Lecture four (*Absorption*)

1- Beer-Lambert Law

A fraction of the incident radiation is absorbed along the path of propagation in a Medium (here refer to the atmosphere). The Beer-Lambert law (also referred to as the Beer-Lambert-Bouguer law) governs the reduction in the radiation intensity I_{λ} at wavelength λ (Fig. below). If *s* stands for the medium thickness (oriented in the direction of propagation), the evolution of the radiation intensity is:

Where $a_{\lambda}(s)$ is the absorption coefficient at wavelength λ (depending on the Medium). The unit of a_{λ} is, for instance, m⁻¹ or cm⁻¹. Assuming that the medium is homogeneous, then a_{λ} has a constant value and:

Consider a medium composed of p absorbing species, with densities n_i (i = 1, ..., p), expressed in (molecule cm⁻³). The absorbing coefficient is then obtained by summing over all species. For a given species, the contribution depends on the density and on the so-called *absorption cross section* (the effective cross section resulting in absorption), σ_i^a (λ, s), usually expressed in cm²:

A way to define the absorption cross section is to consider an incident flux of energy per surface, F (in Wcm⁻²). The resulting absorbed energy is then:

Another classical concept is the so-called <u>optical depth τ_{λ} (unitless), defined for</u> <u>a monochromatic radiation by:</u>

By substituted in equation (1) and Rewriting the Beer – Lambert law yields:

Overall absorbance depend on two assumption:

- 1- Absorbance proportional with concentration of that medium. $a_{\lambda} \alpha c$
- 2- Absorbance directly proportional to length of light of path $a_{\lambda} \alpha s$

 $a_{\lambda} \alpha c.s....(7)$

Where:

c = concentration

s = length or thickness

The proportionality in equation (7) can be converted to equality:

EXAMPLE 1: A Gas has a maximum absorbance of 275nm. $\epsilon_{275}=8400M^{-1}cm^{-1}$ and the path length is 1 cm. Using a spectrophotometer, you find the that $A_{275}=0.70$. What is the concentration of gas?

SOLUTION

To solve this problem, you must use Beer's Law.

$$A = \epsilon lc$$

 $0.70 = (8400 \text{ M}^{-1} \text{ cm}^{-1})(1 \text{ cm})(\text{c})$ Next, divide both side by [(8400 M⁻¹ cm⁻¹)(1 cm)] $\text{c} = 8.33 \text{x} 10^{-5} \text{ mol/L}$

EXAMPLE 2: There is a substance in a solution (4 g/liter). The length of cuvette is 2 cm and only 50% of the certain light beam is transmitted. What is the extinction coefficient?

SOLUTION

Using Beer-Lambert Law, we can compute the absorption coefficient. Thus,

$$-log\left(\frac{lt}{lo}\right) = -log\left(\frac{0.5}{1.0}\right) = A = 2 * 4\epsilon$$

Then we obtain that

 $\epsilon = 0.0376$

2. Kirchhoff's Law

For a given wavelength λ , the *absorptivity* A_{λ} is defined as the fraction of the incident radiation that is absorbed by the medium. Kirchhoff's law (1859) connects the absorptivity and the emissivity of a medium at thermodynamic equilibrium, namely

The absorption properties of a medium are therefore directly related to its emission properties. Note that A_{λ} can be derived from a_{λ} . For a medium supposed to be homogeneous, with a thickness *z* (typically a cloud), with an

absorbing coefficient a_{λ} , the ratio of the absorbed intensity to the incident intensity is $A_{\lambda} = 1 - exp(-a_{\lambda}\Delta z)$. At thermodynamic equilibrium, when Taking into account absorption and emission, the evolution of the intensity is then

 $B_{\lambda}(T)$: For a body at temperature T Maximum of emitted radiance at wavelength is given by the so-called Planck distribution,