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1- Introduction
Have you ever thought how the message we send from our computer finds its path
to some other computer? The message travels via a complicated mesh of routers and
tries to go via a path which has least cost. There are two issues involved in the above
problem.
The first issue that needs to be addressed is whether there is a path between source
and the receiver and if there are more than one path, then which is the shortest? The
above problem is a subclass of the problem which would be discussed in this chapter.
The chapter introduces single-source shortest path algorithm, known as Dijkstra’s
algorithm, to find the shortest path from a node designated as ‘source’ to all other
nodes.

2- weighted graphs
Before we can really get into Dijkstra’s algorithm, we need to pick up a few seeds
of important information that we will need along the way, first.
In the previous chapter, not only have we learned about various graph traversal
algorithms, but we have also taught the fundamentals of graph theory, as well as the
various ways of representing graphs. We already know that graphs can be directed,
or undirected, and may even contain cycles. We have also learned how we can
use breadth-first search and depth-first search to traverse through them.
In our journey to understand graphs and the different types of graph structures that
exist, there is one type of graph that we have managed to skip over—until now, that
Is weighted graph.
A weighted graph is interesting because it has little to do with whether the graph is
directed, undirected, or contains cycles. At its core, a weighted graph is a graph
whose edges have some sort of value that is associated with them. The value that is

attached to an edge is what gives the edge its “weight”.
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A common way to refer to the “weight” of a single edge is by thinking of it as
the cost or distance between two nodes. In other words, to go from node a to
node b has some sort of cost to it.

Or, if we think of the nodes like locations on a map, then the weight could instead
be the distance between nodes a and b. Continuing with the map metaphor, the
“weight” of an edge can also represent the capacity of what can be transported, or
what can be moved between two nodes, a and b.

For example, in the following example, we could ascertain that the cost, distance, or

capacity between the nodes ¢ and b is weighted at 8.
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A weighted graph can be represented with an adjacency list, with one added
property: a field to store the cost/weight/distance of every edge in the graph.

For every single edge in our graph, we will tweak the definition of the linked list
that holds the edges so that every element in the linked list can contain two values,

rather than just one. These two values will be the opposite node’s index, which is
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how we know where this edge connects to, as well as the weight that is associated
with the edge.
The above weighted graph, therefore, can be represented using an adjacency list as

follows:
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3- Dijkstra’s algorithm
Finding the shortest path between two nodes becomes much trickier when we have
to take into account the weights of the edges that we are traversing through.
Algorithm 1 shows the pseudocode of a single-source shortest path algorithm (also
called Dijkstra’s algorithm).
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Algorithm 1 Single-source shortest path (Dijkstra’s algorithm)
Input

* A graph G=(V, E)

* The cost corresponding to each edge

Output

» Shortest paths from the source node to all other nodes

Strategy

« Start from the source node and select the path which has minimum cost.

* The paths from the node selected and the source node are then explored. In order
to go to a node, say X, the direct path from a source node and path via any of the
selected nodes are considered, whichever is smaller is selected.

The array selected_vertex[ ] keeps track of the vertex selected at any instant. The

initial value of each element is O, it becomes 1 if that vertex is selected. Another

array distance[ ] stores the minimum distance of a node from the source vertex. In

the algorithm, i is a counter and n is the number of vertices in the graph.

Single Source shortest path returns distance[]

{
while ( i<n)
{
selected vertex[i]=90;
}
i=0;
selected_vertex[i]= 1;
while(i<n)
{
From amongst (n-1) edges (maximum) originating from I vertex,
select the one which has minimum cost.
Let the selected vertex be k.
selected_vertex[k]=1;
for each vertex m adjacent to i such that selected_vertex[m]=0
{
if(distance[k]>distance[m]+cost[m, k])
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distance[k] = distance[m]+cost[m,k];

}

return distance[]

}

Complexity: The first loop runs n times, the second loop runs n times, and in each
iteration, the inner loop runs, thus, making the complexity as O(n?). However, if all
the shortest paths are to be determined using the above algorithm, then the
complexity would be O(nd).

Ex(1): Apply single-source shortest path (Dijkstra’s algorithm) to find the minimum
distance from A of graph G1 (Fig. 1) to each vertex.

Figure 1: Graph G1

Solution From A, there are three outgoing edges having costs 5, 9, and 2. The edge

having minimum cost is selected, as per the greedy approach (Fig. 2).
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D 1 C

Figure 2: Graph G1, edge AC selected
The minimum cost edge from amongst the remaining edges is CD. So in order to go
from A to D, the optimal path is A—C—D (Fig. 3).

D 1 Cc

Figure 3: Graph G1, edge CD selected

A packet can traverse from A to B in two ways, either directly or through C.
However, the path from C costs 2 + 6 = 8, whereas the direct cost is 9 (Fig. 4).
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D 1 C

Figure 4: Graph G1, edge CB selected

A packet can traverse from A to E directly. The path costs 5 (Fig. 5).

A 9 B
>

D 1 C

Figure 5: Graph G1, edge AE selected

Though we select the minimum cost edge at a particular point, however, the cost is

also being compared with other costs (i.e., via k).
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Ex(2): In the simple directed, weighted graph below, we have a graph with three
nodes (a, b, and c), with three directed, weighted edges. Apply Dijkstra’s algorithm
to find the shortest path from node a to node e.
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Solution:

First, we need to initialize some things to keep track of some important information
as this algorithm runs.

We will create a table to keep track of the shortest known distance to every vertex
in our graph. We will also keep track of the previous vertex that we came from,

before we “checked” the vertex that we are looking at currently.
Once we have our table all set up, we will need to give it some values. When we

start Dijkstra’s algorithm, we do not know anything at all! We do not even know if
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all of the other vertices that we have listed out (b,c,d, ande) are
even reachable from our starting node a.

