4. So, we will update our

table with our shorter paths!

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

13

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

14

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

We will also need to add vertex c as the previous vertex of node d. Notice that

node b already has a previous vertex, since we found a path before, which we now

know is not actually the shortest. No worries — we will just cross out the previous

vertex for node b, and replace it with the vertex which, as we now know, has the

shorter path: node c.

Alright, so now we have visited both node a and c. So, which node do we visit next?

Again, we will visit the node that has the smallest cost; in this case, that looks to be

node b, with a cost of 4.

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

15

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

We will check its unvisited neighbor (it only has one, node e), and calculate the

distance to e, from the origin node, via our current vertex, b.

If we sum the cost of b, which is 4, with the cost that it takes to get from b to e, we’ll

see that this costs us 6. Thus, we end up with a total cost of 10 as the shortest-known

distance to e, from the starting vertex, via our current node.

So, how did we get that number? It can seem confusing at first, but we can break it

down into parts. Remember, no matter which vertex we are looking at, we always

want to sum the shortest-known distance from our start to our current vertex. In

simpler terms, we are going to look at the “shortest distance” value in our table,

which will give us, in this example, the value 4. Then, we will look at the cost from

our current vertex to the neighbor that we are examining. In this case, the cost

from b to e is 6, so we will add that to 4.

Thus, 6 + 4 = 10 is our shortest-known distance to node e from our starting vertex.

We will continue doing the same steps for each vertex that remains unvisited. The

next node we would check in this graph would be d, as it has the shortest distance of

the unvisited nodes. Only one of node d's neighbors is unvisited, which is node e, so

that is the only one that we will need to examine.

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

16

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

When we sum the distance of node d and the cost to get from node d to e, we will

see that we end up with a value of 9, which is less than 10, the current shortest path

to node e. We will update our shortest path value and the previous vertex value for

node e in our table.

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

17

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

Finally, we end up with just one node left to visit: node e.

However, it becomes pretty obvious that there’s nothing for us to really do here!

None of node e's neighbors need to be examined, since every other vertex has

already been visited.

All we need to do is mark node e as visited. Now, we are actually

completely done with running Dijkstra’s algorithm on this graph!

We have crossed out a lot of information along the way as we updated and changed

the values in our table. Let’s take a look at a nicer, cleaner version of this table, with

only the final results of this algorithm.

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

18

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

From looking at this table, it might not be completely obvious, but we have actually

got every single shortest path that stems from our starting node a available here,

right at our fingertips. We will remember that earlier, we learned that Dijkstra’s

algorithm can run once, and we can reuse all the values again and again — provided

our graph does not change. This is exactly how that characteristic becomes very

powerful. We set out wanting to find the shortest path from a to e. But, this table will

allow us to look up all shortest paths!

The way to look up any shortest path in this table is by retracing our steps and

following the “previous vertex” of any node, back up to the starting node.

For example, let’s say that we suddenly decide that we want to find the shortest path

from a to d. No need to run Dijkstra’s algorithm again — we already have all the

information we need, right here!

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

19

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

College of Science /Computer Science Dept. Prepared by: Dr.Boshra Al_bayaty & Dr. Muhanad Tahrir Younis (2018-2019)

20

ALGORITHMS Design and Analysis-2nd class By: Harsh Bhasin © Oxford University

Press 2015

H.W: The most common example of Dijkstra’s algorithm in the wild is in path-

finding problems, like determining directions or finding a route on GoogleMaps.

Apply Dijkstra’s algorithm to find the shortest path from node Auckland to each

vertex.

