
Chapter One Machine Scheduling Problems

 1

Machine Scheduling Problem (MSP)

2. The Multi-Criteria Scheduling Problem

The multi-criteria scheduling problem can be stated as follows. There

are n jobs to be processed on a single machine, each job i has processing

time pi and due date di at which ideally should be completed. Penalties are

incurred whenever a job i is completed earlier or later than its due date di.

Multi-criteria optimization with conflicting objective functions provides a

set of Pareto optimal solutions, rather than one optimal solution. This set

includes the solution that no other solution is better than with respect to all

objective functions. In the literature, there are two approaches for multi-

criteria scheduling problems: the hierarchical approach and the

simultaneous approach. In the hierarchical approach, one of the two

criteria is considered as the primary criterion and the other one is

considered as the secondary criterion. The problem is to minimize the

primary criterion while breaking ties in favor of the schedule has minimum

secondary criterion value.

For the simultaneous approach, there are two types; the first one is to

find the sum of these objectives. The second one typically generates all

efficient schedules (set of Pareto optimal solutions) and selects the one

that yields the best composite objective function value of the criteria.

Several studies by Van Wessenhove and Gelder [88], Hoogeveen [48],

Alasaf [7], Findi [35] and Hoogeveen [46] are examples of simultaneous

minimization scheduling problems. The objective function of MSP can be

classified as in figure (1).

Figure (1): Objective function of MSP classification.

3. Algorithm and Complexity

MSP Objective
Function

Single-Criteria
Objective
Function

Single-Objective
Function

Multi-Objective
Function

Multi-Criteria
Objective
Function

simultaneous
approach

hierarchical
approach

Chapter One Machine Scheduling Problems

 2

An algorithm is a method for solving a class of problems on

a computer. The complexity of an algorithm is the cost, measured in

running time, or storage, or whatever units are relevant, of using the

algorithm to solve one of those problems [42].

The time complexity of a calculation is measured by expressing the

running time of the calculation as a function of some measure of the

amount of data that is needed to describe the problem to the computer.

The general rule is that if the running time is at most a polynomial

function of the amount of input data, then the calculation is an easy one,

otherwise it's hard. For instance, matrix inversion is easy. The familiar

Gaussian elimination method can invert an nn matrix in time at most cn3.

For instance, think about this statement: I just bought a matrix inversion

program, and it can invert an nn matrix in just 1.2n3 minutes. We see here

a typical description of the complexity of a certain algorithm. The running

time of the program is being given as a function of the size of the input

matrix. A faster program for the same job might run in 0.8n3 minutes for

an nn matrix [42].

A significant research topic in scheduling is the use of complexity

theory to classify scheduling problems into two classes [27]:

• P (polynomial), which the class P contains all decision problems that

are polynomially solvable.

• NP (non-deterministic polynomial), contains many difficult problems

for which no polynomial algorithm has been found.

 However there is always a possibility that someone will prove that

P=NP but the chance would seem to be a very small one.

Many problems in CO can be solved by using an appropriate

algorithm. Informally, an algorithm is given a (valid) input, i.e.,

a description of an instance of a problem and computes a solution after a

finite number of "elementary steps". The number of bits used to describe

an input I is called the (binary) length or size of the input and denoted

size(I). Let t :N→R be a function. We say that an algorithm runs in time

O(t) if there is a constant  such that the algorithm uses at most t(size(I))

many elementary steps to compute a solution given any input I. An

algorithm is called polynomial time if t:n ⟼ nc for some constant c. This

contrasts exponential time algorithms where t:n⟼cn for some constant

c>1.

Because the running times of exponential time algorithms grow

rather rapidly as the input size grows, we are mostly interested in

polynomial time algorithms. Of course, we desire to find an optimum

Chapter One Machine Scheduling Problems

 3

solution for any given COP in polynomial time. Unfortunately this is not

always possible as many COPs are NP-hard. (It is widely believed that no

polynomial time algorithm exists that solves some NP-hard COP optimally

on every instance). Thus our goal is to find "good" solutions in polynomial

time.

For example, for MSP, a major theme in recent research has been

used the complexity theory to classify MSP's as polynomially solvable or

NP-hard. Many fundamental results in this area are derived by Lenstra et

al. (1977) [63]. Classifying MSP's according to their computational

complexity was first discussed by Cook (in 1971) [27] and Karp (1972)

[57].