This means that, when we start out initially, the “shortest path from node a" is going
to be infinity («0). However, when we start out, we do know the shortest path for one
node, and one node only: node a, our starting node, of course! Since we start at
node a, we are already there to begin with. So, the shortest distance from node a to

node a is actually just O!
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Now that we have initialized our table, we will need one other thing before we can
run this algorithm: a way to keep track of which nodes we have or have not visited!
We can do this pretty simply with two array structures: a visited array and
an unvisited array. When we start out, we haven’t actually visited any nodes yet, so

all of our nodes live inside of our unvisited array.
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First, we will visit the vertex with the smallest-known cost/distance. We can look at
the column that tells us the shortest distance from a. Right now, every vertex has a
distance of infinity (), except for a itself! So, we will visit node a.

Next, we will examine it’s neighboring nodes, and calculate the distance to them
from the vertex that we are currently looking at (which is a). The distance to
node b is the cost of a plus the cost to get to node b: in this case, 7. Similarly, the

distance to node c is the cost of a plus the cost to get to node c: in this case, 3.
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Finally, if the calculated distance is less than our currently-known shortest distance
for these neighboring nodes, we will update our tables values with our new “shortest
distance”. Well, currently, our table says that the shortest distance from a to b is oo,
and the same goes for the shortest distance from a to c. Since 7 is less than infinity,
and 3 is less than infinity, we will update node b's shortest distance to 7, and node c's
shortest distance to 3. We will also need to update the previous vertex of
both b and c, since we need to keep a record of where we came from to get these
paths! We will update the previous vertex of b and c to a, since that is where we just
came from.

Now, we are done checking the neighbors of node a, which means we can mark it as
visited! Onto the next node.

Again, we will look at the node with the smallest cost that has not been visited yet.
In this case, node c has a cost of 3, which is the smallest cost of all the unvisited
nodes. So, node ¢ becomes our current vertex.

We will repeat the same procedure as before: check the unvisited neighbors of
node ¢, and calculate their shortest paths from our origin node, node a. The two
neighbors of node ¢ that have not been visited yet are node b and node d. The
distance to node b is the cost of a plus the cost to get from node c to b: in this case, 4.
The distance to node d is the cost of a plus the cost to get from node c to d: in this
case, 5.

Now, let ’s compare these two “shortest distances” to the values that we have in our
table. Right now, the distance to d is infinity, so we have certainly found a shorter-
cost path here, with a value of 5. But what about the distance to node b? Well, the
distance to node b is currently marked as 7 in our table. But, we have found a shorter
path to b, which goes through c, and has a cost of only 4. So, we will update our

table with our shorter paths!
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We will also need to add vertex c as the previous vertex of node d. Notice that
node b already has a previous vertex, since we found a path before, which we now
know is not actually the shortest. No worries—we will just cross out the previous
vertex for node b, and replace it with the vertex which, as we now know, has the

shorter path: node c.
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Alright, so now we have visited both node a and c. So, which node do we visit next?
Again, we will visit the node that has the smallest cost; in this case, that looks to be

node b, with a cost of 4.
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We will check its unvisited neighbor (it only has one, node e), and calculate the
distance to e, from the origin node, via our current vertex, b.

If we sum the cost of b, which is 4, with the cost that it takes to get from b to e, we’ll
see that this costs us 6. Thus, we end up with a total cost of 10 as the shortest-known
distance to e, from the starting vertex, via our current node.

So, how did we get that number? It can seem confusing at first, but we can break it
down into parts. Remember, no matter which vertex we are looking at, we always
want to sum the shortest-known distance from our start to our current vertex. In
simpler terms, we are going to look at the “shortest distance” value in our table,
which will give us, in this example, the value 4. Then, we will look at the cost from
our current vertex to the neighbor that we are examining. In this case, the cost
from b to e is 6, so we will add that to 4.

Thus, 6 + 4 =10 is our shortest-known distance to node e from our starting vertex.
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We will continue doing the same steps for each vertex that remains unvisited. The
next node we would check in this graph would be d, as it has the shortest distance of
the unvisited nodes. Only one of node d's neighbors is unvisited, which is node e, so

that is the only one that we will need to examine.
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When we sum the distance of node d and the cost to get from node d to e, we will
see that we end up with a value of 9, which is less than 10, the current shortest path
to node e. We will update our shortest path value and the previous vertex value for

node e in our table.
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Finally, we end up with just one node left to visit: node e.
However, it becomes pretty obvious that there’s nothing for us to really do here!
None of node e's neighbors need to be examined, since every other vertex has

already been visited.
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All we need to do is mark nodeeas visited. Now, we are actually
completely done with running Dijkstra’s algorithm on this graph!

We have crossed out a lot of information along the way as we updated and changed
the values in our table. Let’s take a look at a nicer, cleaner version of this table, with

only the final results of this algorithm.
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From looking at this table, it might not be completely obvious, but we have actually
got every single shortest path that stems from our starting node a available here,
right at our fingertips. We will remember that earlier, we learned that Dijkstra’s
algorithm can run once, and we can reuse all the values again and again—provided
our graph does not change. This is exactly how that characteristic becomes very
powerful. We set out wanting to find the shortest path from a to e. But, this table will
allow us to look up all shortest paths!

The way to look up any shortest path in this table is by retracing our steps and
following the “previous vertex” of any node, back up to the starting node.

For example, let’s say that we suddenly decide that we want to find the shortest path
fromato d. No need to run Dijkstra’s algorithm again—we already have all the

information we need, right here!
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H.W: The most common example of Dijkstra’s algorithm in the wild is in path-
finding problems, like determining directions or finding a route on GoogleMaps.

Apply Dijkstra’s algorithm to find the shortest path from node Auckland to each
vertex.
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