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Chapter one 

Combinatorial Optimization Problem 

 

1.4 Solving Methods for COP 

For many COP it is hard to find an optimal solution. A lot of effort 

has therefore been put in the design and analysis of approximation 

algorithms for these types of problems. Such algorithms do not 

necessarily find an optimal solution, but attempt to find a good solution. 

Provided a problem has a finite number of solutions, it is possible, 

in theory, to find the optimal solution by trying every possible solution.  

An algorithm which tries every solution to a problem in order to find the 

best is known as a brute force algorithm. Cryptographic algorithms are 

almost always designed to make a brute force attack of their solution 

space (or key space) infeasible. For example, the key space is large 

enough so that it is not plausible for an attacker to try every possible key. 

CO techniques attempt to solve problems using techniques other than 

brute force since many problems contain variables which may be 

unbounded, leading to an infinite number of possible solutions. In the 

case where the number of solutions is finite it is generally infeasible to 

use a brute force approach to solve it so other techniques must be found. 

Algorithms for solving problems from the field of CO fall into two 

broad groups - exact algorithms and approximate algorithms. An exact 

algorithm guarantees that the optimal solution to the problem will be 

found. The most basic exact algorithm is a brute force one. Other 

examples are branch and bound, and the simplex method. Approximate 

algorithms attempt to find a “good” solution to the problem. A “good” 

solution can be defined as one which satisfies a predefined list of 

http://en.wikipedia.org/wiki/Combinatorial_Optimization
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expectations. Often it is impractical to use exact algorithms because of 

their prohibitive complexity (time or memory requirements). In such 

cases approximate algorithms are employed in an attempt to find an 

adequate solution to the problem. Examples of approximate algorithms 

(or, more generally, heuristics) are simulated annealing, the genetic 

algorithm and the tabu search. 

 

1.5 Algorithm and Complexity 

Algorithm: An algorithm is a method for solving a class of problems on  

a computer.  

Complexity: The complexity of an algorithm is the cost, measured in 

running time, or storage, or whatever units are relevant, of using the 

algorithm to solve one of those problems. 

The time complexity of a calculation is measured by expressing the 

running time of the calculation as a function of some measure of the 

amount of data that is needed to describe the problem to the computer. 

The general rule is that if the running time is at most a polynomial 

function of the amount of input data, then the calculation is an easy one, 

otherwise it's hard. For instance, matrix inversion is easy. The familiar 

Gaussian elimination method can invert an nn matrix in time at most 

cn
3
. For instance, think about this statement: I just bought a matrix 

inversion program, and it can invert an nn matrix in just 1.2n
3
 minutes. 

We see here a typical description of the complexity of a certain 

algorithm. The running time of the program is being given as a function 

of the size of the input matrix. A faster program for the same job might 

run in 0.8n
3
 minutes for an nn matrix. 

A significant research topic in scheduling is the use of complexity 

theory to classify scheduling problems into two classes: 
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 P (polynomial), which the class P contains all decision problems that 

are polynomially solvable. 

 NP (non-deterministic polynomial), contains many difficult problems 

for which no polynomial algorithm has been found. 

  However there is always a possibility that someone will prove that 

P=NP but the chance would seem to be a very small one. 

The NP-hardness of a problem suggests that there are instances for 

which the computation time required for finding an optimal solution 

increases exponentially with problem size. If large computation times for 

such problems are unacceptable, then a heuristic method or an 

approximation algorithm is used to give approximate solutions. 

 

1.6 Exact Solution Methods 

There are many methods of exact solution, We will focus in 

complete enumeration, and branch and bound methods. 

 

1.6.1 Complete Enumeration Method (CEM) 

Complete enumeration methods generate one by one, all feasible 

solutions and then pick the best one. For example, for a single machine 

problem of n jobs there are n! different sequences. Hence for the 

corresponding m machines problem, there are (n!)
m
 different sequences. 

This method may take considerable time as the number (n!)
m
 is very large 

even for relatively small values of n and m. 

 

1.6.2 Branch and Bound Methods (BAB) 

Branch and bound (BAB) methods are implicit enumeration 

techniques which can find an optimal solution by systematically 

examining subsets of feasible solutions. These methods are usually 

described by means of search tree with nodes that corresponding to these 
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subsets. The BAB method uses a search tree. Each node in the tree 

contains a partial sequence of jobs. For n job problem, there are n-1 

numbers of levels for a tree. At level zero, root node will be placed with 

all n empty sequence positions. At level 1, there will be n number of 

nodes. Each node will contains a partial sequence of jobs. The first 

position in the sequence will be occupied by a job in numerical order. 

Similarly, each node at (n-1)
th

 level will be branched to (n-2) number of 

nodes. The process will continue till each node has exactly one leaf.  

Generation of all sequences is combinatorial in nature and, will 

result in enormous number of sequences even for a small number of jobs. 

For example, for a 10-job problem there will be 10! sequences. To reduce 

the computational effort, lower bounds are calculated at every level for 

each node. The formula used to compute the lower bound is pertained to 

objective function of the COP. Branching is carried out only from those 

nodes with a minimum lower bound. By doing so, only small proportion 

of the nodes is explored resulting in fewer amounts of computations. The 

BAB method is applied in almost every COP problem. 

 

 


